Search for Dark Matter

森井政宏

東京大学物理学教室コロキウム
Evidence for Dark Matter

Overwhelming evidences for Dark Matter from astronomy

Observed motions of stars and galaxies
- Rotational curves in galaxies
- Velocity dispersions in galaxy clusters

Mass distribution measured with gravitational lensing
- Cluster mass-light ratios from strong lensing
- Cluster mass maps in clusters from weak lensing
- Smoking gun: Separation of visible and dark matters in colliding clusters

Bullet cluster

13 February 2015
Lambda-CDM Universe

Observation has improved dramatically in the last decade
- Cosmic Microwave Background anisotropy (WMAP/Planck)
- Accelerating expansion of the Universe (Type-1a SNe)
- Large-Scale Structure (2dFGRS, SDSS)
- Light-element abundances & Big-bang nucleosynthesis

Data support a universe with a positive cosmological constant Λ and Cold Dark Matter — ΛCDM model

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ω_{baryon}</td>
<td>0.0456 ± 0.0015</td>
</tr>
<tr>
<td>Ω_{CDM}</td>
<td>0.228 ± 0.013</td>
</tr>
<tr>
<td>Ω_{Λ}</td>
<td>0.726 ± 0.015</td>
</tr>
<tr>
<td>Ω_{total}</td>
<td>1.005 ± 0.006</td>
</tr>
</tbody>
</table>

Ordinary Matter
Cold Dark Matter
Dark Energy
Flat Universe

What We Know about Dark Matter

Dark Matter must be there
- ~23% of the energy of the Universe

Near the Solar System
- Local density: ~0.3 GeV/cm3
 - Give or take a factor of 2
- Velocity: assumed to be Maxwell-Boltzmann with $\sigma_v \sim 230 \text{ km/s}$
 - Simplest model, but not necessarily true

Dark Matter is not part of the Standard Model
- Non-baryonic
- No electromagnetic interactions
- Stable
- Cold: non-relativistic in early Universe to create the LSS

13 February 2015
Electroweak Puzzle

In Particle Physics, O(100 GeV) is a special energy scale
- Masses of W and Z bosons, top quark, and Higgs boson
 ... for no apparent reason

Higgs mass = 125 GeV is particularly problematic
- Only spin-0 particle in the Standard Model
- Quantum (loop) correction to the Higgs mass is O(10^{16} GeV)
- Why is it so “light”? — Known as the “weak hierarchy problem”

Many proposed solutions
- Supersymmetry — Cancel loop corrections between two sets of similar particles that differ only by spin ½
- Extra Dimensions — Additional space dimensions at short distances
- Little Higgs — New global symmetry broken at 1–10 TeV
 ... the list goes on
WIMP Dark Matter

Theories of new physics predict new particles in O(100 GeV)
- We haven’t discovered any

Symmetry in the theory protects the lightest new particle

<table>
<thead>
<tr>
<th>Theory</th>
<th>Symmetry</th>
<th>Stable new particle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supersymmetry</td>
<td>R parity</td>
<td>Lightest Supersymmetric Particle</td>
</tr>
<tr>
<td>Little Higgs</td>
<td>T parity</td>
<td>Lightest T-odd Particle</td>
</tr>
<tr>
<td>Universal Extra Dimension</td>
<td>KK parity</td>
<td>Lightest Kaluza-Klein Particle</td>
</tr>
</tbody>
</table>

WIMP = weakly-interacting massive particle
- Can be produced or destroyed only in pairs
- Good candidate for Dark Matter

If they were produced at the Big Bang
how many would have survived to today?
WIMP Relic Density

WIMPs were in thermal equilibrium with ordinary particles after inflation

- As the Universe cools, their density drops as

 \[n_\chi \propto \exp \left(-\frac{T}{m_\chi} \right) \]

- This goes on until the WIMP annihilation rate becomes smaller than the expansion rate, i.e.,

 \[\Gamma_A = \frac{n_\chi}{\langle \sigma_A v \rangle} < H \]

- The WIMPs freeze out with the relic density
 \[\Omega_\chi \propto \frac{1}{\langle \sigma_A v \rangle} \approx \frac{m_\chi^2}{g_\chi^4} \]

\[m_\chi = 100 \text{ GeV} \text{ and } g_\chi = g_{\text{EW}} \rightarrow \text{observed Dark Matter density} \]
Dark Matter Hunting

Going beyond gravity, three ways to detect Dark Matter

DM pair production at the LHC

Indirect searches of radiation from pair annihilation

Direct detection of DM scattering off a nucleus

13 February 2015
Indirect DM Searches

Indirect searches look for radiations (photon, positron, anti-proton) from Dark Matter pair annihilation in space.

Uncertainties come from astronomy:

- Annihilation rate depends on (local DM density)2
 - Focus on the Galactic center, Solar core
- Background sources are poorly understood
 - Are there local sources of energetic radiations, e.g., pulsars?
Direct DM Detection

Direct detection experiments wait for cosmic Dark Matter scattering off nuclei in their detector.

Elastic scattering cross-section $\sigma(N\chi \rightarrow N\chi)$ is related to the DM relic density — but it’s model-dependent.

Uncertainty in the DM abundance and velocity distribution:
- Assume 0.3 GeV/cm3 and Maxwell-Boltzman with r.m.s. 230 km/s.

13 February 2015
Experimental Challenges

Signal is elastic $\chi N \rightarrow \chi N$ with small recoil energy $E_N \sim 10$ keV
- Signatures: scintillation, ionization, heat (phonons)

Background sources:
- γ rays from radioactivity
 - Recoils electrons \rightarrow Different signature
- Neutrons generated by cosmic rays
 - Recoils nuclei \rightarrow Same signature

To combat the backgrounds
- Detector must be able to distinguish nuclear vs. electron recoils
- Remove radioisotopes from the detector
- Go deep underground to avoid background created by cosmic rays

13 February 2015
Target Material

WIMP-nucleus cross section $\propto A^2$

- WIMP scatters off A nucleons coherently because wavelength \geq nuclear radius

\Rightarrow Xe $>$ Ge $>$ Ar

- NB: This is true only for spin-independent interactions

Recoil energy becomes small if WIMP is lighter than the nucleus

\Rightarrow Xe $<$ Ge $<$ Ar

Difference in background rejection

- Different techniques for suppressing electron recoils
- NB: Ar contains 1 Bq/kg of radioactive 39Ar

$M_X = 100$ GeV, $\sigma_{X-p} = 10^{-45}$ cm2
LUX Experiment

1. Water Shield
2. Thermosyphon
3. Xenon recirculation and heat exchanger
4. Time Projection Chamber
5. Photomultiplier Tubes
6. Inner Titanium cryostat
 - Superinsulation
 - Titanium cryostat

350 kg liquid xenon
Two-Phase Xe Detector

PMTs collect prompt (S1) and proportional (S2) light
- S1-S2 delay \rightarrow Drift length
- S2 light pattern \rightarrow Horizontal location

S2/S1 ratio distinguishes between electron and nuclear recoils
- Nuclear recoils have higher ionization density \rightarrow higher recombination probability \rightarrow higher S1 yield
PMT Installation
LUX First Result

- 118 kg × 85.3 days
- 0 observed events below the mean S2/S1 for nuclear recoil
- Expected background from electron recoil is 0.64 ± 0.16 events
- Detection threshold is 4.3 keV for nuclear recoil

Set upper limit on the WIMP-nucleon cross section
- < 7.6 × 10^{-46} cm^2 (90% CL) for M_{WIMP} = 33 GeV

Limits on the spin-independent WIMP-nucleon cross section are $\sim 10^{-45}$ cm2 for 10–100 GeV WIMPs

- **XENON100** Phys. Rev. Lett. 109, 181301 (2012)
Direct Detection Landscape

[Graph showing the direct detection landscape for WIMP-nucleon cross section vs. WIMP mass. The graph includes various experiments and theoretical lines representing the sensitivity of different detectors to WIMP signals.]
LHC can pair-produce WIMPs in proton-proton collisions

Production cross-section $\sigma(pp \rightarrow \chi\chi)$ is related to the DM relic density — but it’s model-dependent

- Differently from $\sigma(N\chi \rightarrow N\chi)$

Final state with two WIMPs is invisible to the experiment

- How do we record and count such events?

13 February 2015
Dark Matter Search at the LHC

\[pp \rightarrow \chi \chi \text{ is undetectable} \]

- We need \(\geq 1 \) extra particles produced with the WIMPs

\[p \quad \xrightarrow{\chi} \quad X = \text{extra particle(s)} \]

Signal event contains only \(X \)
- We call it “mono-\(X \)” with \(X = \text{jet, photon, Higgs, W, Z, etc.} \)

Net momentum of the outgoing particles seems to violate momentum conservation
- Momentum imbalance in the plane perpendicular to the proton beams
 = missing transverse momentum = “MET”
Mono-X Searches

Production cross-section \(\sigma(pp \to \chi\chi X) \) is more model-dependent than \(\sigma(pp \to \chi\chi) \)

- Special case: \(X = \text{QCD jet} \) radiated from an incoming proton

For most models of DM production, “mono-jet” gives the highest sensitivity among “mono-X” signatures

- Others (mono-photon, mono-Higgs, mono-\(W \), mono-\(Z \)) can be more sensitive for specific theoretical models
- Interpretation can get messy
Mono-Jet Event in ATLAS

Highest p_T mono-jet event recorded by ATLAS at 7 TeV

$\text{Jet } p_T = 551 \text{ GeV}$

$\text{Missing } p_T = 542 \text{ GeV}$

ATLAS Collab.
JHEP 1304 (2013) 075
Background

Dominant backgrounds are

- $Z (\rightarrow \nu \nu) + \text{jets}$
- $W (\rightarrow \ell \nu) + \text{jets}$

They are irreducible \Rightarrow Estimate the rates and subtract

- Select Z or $W + \text{jets}$ events where the Z or W decayed visibly

Look for an excess at large MET
Interpretation

LHC measures $\sigma(pp \rightarrow \chi\chi\chi)$
- How does it relate to the relic DM abundance?
- How does it compare against direct-detection experiments?

Both questions require theoretical assumptions
- What kind of WIMP is it? (mass, spin, parity)
- How does the WIMP interact?

Approach #1: Test theoretical models one-by-one
- Ex 1) Assume SUSY and constrain the model parameters
- Ex 3) ... repeat for other models ...
Interpretation

Approach #2: Effective Field Theory (EFT)

- Write down all possible terms of the interaction
 - 14 terms if the WIMP is a Dirac fermion
 - Interaction strength is set by the scale M_*

New physics at very high energy scale is integrated out (in the “dot”)

ATLAS mono-photon 8 TeV, arXiv:1411.1559

Goodman et al.,
PRD 82 (2010) 116010
Direct-Detection vs. LHC

Caution: comparisons are strongly model-dependent

- Ex) EFT results from ATLAS mono-photon 8 TeV [arXiv:1411.1559]

Generally speaking,
- Direct-detection is more sensitive for heavy (> 10 GeV) WIMPs with spin-independent interactions
- LHC is more sensitive to light WIMPs, and to spin-dependent interactions
Summary and Prospect

Dark Matter \leftrightarrow convergence of astronomy and particle physics

- Evidences point to WIMPs waiting to be discovered

Direct-detection experiments search for Dark Matter in elastic $\chi N \rightarrow \chi N$ scattering

- Sensitive to >10 GeV WIMPs down to $\sigma_{\chi N} \approx 10^{-45}$ cm2
- Next-generation experiments will push into the region favored by SUSY

LHC searches for Dark Matter in $pp \rightarrow \chi \chi + X$ production

- Sensitive to broader WIMP masses and spin-dependent interactions
- LHC Run 2 will improve the sensitivity very soon

Interpretation of results are often model-dependent

- Careful with plots that are valid only for particular form of interactions

Next 10 years will be exciting for Dark Matter
References

Direct detection experiments

ATLAS mono-X results

- $X = \text{jet}$, 7 TeV, arXiv:1210.4491, JHEP 04 (2013) 075
New Physics — Where?

From the labs — Unexplained experimental data
- Ex: nuclear β decays violate energy conservation \rightarrow neutrinos
- Much of the 20th-century particle physics was driven by data
- Today: all HEP data are consistent with the Standard Model

From imagination — Quest for consistency/symmetry/beauty
- Ex: equivalence principle \rightarrow general relativity
- Few of the many brilliant ideas succeed
- Today: too many ideas to fit on this slide

From the sky
- Ex: matter-dominant universe \rightarrow CP violation
- Particle physics and astronomy must agree on the observable universe
- Today: **Dark Matter** and **Dark Energy**
What is Dark Matter Made Of?

Neutrino
- SM neutrinos are too light
- Heavy sterile neutrino?

WIMP
- ~100 GeV mass particles with Weak interactions

Axion
- Cold even with small masses

SuperWIMP
- Weaker-than-EW interactions
- Axino, gravitino, KK gravitons

Many many others ...

HEPAP/AAAC DMSAG Subpanel (2007)
Other Searches at the LHC

Many searches for heavy new particles that decay to Dark Matter

- SUSY, Little Higgs, Extra Dimensions ...
- Typical signature includes MET due to escaping WIMPs

Signal rate depends on the nature and the mass of the heavy particle

- Interpretation as a “DM Search” is complicated

Suppose Higgs is the only connection between the Standard Model and Dark Matter

- Search for decays of Higgs \rightarrow DM
- Higgs produced with other particles: ZH, qqH, ttH

Combine ATLAS + CMS

- $\text{BR}(H \rightarrow \text{invisible}) < 0.40$

Interpret within the Higgs-portal model

- Strong limit on fermion DM, but highly specific to the model

13 February 2015