Announcements

▶ Midterm #2 in class on November 15
▶ Have posted old exams and problem sets
▶ Review Session currently scheduled for 11/13, 4-5:15pm, Rubenstein 304
Announcements

- Midterm #2 in class on November 15
Announcements

- Midterm #2 in class on November 15
- Have posted old exams and problem sets
Announcements

- Midterm #2 in class on November 15
- Have posted old exams and problem sets
- Review Session currently scheduled for 11/13, 4-5:15pm, Rubenstein 304
Roadmap

▶ Finishing up confidence intervals, reviewing interpretation
▶ Extending testing framework to data that is structured in pairs
▶ Common in medical/public health studies
▶ This finishes up the standard suite of hypothesis tests
▶ Move on next time to Analysis of Variance and Chi-Square Tests
Roadmap

- Finishing up confidence intervals, reviewing interpretation

- Extending testing framework to data that is structured in pairs
 - Common in medical/public health studies
 - This finishes up the standard suite of hypothesis tests
 - Move on next time to Analysis of Variance and Chi-Square Tests
Roadmap

- Finishing up confidence intervals, reviewing interpretation
- Extending testing framework to data that is structured in pairs

Common in medical/public health studies

This finishes up the standard suite of hypothesis tests

Move on next time to Analysis of Variance and Chi-Square Tests
Roadmap

- Finishing up confidence intervals, reviewing interpretation
- Extending testing framework to data that is structured in pairs
 - Common in medical/public health studies
- This finishes up the standard suite of hypothesis tests
- Move on next time to Analysis of Variance and Chi-Square Tests
Roadmap

- Finishing up confidence intervals, reviewing interpretation
- Extending testing framework to data that is structured in pairs
 - Common in medical/public health studies
- This finishes up the standard suite of hypothesis tests
Roadmap

- Finishing up confidence intervals, reviewing interpretation
- Extending testing framework to data that is structured in pairs
 - Common in medical/public health studies
- This finishes up the standard suite of hypothesis tests
- Move on next time to Analysis of Variance and Chi-Square Tests
Reviewing Confidence Intervals for Means

Let's review construction of CIs for confidence mean.

For CI's: Leverage fact that:

\[P(-1.96 \leq \bar{X} - \mu \leq 1.96) = 0.95 \]

\[P(\bar{X} + 1.96 \times \hat{SE} \geq \mu \geq \bar{X} - 1.96 \times \hat{SE}) = 0.95 \]

This gives us the 95% confidence interval for \(\bar{X} \):

\[\bar{X} \pm 1.96 \times \hat{SE} \]

Can rewrite as general formula for a \((1 - \alpha) \)% confidence interval:

\[\bar{X} \pm z_{\alpha/2} \times \hat{SE} \]

Where we use \(z_{\alpha/2} \) from standard normal (or \(t_{\alpha/2} \)).
Reviewing Confidence Intervals for Means

- Let’s review construction of CIs for confidence mean

\[
\bar{X} \pm 1.96 \times \hat{SE}[\bar{X}]
\]

Can rewrite as general formula for a \((1 - \alpha)\)% confidence interval:

\[
\bar{X} \pm z_{\alpha/2} \times \hat{SE}[\bar{X}]
\]

Where we use \(z_{\alpha/2}\) from standard normal (or \(t_{\alpha/2}\))
Reviewing Confidence Intervals for Means

- Let’s review construction of CIs for confidence mean
- For CI’s: Leverage fact that:

\[
P(-1.96 \leq \frac{\bar{X} - \mu}{s/\sqrt{n}} \leq 1.96) = 0.95
\]
Reviewing Confidence Intervals for Means

- Let’s review construction of CIs for confidence mean
- For CI’s: Leverage fact that:

\[P(-1.96 \leq \frac{\bar{X} - \mu}{s/\sqrt{n}} \leq 1.96) = 0.95 \]

\[P(\bar{X} + 1.96 \frac{s}{\sqrt{n}} \geq \mu \geq \bar{X} - 1.96 \frac{s}{\sqrt{n}}) = 0.95 \]

- This gives us the 95% confidence interval for \(\bar{X} \)
Reviewing Confidence Intervals for Means

- Let’s review construction of CIs for confidence mean
- For CI’s: Leverage fact that:
 \[
 P(-1.96 \leq \frac{\bar{X} - \mu}{s/\sqrt{n}} \leq 1.96) = 0.95
 \]
 \[
 P(\bar{X} + 1.96 \frac{s}{\sqrt{n}} \geq \mu \geq \bar{X} - 1.96 \frac{s}{\sqrt{n}}) = 0.95
 \]

- This gives us the 95\% confidence interval for \(\bar{X} \)
 \[
 \bar{X} \pm 1.96 \times \hat{SE} [\bar{X}]
 \]
Reviewing Confidence Intervals for Means

- Let’s review construction of CIs for confidence mean
- For CI’s: Leverage fact that:
 \[
P(-1.96 \leq \frac{\bar{X} - \mu}{s/\sqrt{n}} \leq 1.96) = 0.95
 \]
 \[
P(\bar{X} + 1.96 \frac{s}{\sqrt{n}} \geq \mu \geq \bar{X} - 1.96 \frac{s}{\sqrt{n}}) = 0.95
 \]

- This gives us the 95% confidence interval for \(\bar{X} \)
 \[
 \bar{X} \pm 1.96 \times \hat{SE}[\bar{X}]
 \]

- Can rewrite as general formula for a \((1 - \alpha)\)% confidence interval:
Reviewing Confidence Intervals for Means

- Let’s review construction of CIs for confidence mean
- For CI’s: Leverage fact that:
 \[P(-1.96 \leq \frac{\bar{X} - \mu}{s/\sqrt{n}} \leq 1.96) = 0.95 \]
 \[P(\bar{X} + 1.96 \frac{s}{\sqrt{n}} \geq \mu \geq \bar{X} - 1.96 \frac{s}{\sqrt{n}}) = 0.95 \]

- This gives us the 95% confidence interval for \(\bar{X} \)
 \[\bar{X} \pm 1.96 \times \hat{SE}[ar{X}] \]

- Can rewrite as general formula for a \((1 - \alpha)\)% confidence interval:
 \[\bar{X} \pm z_{\alpha/2} \times \hat{SE}[ar{X}] \]
Reviewing Confidence Intervals for Means

Let’s review construction of CIs for confidence mean

For CI’s: Leverage fact that:

\[
P(-1.96 \leq \frac{\bar{X} - \mu}{s/\sqrt{n}} \leq 1.96) = 0.95
\]

\[
P(\bar{X} + 1.96 \frac{s}{\sqrt{n}} \geq \mu \geq \bar{X} - 1.96 \frac{s}{\sqrt{n}}) = 0.95
\]

This gives us the 95% confidence interval for \(\bar{X} \)

\[
\bar{X} \pm 1.96 \times \hat{SE}[\bar{X}]
\]

Can rewrite as general formula for a \((1 - \alpha)\)% confidence interval:

\[
\bar{X} \pm z_{\alpha/2} \times \hat{SE}[\bar{X}]
\]

Where we use \(z_{\alpha/2} \) from standard normal (or \(t_{\alpha/2} \)).
Calculating Confidence Intervals for Other Quantities of Interest

- CLT means we can calculate confidence intervals for any estimator that approximates the Normal distribution as n goes up.
- Means
- Difference in means
- Proportions
- Difference in proportions
- All follow general form of $\text{Point Estimate} \pm z_{\alpha/2} \hat{\text{SE}}$
- $z_{\alpha/2} \hat{\text{SE}}$ refers to the margin of error.
- CI's most generally are: $\text{Point Estimate} \pm \text{Margin of Error}$
Calculating Confidence Intervals for Other Quantities of Interest

- CLT means we can calculate confidence intervals for any estimator that approximates the Normal distribution as n goes up.
Calculating Confidence Intervals for Other Quantities of Interest

- CLT means we can calculate confidence intervals for any estimator that approximates the Normal distribution as n goes up
 - Means
Calculating Confidence Intervals for Other Quantities of Interest

- CLT means we can calculate confidence intervals for any estimator that approximates the Normal distribution as n goes up
 - Means
 - Difference in means
Calculating Confidence Intervals for Other Quantities of Interest

- CLT means we can calculate confidence intervals for any estimator that approximates the Normal distribution as n goes up
 - Means
 - Difference in means
 - Proportions
 - Difference in proportions

- CI's most generally are:
 \[\text{Point Estimate} \pm \text{Margin of Error} \]
Calculating Confidence Intervals for Other Quantities of Interest

- CLT means we can calculate confidence intervals for any estimator that approximates the Normal distribution as n goes up
 - Means
 - Difference in means
 - Proportions
 - Difference in proportions
Calculating Confidence Intervals for Other Quantities of Interest

- CLT means we can calculate confidence intervals for any estimator that approximates the Normal distribution as n goes up
 - Means
 - Difference in means
 - Proportions
 - Difference in proportions
- All follow general form of

$$\text{Point Estimate} \pm z_{\alpha/2} \hat{SE}$$

where $z_{\alpha/2} \hat{SE}$ refers to the margin of error

CI's most generally are:

$$\text{Point Estimate} \pm \text{Margin of Error}$$
Calculating Confidence Intervals for Other Quantities of Interest

- CLT means we can calculate confidence intervals for any estimator that approximates the Normal distribution as n goes up
 - Means
 - Difference in means
 - Proportions
 - Difference in proportions

- All follow general form of

$$Point\ Estimate \pm z_{\alpha/2} \hat{SE}$$
Calculating Confidence Intervals for Other Quantities of Interest

- CLT means we can calculate confidence intervals for any estimator that approximates the Normal distribution as n goes up
 - Means
 - Difference in means
 - Proportions
 - Difference in proportions
- All follow general form of

\[
\text{Point Estimate} \pm z_{\alpha/2} \hat{SE}
\]

- where $z_{\alpha/2} \hat{SE}$ refers to the margin of error
Calculating Confidence Intervals for Other Quantities of Interest

- CLT means we can calculate confidence intervals for any estimator that approximates the Normal distribution as \(n \) goes up
 - Means
 - Difference in means
 - Proportions
 - Difference in proportions
- All follow general form of

\[
\text{Point Estimate} \pm z_{\alpha/2} \hat{SE}
\]

- where \(z_{\alpha/2} \hat{SE} \) refers to the margin of error
- CI’s most generally are:
Calculating Confidence Intervals for Other Quantities of Interest

- CLT means we can calculate confidence intervals for any estimator that approximates the Normal distribution as n goes up
 - Means
 - Difference in means
 - Proportions
 - Difference in proportions
- All follow general form of

\[
\text{Point Estimate} \pm z_{\alpha/2} \hat{SE}
\]

- where $z_{\alpha/2} \hat{SE}$ refers to the margin of error
- CI’s most generally are:

\[
\text{Point Estimate} \pm \text{Margin of Error}
\]
How to Interpret Confidence Intervals?

Confidence intervals (CIs) are one of the most misinterpreted estimators. Calculation of confidence intervals depends on the sampling distribution (from CLT). Different samples will yield different confidence intervals. With some samples, the calculated CI would “capture” the true population parameter. With some samples, the calculated CI would not “capture” the population parameter. For all of the CIs we could calculate with repeat sampling, 95% of them would cover the true population parameter.
How to Interpret Confidence Intervals?

- CIs one of most misinterpreted estimators.
How to Interpret Confidence Intervals?

- CIs one of most misinterpreted estimators
- Remember: Calculation of confidence interval depends on the sampling distribution (from CLT)
How to Interpret Confidence Intervals?

- CIs one of most misinterpreted estimators
- Remember: Calculation of confidence interval depends on the sampling distribution (from CLT)
- Different sample \rightarrow different confidence interval
How to Interpret Confidence Intervals?

- CIs one of most misinterpreted estimators
- Remember: Calculation of confidence interval depends on the sampling distribution (from CLT)
- Different sample \rightarrow different confidence interval
- With some samples, calculated CI would “capture” true population parameter
How to Interpret Confidence Intervals?

- CIs one of most misinterpreted estimators
- Remember: Calculation of confidence interval depends on the sampling distribution (from CLT)
- Different sample \rightarrow different confidence interval
- With some samples, calculated CI would “capture” true population parameter
- With some samples, calculated CI would not “capture” population parameter
How to Interpret Confidence Intervals?

- CIs one of most misinterpreted estimators
- Remember: Calculation of confidence interval depends on the sampling distribution (from CLT)
- Different sample \rightarrow different confidence interval
- With some samples, calculated CI would “capture” true population parameter
- With some samples, calculated CI would not “capture” population parameter
- For all of the CIs we could calculated with repeat sampling, 95% of them would cover true population parameter
How to Interpret CIs?

▶ Show this with simulation
▶ For sake of simulation, assume observations come from Normal distribution w/ mean 1 and variance of 10
▶ I sample 500 observations, 100 times
▶ For each sample, calculate 95% CI

\[
\bar{X} \pm 1.96 \times \hat{SE}
\]
How to Interpret CIs?

- Show this with simulation

- For sake of simulation, assume observations come from Normal distribution with mean 1 and variance of 10.
- I sample 500 observations, 100 times.
- For each sample, calculate 95% CI:
 \[\bar{X} \pm 1.96 \times \hat{SE} \]
How to Interpret CIs?

- Show this with simulation
- For sake of simulation, assume observations come from Normal distribution w/ mean 1 and variance of 10
How to Interpret CIs?

- Show this with simulation
- For sake of simulation, assume observations come from Normal distribution with mean 1 and variance of 10
- I sample 500 observations, 100 times
How to Interpret CIs?

- Show this with simulation
- For sake of simulation, assume observations come from Normal distribution w/ mean 1 and variance of 10
- I sample 500 observations, 100 times
- For each sample, calculate 95% CI
How to Interpret CIs?

- Show this with simulation
- For sake of simulation, assume observations come from Normal distribution w/ mean 1 and variance of 10
- I sample 500 observations, 100 times
- For each sample, calculate 95% CI
 - $\bar{X} \pm 1.96 \times SE[\bar{X}]$
How to Interpret CIs?

500 observations drawn from N(1,10)

95% Confidence Interval
How to Interpret CIs?

500 observations drawn from N(1,10)
How to Interpret CIs?

500 observations drawn from $N(1,10)$
How to Interpret CIs?

500 observations drawn from N(1,10)
How to Interpret CIs?

500 observations drawn from $\mathcal{N}(1,10)$
How to Interpret CIs?

95% Confidence Interval

500 observations drawn from N(1,10)
How to Interpret CIs?

For all of the CIs we could calculate with repeat sampling, 95% of them would cover the true population parameter. Confidence intervals are one of the most frequently misinterpreted estimators. "There is a 95% probability that this interval I've calculated contains the true population parameter." → Not correct: Once you have calculated the CI, it either contains the true value or not. Also, the population parameter is a constant (it has a numerical value, but you just don't know what it is!). "95% of the confidence intervals I calculate using this formula using repeated sampling will contain the true population parameter." → Correct!
How to Interpret CIs?

- For all of the CIs we could calculated with repeat sampling, 95% of them would cover true population parameter

- "There is a 95% probability that this interval I've calculated contains the true population parameter"
 - Not correct: Once you have calculated the CI, it either contains the true value or not
 - Also, the population parameter is a constant (it has a numerical value, but you just don't know what it is!)

- "95% of the confidence intervals I calculate using this formula using repeated sampling will contain the true population parameter"
 - Correct!
How to Interpret CIs?

- For all of the CIs we could calculated with repeat sampling, 95% of them would cover true population parameter.

- Confidence intervals one of most frequently misinterpreted estimators.
How to Interpret CIs?

» For all of the CIs we could calculate with repeat sampling, 95% of them would cover true population parameter

» Confidence intervals one of most frequently misinterpreted estimators

» “There is a 95% probability that this interval I’ve calculated contains the true population parameter”
How to Interpret CIs?

- For all of the CIs we could calculated with repeat sampling, 95% of them would cover true population parameter.

- Confidence intervals one of most frequently misinterpreted estimators.

- “There is a 95% probability that this interval I’ve calculated contains the true population parameter.”
 - → Not correct: Once you have calculated the CI, it either contains the true value or not.
How to Interpret CIs?

- For all of the CIs we could calculated with repeat sampling, 95% of them would cover true population parameter.
- Confidence intervals one of most frequently misinterpreted estimators.
- “There is a 95% probability that this interval I’ve calculated contains the true population parameter”
 - → Not correct: Once you have calculated the CI, it either contains the true value or not.
 - Also, the population parameter is a constant (it has a numerical value, but you just don’t know what it is!)
How to Interpret CIs?

- For all of the CIs we could calculated with repeat sampling, 95% of them would cover true population parameter

- Confidence intervals one of most frequently misinterpreted estimators

- “There is a 95% probability that this interval I’ve calculated contains the true population parameter”
 - → Not correct: Once you have calculated the CI, it either contains the true value or not
 - Also, the population parameter is a constant (it has a numerical value, but you just don’t know what it is!)

- “95% of the confidence intervals I calculate using this formula using repeated sampling will contain the true population parameter”
How to Interpret CIs?

- For all of the CIs we could calculated with repeat sampling, 95% of them would cover true population parameter.

- Confidence intervals one of most frequently misinterpreted estimators.

- “There is a 95% probability that this interval I’ve calculated contains the true population parameter”
 - → Not correct: Once you have calculated the CI, it either contains the true value or not.
 - Also, the population parameter is a constant (it has a numerical value, but you just don’t know what it is!)

- “95% of the confidence intervals I calculate using this formula using repeated sampling will contain the true population parameter”
 - → Correct!
CIs and Sample Size

Notes on sample size:

▶ Small samples → Follow same rules as hypothesis tests for when to switch to Student’s t distribution

▶ Larger sample size → Will shrink standard errors → Will lead to smaller CIs

▶ Ex) Doubling sample size will reduce the width of the confidence interval for a sample mean by a half

$\bar{X} \pm \frac{\sigma}{\sqrt{n}}$

$\bar{X} \pm \frac{\sigma}{\sqrt{4n}} \rightarrow \bar{X} \pm \frac{1}{2} \frac{\sigma}{\sqrt{n}}$

▶ Problems may ask you to calculate minimum sample size, given α and standard deviation
CIs and Sample Size

Notes on sample size:

- Small samples → Follow same rules as hypothesis tests for when to switch to Student's t distribution
- Larger sample size → will shrink standard errors → will lead to smaller CIs
- Ex) Doubling sample size will reduce the width of the confidence interval for a sample mean by a half
- \[\bar{X} \pm \frac{\sigma}{\sqrt{n}} \]

Problems may ask you to calculate minimum sample size, given α and standard deviation
Notes on sample size:

- Small samples → Follow same rules as hypothesis tests for when to switch to Student’s t distribution

$\bar{x} \pm \frac{\sigma}{\sqrt{n}}$

Doubling sample size will reduce the width of the confidence interval for a sample mean by a half:

$\bar{x} \pm \frac{1}{2} \frac{\sigma}{\sqrt{n}}$
CIs and Sample Size

Notes on sample size:

- Small samples → Follow same rules as hypothesis tests for when to switch to Student’s t distribution
- Larger sample size → will shrink standard errors → will lead to smaller CIs

\[
\bar{X} \pm \frac{\sigma}{\sqrt{n}}
\]

Problems may ask you to calculate minimum sample size, given α and standard deviation.
CIs and Sample Size

Notes on sample size:
- Small samples → Follow same rules as hypothesis tests for when to switch to Student’s t distribution
- Larger sample size → will shrink standard errors → will lead to smaller CIs
 - Ex) Doubling sample size will reduce the width of the confidence interval for a sample mean by a half

\[
\bar{X} \pm \frac{\sigma}{\sqrt{n}}
\]

\[
\bar{X} \pm \frac{1}{2} \frac{\sigma}{\sqrt{4n}}
\]
CIs and Sample Size

Notes on sample size:

- Small samples → Follow same rules as hypothesis tests for when to switch to Student’s t distribution
- Larger sample size → will shrink standard errors → will lead to smaller CIs
 - Ex) Doubling sample size will reduce the width of the confidence interval for a sample mean by a half
 - $\bar{X} \pm \sigma/\sqrt{n}$
CIs and Sample Size

Notes on sample size:

- **Small samples** → Follow same rules as hypothesis tests for when to switch to Student’s *t* distribution
- **Larger sample size** → will shrink standard errors → will lead to smaller CIs
 - Ex) Doubling sample size will reduce the width of the confidence interval for a sample mean by a half
 - \(\bar{X} \pm \frac{\sigma}{\sqrt{n}} \)
 - \(\bar{X} \pm \frac{\sigma}{\sqrt{4n}} \)
CIs and Sample Size

Notes on sample size:

- Small samples → Follow same rules as hypothesis tests for when to switch to Student’s t distribution
- Larger sample size → will shrink standard errors → will lead to smaller CIs
 - Ex) Doubling sample size will reduce the width of the confidence interval for a sample mean by a half
 - $\bar{X} \pm \sigma/\sqrt{n}$
 - $\bar{X} \pm \sigma/\sqrt{4n} \rightarrow \bar{X} \pm \frac{1}{2} \sigma/\sqrt{n}$

Problems may ask you to calculate minimum sample size, given α and standard deviation
CIs and Sample Size

Notes on sample size:

- Small samples → Follow same rules as hypothesis tests for when to switch to Student’s t distribution
- Larger sample size → will shrink standard errors → will lead to smaller CIs
 - Ex) Doubling sample size will reduce the width of the confidence interval for a sample mean by a half
 - $\bar{X} \pm \frac{\sigma}{\sqrt{n}}$
 - $\bar{X} \pm \frac{\sigma}{\sqrt{4n}} \rightarrow \bar{X} \pm \frac{1}{2} \frac{\sigma}{\sqrt{n}}$
- Problems may ask you to calculate minimum sample size, given α and standard deviation
CIs and Sample Size

What happens to CIs when \(n \) goes up?

- 500 observations drawn from \(\mathcal{N}(1,10) \)
- 95% Confidence Interval
CIs and Sample Size

Show this graphically → What happens to CIs when n goes up?
CIs and Sample Size

Show this graphically → What happens to CIs when n goes up?

500 observations drawn from N(1,10)
CIs and Sample Size

Show this graphically → What happens to CIs when \(n \) goes up?

1500 observations drawn from N(1,10)
CIs versus Hypothesis Tests

- Close relationship between CIs and HTs
- If value A not in 95% CI → would be rejected by a two-sided hypothesis test at the 5% level
- If value A in 95% CI → would not be rejected by a two-sided hypothesis test at the 5% level
- A 95% confidence interval is all of null hypotheses that would not be rejected at the 0.05 level
- A $(1 - \alpha)$% confidence interval is all of null hypotheses that would not be rejected at the α level
CIs versus Hypothesis Tests

- Close relationship between CIs and HTs

- If value A not in 95% CI → would be rejected by a two-sided hypothesis test at the 5% level

- If value A in 95% CI → would not be rejected by a two-sided hypothesis test at the 5% level

- An 95% confidence interval is all of null hypotheses that would not be rejected at the 0.05 level

- $(1 - \alpha)\%$ confidence interval is all of null hypotheses that would not be rejected at the α level
CIs versus Hypothesis Tests

- Close relationship between CIs and HTs
- If value A not in 95% CI → would be rejected by a two-sided hypothesis test at the 5% level
- If value A in 95% CI → would not be rejected by a two-sided hypothesis test at the 5% level
Close relationship between CIs and HTs

- If value A not in 95% CI \rightarrow would be rejected by a two-sided hypothesis test at the 5% level
- If value A in 95% CI \rightarrow would not be rejected by a two-sided hypothesis test at the 5% level

A 95% confidence interval is all of null hypotheses that would not be rejected at the 0.05 level.

A $(1 - \alpha)$% confidence interval is all of null hypotheses that would not be rejected at the α level.
CIs versus Hypothesis Tests

- Close relationship between CIs and HTs
- If value A not in 95% CI \rightarrow would be rejected by a two-sided hypothesis test at the 5% level
- If value A in 95% CI \rightarrow would not be rejected by a two-sided hypothesis test at the 5% level
- \rightarrow A 95% confidence interval is all of null hypotheses that would not be rejected at the 0.05 level
CIs versus Hypothesis Tests

- Close relationship between CIs and HTs
- If value A not in 95% CI \rightarrow would be rejected by a two-sided hypothesis test at the 5% level
- If value A in 95% CI \rightarrow would not be rejected by a two-sided hypothesis test at the 5% level
- \rightarrow A 95% confidence interval is all of null hypotheses that would not be rejected at the 0.05 level
- \rightarrow A $(1 - \alpha)$% confidence interval is all of null hypotheses that would not be rejected at the α level
CIs versus Hypothesis Tests

The diagram illustrates the relationship between confidence intervals (CIs) and hypothesis tests. The area under the curve from $-\alpha/2$ to $\alpha/2$ represents $(1 - \alpha)$ CI, where α is the significance level. This indicates the probability of the CI containing the true parameter value.
CIs versus Hypothesis Tests

Both CIs and HTs are useful tools in your inference toolkit.

- **HTs** are useful when comparing groups or trying to test a theory.

- **CIs** are useful for thinking about the range of possible values, providing additional information about a single sample.

Many people prefer CIs:

- They can give you information about all possible null hypotheses that would be rejected (as opposed to one), conditional on the α value.

- Many find the margin of error intuitive.

- They are extremely widely used (although many incorrectly interpret...
Both CIs and HTs useful tools in your inference toolkit
Both CIs and HTs useful tools in your inference toolkit

- HTs \(\rightarrow\) useful when comparing groups or trying to test a theory

- Many people prefer CIs:
 - Can give you information over all possible null hypotheses that would be rejected (as opposed to one), conditional on \(\alpha\) value
 - Many find margin of error intuitive
 - Extremely widely used (although many incorrectly interpret)
CIs versus Hypothesis Tests

Both CIs and HTs useful tools in your inference toolkit

- HTs → useful when comparing groups or trying to test a theory
- CIs → useful for thinking about range of possible values, providing additional information about a single sample
CIs versus Hypothesis Tests

Both CIs and HTs useful tools in your inference toolkit

- HTs \rightarrow useful when comparing groups or trying to test a theory
- CIs \rightarrow useful for thinking about range of possible values, providing additional information about a single sample
- Many people prefer CIs:
CIs versus Hypothesis Tests

Both CIs and HTs useful tools in your inference toolkit

- HTs → useful when comparing groups or trying to test a theory
- CIs → useful for thinking about range of possible values, providing additional information about a single sample
- Many people prefer CIs:
 - Can give you information over all possible null hypotheses that would be rejected (as opposed to one), conditional on α value
Both CIs and HTs useful tools in your inference toolkit

- HTs → useful when comparing groups or trying to test a theory
- CIs → useful for thinking about range of possible values, providing additional information about a single sample
- Many people prefer CIs:
 - Can give you information over all possible null hypotheses that would be rejected (as opposed to one), conditional on α value
 - Many find margin of error intuitive
CIs versus Hypothesis Tests

Both CIs and HTs useful tools in your inference toolkit

- HTs → useful when comparing groups or trying to test a theory
- CIs → useful for thinking about range of possible values, providing additional information about a single sample
- Many people prefer CIs:
 - Can give you information over all possible null hypotheses that would be rejected (as opposed to one), conditional on α value
 - Many find margin of error intuitive
 - Extremely widely used (although many incorrectly interpret)
Paired Data

We have covered differences in means and differences in proportions. Have assumed that two groups we were comparing were independent. Two independent samples were simple random samples from two distinct populations. Or, independent samples drawn from same population (with pooled standard error for sample mean).

What happens when we can’t assume independence any more?
Paired Data

- We have covered differences in means and differences in proportions.
Paired Data

- We have covered differences in means and differences in proportions
- Have assumed that two groups we were comparing were independent
Paired Data

- We have covered differences in means and differences in proportions
- Have assumed that two groups we were comparing were independent
 - Two independent samples were simple random samples from two distinct populations
Paired Data

- We have covered differences in means and differences in proportions
- Have assumed that two groups we were comparing were independent
 - Two independent samples were simple random samples from two distinct populations
 - Or, independent samples drawn from same population (with pooled standard error for sample mean)
Paired Data

- We have covered differences in means and differences in proportions.
- Have assumed that two groups we were comparing were independent.
 - Two independent samples were simple random samples from two distinct populations.
 - Or, independent samples drawn from same population (with pooled standard error for sample mean).
- What happens when we can’t assume independence any more?
Public Opinion Paired Data Example

A recent General Social Survey asked 2 questions of 1,492 Americans under hypothetical scenario that government suspected a terrorist act about to happen:

Question #1: Do you believe the authorities should have the right to tap people's phone conversations?

Question #2: Do you believe the authorities should have the right to stop and search people on the street at random?

Two questions asked after the other

Same respondents → two questions
A recent General Social Survey asked 2 questions of 1,492 Americans under hypothetical scenario that government suspected a terrorist act about to happen:
A recent General Social Survey asked 2 questions of 1,492 Americans under hypothetical scenario that government suspected a terrorist act about to happen:

Question #1: Do you believe the authorities should have the right to tap people’s phone conversations?
A recent General Social Survey asked 2 questions of 1,492 Americans under hypothetical scenario that government suspected a terrorist act about to happen:

Question #1: Do you believe the authorities should have the right to tap people’s phone conversations?

Question #2: Do you believe the authorities should have the right to stop and search people on the street at random?
A recent General Social Survey asked 2 questions of 1,492 Americans under hypothetical scenario that government suspected a terrorist act about to happen:

- Question #1: Do you believe the authorities should have the right to tap people’s phone conversations?
- Question #2: Do you believe the authorities should have the right to stop and search people on the street at random?
- Two questions asked after the other
A recent General Social Survey asked 2 questions of 1,492 Americans under hypothetical scenario that government suspected a terrorist act about to happen:

- Question #1: Do you believe the authorities should have the right to tap people’s phone conversations?
- Question #2: Do you believe the authorities should have the right to stop and search people on the street at random?
- Two questions asked after the other
- Same respondents → two questions
Impairment Paired Data Example

- Study done to test effects of cell phone on driving impairment
- Undergraduates study
 - Each UG asked to conduct two driving simulations
- Reaction times measured when (a) talking on cell phone versus (b) not talking on cellphone
- Same student for two conditions
Study done to test effects of cell phone on driving impairment
Impairment Paired Data Example

- Study done to test effects of cell phone on driving impairment
- Undergraduates study → each UG asked to conduct two driving simulations
Impairment Paired Data Example

- Study done to test effects of cell phone on driving impairment
- Undergraduates study → each UG asked to conduct two driving simulations
- Reaction times measured when (a) talking on cell phone versus (b) not talking on cellphone
Impairment Paired Data Example

- Study done to test effects of cell phone on driving impairment
- Undergraduates study → each UG asked to conduct two driving simulations
- Reaction times measured when (a) talking on cell phone versus (b) not talking on cell phone
- Same student → two conditions
Sunscreen Paired Data Example

Sun exposure/skin cancer of increasing concern in Australia

Australian scientists interested in testing effectiveness of sun screen lotion

Asks volunteers to (a) use sunscreen on one arm, but (b) no sunscreen on the other, then go about daily lives for 6 months

Degree of skin damage measured 6 months later

Each person \(\rightarrow\) one arm in group 1 and one arm in group 2
Sunscreen Paired Data Example

- Sun exposure/skin cancer of increasing concern in Australia
Sunscreen Paired Data Example

- Sun exposure/skin cancer of increasing concern in Australia
- Australian scientists interested in testing effectiveness of sunscreen lotion
Sunscreen Paired Data Example

- Sun exposure/skin cancer of increasing concern in Australia
- Australian scientists interested in testing effectiveness of sunscreen lotion
- Asks volunteers to (a) use sunscreen on one arm, but (b) no sunscreen on the other, then go about daily lives for 6 months
Sunscreen Paired Data Example

- Sun exposure/skin cancer of increasing concern in Australia
- Australian scientists interested in testing effectiveness of sunscreen lotion
- Asks volunteers to (a) use sunscreen on one arm, but (b) no sunscreen on the other, then go about daily lives for 6 months
- Degree of skin damage measured 6 months later
Sunscreen Paired Data Example

- Sun exposure/skin cancer of increasing concern in Australia
- Australian scientists interested in testing effectiveness of sunscreen lotion
- Asks volunteers to (a) use sunscreen on one arm, but (b) no sunscreen on the other, then go about daily lives for 6 months
- Degree of skin damage measured 6 months later
- Each person → one arm in group 1 and one arm in group 2
Paired Data

Paired data are dependent → observation in group 1 "matches" an observation in group 2. Either the same person/subject or somehow have pair/match in other group (spouse, twins, different arms). Look for clear link between subject in one group and subject in other (are they same or pair?). Commonly used in longitudinal studies in which a person's response is observed over time (before/after) and cross-over studies in which subject receives both control and treatment. More frequently used in medical/public health studies.
Paired Data

- Often called **matched paired** or **paired** data
Paired Data

- Often called *matched paired* or *paired* data
- Paired data are **dependent** → observation in group 1 “matches” an observation in group 2
Paired Data

- Often called matched paired or paired data
- Paired data are dependent → observation in group 1 “matches” an observation in group 2
 -Either the same person/subject
Paired Data

- Often called *matched paired* or *paired* data
- Paired data are dependent → observation in group 1 “matches” an observation in group 2
 - Either the same person/subject
 - Or somehow have pair/match in other group (spouse, twins, different arms)

Look for clear link between subject in one group and subject in other (are they same or pair?)

Commonly used in longitudinal studies in which a person’s response is observed over time (before/after)

Commonly used in cross-over studies in which subject receives both control and treatment

More frequently used in medical/public health studies
Paired Data

- Often called matched paired or paired data
- Paired data are dependent → observation in group 1 “matches” an observation in group 2
 - Either the same person/subject
 - Or somehow have pair/match in other group (spouse, twins, different arms)
 - Look for clear link between subject in one group and subject in other (are they same or pair?)

- Commonly used in longitudinal studies in which a person’s response is observed over time (before/after)
- Commonly used in cross-over studies in which subject receives both control and treatment
- More frequently used in medical/public health studies
Paired Data

- Often called **matched paired** or **paired** data
- Paired data are **dependent** → observation in group 1 “matches” an observation in group 2
 - Either the same person/subject
 - Or somehow have pair/match in other group (spouse, twins, different arms)
 - Look for clear *link* between subject in one group and subject in other (are they same or pair?)
- Commonly used in **longitudinal studies** in which a person’s response is observed over time (before/after)
Paired Data

- Often called matched paired or paired data
- Paired data are dependent → observation in group 1 “matches” an observation in group 2
 - Either the same person/subject
 - Or somehow have pair/match in other group (spouse, twins, different arms)
 - Look for clear link between subject in one group and subject in other (are they same or pair?)
- Commonly used in longitudinal studies in which a person’s response is observed over time (before/after)
- Commonly used in cross-over studies in which subject receives both control and treatment
Paired Data

- Often called **matched paired** or **paired** data
- Paired data are **dependent** → observation in group 1 “matches” an observation in group 2
 - Either the same person/subject
 - Or somehow have pair/match in other group (spouse, twins, different arms)
 - Look for clear *link* between subject in one group and subject in other (are they same or pair?)
- Commonly used in **longitudinal studies** in which a person’s response is observed over time (before/after)
- Commonly used in **cross-over studies** in which subject receives both control and treatment
- More frequently used in medical/public health studies
Why Use Paired Data?

1. Addresses potential sources of difference
 - Keeps fixed factors that could potentially affect analysis
 - Ex) Sunscreen example → design takes into account fact that people have different levels of sun exposure
 - Particularly useful for making causal inferences (more in API 202)

2. Because of this standard errors of the difference in the groups might be smaller than if using independent samples
 - When unsure? Assume independence (b/c of higher SEs, it is more conservative)
 - However: If paired data, assuming independence will lead you to more often fail to reject null
Why Use Paired Data?

Why use paired data?

1. Addresses potential sources of difference
 ▶ Keeps fixed factors that could potentially affect analysis
 ▶ Ex) Sunscreen example → design takes into account fact that people have different levels of sun exposure
 ▶ Particularly useful for making causal inferences (more in API 202)

2. Because of this standard errors of the difference in the groups might be smaller than if using independent samples
 ▶ When unsure? Assume independence (b/c of higher SEs, it is more conservative)
 ▶ However: If paired data, assuming independence will lead you to more often fail to reject null
Why Use Paired Data?

Why use paired data?

1. Addresses potential sources of difference
Why Use Paired Data?

Why use paired data?

1. Addresses potential sources of difference
 - Keeps fixed factors that could potentially affect analysis
Why Use Paired Data?

Why use paired data?

1. Addresses potential sources of difference
 - Keeps fixed factors that could potentially affect analysis
 - Ex) Sunscreen example → design takes into account fact that people have different levels of sun exposure
Why Use Paired Data?

Why use paired data?

1. Addresses potential sources of difference
 - Keeps fixed factors that could potentially affect analysis
 - Ex) Sunscreen example → design takes into account fact that people have different levels of sun exposure
 - Particularly useful for making causal inferences (more in API 202)
Why Use Paired Data?

Why use paired data?

1. Addresses potential sources of difference
 ▶ Keeps fixed factors that could potentially affect analysis
 ▶ Ex) Sunscreen example → design takes into account fact that people have different levels of sun exposure
 ▶ Particularly useful for making causal inferences (more in API 202)

2. Because of this standard errors of the difference in the groups might be smaller than if using independent samples
Why Use Paired Data?

Why use paired data?

1. Addresses potential sources of difference
 ▶ Keeps fixed factors that could potentially affect analysis
 ▶ Ex) Sunscreen example → design takes into account fact that people have different levels of sun exposure
 ▶ Particularly useful for making causal inferences (more in API 202)

2. Because of this standard errors of the difference in the groups might be smaller than if using independent samples
 ▶ When unsure? Assume independence (b/c of higher SEs, it is more conservative)
Why Use Paired Data?

Why use paired data?

1. Addresses potential sources of difference
 - Keeps fixed factors that could potentially affect analysis
 - Ex) Sunscreen example → design takes into account fact that people have different levels of sun exposure
 - Particularly useful for making causal inferences (more in API 202)

2. Because of this standard errors of the difference in the groups might be smaller than if using independent samples
 - When unsure? Assume independence (b/c of higher SEs, it is more conservative)
 - However: If paired data, assuming independence will lead you to more often fail to reject null
Mean example looking at taxi times

An HKS student often goes to Logan Airport on Thursday evenings, wants to find the fastest route. Conducts a study to determine the fastest of two possible routes using a random sample of 14 cab drivers. Each hired driver drives from HKS to the airport on two different Thursday evenings using one of the two routes. Question: Difference in travel times between Routes A and Route B?
Difference in means for paired data using following example:

An HKS student often goes to Logan Airport on Thursday evenings, wants to find fastest route.

Conducts study to determine the fastest of two possible routes using a random sample of 14 cab drivers.

Each hired driver drives from HKS to airport on two different Thursday evenings using one of the two routes.

Question: Difference in travel times between Routes A and Route B?
Mean example looking at taxi times

Difference in means for paired data using following example:

- An HKS student often goes to Logan Airport on Thursday evenings, wants to find fastest route
Mean example looking at taxi times

Difference in means for paired data using following example:

- An HKS student often goes to Logan Airport on Thursday evenings, wants to find fastest route
- Conducts study to determine the fastest of two possible routes using a random sample of 14 cab drivers
Mean example looking at taxi times

Difference in means for paired data using following example:

- An HKS student often goes to Logan Airport on Thursday evenings, wants to find fastest route
- Conducts study to determine the fastest of two possible routes using a random sample of 14 cab drivers
- Each hired driver drives from HKS to airport on two different Thursday evenings using one of the two routes
Mean example looking at taxi times

Difference in means for paired data using following example:

- An HKS student often goes to Logan Airport on Thursday evenings, wants to find fastest route
- Conducts study to determine the fastest of two possible routes using a random sample of 14 cab drivers
- Each hired driver drives from HKS to airport on two different Thursday evenings using one of the two routes
- Question: Difference in travel times between Routes A and Route B?
Mean example looking at taxi times
Mean example looking at taxi times

Route A:
Mean example looking at taxi times

Route A:
Mean example looking at taxi times

Route A:

Route B:
Mean example looking at taxi times

Route A:

Route B:
Mean example looking at taxi times
<table>
<thead>
<tr>
<th>Cab Driver</th>
<th>Route A</th>
<th>Route B</th>
<th>Difference ($A - B$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.4</td>
<td>19.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>2</td>
<td>26.6</td>
<td>21.8</td>
<td>4.8</td>
</tr>
<tr>
<td>3</td>
<td>26.0</td>
<td>25.2</td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>26.5</td>
<td>23.9</td>
<td>2.6</td>
</tr>
<tr>
<td>5</td>
<td>23.2</td>
<td>23.1</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>20.8</td>
<td>18.6</td>
<td>2.2</td>
</tr>
<tr>
<td>7</td>
<td>24.5</td>
<td>24.4</td>
<td>0.1</td>
</tr>
<tr>
<td>8</td>
<td>21.6</td>
<td>21.6</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>20.3</td>
<td>16.1</td>
<td>4.2</td>
</tr>
<tr>
<td>10</td>
<td>20.7</td>
<td>47.0</td>
<td>-26.3</td>
</tr>
<tr>
<td>11</td>
<td>34.1</td>
<td>32.3</td>
<td>1.8</td>
</tr>
<tr>
<td>12</td>
<td>42.1</td>
<td>39.6</td>
<td>2.5</td>
</tr>
<tr>
<td>13</td>
<td>26.6</td>
<td>25.4</td>
<td>1.2</td>
</tr>
<tr>
<td>14</td>
<td>22.1</td>
<td>20.8</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Mean example looking at taxi times

Again, we're interested in the difference in means.

Same steps as regular hypothesis test.

However: Define new random variable:

\[X_d = X_1 - X_2 \]

where \(X_d \) has \(n \) observations (just like \(X_1 \) and \(X_2 \)).

We use \(X_d \) and \(n \) in our analysis.
Mean example looking at taxi times

- Again, we’re interested in the difference in means
Mean example looking at taxi times

- Again, we’re interested in the difference in means
- Same steps as regular hypothesis test

\[X_d = X_1 - X_2 \]

where \(X_d \) has \(n \) observations (just like \(X_1 \) and \(X_2 \))

- We use \(X_d \) and \(n \) in our analysis
Mean example looking at taxi times

- Again, we’re interested in the difference in means
- Same steps as regular hypothesis test
- However: Define new random variable:
Mean example looking at taxi times

- Again, we’re interested in the difference in means
- Same steps as regular hypothesis test
- However: Define new random variable:

\[X_d = X_1 - X_2 \]
Mean example looking at taxi times

- Again, we’re interested in the difference in means
- Same steps as regular hypothesis test
- However: Define new random variable:
 \[X_d = X_1 - X_2 \]
 where \(X_d \) has \(n \) observations (just like \(X_1 \) and \(X_2 \))
Mean example looking at taxi times

- Again, we’re interested in the difference in means
- Same steps as regular hypothesis test
- However: Define new random variable:

\[X_d = X_1 - X_2 \]

- where \(X_d \) has \(n \) observations (just like \(X_1 \) and \(X_2 \))
- We use \(X_d \) and \(n \) in our analysis
Mean example looking at taxi times

<table>
<thead>
<tr>
<th></th>
<th>Route A</th>
<th>Route B</th>
<th>Difference (A - B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.4</td>
<td>19.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>2</td>
<td>26.6</td>
<td>21.8</td>
<td>4.8</td>
</tr>
<tr>
<td>3</td>
<td>26.0</td>
<td>25.2</td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>26.5</td>
<td>23.9</td>
<td>2.6</td>
</tr>
<tr>
<td>5</td>
<td>23.2</td>
<td>23.1</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>20.8</td>
<td>18.6</td>
<td>2.2</td>
</tr>
<tr>
<td>7</td>
<td>24.5</td>
<td>24.4</td>
<td>0.1</td>
</tr>
<tr>
<td>8</td>
<td>21.6</td>
<td>21.6</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>20.3</td>
<td>16.1</td>
<td>4.2</td>
</tr>
<tr>
<td>10</td>
<td>20.7</td>
<td>47.0</td>
<td>-26.3</td>
</tr>
<tr>
<td>11</td>
<td>34.1</td>
<td>32.3</td>
<td>1.8</td>
</tr>
<tr>
<td>12</td>
<td>42.1</td>
<td>39.6</td>
<td>2.5</td>
</tr>
<tr>
<td>13</td>
<td>26.6</td>
<td>25.4</td>
<td>1.2</td>
</tr>
<tr>
<td>14</td>
<td>22.1</td>
<td>20.8</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Mean example looking at taxi times

<table>
<thead>
<tr>
<th>Cab Driver</th>
<th>Route A</th>
<th>Route B</th>
<th>Difference $(A - B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.4</td>
<td>19.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>1</td>
<td>15.4</td>
<td>19.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>2</td>
<td>26.6</td>
<td>21.8</td>
<td>4.8</td>
</tr>
<tr>
<td>3</td>
<td>26.0</td>
<td>25.2</td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>26.5</td>
<td>23.9</td>
<td>2.6</td>
</tr>
<tr>
<td>5</td>
<td>23.2</td>
<td>23.1</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>20.8</td>
<td>18.6</td>
<td>2.2</td>
</tr>
<tr>
<td>7</td>
<td>24.5</td>
<td>24.4</td>
<td>0.1</td>
</tr>
<tr>
<td>8</td>
<td>21.6</td>
<td>21.6</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>20.3</td>
<td>16.1</td>
<td>4.2</td>
</tr>
<tr>
<td>10</td>
<td>20.7</td>
<td>47.0</td>
<td>-26.3</td>
</tr>
<tr>
<td>11</td>
<td>34.1</td>
<td>32.3</td>
<td>1.8</td>
</tr>
<tr>
<td>12</td>
<td>42.1</td>
<td>39.6</td>
<td>2.5</td>
</tr>
<tr>
<td>13</td>
<td>26.6</td>
<td>25.4</td>
<td>1.2</td>
</tr>
<tr>
<td>14</td>
<td>22.1</td>
<td>20.8</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Mean example looking at taxi times

How does this differ from independent (non-paired) difference in means?

From our discussion of random variables:

\[
\text{Var}(X_1 - X_2) = \text{Var}(X_1) + \text{Var}(X_2) - 2\text{Cov}(X_1, X_2)
\]

If independent, then

\[
\text{Cov}(X_1, X_2) = 0
\]

So variance of \(X_1 - X_2\) for independent samples is

\[
\sigma_1^2 \frac{1}{n_1} + \sigma_2^2 \frac{1}{n_2}
\]

However, must reintroduce covariance for dependent samples

Note: This is what makes standard error for dependent pairs usually smaller than for non-dependent pairs
Mean example looking at taxi times

- How does this differ from independent (non-paired) difference in means?

\[
\text{Var}(X_1 - X_2) = \text{Var}(X_1) + \text{Var}(X_2) - 2\text{Cov}(X_1, X_2)
\]

- If independent, then \(\text{Cov}(X_1, X_2) = 0 \)
- So variance of \(X_1 - X_2 \) for independent samples is \(\sigma_1^2/n_1 + \sigma_2^2/n_2 \)

- However, must reintroduce covariance for dependent samples
- Note: This is what makes standard error for dependent pairs usually smaller than for non-dependent pairs
Mean example looking at taxi times

- How does this differ from independent (non-paired) difference in means?
- From our discussion of random variables:

\[
\text{Var}(X_1 - X_2) = \text{Var}(X_1) + \text{Var}(X_2) - 2\text{Cov}(X_1, X_2)
\]

- If independent, then
 \[
 \text{Cov}(X_1, X_2) = 0
 \]
- So variance of \(X_1 - X_2\) for independent samples is
 \[
 \sigma^2_1 \frac{1}{n_1} + \sigma^2_2 \frac{1}{n_2}
 \]
- However, must reintroduce covariance for dependent samples
- Note: This is what makes standard error for dependent pairs usually smaller than for non-dependent pairs
Mean example looking at taxi times

- How does this differ from independent (non-paired) difference in means?
- From our discussion of random variables:

\[\text{Var}(X_1 - X_2) = \text{Var}(X_1) + \text{Var}(X_2) - 2 \text{Cov}(X_1, X_2) \]
Mean example looking at taxi times

- How does this differ from independent (non-paired) difference in means?
- From our discussion of random variables:

\[\text{Var}(X_1 - X_2) = \text{Var}(X_1) + \text{Var}(X_2) - 2 \text{Cov}(X_1, X_2) \]

- If independent, then \(\text{Cov}(X_1, X_2) = 0 \)
Mean example looking at taxi times

- How does this differ from independent (non-paired) difference in means?
- From our discussion of random variables:
 \[\text{Var}(X_1 - X_2) = \text{Var}(X_1) + \text{Var}(X_2) - 2\text{Cov}(X_1, X_2) \]

- If independent, then \(\text{Cov}(X_1, X_2) = 0 \)
- So variance of \(X_1 - X_2 \) for independent samples is \(\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \)

However, must reintroduce covariance for dependent samples

Note: This is what makes standard error for dependent pairs usually smaller than for non-dependent pairs.
Mean example looking at taxi times

- How does this differ from independent (non-paired) difference in means?
- From our discussion of random variables:

\[\text{Var}(X_1 - X_2) = \text{Var}(X_1) + \text{Var}(X_2) - 2 \text{Cov}(X_1, X_2) \]

- If independent, then \(\text{Cov}(X_1, X_2) = 0 \)
- So variance of \(X_1 - X_2 \) for independent samples is \(\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \)
- However, must reintroduce covariance for dependent samples
Mean example looking at taxi times

- How does this differ from independent (non-paired) difference in means?
- From our discussion of random variables:

\[\text{Var}(X_1 - X_2) = \text{Var}(X_1) + \text{Var}(X_2) - 2\text{Cov}(X_1, X_2) \]

- If independent, then \(\text{Cov}(X_1, X_2) = 0 \)
- So variance of \(X_1 - X_2 \) for independent samples is \(\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \)
- However, must reintroduce covariance for dependent samples
- Note: This is what makes standard error for dependent pairs usually smaller than for non-dependent pairs
Mean example looking at taxi times

<table>
<thead>
<tr>
<th>Cab Driver</th>
<th>Route A</th>
<th>Route B</th>
<th>Difference (A − B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.4</td>
<td>19.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>1</td>
<td>15.4</td>
<td>19.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>2</td>
<td>26.6</td>
<td>21.8</td>
<td>4.8</td>
</tr>
<tr>
<td>3</td>
<td>26.0</td>
<td>25.2</td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>26.5</td>
<td>23.9</td>
<td>2.6</td>
</tr>
<tr>
<td>5</td>
<td>23.2</td>
<td>23.1</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>20.8</td>
<td>18.6</td>
<td>2.2</td>
</tr>
<tr>
<td>7</td>
<td>24.5</td>
<td>24.4</td>
<td>0.1</td>
</tr>
<tr>
<td>8</td>
<td>21.6</td>
<td>21.6</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>20.3</td>
<td>16.1</td>
<td>4.2</td>
</tr>
<tr>
<td>10</td>
<td>20.7</td>
<td>47.0</td>
<td>-26.3</td>
</tr>
<tr>
<td>11</td>
<td>34.1</td>
<td>32.3</td>
<td>1.8</td>
</tr>
<tr>
<td>12</td>
<td>42.1</td>
<td>39.6</td>
<td>2.5</td>
</tr>
<tr>
<td>13</td>
<td>26.6</td>
<td>25.4</td>
<td>1.2</td>
</tr>
<tr>
<td>14</td>
<td>22.1</td>
<td>20.8</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Mean example looking at taxi times

<table>
<thead>
<tr>
<th>Cab Driver</th>
<th>Route A</th>
<th>Route B</th>
<th>Difference (A − B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.4</td>
<td>19.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>1</td>
<td>15.4</td>
<td>19.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>2</td>
<td>26.6</td>
<td>21.8</td>
<td>4.8</td>
</tr>
<tr>
<td>3</td>
<td>26.0</td>
<td>25.2</td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>26.5</td>
<td>23.9</td>
<td>2.6</td>
</tr>
<tr>
<td>5</td>
<td>23.2</td>
<td>23.1</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>20.8</td>
<td>18.6</td>
<td>2.2</td>
</tr>
<tr>
<td>7</td>
<td>24.5</td>
<td>24.4</td>
<td>0.1</td>
</tr>
<tr>
<td>8</td>
<td>21.6</td>
<td>21.6</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>20.3</td>
<td>16.1</td>
<td>4.2</td>
</tr>
<tr>
<td>10</td>
<td>20.7</td>
<td>47.0</td>
<td>-26.3</td>
</tr>
<tr>
<td>11</td>
<td>34.1</td>
<td>32.3</td>
<td>1.8</td>
</tr>
<tr>
<td>12</td>
<td>42.1</td>
<td>39.6</td>
<td>2.5</td>
</tr>
<tr>
<td>13</td>
<td>26.6</td>
<td>25.4</td>
<td>1.2</td>
</tr>
<tr>
<td>14</td>
<td>22.1</td>
<td>20.8</td>
<td>1.3</td>
</tr>
</tbody>
</table>

\[\bar{X}_d = -0.59 \]
Mean example looking at taxi times

<table>
<thead>
<tr>
<th>Cab Driver</th>
<th>Route A</th>
<th>Route B</th>
<th>Difference (A − B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.4</td>
<td>19.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>1</td>
<td>15.4</td>
<td>19.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>2</td>
<td>26.6</td>
<td>21.8</td>
<td>4.8</td>
</tr>
<tr>
<td>3</td>
<td>26.0</td>
<td>25.2</td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>26.5</td>
<td>23.9</td>
<td>2.6</td>
</tr>
<tr>
<td>5</td>
<td>23.2</td>
<td>23.1</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>20.8</td>
<td>18.6</td>
<td>2.2</td>
</tr>
<tr>
<td>7</td>
<td>24.5</td>
<td>24.4</td>
<td>0.1</td>
</tr>
<tr>
<td>8</td>
<td>21.6</td>
<td>21.6</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>20.3</td>
<td>16.1</td>
<td>4.2</td>
</tr>
<tr>
<td>10</td>
<td>20.7</td>
<td>47.0</td>
<td>-26.3</td>
</tr>
<tr>
<td>11</td>
<td>34.1</td>
<td>32.3</td>
<td>1.8</td>
</tr>
<tr>
<td>12</td>
<td>42.1</td>
<td>39.6</td>
<td>2.5</td>
</tr>
<tr>
<td>13</td>
<td>26.6</td>
<td>25.4</td>
<td>1.2</td>
</tr>
<tr>
<td>14</td>
<td>22.1</td>
<td>20.8</td>
<td>1.3</td>
</tr>
</tbody>
</table>

\[X_d = -0.59 \]

\[s_d = 7.67 \]
Mean example looking at taxi times

Step 1: Null and Alternative Hypotheses

Null: No difference between two routes

$$\mu_d = 0$$ (the same as $$\mu_1 - \mu_2 = 0$$)

Alternative: Some difference between two routes

$$\mu_d \neq 0$$ (the same as $$\mu_1 - \mu_2 \neq 0$$)
Mean example looking at taxi times

- Step 1: Null and Alternative Hypotheses

 Null: No difference between two routes

 \[\mu_d = 0 (\text{the same as } \mu_1 - \mu_2 = 0) \]

 Alternative: Some difference between two routes

 \[\mu_d \neq 0 (\text{the same as } \mu_1 - \mu_2 \neq 0) \]
Mean example looking at taxi times

- Step 1: Null and Alternative Hypotheses
 - Null: No difference between two routes
Mean example looking at taxi times

- Step 1: Null and Alternative Hypotheses
 - Null: No difference between two routes
 - $\mu_d = 0$ (the same as $\mu_1 - \mu_2 = 0$)
Mean example looking at taxi times

- Step 1: Null and Alternative Hypotheses
 - Null: No difference between two routes
 - $\mu_d = 0$ (the same as $\mu_1 - \mu_2 = 0$)
 - Alternative: Some difference between two routes
Mean example looking at taxi times

- Step 1: Null and Alternative Hypotheses
 - Null: No difference between two routes
 - $\mu_d = 0$ (the same as $\mu_1 - \mu_2 = 0$)
 - Alternative: Some difference between two routes
 - $\mu_d \neq 0$ (the same as $\mu_1 - \mu_2 \neq 0$)
Mean example looking at taxi times

- Step 2: Collect sample data

<table>
<thead>
<tr>
<th>Cab Driver</th>
<th>Route A</th>
<th>Route B</th>
<th>Difference (A − B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.4</td>
<td>19.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>2</td>
<td>26.6</td>
<td>21.8</td>
<td>4.8</td>
</tr>
<tr>
<td>3</td>
<td>26.0</td>
<td>25.2</td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>26.5</td>
<td>23.9</td>
<td>2.6</td>
</tr>
<tr>
<td>5</td>
<td>23.2</td>
<td>23.1</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>20.8</td>
<td>18.6</td>
<td>2.2</td>
</tr>
<tr>
<td>7</td>
<td>24.5</td>
<td>24.4</td>
<td>0.1</td>
</tr>
<tr>
<td>8</td>
<td>21.6</td>
<td>21.6</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>20.3</td>
<td>16.1</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\(\bar{X}_d = -0.59 \)

\(s_d = 7.67 \)
Mean example looking at taxi times

Step 3: Calculate appropriate test statistic

Because we have redefined quantity of interest, analysis straightforward

Note: Because of small \(n \), use Student's \(t \) distribution \(w/ n - 1 \) degrees of freedom (same rules as before)

For \(\bar{X}_d \) and \(H_0: \mu_d = 0 \):

\[
t \frac{\bar{X}_d - \mu_d}{s_d / \sqrt{n}} = \frac{-0.59767}{0.288} = -0.288
\]
Mean example looking at taxi times

- Step 3: Calculate appropriate test statistic

\[t_{df} = \frac{\bar{X}_d - \mu_d}{s_d / \sqrt{n}} \]

\[t_{df} = -0.59 \]
Mean example looking at taxi times

- Step 3: Calculate appropriate test statistic
- Because we have redefined quantity of interest, analysis straightforward

\[t = \frac{\bar{X}_d - \mu_d}{s_d / \sqrt{n}} \]

\[t_{13} = -0.59 \]

\[t_{14} = -0.288 \]
Mean example looking at taxi times

- Step 3: Calculate appropriate test statistic
- Because we have redefined quantity of interest, analysis straightforward
- Note: Because of small n, use Student’s t distribution $w/n – 1$ degrees of freedome (same rules as before)
Mean example looking at taxi times

- Step 3: Calculate appropriate test statistic
- Because we have redefined quantity of interest, analysis straightforward
- Note: Because of small n, use Student’s t distribution $w/n-1$ degrees of freedome (same rules as before)
- For \bar{X}_d and $H_0 : \mu_d = 0$:

\[
t = \frac{\bar{X}_d - \mu_d}{s_d / \sqrt{n}}
\]

\[
t = \frac{-0.59}{7.67 / \sqrt{14}} = -0.288
\]
Mean example looking at taxi times

- Step 3: Calculate appropriate test statistic
- Because we have redefined quantity of interest, analysis straightforward
- Note: Because of small n, use Student’s t distribution $w/n − 1$ degrees of freedom (same rules as before)
- For \bar{X}_d and $H_0: \mu_d = 0$:

$$t_{df} = \frac{\bar{X}_d - \mu_d}{s_d/\sqrt{n}}$$

$$t_{13} = \frac{-0.59}{7.67/\sqrt{14}} = -0.288$$
Mean example looking at taxi times
Mean example looking at taxi times

- Step 4: Calculate p-value

\[p\text{-value} = 2 \times P(t_{13} < -0.288) \]

\[p\text{-value} = 0.7771 \]
Mean example looking at taxi times

- Step 4: Calculate p-value
- Here, using a two-sided test
Mean example looking at taxi times

- Step 4: Calculate p-value
- Here, using a two-sided test
- \(p\)-value = \(2 \times P(t_{13} < -0.288) \)
Mean example looking at taxi times

- Step 4: Calculate p-value
- Here, using a two-sided test
- \(p\)-value = \(2 \times P(t_{13} < -0.288) \)
- \(p\)-value = 0.7771
Mean example looking at taxi times

Step 5: Decide whether or not to reject the null hypothesis and interpret results

p-value = 0.7771 → Reject? Do not reject?
Mean example looking at taxi times

- Step 5: Decide whether or not to reject the null hypothesis and interpret results

\[p\text{-value} = 0.7771 \]

- Reject? Do not reject?
Mean example looking at taxi times

- Step 5: Decide whether or not to reject the null hypothesis and interpret results
- p-value $= 0.7771 \rightarrow$ Reject? Do not reject?
Mean example looking at taxi times

Can also calculate the confidence interval:

\[\hat{X} \pm \frac{z}{2} SE \]

Because we're using the \(t \) distribution, the 95% CI would be equal to:

\[\hat{X} \pm t_{13} \frac{z}{2} SE \]

\[= -0.59 \pm 2.160 \times 7.67 \sqrt{14} \]

\[= -0.59 \pm 4.428 \]

\[= (-5.018, 3.838) \]
Mean example looking at taxi times

- Can also calculate the confidence interval:

\[\hat{X} \pm z_{\alpha/2} \cdot \text{SE} \[\hat{X} \] \]

- Because we're using the \(t \) distribution, the 95% CI would be equal to:

\[\hat{X} \pm t_{13, \alpha/2} \cdot \text{SE} \[\hat{X} \] \]

\[= -0.59 \pm 2.160 \times 7.67 \sqrt{14} \]

\[= -0.59 \pm 4.428 \]

\[= (-5.018, 3.838) \]
Mean example looking at taxi times

- Can also calculate the confidence interval:

\[\hat{X}_d \pm z_{\alpha/2} SE[\hat{X}_d] \]
Mean example looking at taxi times

- Can also calculate the confidence interval:

\[\hat{X}_d \pm z_{\alpha/2} SE[\hat{X}_d] \]

- Because we’re using the \(t \) distribution, the 95% CI would be equal to:
Mean example looking at taxi times

- Can also calculate the confidence interval:

\[\hat{X}_d \pm z_{\alpha/2} SE[\hat{X}_d] \]

- Because we’re using the \(t \) distribution, the 95\% CI would be equal to:

\[
\begin{align*}
= \hat{X}_d \pm t_{13\alpha/2} SE[\hat{X}_d] \\
= -0.59 \pm 2.160 \times \frac{7.67}{\sqrt{14}} \\
= -0.59 \pm 4.428 \\
= (-5.018, 3.838)
\end{align*}
\]
Mean example looking at taxi times

CI is $[-5.018, 3.838]$.

How to interpret?

If we repeat this study many times, the true mean difference will lie in 95% of our confidence intervals.

What does it mean for 0 to be in the 95% confidence interval?

→ Inconclusive whether one route "faster" on average than other.
Mean example looking at taxi times

- CI is $[-5.018, 3.838]$
Mean example looking at taxi times

- CI is $[-5.018, 3.838]$
- How to interpret?

If we repeat this study many times, the true mean difference will lie in 95% of our confidence intervals. What does it mean for 0 to be in the 95% confidence interval? Inconclusive whether one route “faster” on average than other.
Mean example looking at taxi times

- CI is $[-5.018, 3.838]$
- How to interpret?
- If we repeat this study many times, the true mean difference will lie in 95% of our confidence intervals.
Mean example looking at taxi times

- CI is $[-5.018, 3.838]$
- How to interpret?
- If we repeat this study many times, the true mean difference will lie in 95% of our confidence intervals.
- What does it mean for 0 to be in the 95% confidence interval?
Mean example looking at taxi times

- CI is $[-5.018, 3.838]$
- How to interpret?
- If we repeat this study many times, the true mean difference will lie in 95% of our confidence intervals.
- What does it mean for 0 to be in the 95% confidence interval?
- → Inconclusive whether one route “faster” on average than other
Paired Tests for Proportions
Paired Tests for Proportions

- Tests works similarly for paired test of proportions

<table>
<thead>
<tr>
<th>Observation</th>
<th>Question 1</th>
<th>Question 2</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Usually only have a contingency table

So we estimate the standard error slightly differently
Paired Tests for Proportions

- Tests works similarly for paired test of proportions
- However, for proportions we sometimes don’t have entire table of individual observations
Paired Tests for Proportions

- Tests works similarly for paired test of proportions
- However, for proportions we sometimes don’t have entire table of individual observations
- Ex) For surveys that ask the same respondent two questions

<table>
<thead>
<tr>
<th>Observation</th>
<th>Question 1</th>
<th>Question 2</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Paired Tests for Proportions

- Tests works similarly for paired test of proportions
- However, for proportions we sometimes don’t have entire table of individual observations
- Ex) For surveys that ask the same respondent two questions

<table>
<thead>
<tr>
<th>Observation</th>
<th>Question 1</th>
<th>Question 2</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Paired Tests for Proportions

- Tests works similarly for paired test of proportions
- However, for proportions we sometimes don’t have entire table of individual observations
- Ex) For surveys that ask the same respondent two questions

<table>
<thead>
<tr>
<th>Observation</th>
<th>Question 1</th>
<th>Question 2</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Usually only have a contingency table
Paired Tests for Proportions

- Tests works similarly for paired test of proportions
- However, for proportions we sometimes don’t have entire table of individual observations
- Ex) For surveys that ask the same respondent two questions

<table>
<thead>
<tr>
<th>Observation</th>
<th>Question 1</th>
<th>Question 2</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Usually only have a contingency table
- So we estimate the standard error slightly differently
Proportion example from public opinion

Each person asked 2 questions: (1) ok for gov't to tap phone, or (2) ok for gov't to conduct random stops

<table>
<thead>
<tr>
<th>Question</th>
<th>Random Stop on St</th>
<th>Tap Phone Yes</th>
<th>Tap Phone No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>494</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>126</td>
<td>537</td>
<td></td>
</tr>
</tbody>
</table>

Question: Does the true proportion answering yes to the first question differ significantly from the second question?
Proportion example from public opinion

- Work through this using public opinion example (difference in proportion) from GSS data on government oversight given suspected terrorist activity

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>494</td>
<td>335</td>
<td>126</td>
<td>537</td>
</tr>
</tbody>
</table>
Proportion example from public opinion

- Work through this using public opinion example (difference in proportion) from GSS data on government oversight given suspected terrorist activity
- Each person asked 2 questions: (1) ok for gov’t to tap phone, or (2) ok for gov’t to conduct random stops

<table>
<thead>
<tr>
<th>Q2: Random Stop</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1: Tap Phone</td>
<td>494</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>126</td>
<td>537</td>
</tr>
</tbody>
</table>
Proportion example from public opinion

- Work through this using public opinion example (difference in proportion) from GSS data on government oversight given suspected terrorist activity
- Each person asked 2 questions: (1) ok for gov’t to tap phone, or (2) ok for gov’t to conduct random stops
- Results as follows:

<table>
<thead>
<tr>
<th>Q1: Tap Phone</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2: Random Stop on St</td>
<td>Yes</td>
<td>494</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>126</td>
</tr>
</tbody>
</table>
Proportion example from public opinion

- Work through this using public opinion example (difference in proportion) from GSS data on government oversight given suspected terrorist activity
- Each person asked 2 questions: (1) ok for gov’t to tap phone, or (2) ok for gov’t to conduct random stops
- Results as follows:

<table>
<thead>
<tr>
<th>Q1: Tap Phone</th>
<th>Q2: Random Stop on St</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>
Proportion example from public opinion

- Work through this using public opinion example (difference in proportion) from GSS data on government oversight given suspected terrorist activity
- Each person asked 2 questions: (1) ok for gov’t to tap phone, or (2) ok for gov’t to conduct random stops
- Results as follows:

<table>
<thead>
<tr>
<th>Q1: Tap Phone</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>494</td>
<td>335</td>
</tr>
<tr>
<td>No</td>
<td>126</td>
<td>537</td>
</tr>
</tbody>
</table>

- Question: Does the true proportion answering yes to the first question differ significantly from the second question?
Proportion example from public opinion

Although we have paired design, steps of hypothesis test the same

▶ Step 1: Null and Alternative Hypotheses
▶ Same as before
→ null usually some variant of “no difference”
▶ Null: Proportions of respondents answering “yes” to both questions equal
▶ \(H_0: \pi_1 - \pi_2 = 0 \)
▶ Alternative: Proportions of respondents answering “yes” to both questions unequal
▶ \(H_a: \pi_1 - \pi_2 \neq 0 \)
▶ What is more appropriate here, one-tailed or two-tailed?
Proportion example from public opinion

Although we have paired design, steps of hypothesis test the same

- Step 1: Null and Alternative Hypotheses
 - Null: Proportions of respondents answering “yes” to both questions equal
 \[H_0: \pi_1 - \pi_2 = 0 \]
 - Alternative: Proportions of respondents answering “yes” to both questions unequal
 \[H_a: \pi_1 - \pi_2 \neq 0 \]

What is more appropriate here, one-tailed or two-tailed?
Proportion example from public opinion

Although we have paired design, steps of hypothesis test the same
 ▶ Step 1: Null and Alternative Hypotheses

- Null: Proportions of respondents answering "yes" to both questions equal
 \[H_0 : \pi_1 - \pi_2 = 0 \]
- Alternative: Proportions of respondents answering "yes" to both questions unequal
 \[H_a : \pi_1 - \pi_2 \neq 0 \]

What is more appropriate here, one-tailed or two-tailed?
Although we have paired design, steps of hypothesis test the same

▶ Step 1: Null and Alternative Hypotheses
▶ Same as before → null usually some variant of “no difference”
Proportion example from public opinion

Although we have paired design, steps of hypothesis test the same

- **Step 1: Null and Alternative Hypotheses**
- **Same as before → null usually some variant of “no difference”**
- **Null: Proportions of respondents answering “yes” to both questions equal**
Proportion example from public opinion

Although we have paired design, steps of hypothesis test the same

- **Step 1: Null and Alternative Hypotheses**
- **Same as before → null usually some variant of “no difference”**
- **Null: Proportions of respondents answering “yes” to both questions equal**
 - $H_0 : \pi_1 - \pi_2 = 0$
Although we have paired design, steps of hypothesis test the same

- **Step 1: Null and Alternative Hypotheses**
 - Same as before → null usually some variant of “no difference”
 - Null: Proportions of respondents answering “yes” to both questions equal
 - $H_0 : \pi_1 - \pi_2 = 0$
 - Alternative: Proportions of respondents answering “yes” to both questions unequal
Although we have paired design, steps of hypothesis test the same

- Step 1: Null and Alternative Hypotheses
- Same as before → null usually some variant of “no difference”
- Null: Proportions of respondents answering “yes” to both questions equal
 - $H_0 : \pi_1 - \pi_2 = 0$
- Alternative: Proportions of respondents answering “yes” to both questions unequal
 - $H_a : \pi_1 - \pi_2 \neq 0$
Although we have paired design, steps of hypothesis test the same

▶ **Step 1: Null and Alternative Hypotheses**

▶ Same as before → null usually some variant of “no difference”

▶ Null: Proportions of respondents answering “yes” to both questions equal
 ▶ $H_0 : \pi_1 - \pi_2 = 0$

▶ Alternative: Proportions of respondents answering “yes” to both questions unequal
 ▶ $H_a : \pi_1 - \pi_2 \neq 0$

▶ What is more appropriate here, one-tailed or two-tailed?
Proportion example from public opinion
Proportion example from public opinion

Step 2: Collect data
Proportion example from public opinion

- Step 2: Collect data
- Assume done for us
Proportion example from public opinion

- Step 2: Collect data
- Assume done for us
- Sample of $n = 1492$ U.S. adults
Step 2: Collect data
Assume done for us
Sample of \(n = 1492 \) U.S. adults

<table>
<thead>
<tr>
<th>Q1: Tap Phone</th>
<th>Q2: Random Stop on St</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>494 ((n_{11}))</td>
<td>335 ((n_{12}))</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>126 ((n_{21}))</td>
<td>537 ((n_{22}))</td>
<td></td>
</tr>
</tbody>
</table>
Proportion example from public opinion

Question #1: Proportion of people in sample who believe authorities should be able to tap phones:
\[\hat{\pi}_1 = \frac{494 + 335}{1492} = 0.556 \]

Question #2: Proportion of people in sample who believe authorities should be able to randomly stop and search people on street:
\[\hat{\pi}_2 = \frac{494 + 126}{1492} = 0.416 \]
Proportion example from public opinion

- Calculate some basic point estimates of “yes” answers:

 \[\hat{\pi}_1 = \frac{494 + 335}{1492} = 0.556 \]

 \[\hat{\pi}_2 = \frac{494 + 126}{1492} = 0.416 \]
Calculate some basic point estimates of “yes” answers:

Question #1: Proportion of people in sample who believe authorities should be able to tap phones:
Proportion example from public opinion

- Calculate some basic point estimates of “yes” answers:
- Question #1: Proportion of people in sample who believe authorities should be able to tap phones:

 \[\hat{\pi}_1 = \frac{494 + 335}{1492} = 0.556 \]
Proportion example from public opinion

- Calculate some basic point estimates of “yes” answers:
- Question #1: Proportion of people in sample who believe authorities should be able to tap phones:

\[\hat{\pi}_1 = \frac{494 + 335}{1492} = 0.556 \]

- Question #2: Proportion of people in sample who believe authorities should be able to randomly stop and search people on street:
Proportion example from public opinion

- Calculate some basic point estimates of “yes” answers:
- **Question #1:** Proportion of people in sample who believe authorities should be able to tap phones:
 \[\hat{\pi}_1 = \frac{494 + 335}{1492} = 0.556 \]

- **Question #2:** Proportion of people in sample who believe authorities should be able to randomly stop and search people on street:
 \[\hat{\pi}_2 = \frac{494 + 126}{1492} = 0.416 \]
Proportion example from public opinion
Proportion example from public opinion

- Step 3: Conduct statistical test
Proportion example from public opinion

- Step 3: Conduct statistical test
- Again, this is where paired data differ from independent data
Proportion example from public opinion

- Step 3: Conduct statistical test
- Again, this is where paired data differ from independent data
- Independent data: Assume no covariance between groups
Proportion example from public opinion

- Step 3: Conduct statistical test
- Again, this is where paired data differ from independent data
- Independent data: Assume no covariance between groups
- Paired (non-independent) data: Must adjust standard error to accommodate covariance
Proportion example from public opinion

- Step 3: Conduct statistical test
- Again, this is where paired data differ from independent data
- Independent data: Assume no covariance between groups
- Paired (non-independent) data: Must adjust standard error to accommodate covariance
- In means case → Just looked at difference (\bar{X}_d)
Proportion example from public opinion

- **Step 3: Conduct statistical test**
- Again, this is where paired data differ from independent data
- Independent data: Assume no covariance between groups
- Paired (non-independent) data: Must adjust standard error to accommodate covariance
- In means case → Just looked at difference (\bar{X}_d)
- In proportions case → Oftentimes don’t have that data
Proportion example from public opinion

▶ Interested in distribution of $\hat{\pi}_1 - \hat{\pi}_2$
▶ By CLT, this should be normally distributed
▶ From earlier lecture, if independent, then $\hat{\pi}_1 - \hat{\pi}_2 \sim N(\pi_1 - \pi_2, \pi_1(1 - \pi_1)n + \pi_2(1 - \pi_2)n)$
▶ However, here dependent, so $\hat{\pi}_1 - \hat{\pi}_2 \sim N(\pi_1 - \pi_2, \pi_1^2 + \pi_2^2 - (\pi_1 - \pi_2)^2)n$
▶ where these refer to cell proportions (not conditional proportions)
▶ (Proof in appendix)
Proportion example from public opinion

- Interested in distribution of $\hat{\pi}_1 - \hat{\pi}_2$

By CLT, this should be normally distributed

From earlier lecture, if independent, then $\hat{\pi}_1 - \hat{\pi}_2 \sim N(\pi_1 - \pi_2, \pi_1(1 - \pi_1)/n_1 + \pi_2(1 - \pi_2)/n_2)$

However, here dependent, so $\hat{\pi}_1 - \hat{\pi}_2 \sim N(\pi_1 - \pi_2, \pi_1^2 + \pi_2^2 - (\pi_1 - \pi_2)^2/2n)$

where these refer to cell proportions (not conditional proportions)

(Proof in appendix)
Proportion example from public opinion

- Interested in distribution of \(\hat{\pi}_1 - \hat{\pi}_2 \)
- By CLT, this should be normally distributed
Proportion example from public opinion

- Interested in distribution of $\hat{\pi}_1 - \hat{\pi}_2$
- By CLT, this should be normally distributed
- From earlier lecture, if independent, then $\hat{\pi}_1 - \hat{\pi}_2$
Proportion example from public opinion

- Interested in distribution of $\hat{\pi}_1 - \hat{\pi}_2$
- By CLT, this should be normally distributed
- From earlier lecture, if independent, then $\hat{\pi}_1 - \hat{\pi}_2$

$$\sim N(\pi_1 - \pi_2, \frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2})$$

(where these refer to cell proportions (not conditional proportions))

(Proof in appendix)
Interested in distribution of $\hat{\pi}_1 - \hat{\pi}_2$

By CLT, this should be normally distributed

From earlier lecture, if independent, then $\hat{\pi}_1 - \hat{\pi}_2$

$$\sim N(\pi_1 - \pi_2, \frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2})$$

However, here dependent, so $\hat{\pi}_1 - \hat{\pi}_2$
Proportion example from public opinion

- Interested in distribution of \(\hat{\pi}_1 - \hat{\pi}_2 \)
- By CLT, this should be normally distributed
- From earlier lecture, if independent, then \(\hat{\pi}_1 - \hat{\pi}_2 \)
 \[
 \sim N(\pi_1 - \pi_2, \frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2})
 \]

- However, here dependent, so \(\hat{\pi}_1 - \hat{\pi}_2 \)
 \[
 \sim N(\pi_1 - \pi_2, \frac{\pi_12 + \pi_21 - (\pi_12 - \pi_21)^2}{n})
 \]
Proportion example from public opinion

- Interested in distribution of $\hat{\pi}_1 - \hat{\pi}_2$
- By CLT, this should be normally distributed
- From earlier lecture, if independent, then $\hat{\pi}_1 - \hat{\pi}_2$
 \[\sim N(\pi_1 - \pi_2, \frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2}) \]

- However, here dependent, so $\hat{\pi}_1 - \hat{\pi}_2$
 \[\sim N(\pi_1 - \pi_2, \frac{\pi_{12} + \pi_{21} - (\pi_{12} - \pi_{21})^2}{n}) \]

- where these refer to cell proportions (not conditional proportions)
Proportion example from public opinion

- Interested in distribution of $\hat{\pi}_1 - \hat{\pi}_2$
- By CLT, this should be normally distributed
- From earlier lecture, if independent, then $\hat{\pi}_1 - \hat{\pi}_2$

\[\sim N(\pi_1 - \pi_2, \frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2}) \]

- However, here dependent, so $\hat{\pi}_1 - \hat{\pi}_2$

\[\sim N(\pi_1 - \pi_2, \frac{\pi_{12} + \pi_{21} - (\pi_{12} - \pi_{21})^2}{n}) \]

- where these refer to cell proportions (not conditional proportions)
- (Proof in appendix)
Proportion example from public opinion

This gives us a test statistic:

$z = \hat{\pi}_1 - \hat{\pi}_2 - (\pi_1 - \pi_2) \sqrt{\hat{\pi}_{12} + \hat{\pi}_{21} - (\hat{\pi}_{12} - \hat{\pi}_{21})^2 / n}$

When the null is true, $\pi_1 - \pi_2 = 0$, we have some options:

1) Use this expression for the standard error
2) Simplify test using McNemar's Test for comparing dependent proportions (medicine/public health)

$z = n_{12} - n_{21} \sqrt{n_{12} + n_{21}}$

where this approximately comes from standard Normal.

Intuition borrows from Binomial distribution – explanation of McNemar's test statistic in Appendix.
Proportion example from public opinion

- This gives us a test statistic:
Proportion example from public opinion

This gives us a test statistic:

\[z = \frac{\hat{\pi}_1 - \hat{\pi}_2 - (\pi_1 - \pi_2)}{\sqrt{\hat{\pi}_{12} + \hat{\pi}_{21} - (\hat{\pi}_{12} - \hat{\pi}_{21})^2}} \]

When the null is true, \(\pi_1 - \pi_2 = 0 \), we have some options:

1) Use this expression for the standard error

2) Simplify test using McNemar's Test for comparing dependent proportions (medicine/public health)

\[z = \frac{n_{12} - n_{21}}{\sqrt{n_{12} + n_{21} - (n_{12} - n_{21})^2}} \]

where this approximately comes from standard Normal

Intuition borrows from Binomial distribution – explanation of McNemar's test statistic in Appendix
Proportion example from public opinion

- This gives us a test statistic:

\[
z = \frac{\hat{\pi}_1 - \hat{\pi}_2 - (\pi_1 - \pi_2)}{\sqrt{\hat{\pi}_{12} + \hat{\pi}_{21} - (\hat{\pi}_{12} - \hat{\pi}_{21})^2} / n}
\]

- When the null is true, \(\pi_1 - \pi_2 = 0 \), we have some options
Proportion example from public opinion

- This gives us a test statistic:

\[z = \frac{\hat{\pi}_1 - \hat{\pi}_2 - (\pi_1 - \pi_2)}{\sqrt{\hat{\pi}_{12} + \hat{\pi}_{21} - (\hat{\pi}_{12} - \hat{\pi}_{21})^2/n}} \]

- When the null is true, \(\pi_1 - \pi_2 = 0 \), we have some options
 - 1) Use this expression for the standard error

Intuition borrows from Binomial distribution – explanation of McNemar's test statistic in Appendix.
Proportion example from public opinion

- This gives us a test statistic:

\[
 z = \frac{\hat{\pi}_1 - \hat{\pi}_2 - (\pi_1 - \pi_2)}{\sqrt{\frac{\hat{\pi}_{12} + \hat{\pi}_{21} - (\hat{\pi}_{12} - \hat{\pi}_{21})^2}{n}}}
\]

- When the null is true, \(\pi_1 - \pi_2 = 0 \), we have some options
- 1) Use this expression for the standard error
- 2) Simplify test using **McNemar’s Test** for comparing dependent proportions (medicine/public health)
Proportion example from public opinion

- This gives us a test statistic:

\[z = \frac{\hat{\pi}_1 - \hat{\pi}_2 - (\pi_1 - \pi_2)}{\sqrt{\frac{\hat{\pi}_{12} + \hat{\pi}_{21} - (\hat{\pi}_{12} - \hat{\pi}_{21})^2}{n}}} \]

- When the null is true, \(\pi_1 - \pi_2 = 0 \), we have some options
 - 1) Use this expression for the standard error
 - 2) Simplify test using McNemar’s Test for comparing dependent proportions (medicine/public health)

\[z = \frac{n_{12} - n_{21}}{\sqrt{n_{12} + n_{21}}} \]

Intuition borrows from Binomial distribution – explanation of McNemar’s test statistic in Appendix
Proportion example from public opinion

- This gives us a test statistic:

\[
z = \frac{\hat{\pi}_1 - \hat{\pi}_2 - (\pi_1 - \pi_2)}{\sqrt{\frac{\hat{\pi}_{12} + \hat{\pi}_{21} - (\hat{\pi}_{12} - \hat{\pi}_{21})^2}{n}}}
\]

- When the null is true, \(\pi_1 - \pi_2 = 0 \), we have some options
 - 1) Use this expression for the standard error
 - 2) Simplify test using McNemar’s Test for comparing dependent proportions (medicine/public health)

\[
z = \frac{n_{12} - n_{21}}{\sqrt{n_{12} + n_{21}}}
\]

- where this approximately comes from standard Normal
Proportion example from public opinion

- This gives us a test statistic:

\[z = \frac{\hat{\pi}_1 - \hat{\pi}_2 - (\pi_1 - \pi_2)}{\sqrt{\frac{\hat{\pi}_{12} + \hat{\pi}_{21} - (\hat{\pi}_{12} - \hat{\pi}_{21})^2}{n}}} \]

- When the null is true, \(\pi_1 - \pi_2 = 0 \), we have some options
 1) Use this expression for the standard error
 2) Simplify test using McNemar’s Test for comparing dependent proportions (medicine/public health)

\[z = \frac{n_{12} - n_{21}}{\sqrt{n_{12} + n_{21}}} \]

- where this approximately comes from standard Normal
- Intuition borrows from Binomial distribution – explanation of McNemar’s test statistic in Appendix
Proportion example from public opinion

Calculating McNemar's test statistic:

\[z = \sqrt{\frac{n_{12} - n_{21}}{n_{12} + n_{21}}} = \sqrt{\frac{335 - 126}{335 + 126}} = 9.7341 \]

where this approx comes from a standard normal distribution
Calculating McNemar’s test statistic:
Proportion example from public opinion

Calculating McNemar's test statistic:

\[z = \frac{n_{12} - n_{21}}{\sqrt{n_{12} + n_{21}}} \]

\[= \frac{335 - 126}{\sqrt{335 + 126}} = 9.7341 \]
Calculating McNemar’s test statistic:

\[
z = \frac{n_{12} - n_{21}}{\sqrt{n_{12} + n_{21}}} = \frac{335 - 126}{\sqrt{335 + 126}} = 9.7341
\]

where this approx comes from a standard normal distribution
Step 4: Calculate p-value (using two-tailed test)

p-value = $2 \times P(Z \leq -9.7341)$

p-value < 0.01

Step 5: Decide whether or not to reject the null hypothesis and interpret results

Question: What is your conclusion?

(People seem to have different tolerance for gov’t tapping phones vs random stops on street)
Step 4: Calculate p-value (using two-tailed test)

p-value = $2 \times P(Z \leq -9.7341)$

p-value < 0.01

Step 5: Decide whether or not to reject the null hypothesis and interpret results

Question: What is your conclusion?

(People seem to have different tolerance for gov't tapping phones vs random stops on street)
Proportion example from public opinion

- Step 4: Calculate \(p \)-value (using two-tailed test)
 - \(p \)-value \(= 2 \times P(Z \leq -9.7341) \)
Proportion example from public opinion

- Step 4: Calculate p-value (using two-tailed test)
 - p-value $= 2 \times P(Z \leq -9.7341)$
 - p-value < 0.01
Proportion example from public opinion

- Step 4: Calculate p-value (using two-tailed test)
 - p-value $= 2 \times P(Z \leq -9.7341)$
 - p-value < 0.01
- Step 5: Decide whether or not to reject the null hypothesis and interpret results

Question: What is your conclusion?

(People seem to have different tolerance for gov't tapping phones vs random stops on street)
Proportion example from public opinion

- Step 4: Calculate \(p \)-value (using two-tailed test)
 \[p \text{-value} = 2 \times P(Z \leq -9.7341) \]
 \[p \text{-value} < 0.01 \]
- Step 5: Decide whether or not to reject the null hypothesis and interpret results
- Question: What is your conclusion?

(People seem to have different tolerance for gov't tapping phones vs random stops on street)
Proportion example from public opinion

- **Step 4:** Calculate p-value (using two-tailed test)
 - p-value $= 2 \times P(Z \leq -9.7341)$
 - p-value < 0.01

- **Step 5:** Decide whether or not to reject the null hypothesis and interpret results

- **Question:** What is your conclusion?

 - (People seem to have different tolerance for gov’t tapping phones vs random stops on street)
Proportion example from public opinion

To calculate confidence interval, follow same formula

\[\hat{\pi}_1 - \hat{\pi}_2 \pm z_{\alpha/2} \times SE[\hat{\pi}_1 - \hat{\pi}_2] \]

Using full form of standard error

\[\hat{\pi}_1 - \hat{\pi}_2 \pm z_{\alpha/2} \times \sqrt{\hat{\pi}_1(1-\hat{\pi}_1)/n - \hat{\pi}_2(1-\hat{\pi}_2)/n} \]
Proportion example from public opinion

- To calculate confidence interval, follow same formula

\[
\hat{\pi}_1 - \hat{\pi}_2 \pm z_{\alpha/2} \sqrt{\hat{\pi}_1(1-\hat{\pi}_1)/n - \hat{\pi}_2(1-\hat{\pi}_2)/n}
\]
To calculate confidence interval, follow same formula

\[\hat{\pi}_1 - \hat{\pi}_2 \pm z_{\alpha/2} SE[\hat{\pi}_1 - \hat{\pi}_2] \]
Proportion example from public opinion

To calculate confidence interval, follow same formula

\[\hat{\pi}_1 - \hat{\pi}_2 \pm z_{\alpha/2} SE[\hat{\pi}_1 - \hat{\pi}_2] \]

Using full form of standard error
To calculate confidence interval, follow same formula

\[\hat{\pi}_1 - \hat{\pi}_2 \pm z_{\alpha/2} SE[\hat{\pi}_1 - \hat{\pi}_2] \]

Using full form of standard error

\[\hat{\pi}_1 - \hat{\pi}_2 \pm z_{\alpha/2} \sqrt{\frac{\hat{\pi}_{12} - \hat{\pi}_{21} - (\hat{\pi}_{12} - \hat{\pi}_{21})^2}{n}} \]
Proportion example from public opinion

Using our example

For 95% CI:

\[0.556 - 0.416 \pm 1.96 \sqrt{\frac{335}{1492}} - \left(\frac{335}{1492} - \frac{126}{1492}\right)^2] 0.14 \pm 0.018

So 95% is (0.122, 0.158)

Does it include 0?

What does this mean substantively?
Proportion example from public opinion

- Using our example

\[
\text{For 95\% CI: } 0.556 - 0.416 \pm 1.96 \sqrt{\frac{1492 - 126}{1492}} - \left(\frac{126}{1492} \right) \frac{2}{1492} = 0.14 \pm 0.018
\]

So 95\% is (0.122, 0.158)

Does it include 0?

What does this mean substantively?
Proportion example from public opinion

- Using our example
- For 95% CI:
Proportion example from public opinion

- Using our example
- For 95% CI:

\[
0.556 - 0.416 \pm 1.96 \sqrt{\frac{335}{1492} - \frac{126}{1492} - \left(\frac{335}{1492} - \frac{126}{1492} \right)^2} \\
0.14 \pm 0.018
\]

So 95% is (0.122, 0.158)

Does it include 0?

What does this mean substantively?
Proportion example from public opinion

- Using our example
- For 95% CI:

\[
0.556 - 0.416 \pm 1.96 \sqrt{\frac{335}{1492} - \frac{126}{1492} - \left(\frac{335}{1492} - \frac{126}{1492}\right)^2} = 0.14 \pm 0.018
\]

- So 95% is (0.122, 0.158)

- Does it include 0?
- What does this mean substantively?
Proportion example from public opinion

- Using our example
- For 95% CI:

\[
0.556 - 0.416 \pm 1.96 \sqrt{\frac{335}{1492} - \frac{126}{1492} - \left(\frac{335}{1492} - \frac{126}{1492} \right)^2} \frac{1}{1492}
\]

\[0.14 \pm 0.018\]

- So 95% is (0.122, 0.158)
- Does it include 0?
Proportion example from public opinion

- Using our example
- For 95% CI:

\[
0.556 - 0.416 \pm 1.96 \sqrt{\frac{\frac{335}{1492} - \frac{126}{1492} - \left(\frac{\frac{335}{1492} - \frac{126}{1492}}{1492} \right)^2}{1492}}
\]

0.14 \pm 0.018

- So 95% is (0.122, 0.158)
- Does it include 0?
- What does this mean substantively?
Next Time

- Starting Analysis of Variance tests
Appendix: Standard Error for Paired Diff in Proportion

Note: Notation here slightly different than used in main part of slides

\[
\text{Var}[\hat{\pi}_2 - \hat{\pi}_1] = \text{Var}[\hat{\pi}_{01} - \hat{\pi}_{10}]
\]

\[
= \text{Var}[\hat{\pi}_{01}] + \text{Var}[\hat{\pi}_{10}] - 2\text{Cov}[\hat{\pi}_{01}, \hat{\pi}_{10}]
\]

\[
= \frac{1}{n\pi_{01}(1 - \pi_{01})} + \frac{1}{n\pi_{10}(1 - \pi_{10})} + \frac{2}{n\pi_{01}\pi_{10}}
\]

\[
= \frac{1}{n}(\pi_{01} + \pi_{10} - (\pi_{01} - \pi_{10})^2)
\]
Appendix: McNemar’s Test

Under H_0, n_{12} (or equivalently n_{21}) has a binomial distribution with parameters $n_\ast = n_{12} + n_{21}$ and "success" probability 0.5.

Under H_0, the mean of n_{12} is $0.5n_\ast$.

Under H_0, the variance of n_{12} is $0.5(1 - 0.5)n_\ast$.

Using CLT, we can approximate the binomial with Normal: $n_{12} \sim N(0.5n_\ast, 0.5(1 - 0.5)n_\ast)$.

Standardizing, we get $z = \frac{n_{12} - 0.5n_\ast}{\sqrt{0.5(1 - 0.5)n_\ast}}$.

Using $n_\ast = n_{12} + n_{21}$ can further simplify to $z = \frac{n_{12} - n_{21}}{\sqrt{n_{12} + n_{21}}}$, which approximates standard Normal.
Appendix: McNemar’s Test

- Under H_0: n_{12} (or equivalently n_{21}) has a binomial distribution with parameters $n^* = n_{12} + n_{21}$ and “success” probability 0.5.
Appendix: McNemar’s Test

- Under H_0: n_{12} (or equivalently n_{21}) has a binomial distribution with parameters $n^* = n_{12} + n_{21}$ and “success” probability 0.5
 - Under H_0: the mean of n_{12} is $0.5n^*$
Appendix: McNemar’s Test

- Under H_0: n_{12} (or equivalently n_{21}) has a binomial distribution with parameters $n^* = n_{12} + n_{21}$ and “success” probability 0.5
 - Under H_0: the mean of n_{12} is $0.5n^*$
 - Under H_0: the variance of n_{12} is $0.5(1 - 0.5)n^*$
Appendix: McNemar’s Test

- Under H_0: n_{12} (or equivalently n_{21}) has a binomial distribution with parameters $n^* = n_{12} + n_{21}$ and “success” probability 0.5
 - Under H_0: the mean of n_{12} is $0.5n^*$
 - Under H_0: the variance of n_{12} is $0.5(1 - 0.5)n^*$
- Using CLT, we can approximate the binomial with Normal:
Appendix: McNemar’s Test

- Under H_0: n_{12} (or equivalently n_{21}) has a binomial distribution with parameters $n^* = n_{12} + n_{21}$ and “success” probability 0.5
 - Under H_0: the mean of n_{12} is $0.5n^*$
 - Under H_0: the variance of n_{12} is $0.5(1 - 0.5)n^*$

- Using CLT, we can approximate the binomial with Normal:

$$n_{12} \sim N(0.5n^*, 0.5(1 - 0.5)n^*)$$
Appendix: McNemar’s Test

- Under H_0: n_{12} (or equivalently n_{21}) has a binomial distribution with parameters $n^* = n_{12} + n_{21}$ and “success” probability 0.5
 - Under H_0: the mean of n_{12} is $0.5n^*$
 - Under H_0: the variance of n_{12} is $0.5(1 - 0.5)n^*$
- Using CLT, we can approximate the binomial with Normal:
 \[n_{12} \sim N(0.5n^*, 0.5(1 - 0.5)n^*) \]

- Standardizing, we get
Appendix: McNemar’s Test

- Under H_0: n_{12} (or equivalently n_{21}) has a binomial distribution with parameters $n^* = n_{12} + n_{21}$ and “success” probability 0.5
 - Under H_0: the mean of n_{12} is $0.5n^*$
 - Under H_0: the variance of n_{12} is $0.5(1 - 0.5)n^*$
- Using CLT, we can approximate the binomial with Normal:
 \[n_{12} \sim N(0.5n^*, 0.5(1 - 0.5)n^*) \]

- Standardizing, we get
 \[z = \frac{n_{12} - 0.5n^*}{\sqrt{0.5(1 - 0.5)n^*}} \]
Appendix: McNemar’s Test

- Under H_0: n_{12} (or equivalently n_{21}) has a binomial distribution with parameters $n^* = n_{12} + n_{21}$ and “success” probability 0.5
 - Under H_0: the mean of n_{12} is $0.5n^*$
 - Under H_0: the variance of n_{12} is $0.5(1 - 0.5)n^*$
- Using CLT, we can approximate the binomial with Normal:
 $$n_{12} \sim N(0.5n^*, 0.5(1 - 0.5)n^*)$$

- Standardizing, we get
 $$z = \frac{n_{12} - 0.5n^*}{\sqrt{0.5(1 - 0.5)n^*}}$$

- Using $n^* = n_{12} + n_{21}$ can further simplify to
 $$= \frac{n_{12} - n_{21}}{\sqrt{n_{12} + n_{21}}}$$
Appendix: McNemar’s Test

- Under H_0: n_{12} (or equivalently n_{21}) has a binomial distribution with parameters $n^* = n_{12} + n_{21}$ and “success” probability 0.5
 - Under H_0: the mean of n_{12} is $0.5n^*$
 - Under H_0: the variance of n_{12} is $0.5(1 - 0.5)n^*$
- Using CLT, we can approximate the binomial with Normal:

 \[n_{12} \sim N(0.5n^*, 0.5(1 - 0.5)n^*) \]

- Standardizing, we get

 \[z = \frac{n_{12} - 0.5n^*}{\sqrt{0.5(1 - 0.5)n^*}} \]

- Using $n^* = n_{12} + n_{21}$ can further simplify to

 \[= \frac{n_{12} - n_{21}}{\sqrt{n_{12} + n_{21}}} \]

- where this approximates standard Normal
Next Time

- Starting Analysis of Variance tests