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The bootstrap

Main idea: an approach to inference that instead of relying on normal
asymptotic approximation to the true distribution of a statistic, finds an
estimate of this distribution that is based on resampling from the sampled
data.

Data: Di,.... Dy '~ F

Statistic: S, = sp(D1, ..., Dp)
True distribution: S, ~ P (S, <'s)

For example: S, = 0; S, = /n(0 — 05); S, = se?é)

Note 1: Pr,(Sn, < 's) is a function Gu(s, Fo). Keep this in mind but I'll be
using the Pr,(S, < s) notation to remind ourselves that it is the
distribution function of the statistic.

Note 2: in these notes, we assume i.i.d data but see comments on what
changes if data clustered.
The bootstrap 2/18



The bootstrap

@ Asymptotic normality approach

Pr,(Sn <'s) = lim Pg,(Sh <s) = Pr(Sx <'s)
n—o0 N——

Found analytically,
normal

@ Bootstrap approach

Pr(Sn < s)~ Pg(Sn<5s)
—_————
Distribution of Sn

when D ~ F.
. Estimated with
simulation approach

by drawing from F
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The bootstrap

General algorithm:
@ For each b=1,..., B, where B is large (say 10,000):
© Generate a bootstrap sample of size n, D? = (D?, ..., Dt), by drawing

from /:_ an estimate of Fy.
@ Compute SP for this bootstrap sample.

@ Use the computed (S, ..., SB) to get an empirical distribution of S?
and use this as an approx of Pg,(5, < s):

B
Pry(Sn < 's) = Pp(Sn < s) (NN) éz 1(SP < 1)

(*) Can show:
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The bootstrap

Different bootstrap approaches suggest different F:
@ ‘Infeasible” bootstrap (just a theoretical exercise)

@ Non-parametric bootstrap (most common - Isaiah: use this unless
good reason not to)

© Parametric bootstrap
© Residual bootstrap
© Wild bootstrap
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“Infeasible” bootstrap

Assumes that we know F( (note: this is a theoretical exercise...if Fy is
known, then estimation and inference not needed...).
@ Foreach b=1,..., B, where B is large (say 10,000):
@ Generate a bootstrap sample of size n, D? = (D?, ..., D?), by drawing

from Fg.
@ Compute SP for this bootstrap sample.

@ Use the computed (S, ..., SB) to get an empirical distribution of S?
and use this as an approx of Pg,(5, < s):

B
Pr,(Sn < s) Z 1(Sk < t)
b:

Glivenko-Cantelli Theorem (empirical distributions converge to true
distributions when iid sample grows):

(Sn <s)
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Non-parametric bootstrap
Uses the empirical distribution of D as F:

n

A 1
Fd) =~ Z 1(D; < d)
i=1

@ Foreach b=1,..., B, where B is large (say 10,000):

@ Generate a bootstrap sample of size n(*), D? = (D?, ..., D?), by
drawing from F. In practice, this can be done by randomly
sampling with replacement from D = (D, ..., D,).

@ Compute SP for this bootstrap sample.

@ Use the computed (S}, ..., SB) to get an empirical distribution of S?

and use this as an approx of Pg,(5, < s):
B
Pry(Sn < 5) = Pp(Sn < 5) Z Sbgt)
b:

(*)Note: if clustered data with clusters of different size, sample size of
each bootstrap sample can vary.
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Parametric bootstrap
Assumes that Fp is within a family of distributions: Fo € {F(.,0) : 6 € O},
so there's a 6y such that Fo(d) = F(d,6p). Thus, approximate Fy with:

F=F(,0)
02 0,

@ Foreach b=1,..., B, where B is large (say 10,000):
© Generate a bootstrap sample of size n, D? = (D, ..., Dt), by drawing
from F(*)
@ Compute SP for this bootstrap sample.
@ Use the computed (S}, ..., SB) to get an empirical distribution of S?
and use this as an approx of Pg,(5, < s):

B
Pry(Sn < 5) ~ Pp(Sp < 5) ZS”St)
b:

(*)Note: if clustered data, draw at the cluster level.
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Residual bootstrap
Assumes that Y; = h(X;,0) + €;, E[e;|X;] = 0.
@ Compute estimate § by OLS/NLS and residuals & = Y; — h(X;, ).
@ For each b=1,..., B, where B is large (say 10,000):
© Generate a bootstrap sample of size n, €&® = (€%, ..., &), by randomly
sampling with replacement from (éy, ..., &,).
@ Generate a bootstrap sample of size n, Xb (XE, ...
sampling with replacement from (X, ..., X;,).
© Generate a bootstrap sample of size n, Y2 = (Y2, ..., Y) by
computing Y2 = h(X?, ) + ¢? (note that because the previous two
steps are independent from each other, we're implicitly imposing
homoskedasticity. Also, if clustered data, clusters must be same size).
@ Compute SP for this bootstrap sample (Y?, X?). For example:
Sb=0b or SP = \/n(6P — 0).
© Use the computed (S}, ..., SB) to get an empirical distribution of S?
and use this as an approx of Pg, (S5, < s):

, Xb), by randomly

B
Pr,(Sn < ) ~ Pe(Sa < s) Z 1St < t)
b:
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Wild bootstrap

Assumes that Y; = h(X;,0) + €;, E[e;|X;] = 0.
@ Compute estimate § by OLS/NLS and residuals & = Y; — h(X;, ).
@ For each b=1,..., B, where B is large (say 10,000):

® (Generate a bootstrap sample of size n,

(XP,eP) = ((XP,eb), ..., (XP, &b)), by randomly sampling with
replacement from ((X17 €1), ey (Xny €n)).

@ Generate a bootstrap sample of size n, Yo =(Yp, .., YPE) by
computing Y2 = h(X?,8) + VP x ¢® where V? is drawn from a
distribution that takes values —1 and 1 with equal probability (it flips
the sign of the residual). (If clustered data, V? is the same for all i of
same cluster).

@ Compute SP for this bootstrap sample (Y2, X®). For example:
Sb=0b or SP = \/n(6P — 0).

© Use the computed (S}, ..., SB) to get an empirical distribution of S?
and use this as an approx of Pg, (S5, < s):

B
Pr,(Sn < ) ~ Pe(Sa < s) Z 1St < t)
b:
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The bootstrap

Suppose S, = 6. From simulation procedure, we got (91, ...,HAB). Now we
want to do inference; specifically, suppose we want 95% confidence
intervals. Different options:

1. Rely on asymptotic normal approximation of the distribution of
v/n(6 — 6p) but use bootstrap standard error of 6 instead of formula
for asymptotic variance:

Cl=10-1.96x seboot(é) - 0+ 1.96 x seboot(é)}

N 1 B N =\ 2
Seboot(e) = ﬁ Z <9b — 0)

S|

1
==Y
535

Giselle Montamat The bootstrap 11 /18



The bootstrap

2. Find the 5 and 1 — 3 quantiles of the empirical distribution of
(01, ...,0B), for ov = 0.05.

Cl = [q% ; Q1f%]

Called “percentile bootstrap interval”.
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The bootstrap

3. Take S, = 9;90. From simulation procedure, obtain (S}, ..., SB)
ob_p . . , .. ~
where S? = 9&;9 (note that in this case, we're obtaining & for each

bootstrap sample using the asymptotic formula for the variance).

Find the 5 and 1 — 5 quantiles of the empirical distribution of
(S}, ...,SB), for a = 0.05 and use these as critical values for
constructing the interval.

CI:{HA—ql_%xﬁ; é—q%x&}

Called “bootstrap t interval”.
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The bootstrap

Exercise: In problem set 6, exercise 2 you were asked to find the percentile
interval and t-interval based on the non-parametric bootstrap for a
GMM-IV estimator.

Y, =T;6+ X,-/(; + €
Moment conditions:

awoon-e[[§)e]-[5)- () () ()] -

System is just-identified so can find B and é directly from sample analog

of these moments:
1 Z;
!n Z <X,-> Yi

D-L=@ 6

Giselle Montamat The bootstrap 14 / 18




The bootstrap

Formula for asymptotic variance of GMM estimator:
Var(9) = (G'WG)*G'WQWG(G'WG) ™!
If system is just-identified, formula simplifies (G and W invertible):
Var(9) = G 'Q(GYY

() )] === () ()
Q = Var(g(Di,7)) = Elg(Di,7)g(Di,7)']

5 _ 1 ZN\ o (2
01y )

w22 ()9 |2 ()¢
1el(c
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The bootstrap

@ Asymptotic standard error of B and 95% ClI:

se(B) = \/[é_lﬁ(f_l)’]n

Cl = [B —1.96 x se(B) ; A+ 1.96 x se(B)]

@ 95% percentile bootstrap interval (based on non-parametric
bootstrap):
Find the § and 1 — 5 quantiles of the empirical distribution of
(B, ..., BB), for v = 0.05.

Cl = [q% ; Ch—%]

Note: difference between clustered and iid data is how you resample
from your data in your boostrap algorithm.
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The bootstrap

@ 95% t bootstrap interval (based on non-parametric bootstrap):
Find the § and 1 — 5 quantiles of the empirical distribution of

-3 pE-p _ "
(sel(é)’ e seB(B)>’ for v = 0.05 and use these as critical values for
constructing the interval.

A

Cl = [3 —qios x se(B); B—qa x se(B)
Note: difference between clustered and iid data is how you resample

from your data in your boostrap algorithm and what formula for s.e.
you use.
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The bootstrap

Bootstrap v asymptotic approaches to inference

@ Both rely on asymptotics. Bootstrap distribution is a “good” approximation
of true distribution but this is a convergence statement:

Pr,(Sn <'s) = Pg(Sn, <'s) since: sup|Pg(S, <'5) — Pr(Sn < 5) 20

Moreover, this convergence result usually relies on another convergence

result:
Pe,(Sn < 5) 2 PR (S50 < 5)

So both rely on the same asymptotic result (ie, bootstrap “works” when
asymptotic normality holds).

@ For smaller samples, bootstrap better. Theory can show that bootstrap Cl
coverage converges to true finite sample Cl coverage for some statistics (eg,
t stats); this also seems be true more generally but we don't know how to
prove it.

Giselle Montamat The bootstrap 18 / 18



