$n \in [6, 12]$ Angry Men: The Importance of Endogenizing Jury Size When Comparing Voting Rules

Michael Thaler

Harvard University
150,000 criminal jury trials each year in the US:

- Many jury trials end in false convictions or false acquittals
 - 13% of verdicts inaccurate (Spencer, 2007)
- Many juries hang, leading to a mistrial
 - 6.2% of state juries hang (Hannaford et al., 2002)
- Suggests substantial room for improvement

Goal: Design voting rules to increase accuracy, decrease hung juries
Space of voting rules

Trial in which jurors vote to acquit or convict a defendant and outcome either A, C, or hang:

- **Size of jury:** $n > 0$
- **Symmetric voting rules:** $d \in \left[0, \frac{n-1}{2}\right]$
 - Reach verdict iff at least $n - d$ agree
 - Else, hung jury
 - Symmetric used in most US jury trials
- **Unanimity:** $d = 0$
- (Majority rule: n odd, $d = \frac{n-1}{2}$)
Pre-1970: US norm that criminal trials have $n = 12, d = 0$.\(^1\)

In 1970s, Supreme Court issues rulings:

- **Williams v. Florida (1970):** $n \in [6, 12], d = 0$ allowed.
- **Apodaca v. Oregon (1972)** and **Johnson v. Louisiana (1972):** $n = 12, d \leq 3$ allowed.
- **Burch v. Louisiana (1979):** If $n = 6$, then only $d = 0$ allowed.
- **Ballew v. Georgia (1978):** $n < 6$ *not* allowed.
 - Justice Lewis Powell, writing for the majority: “Though the line between five- and six-member juries is difficult to justify, a line has to be drawn somewhere.”

\(^1\)Often these jurors were all men, and occasionally they were angry.
Space of voting rules in the US

Figure: Plot of (n, d) used anywhere in the US as of 2018. Horizontally-striped squares used only in criminal cases; vertically-striped squares only in misdemeanor or civil cases; both-striped used for both.
How to design jury voting rules?

- Desiderata:
 - Reach some verdict
 - Acquit innocent defendants
 - Convict guilty defendants

- Questions:
 - What should \(n \) be?
 - What should \(d \) be?

This paper: Important to consider both questions simultaneously
This paper

Accuracy \equiv P(\text{Correct verdict} \mid \text{Some verdict})
Efficiency \equiv P(\text{Some verdict})

Effect of size n and allowed dissenters d:

- **Fix n, vary d:** Accuracy $\uparrow \iff$ Efficiency \downarrow
- **Vary n, fix d:** Accuracy $\uparrow \iff$ Efficiency \downarrow
- **Vary n, vary d:** Accuracy \uparrow and Efficiency \uparrow possible

Unanimity is suboptimal: $(n + 2, 1)$ more accurate, efficient than $(n, 0)$

$n \in [6, 12]$ Angry Men

Michael Thaler

• Varying n and d has been studied calibrationally: Guerra, Luppi, Parisi (2018) vary n, d, standard of proof; King and Nesbit (2009) look at cost and asymmetric errors.

• Classic political science literature on juries: Kalven and Ziesel’s *The American Jury* (1966); Hans et al. (2003); Grofman critiques the Supreme Court on its arbitrary rulings (1976, 1980); Thomas and Pollack (1992).

A jury voting game (from Coughlan, 2000)

- Defendant on trial. State of the world: Guilty (G) or Innocent (I). Prior $P(G) = \pi; P(I) = 1 - \pi$
- Jury composed of jurors $N = \{1, \ldots, n\}$.
- Conditionally independent signals i, g with accuracy $p \in (1/2, 1)$:
 - $P(i|I) = P(g|G) = p$
 - $P(i|G) = P(g|I) = 1 - p$
- Symmetric voting rule (n, d):
 - If # convicting jurors $\geq n - d$, then convict (C)
 - If # acquitting jurors $\geq n - d$, then acquit (A)
 - Else, hung jury and mistrial (M)
- Timing: jurors receive private signals in period 0, simultaneously vote to convict or acquit in period 1
 - If C or A, true state revealed in period 2
 - If M, re-try with new jurors, drawn iid, who do not know previous vote
Juror utilities

- Utility of juror j from outcome Q given true state S is $u_j(Q|S)$:
 - $u_j(C|G) = u_j(A|I) = 0$;
 - $u_j(C|I) = -q_j$ and $u_j(A|G) = -(1 - q_j)$, $q_j \in (0, 1)$ for all j;
 - $u_j(M|I) = -\mu_I \cdot q_j$ and $u_j(M|G) = -\mu_G \cdot (1 - q_j)$.

- Set μ_I (μ_G) to be probability that future jury convicts given innocent (acquits given guilty).
Informative and strategic voting

- **Informative** voting:
 - j votes to convict if signal g
 - j votes to acquit if signal i

- **Strategic** voting:
 - Jurors play a Nash equilibrium in weakly undominated strategies
 - I.e. max expected utility *conditional on being a pivotal voter*
Informative equilibrium

Coughlan (2000): When exists informative voting equilibrium

- In any such equilibrium, $\mu_I = \mu_G \equiv \mu$
- Informative equilibrium if **Assumption A1:**

 \[
 \text{logit } q_j \in (\text{logit } \pi - \text{logit } p, \text{logit } \pi + \text{logit } p) \text{ for all } j
 \]

 - I.e. if preferences are not extreme compared to signals
 - Condition does not depend on n or d
- Note: informative also equilibrium if jurors fully cursed, for any parameters (Eyster and Rabin, 2005)

Rest of this paper: Assume A1 holds; **informative voting equilibria**
Comparisons across n and d

$p_*(p, n, d) \equiv \text{Probability of reaching the correct verdict, conditional on reaching a verdict}$

$p_M(p, n, d) \equiv \text{Probability of a hung jury and mistrial}$

In informative equilibria:

- $p_*(p, n, d|G) = p_*(p, n, d|I)$ and
- $p_M(p, n, d|G) = p_M(p, n, d|I)$
Partial ordering of voting rules

- A triple \((p, n, d)\) is **weakly better than** \((p, n', d')\) if
 \[p_*(p, n, d) \geq p_*(p, n', d') \quad \text{and} \quad p_M(p, n, d) \leq p_M(p, n', d'). \]

- It is **strictly better** if \(p_*(p, n, d) > p_*(p, n', d') \) and
 \[p_M(p, n, d) \leq p_M(p, n', d'). \]

- \((n, d)\) **weakly (strictly) dominates** \((n', d')\) if for all \(p \in (1/2, 1) \),
 \((p, n, d)\) is weakly (strictly) better than \((p, n', d')\).
Main result: The suboptimality of unanimity

Theorem

\((n + 2, 1)\) strictly dominates \((n, 0)\) for all \(n\).

Corollary

For all \(n\), every juror’s ex ante expected utility is strictly higher for \((n + 2, 1)\) than \((n, 0)\).
Main results

The suboptimality of unanimity

Theorem

\((n + 2, 1)\) strictly dominates \((n, 0)\) for all \(n\).

Intuition for why accuracy higher:

- Convict in \((n + 2, 1)\) if vote is \(n + 1\) to 1 or \(n + 2\) to 0
 - If \(n + 1\) to 1, same net convict signals as if \(n\) to 0, so likelihood of guilty also the same
 - If \(n + 2\) to 0, strictly more likely guilty than if \(n\) to 0

Intuition for why mistrials (weakly) lower:

- Given first \(n\) votes, more likely to reach verdict with two new votes:
 - More likely to go from \(n\) to 0 \(\rightarrow\) \(n\) to 2
 - Than to go from \(n - 1\) to 1 \(\rightarrow\) \(n + 1\) to 1

\(n \in [6, 12]\) Angry Men Michael Thaler
Main results

No strict comparisons when either n or d is fixed

Forms of the previous results can only occur when both n and d are varied simultaneously:

Proposition

For any $p \in (1/2, 1)$, (p, n, d) is not strictly better than (p, n', d) or (p, n, d').
Cost for additional jurors

What if we explicitly penalize juries for their size?

- Suppose every hung jury leads to a retrial, and consider a cost function \(c(\# \text{ trials}, \# \text{ jurors}) = C_1 \#\text{trials} + C_2 \#\text{jurors} \).

Proposition

For all \(C_1, C_2 > 0, n \geq 5, p \leq 1 - \frac{1}{1.77n} \), \((n + 2, 1) \) has lower expected cost than \((n, 0)\).

- Tradeoff: more jurors per jury vs. larger \(p_M \) (so more juries in expectation)
- Second effect dominates if signals not too strong, juries not too small
Why model communication

- Loose estimates from motivation:
 - $p_M(p, 12, 0) = 6.2\%$
 - $p_*(p, 12, 0) = 87\%$

- No singular value of p in this model can fit both estimates:
 - Low p: modest p_* but unrealistically high p_M
 - High p: modest p_M but unrealistically high p_*.
Extension: Some communication

Idea: some juries communicate by revealing signals, others do not

- γ fraction communicate, $1 - \gamma$ do not.
 - Assumption: γ independent of p, n, d.
 - Retrial \rightarrow same jury communication type

- **Assumption A2:**
 - $\logit q_j \in (\logit \pi - \logit p, \logit \pi)$ or
 - $\logit q_j \in (\logit \pi, \logit \pi + \logit p)$.

- Under A2: informative equilibrium exists for both jury types
Main results extend to communication model with informative equilibria:

Proposition

For all γ, $(n + 2, 1)$ strictly dominates $(n, 0)$ for all n.

Corollary

For all n and γ, every juror’s ex ante expected utility is strictly higher for $(n + 2, 1)$ than $(n, 0)$.
Calibration and cost

Rough calibration of parameters:

- Match accuracy / mistrial rates: $p = .6615$, $\gamma = .9378$
- Trial length: 5 days, 4 hours (NCSC, 2007)
- Lost wages: $1,099$ per juror (BLS: OES, 2018)
- Trial cost: $81,958$ (Pittsburgh Post-Gazette, 1983; adjusted)

(Note: Data only for states where $n = 12$, $d = 0$)
Cost saved by using 1-dissenter juries

Compare expected cost of

- $(n, 0)$ jury and
- A mix between $(n + 2, 1)$ and $(n - 2, 1)$ juries
 - Mix so that average accuracy the same

Cost lower for 1-dissenter juries for policy-relevant sizes:

- $n = 6$: $1,712$ saved per case
- $n = 9$: 715 saved per case
- $n = 12$: 165 saved per case
Important to endogenize jury sizes when comparing voting rules:

• Can simultaneously reduce hung jury rates, increase expected accuracy.

• Can decrease social cost with no loss to accuracy.

• Unanimity with n jurors often dominated by a jury with $n + 2$ jurors that allows for one dissenter.

• Possible further work: juror heterogeneity, jury selection, non-Bayesian updating