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The bootstrap
Main idea: an approach to inference that instead of relying on normal
asymptotic approximation to the true distribution of a statistic, finds an
estimate of this distribution that is based on resampling from the sampled
data.

Data: D1, ...,Dn
i .i .d∼ F0

Statistic: Sn = sn(D1, ...,Dn)

True distribution: Sn ∼ PF0(Sn ≤ s)

For example: Sn = θ̂; Sn =
√
n(θ̂ − θ0); Sn = θ̂

se(θ̂)

Note 1: PF0(Sn ≤ s) is a function Gn(s,F0). Keep this in mind but I’ll be
using the PF0(Sn ≤ s) notation to remind ourselves that it is the
distribution function of the statistic.

Note 2: in these notes, we assume i.i.d data but see comments on what
changes if data clustered.
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The bootstrap

Asymptotic normality approach

PF0(Sn ≤ s) ≈ lim
n→∞

PF0(Sn ≤ s) = PF0(S∞ ≤ s)︸ ︷︷ ︸
Found analytically,

normal

Bootstrap approach

PF0(Sn ≤ s) ≈ PF̂ (Sn ≤ s)︸ ︷︷ ︸
Distribution of Sn
when D ∼ F̂ .
Estimated with

simulation approach

by drawing from F̂
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The bootstrap

General algorithm:
1 For each b = 1, ...,B, where B is large (say 10,000):

1 Generate a bootstrap sample of size n, Db = (Db
1 , ...,D

b
n ), by drawing

from F̂ , an estimate of F0.
2 Compute Sb

n for this bootstrap sample.

2 Use the computed (S1
n , ...,S

B
n ) to get an empirical distribution of Sb

n

and use this as an approx of PF0(Sn ≤ s):

PF0(Sn ≤ s) ≈ PF̂ (Sn ≤ s) ≈
(∗)

1

B

B∑
b=1

1(Sb
n ≤ t)

(*) Can show:

1

B

B∑
b=1

1(Sb
n ≤ t)

B→∞−→ PF̂ (Sn ≤ s)
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The bootstrap

Different bootstrap approaches suggest different F̂ :

1 “Infeasible” bootstrap (just a theoretical exercise)

2 Non-parametric bootstrap (most common - Isaiah: use this unless
good reason not to)

3 Parametric bootstrap

4 Residual bootstrap

5 Wild bootstrap
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“Infeasible” bootstrap
Assumes that we know F0 (note: this is a theoretical exercise...if F0 is
known, then estimation and inference not needed...).

1 For each b = 1, ...,B, where B is large (say 10,000):
1 Generate a bootstrap sample of size n, Db = (Db

1 , ...,D
b
n ), by drawing

from F0.
2 Compute Sb

n for this bootstrap sample.

2 Use the computed (S1
n , ...,S

B
n ) to get an empirical distribution of Sb

n

and use this as an approx of PF0(Sn ≤ s):

PF0(Sn ≤ s) ≈ 1

B

B∑
b=1

1(Sb
n ≤ t)

Glivenko-Cantelli Theorem (empirical distributions converge to true
distributions when iid sample grows):

1

B

B∑
b=1

1(Sb
n ≤ t)

B→∞−→ PF0(Sn ≤ s)
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Non-parametric bootstrap
Uses the empirical distribution of D as F̂ :

F̂ (d) =
1

n

n∑
i=1

1(Di ≤ d)

1 For each b = 1, ...,B, where B is large (say 10,000):
1 Generate a bootstrap sample of size n(*), Db = (Db

1 , ...,D
b
n ), by

drawing from F̂ . In practice, this can be done by randomly
sampling with replacement from D = (D1, ...,Dn).

2 Compute Sb
n for this bootstrap sample.

2 Use the computed (S1
n , ...,S

B
n ) to get an empirical distribution of Sb

n

and use this as an approx of PF0(Sn ≤ s):

PF0(Sn ≤ s) ≈ PF̂ (Sn ≤ s) ≈ 1

B

B∑
b=1

1(Sb
n ≤ t)

(*)Note: if clustered data with clusters of different size, sample size of
each bootstrap sample can vary.

Giselle Montamat The bootstrap 7 / 18



Parametric bootstrap
Assumes that F0 is within a family of distributions: F0 ∈ {F (., θ) : θ ∈ Θ},
so there’s a θ0 such that F0(d) = F (d , θ0). Thus, approximate F0 with:

F̂ = F (., θ̂)

θ̂
p→ θ0

1 For each b = 1, ...,B, where B is large (say 10,000):
1 Generate a bootstrap sample of size n, Db = (Db

1 , ...,D
b
n ), by drawing

from F̂ (*)
2 Compute Sb

n for this bootstrap sample.

2 Use the computed (S1
n , ...,S

B
n ) to get an empirical distribution of Sb

n

and use this as an approx of PF0(Sn ≤ s):

PF0(Sn ≤ s) ≈ PF̂ (Sn ≤ s) ≈ 1

B

B∑
b=1

1(Sb
n ≤ t)

(*)Note: if clustered data, draw at the cluster level.
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Residual bootstrap
Assumes that Yi = h(Xi , θ) + εi , E [εi |Xi ] = 0.

1 Compute estimate θ̂ by OLS/NLS and residuals ε̂i = Yi − h(Xi , θ̂).
2 For each b = 1, ...,B, where B is large (say 10,000):

1 Generate a bootstrap sample of size n, ε̂b = (ε̂b1 , ..., ε̂
b
n), by randomly

sampling with replacement from (ε̂1, ..., ε̂n).
2 Generate a bootstrap sample of size n, X b = (X b

1 , ...,X
b
n ), by randomly

sampling with replacement from (X1, ...,Xn).
3 Generate a bootstrap sample of size n, Y b = (Y b

1 , ...,Y
b
n ) by

computing Y b
i = h(X b

i , θ̂) + εbi (note that because the previous two
steps are independent from each other, we’re implicitly imposing
homoskedasticity. Also, if clustered data, clusters must be same size).

4 Compute Sb
n for this bootstrap sample (Y b,X b). For example:

Sb
n = θ̂b, or Sb

n =
√
n(θ̂b − θ̂).

3 Use the computed (S1
n , ...,S

B
n ) to get an empirical distribution of Sb

n

and use this as an approx of PF0(Sn ≤ s):

PF0(Sn ≤ s) ≈ PF̂ (Sn ≤ s) ≈ 1

B

B∑
b=1

1(Sb
n ≤ t)
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Wild bootstrap
Assumes that Yi = h(Xi , θ) + εi , E [εi |Xi ] = 0.

1 Compute estimate θ̂ by OLS/NLS and residuals ε̂i = Yi − h(Xi , θ̂).
2 For each b = 1, ...,B, where B is large (say 10,000):

1 (Generate a bootstrap sample of size n,
(X b, ε̂b) = ((X b

1 , ε̂
b
1), ..., (X b

n , ε̂
b
n)), by randomly sampling with

replacement from ((X1, ε̂1), ..., (Xn, ε̂n)).
2 Generate a bootstrap sample of size n, Y b = (Y b

1 , ...,Y
b
n ) by

computing Y b
i = h(X b

i , θ̂) + V b
i ∗ εbi where V b

i is drawn from a
distribution that takes values −1 and 1 with equal probability (it flips
the sign of the residual). (If clustered data, V b

i is the same for all i of
same cluster).

3 Compute Sb
n for this bootstrap sample (Y b,X b). For example:

Sb
n = θ̂b, or Sb

n =
√
n(θ̂b − θ̂).

3 Use the computed (S1
n , ...,S

B
n ) to get an empirical distribution of Sb

n

and use this as an approx of PF0(Sn ≤ s):

PF0(Sn ≤ s) ≈ PF̂ (Sn ≤ s) ≈ 1

B

B∑
b=1

1(Sb
n ≤ t)
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The bootstrap

Suppose Sn = θ̂. From simulation procedure, we got (θ̂1, ..., θ̂B). Now we
want to do inference; specifically, suppose we want 95% confidence
intervals. Different options:

1. Rely on asymptotic normal approximation of the distribution of√
n(θ̂ − θ0) but use bootstrap standard error of θ̂ instead of formula

for asymptotic variance:

CI =
[
θ̂ − 1.96× seboot(θ̂) ; θ̂ + 1.96× seboot(θ̂)

]

seboot(θ̂) =

√√√√ 1

B − 1

B∑
b=1

(
θ̂b − ¯̂

θ
)2

¯̂
θ =

1

B

B∑
b=1

θ̂b
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The bootstrap

2. Find the α
2 and 1− α

2 quantiles of the empirical distribution of

(θ̂1, ..., θ̂B), for α = 0.05.

CI =
[
qα

2
; q1−α

2

]
Called “percentile bootstrap interval”.
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The bootstrap

3. Take Sn = θ̂−θ0
σ̂ . From simulation procedure, obtain (S1

n , ...,S
B
n )

where Sb
n = θ̂b−θ̂

σ̂b (note that in this case, we’re obtaining σ̂b for each
bootstrap sample using the asymptotic formula for the variance).

Find the α
2 and 1− α

2 quantiles of the empirical distribution of
(S1

n , ...,S
B
n ), for α = 0.05 and use these as critical values for

constructing the interval.

CI =
[
θ̂ − q1−α

2
× σ̂ ; θ̂ − qα

2
× σ̂

]
Called “bootstrap t interval”.
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The bootstrap

Exercise: In problem set 6, exercise 2 you were asked to find the percentile
interval and t-interval based on the non-parametric bootstrap for a
GMM-IV estimator.

Yi = Tiβ + X ′i δ + ei

Moment conditions:

E [g(Di ; γ)] = E

[(
Zi

Xi

)
ei

]
= E

[(
Zi

Xi

)
Yi −

(
Zi

Xi

)(
Ti

Xi

)′(
β
δ

)]
= 0

System is just-identified so can find β̂ and δ̂ directly from sample analog
of these moments:(

β̂

δ̂

)
=

[
1

n

∑
i

(
Zi

Xi

)(
Ti

Xi

)′]−1 [
1

n

∑
i

(
Zi

Xi

)
Yi

]
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The bootstrap
Formula for asymptotic variance of GMM estimator:

Var(γ̂) = (G ′WG )−1G ′WΩWG (G ′WG )−1

If system is just-identified, formula simplifies (G and W invertible):

Var(γ̂) = G−1Ω(G−1)′

G = E

[
∂

∂γ
g(Di , γ)

]
= −E

[(
Zi

Xi

)(
Ti

Xi

)′]
⇒ Ĝ = −1

n

∑
i

(
Zi

Xi

)(
Ti

Xi

)′
Ω = Var(g(Di , γ)) = E [g(Di , γ)g(Di , γ)′]

Ω̂iid =
1

n

∑
i

[(
Zi

Xi

)
êi ê
′
i

(
Zi

Xi

)′]

Ω̂clus =
1

n

∑
c

 ∑
i∈I (c)

(
Zi

Xi

)
êi

 ∑
i∈I (c)

(
Zi

Xi

)
ê

′
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The bootstrap

Asymptotic standard error of β̂ and 95% CI:

se(β̂) =

√
[Ĝ−1Ω̂(Ĝ−1)′]11

n

CI =
[
β̂ − 1.96× se(β̂) ; β̂ + 1.96× se(β̂)

]
95% percentile bootstrap interval (based on non-parametric
bootstrap):
Find the α

2 and 1− α
2 quantiles of the empirical distribution of

(β̂1, ..., β̂B), for α = 0.05.

CI =
[
qα

2
; q1−α

2

]
Note: difference between clustered and iid data is how you resample
from your data in your boostrap algorithm.
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The bootstrap

95% t bootstrap interval (based on non-parametric bootstrap):
Find the α

2 and 1− α
2 quantiles of the empirical distribution of(

β̂1−β̂
se1(β̂)

, ..., β̂
B−β̂

seB(β̂)

)
, for α = 0.05 and use these as critical values for

constructing the interval.

CI =
[
β̂ − q1−α

2
× se(β̂) ; β̂ − qα

2
× se(β̂)

]
Note: difference between clustered and iid data is how you resample
from your data in your boostrap algorithm and what formula for s.e.
you use.
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The bootstrap

Bootstrap v asymptotic approaches to inference

Both rely on asymptotics. Bootstrap distribution is a “good” approximation
of true distribution but this is a convergence statement:

PF0(Sn ≤ s) ≈ PF̂ (Sn ≤ s) since: sup
s
|PF̂ (Sn ≤ s)− PF0(Sn ≤ s)| p→ 0

Moreover, this convergence result usually relies on another convergence
result:

PF0(Sn ≤ s)
p→ PF0(S∞ ≤ s)

So both rely on the same asymptotic result (ie, bootstrap “works” when
asymptotic normality holds).

For smaller samples, bootstrap better. Theory can show that bootstrap CI
coverage converges to true finite sample CI coverage for some statistics (eg,
t stats); this also seems be true more generally but we don’t know how to
prove it.
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