The bootstrap

Giselle Montamat

Harvard University

Spring 2020

The bootstrap

Main idea: an approach to inference that instead of relying on normal asymptotic approximation to the true distribution of a statistic, finds an estimate of this distribution that is based on resampling from the sampled data.

$$
\begin{gathered}
\text { Data: } D_{1}, \ldots, D_{n} \stackrel{i . i . d}{\sim} F_{0} \\
\text { Statistic: } S_{n}=s_{n}\left(D_{1}, \ldots, D_{n}\right) \\
\text { True distribution: } S_{n} \sim P_{F_{0}}\left(S_{n} \leq s\right)
\end{gathered}
$$

For example: $S_{n}=\hat{\theta} ; S_{n}=\sqrt{n}\left(\hat{\theta}-\theta_{0}\right) ; S_{n}=\frac{\hat{\theta}}{\operatorname{se}(\hat{\theta})}$
Note 1: $P_{F_{0}}\left(S_{n} \leq s\right)$ is a function $G_{n}\left(s, F_{0}\right)$. Keep this in mind but I'll be using the $P_{F_{0}}\left(S_{n} \leq s\right)$ notation to remind ourselves that it is the distribution function of the statistic.

Note 2: in these notes, we assume i.i.d data but see comments on what changes if data clustered.

The bootstrap

- Asymptotic normality approach

$$
P_{F_{0}}\left(S_{n} \leq s\right) \approx \lim _{n \rightarrow \infty} P_{F_{0}}\left(S_{n} \leq s\right)=\underbrace{P_{F_{0}}\left(S_{\infty} \leq s\right)}_{\substack{\text { Found analytically } \\ \text { normal }}}
$$

- Bootstrap approach

$$
P_{F_{0}}\left(S_{n} \leq s\right) \approx \underbrace{P_{\hat{F}}\left(S_{n} \leq s\right)}_{\begin{array}{c}
\text { Distribution of } S_{n} \text { when } D \sim \hat{F} \\
\text { Estimated with } \\
\text { simulation approach } \\
\text { by drawing from } \hat{F}
\end{array}}
$$

The bootstrap

General algorithm:
(1) For each $b=1, \ldots, B$, where B is large (say 10,000):
(1) Generate a bootstrap sample of size $n, D^{b}=\left(D_{1}^{b}, \ldots, D_{n}^{b}\right)$, by drawing from \hat{F}, an estimate of F_{0}.
(2) Compute S_{n}^{b} for this bootstrap sample.
(2) Use the computed $\left(S_{n}^{1}, \ldots, S_{n}^{B}\right)$ to get an empirical distribution of S_{n}^{b} and use this as an approx of $P_{F_{0}}\left(S_{n} \leq s\right)$:

$$
P_{F_{0}}\left(S_{n} \leq s\right) \approx P_{\hat{F}}\left(S_{n} \leq s\right) \underset{(*)}{\approx} \frac{1}{B} \sum_{b=1}^{B} 1\left(S_{n}^{b} \leq t\right)
$$

(*) Can show:

$$
\frac{1}{B} \sum_{b=1}^{B} 1\left(S_{n}^{b} \leq t\right) \xrightarrow{B \rightarrow \infty} P_{\hat{F}}\left(S_{n} \leq s\right)
$$

The bootstrap

Different bootstrap approaches suggest different \hat{F} :
(1) "Infeasible" bootstrap (just a theoretical exercise)
(2) Non-parametric bootstrap (most common - Isaiah: use this unless good reason not to)
(3) Parametric bootstrap
(4) Residual bootstrap
(5) Wild bootstrap

"Infeasible" bootstrap

Assumes that we know F_{0} (note: this is a theoretical exercise...if F_{0} is known, then estimation and inference not needed...).
(1) For each $b=1, \ldots, B$, where B is large (say 10,000):
(1) Generate a bootstrap sample of size $n, D^{b}=\left(D_{1}^{b}, \ldots, D_{n}^{b}\right)$, by drawing from F_{0}.
(2) Compute S_{n}^{b} for this bootstrap sample.
(2) Use the computed $\left(S_{n}^{1}, \ldots, S_{n}^{B}\right)$ to get an empirical distribution of S_{n}^{b} and use this as an approx of $P_{F_{0}}\left(S_{n} \leq s\right)$:

$$
P_{F_{0}}\left(S_{n} \leq s\right) \approx \frac{1}{B} \sum_{b=1}^{B} 1\left(S_{n}^{b} \leq t\right)
$$

Glivenko-Cantelli Theorem (empirical distributions converge to true distributions when iid sample grows):

$$
\frac{1}{B} \sum_{b=1}^{B} 1\left(S_{n}^{b} \leq t\right) \xrightarrow{B \rightarrow \infty} P_{F_{0}}\left(S_{n} \leq s\right)
$$

Non-parametric bootstrap

Uses the empirical distribution of D as \hat{F} :

$$
\hat{F}(d)=\frac{1}{n} \sum_{i=1}^{n} 1\left(D_{i} \leq d\right)
$$

(1) For each $b=1, \ldots, B$, where B is large (say 10,000):
(1) Generate a bootstrap sample of size $n\left({ }^{*}\right), D^{b}=\left(D_{1}^{b}, \ldots, D_{n}^{b}\right)$, by drawing from \hat{F}. In practice, this can be done by randomly sampling with replacement from $D=\left(D_{1}, \ldots, D_{n}\right)$.
(2) Compute S_{n}^{b} for this bootstrap sample.
(2) Use the computed $\left(S_{n}^{1}, \ldots, S_{n}^{B}\right)$ to get an empirical distribution of S_{n}^{b} and use this as an approx of $P_{F_{0}}\left(S_{n} \leq s\right)$:

$$
P_{F_{0}}\left(S_{n} \leq s\right) \approx P_{\hat{F}}\left(S_{n} \leq s\right) \approx \frac{1}{B} \sum_{b=1}^{B} 1\left(S_{n}^{b} \leq t\right)
$$

(*)Note: if clustered data with clusters of different size, sample size of each bootstrap sample can vary.

Parametric bootstrap

Assumes that F_{0} is within a family of distributions: $F_{0} \in\{F(., \theta): \theta \in \Theta\}$, so there's a θ_{0} such that $F_{0}(d)=F\left(d, \theta_{0}\right)$. Thus, approximate F_{0} with:

$$
\begin{gathered}
\hat{F}=F(., \hat{\theta}) \\
\hat{\theta} \xrightarrow{p} \theta_{0}
\end{gathered}
$$

(1) For each $b=1, \ldots, B$, where B is large (say 10,000):
(1) Generate a bootstrap sample of size $n, D^{b}=\left(D_{1}^{b}, \ldots, D_{n}^{b}\right)$, by drawing from $\hat{F}\left({ }^{*}\right)$
(2) Compute S_{n}^{b} for this bootstrap sample.
(2) Use the computed $\left(S_{n}^{1}, \ldots, S_{n}^{B}\right)$ to get an empirical distribution of S_{n}^{b} and use this as an approx of $P_{F_{0}}\left(S_{n} \leq s\right)$:

$$
P_{F_{0}}\left(S_{n} \leq s\right) \approx P_{\hat{F}}\left(S_{n} \leq s\right) \approx \frac{1}{B} \sum_{b=1}^{B} 1\left(S_{n}^{b} \leq t\right)
$$

(*)Note: if clustered data, draw at the cluster level.

Residual bootstrap

Assumes that $Y_{i}=h\left(X_{i}, \theta\right)+\epsilon_{i}, E\left[\epsilon_{i} \mid X_{i}\right]=0$.
(1) Compute estimate $\hat{\theta}$ by OLS/NLS and residuals $\hat{\epsilon}_{i}=Y_{i}-h\left(X_{i}, \hat{\theta}\right)$.
(2) For each $b=1, \ldots, B$, where B is large (say 10,000):
(1) Generate a bootstrap sample of size $n, \hat{\epsilon}^{b}=\left(\hat{\epsilon}_{1}^{b}, \ldots, \hat{\epsilon}_{n}^{b}\right)$, by randomly sampling with replacement from $\left(\hat{\epsilon}_{1}, \ldots, \hat{\epsilon}_{n}\right)$.
(2) Generate a bootstrap sample of size $n, X^{b}=\left(X_{1}^{b}, \ldots, X_{n}^{b}\right)$, by randomly sampling with replacement from $\left(X_{1}, \ldots, X_{n}\right)$.
(3) Generate a bootstrap sample of size $n, Y^{b}=\left(Y_{1}^{b}, \ldots, Y_{n}^{b}\right)$ by computing $Y_{i}^{b}=h\left(X_{i}^{b}, \hat{\theta}\right)+\epsilon_{i}^{b}$ (note that because the previous two steps are independent from each other, we're implicitly imposing homoskedasticity. Also, if clustered data, clusters must be same size).
(4) Compute S_{n}^{b} for this bootstrap sample $\left(Y^{b}, X^{b}\right)$. For example:

$$
S_{n}^{b}=\hat{\theta}^{b}, \text { or } S_{n}^{b}=\sqrt{n}\left(\hat{\theta}^{b}-\hat{\theta}\right)
$$

(3) Use the computed $\left(S_{n}^{1}, \ldots, S_{n}^{B}\right)$ to get an empirical distribution of S_{n}^{b} and use this as an approx of $P_{F_{0}}\left(S_{n} \leq s\right)$:

$$
P_{F_{0}}\left(S_{n} \leq s\right) \approx P_{\hat{F}}\left(S_{n} \leq s\right) \approx \frac{1}{B} \sum_{b=1}^{B} 1\left(S_{n}^{b} \leq t\right)
$$

Wild bootstrap

Assumes that $Y_{i}=h\left(X_{i}, \theta\right)+\epsilon_{i}, E\left[\epsilon_{i} \mid X_{i}\right]=0$.
(1) Compute estimate $\hat{\theta}$ by OLS/NLS and residuals $\hat{\epsilon}_{i}=Y_{i}-h\left(X_{i}, \hat{\theta}\right)$.
(2) For each $b=1, \ldots, B$, where B is large (say 10,000):
(1) (Generate a bootstrap sample of size n, $\left(X^{b}, \hat{\epsilon}^{b}\right)=\left(\left(X_{1}^{b}, \hat{\epsilon}_{1}^{b}\right), \ldots,\left(X_{n}^{b}, \hat{\epsilon}_{n}^{b}\right)\right)$, by randomly sampling with replacement from $\left(\left(X_{1}, \hat{\epsilon}_{1}\right), \ldots,\left(X_{n}, \hat{\epsilon}_{n}\right)\right)$.
(2) Generate a bootstrap sample of size $n, Y^{b}=\left(Y_{1}^{b}, \ldots, Y_{n}^{b}\right)$ by computing $Y_{i}^{b}=h\left(X_{i}^{b}, \hat{\theta}\right)+V_{i}^{b} * \epsilon_{i}^{b}$ where V_{i}^{b} is drawn from a distribution that takes values -1 and 1 with equal probability (it flips the sign of the residual). (If clustered data, V_{i}^{b} is the same for all i of same cluster).
(3 Compute S_{n}^{b} for this bootstrap sample (Y^{b}, X^{b}). For example:

$$
S_{n}^{b}=\hat{\theta}^{b}, \text { or } S_{n}^{b}=\sqrt{n}\left(\hat{\theta}^{b}-\hat{\theta}\right) .
$$

(3) Use the computed $\left(S_{n}^{1}, \ldots, S_{n}^{B}\right)$ to get an empirical distribution of S_{n}^{b} and use this as an approx of $P_{F_{0}}\left(S_{n} \leq s\right)$:

$$
P_{F_{0}}\left(S_{n} \leq s\right) \approx P_{\hat{F}}\left(S_{n} \leq s\right) \approx \frac{1}{B} \sum_{b=1}^{B} 1\left(S_{n}^{b} \leq t\right)
$$

The bootstrap

Suppose $S_{n}=\hat{\theta}$. From simulation procedure, we got $\left(\hat{\theta}^{1}, \ldots, \hat{\theta}^{B}\right)$. Now we want to do inference; specifically, suppose we want 95% confidence intervals. Different options:

1. Rely on asymptotic normal approximation of the distribution of $\sqrt{n}\left(\hat{\theta}-\theta_{0}\right)$ but use bootstrap standard error of $\hat{\theta}$ instead of formula for asymptotic variance:

$$
\begin{gathered}
C I=\left[\hat{\theta}-1.96 \times s e_{\text {boot }}(\hat{\theta}) ; \hat{\theta}+1.96 \times s e_{\text {boot }}(\hat{\theta})\right] \\
s e_{\text {boot }}(\hat{\theta})=\sqrt{\frac{1}{B-1} \sum_{b=1}^{B}\left(\hat{\theta}^{b}-\overline{\hat{\theta}}\right)^{2}} \\
\hat{\hat{\theta}}=\frac{1}{B} \sum_{b=1}^{B} \hat{\theta}^{b}
\end{gathered}
$$

The bootstrap

2. Find the $\frac{\alpha}{2}$ and $1-\frac{\alpha}{2}$ quantiles of the empirical distribution of $\left(\hat{\theta}^{1}, \ldots, \hat{\theta}^{B}\right)$, for $\alpha=0.05$.

$$
C I=\left[q_{\frac{\alpha}{2}} ; q_{1-\frac{\alpha}{2}}\right]
$$

Called "percentile bootstrap interval".

The bootstrap

3. Take $S_{n}=\frac{\hat{\theta}-\theta_{0}}{\hat{\sigma}}$. From simulation procedure, obtain $\left(S_{n}^{1}, \ldots, S_{n}^{B}\right)$ where $S_{n}^{b}=\frac{\hat{\theta}^{b}-\hat{\theta}}{\hat{\sigma}^{b}}$ (note that in this case, we're obtaining $\hat{\sigma}^{b}$ for each bootstrap sample using the asymptotic formula for the variance).

Find the $\frac{\alpha}{2}$ and $1-\frac{\alpha}{2}$ quantiles of the empirical distribution of $\left(S_{n}^{1}, \ldots, S_{n}^{B}\right)$, for $\alpha=0.05$ and use these as critical values for constructing the interval.

$$
C I=\left[\hat{\theta}-q_{1-\frac{\alpha}{2}} \times \hat{\sigma} ; \hat{\theta}-q_{\frac{\alpha}{2}} \times \hat{\sigma}\right]
$$

Called "bootstrap t interval".

The bootstrap

Exercise: In problem set 6, exercise 2 you were asked to find the percentile interval and t-interval based on the non-parametric bootstrap for a GMM-IV estimator.

$$
Y_{i}=T_{i} \beta+X_{i}^{\prime} \delta+e_{i}
$$

Moment conditions:

$$
E\left[g\left(D_{i} ; \gamma\right)\right]=E\left[\binom{Z_{i}}{X_{i}} e_{i}\right]=E\left[\binom{Z_{i}}{X_{i}} Y_{i}-\binom{Z_{i}}{X_{i}}\binom{T_{i}}{X_{i}}^{\prime}\binom{\beta}{\delta}\right]=0
$$

System is just-identified so can find $\hat{\beta}$ and $\hat{\delta}$ directly from sample analog of these moments:

$$
\binom{\hat{\beta}}{\hat{\delta}}=\left[\frac{1}{n} \sum_{i}\binom{Z_{i}}{X_{i}}\binom{T_{i}}{X_{i}}^{\prime}\right]^{-1}\left[\frac{1}{n} \sum_{i}\binom{Z_{i}}{X_{i}} Y_{i}\right]
$$

The bootstrap

Formula for asymptotic variance of GMM estimator:

$$
\operatorname{Var}(\hat{\gamma})=\left(G^{\prime} W G\right)^{-1} G^{\prime} W \Omega W G\left(G^{\prime} W G\right)^{-1}
$$

If system is just-identified, formula simplifies (G and W invertible):

$$
\begin{gathered}
\operatorname{Var}(\hat{\gamma})=G^{-1} \Omega\left(G^{-1}\right)^{\prime} \\
G=E\left[\frac{\partial}{\partial \gamma} g\left(D_{i}, \gamma\right)\right]=-E\left[\binom{Z_{i}}{X_{i}}\binom{T_{i}}{x_{i}}^{\prime}\right] \Rightarrow \hat{G}=-\frac{1}{n} \sum_{i}\binom{Z_{i}}{X_{i}}\binom{T_{i}}{X_{i}}^{\prime} \\
\Omega=\operatorname{Var}\left(g\left(D_{i}, \gamma\right)\right)=E\left[g\left(D_{i}, \gamma\right) g\left(D_{i}, \gamma\right)^{\prime}\right] \\
\hat{\Omega}_{\text {iid }}=\frac{1}{n} \sum_{i}\left[\binom{Z_{i}}{X_{i}} \hat{e}_{i} \hat{e}_{i}^{\prime}\binom{Z_{i}}{X_{i}}^{\prime}\right] \\
\hat{\Omega}_{\text {clus }}=\frac{1}{n} \sum_{c}\left[\sum_{i \in I(c)}\binom{Z_{i}}{X_{i}} \hat{e}_{i}\right]\left[\sum_{i \in I(c)}\binom{Z_{i}}{X_{i}} \hat{e}\right]^{\prime}
\end{gathered}
$$

The bootstrap

- Asymptotic standard error of $\hat{\beta}$ and $95 \% \mathrm{Cl}$:

$$
\begin{gathered}
\operatorname{se}(\hat{\beta})=\sqrt{\frac{\left[\hat{G}^{-1} \hat{\Omega}\left(\hat{G}^{-1}\right)^{\prime}\right]_{11}}{n}} \\
C I=[\hat{\beta}-1.96 \times \operatorname{se}(\hat{\beta}) ; \hat{\beta}+1.96 \times \operatorname{se}(\hat{\beta})]
\end{gathered}
$$

- 95\% percentile bootstrap interval (based on non-parametric bootstrap):
Find the $\frac{\alpha}{2}$ and $1-\frac{\alpha}{2}$ quantiles of the empirical distribution of $\left(\hat{\beta}^{1}, \ldots, \hat{\beta}^{B}\right)$, for $\alpha=0.05$.

$$
C I=\left[q_{\frac{\alpha}{2}} ; q_{1-\frac{\alpha}{2}}\right]
$$

Note: difference between clustered and iid data is how you resample from your data in your boostrap algorithm.

The bootstrap

- 95\% t bootstrap interval (based on non-parametric bootstrap): Find the $\frac{\alpha}{2}$ and $1-\frac{\alpha}{2}$ quantiles of the empirical distribution of $\left(\frac{\hat{\beta}^{1}-\hat{\beta}}{s^{1}(\hat{\beta})}, \ldots, \frac{\hat{\beta}^{B}-\hat{\beta}}{s e^{B}(\hat{\beta})}\right)$, for $\alpha=0.05$ and use these as critical values for constructing the interval.

$$
C I=\left[\hat{\beta}-q_{1-\frac{\alpha}{2}} \times \operatorname{se}(\hat{\beta}) ; \hat{\beta}-q_{\frac{\alpha}{2}} \times \operatorname{se}(\hat{\beta})\right]
$$

Note: difference between clustered and iid data is how you resample from your data in your boostrap algorithm and what formula for s.e. you use.

The bootstrap

Bootstrap v asymptotic approaches to inference

- Both rely on asymptotics. Bootstrap distribution is a "good" approximation of true distribution but this is a convergence statement:

$$
P_{F_{0}}\left(S_{n} \leq s\right) \approx P_{\hat{F}}\left(S_{n} \leq s\right) \text { since: } \sup _{s}\left|P_{\hat{F}}\left(S_{n} \leq s\right)-P_{F_{0}}\left(S_{n} \leq s\right)\right| \xrightarrow{p} 0
$$

Moreover, this convergence result usually relies on another convergence result:

$$
P_{F_{0}}\left(S_{n} \leq s\right) \xrightarrow{p} P_{F_{0}}\left(S_{\infty} \leq s\right)
$$

So both rely on the same asymptotic result (ie, bootstrap "works" when asymptotic normality holds).

- For smaller samples, bootstrap better. Theory can show that bootstrap Cl coverage converges to true finite sample Cl coverage for some statistics (eg, t stats); this also seems be true more generally but we don't know how to prove it.

