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Figure S19: Subject #5’s data: two experiments with input of controlled frequency sweeps in 
ventilation flow rate (lower plot) with fixed background workload demand of 0 watts (black) or 
50 watts (blue). Subject #5 controlled breathing to follow a preprogrammed frequency sweep 
that spanned the natural breath frequencies at these workload levels. The ventilation data are 
raw speed of inhalation and exhalation at the mouthpiece. For each data set, a second order 
linear model was fit with airflow rate input (lower plot) and HR output (upper, data in red). 
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Simulations of HR are in upper plot for 0 watts (black) and 50 watts (blue).
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Figure S20: Subject #5’s data: optimal control model of response to two different workload 
(blue) demands, approximately square waves of 0-50 watts (lower) and 100-150 watts (upper). 
For each data set, a first principle model with optimal controller is simulated with workload as 
input (blue) and HR (black) as output, which can be compared with HR data (red). Simulations of 
blood pressure (Pas, purple) and tissue oxygen content ([O2]T, green) are consistent with the 
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literature but were not measured. 
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III.     Nonlinear Dynamic Model from System ID

We have shown that overall HR response to a broad workload is a nonlinear system, by usingWe have shown that overall HR response to a broad workload is a nonlinear system, by using 
experiments with limited watts range and individual but different linear models. To explore global 
nonlinear models, we did experiments including exercise levels between  0 watts and 150 watts 
and found a piecewise linear model to fit the data. The following two figures show two 
experiments data and the corresponding fitting results. In both of the fittings, we use piecewise 1st

order linear model with 2 linear pieces and 7 parameters, which is shown as follows:

1 1 1( ) ( ) ( ) ; when ( )H t a H t bW t c h t H    

Constants                                      are fitted to minimize the mean squared error between H(t) and 
HR data. In SI-Section IV: Cross Validation, we show how validation results change with number 
of pieces and we claim that 2 linear pieces are an optimal balance between model order, fit, and 
cross validation. Wider watts ranges would require more states and nonlinearities.

2 2 2( ) ( ) ( ) ; otherwiseH t a H t b W t c   

1 1 1 2 2 2( , , , , , , )a b c a b c H
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Figure S21: Subject #2 performed two separate experiments of less than 6 minutes each on a 
cycle ergometer. HR (left axis, red) is plotted for 2 different watts demands (blue) including  
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exercise levels between 0 watts and 150 watts.  For each experiments, a piecewise 1st order 
linear model (“black box”) with 2 linear pieces and 7 parameters was fit using workload 
input and HR output. Simulations of  this model with the 2 watts input are in black.  
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IV.    Cross Validation

In this section we perform cross validation on our models: the linear system identificationIn this section, we perform cross validation on our models: the linear system identification 

model, the first principle model, and the nonlinear system identification model. In each cross 

validation, a subject performs two different exercise tests with different but comparable 

workload demands. We fit our models by using one set of experimental data (i.e. training data) 

and use the fitted models to perform prediction on the other set of experimental data (i.e. 

validation data). Moreover, in cross validation for linear system identification models and 

nonlinear system identification models, we fit and simulate different models with different 

complexities and we show how validation results correlate with the model complexities.

1. Linear System Identification Model

Fig. S22 shows an example of validation result for linear system identification models on two 

data sets.  The subject performed two separate experiments of less than 8 minutes each on a cycle 

ergometer including exercise levels between 50 watts and 100 watts. We use the upper data set 

(called as data set 1) as training data and the lower data set (called as data set 2) as validation 

data In Fig S22 a 1st order linear dynamic (“black box”) model (i e Δh=ah+bW+c) with 3data. In Fig. S22,  a 1 order linear dynamic ( black box ) model (i.e., Δh ah+bW+c) with 3 

parameters (a,b,c) was fit using data set 1 with workload input and HR output and simulations of 

this model is done with the 2 workload inputs. From the simulation results, we can see that the 1st

order linear dynamic model can predict HR response to workloads well.

To further address the over-fitting issue and to study how validation results correlate with model g y

complexities, we then fit and simulate different models with different complexities on the two 

data sets. Fig. S23 and Table S1 shows the cross validation results. The classes of models we 

compare in the figure are: linear static model, 1st order linear dynamic model, 2nd order linear 

dynamic model, 3rd order linear dynamic model, and 4th order linear dynamic model. For each 

l f d l d h diff fi i i d 1 fi d l i d 2class of models, we do three different fittings: using data set 1 to fit a model; using data set 2 to 

fit a model; using both data set 1 and data 2 fit a model. Then we use those models to simulate 

both of the two data sets and calculate the corresponding root mean squared errors on those data 

sets. The root mean squared error is defined as:

 21
RM S= ( ) ( )

N
H t HR t
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where H(t) and HR(t) are respectively the simulated and the measured heart rate at time point t, 

and N

 
1

RM S ( ) ( )
t

H t HR t
N 



is the total number of time points. The three markers in each line in Fig. S23 for each class of 

models show the simulated errors using the corresponding three different fitted models, which 

are, from left to right, the fitted model using data set 1, the fitted model using the two data sets; 

the fitted model using data set 2. Not surprisingly, Fig. S23 and Table S1 show that the RMS 

error becomes roughly smaller with increased fit complexity  on the training data. However, the 

marginal benefit  starts diminishing  as the  model complexity increases; moreover, the 

validation RMS error starts to increase if the model is very complex (see the RMS error for 3rd
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validation RMS error starts to increase if the model is very complex (see the RMS error for 3

linear dynamic model and RMS error for 4th linear dynamic model). 

50

70

90

100

105

110

115

Training

(watts)

HR model

90

110

115

120

125
0 50 100 150 200 250 300 350 400 450

0 50 100 150 200 250 300 350 400 450

50

70

100

105

110

Validation

Figure S22: Subject #2 performed two separate experiments of less than 8 minutes each 
on a cycle ergometer including exercise levels between 50 watts and 100 watts.  HR (left 
axis, red) is plotted for two different workload demands (right axis, blue). A 1st order 
linear dynamic (“black box”) model (i.e., ΔH=aH+bW+c) with 3 parameters (a,b,c) was 
fit using the upper exercise data with workload input and HR output.  Simulations of this 
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model with the 2 workload inputs are in black. 
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show how validation results correlate with the complexity of the model. We call the upper 
experiment data set in Fig. S22 data set 1 and  the lower one data set 2. The classes of models we 
compare in the figure are: linear static model (blue), 1st order piecewise linear models with 1 
piece (orange), 2 pieces (red), 3 pieces (green), and 4 pieces (purple). For each class of models, 
we do three different fittings: using data set 1 to fit a model; using data set 2 to fit a model; using 
both data set 1 and data 2 fit a model. Then we use those models to simulate the two data sets 
and calculate the corresponding mean squared errors on those data sets. The mean squared error 
is defined as:                                          

where H(t) and HR(t) are respectively the simulated and the measured heart at time point t, and 
N is the total number of time points. The three markers in each line for each class of models 
show the simulated errors using the corresponding three different fitted models, which are, from 
l ft t i ht th fitt d d l i d t t 1 th fitt d d l i th t d t t th fitt d

 2

1

1
error= ( ) ( )

N

t
H t HR t

N 


left to right, the fitted model using data set 1, the fitted model using the two data sets; the fitted 
model using data set 2.  From this plot, we claim that 2 linear pieces are an optimal balance 
between model order, fit, and cross validation. 

Training Validation Validation Training Fitting together

D t 1 D t 2 D t 1 D t 2 D t 1 D t 2

Table S1, RMS error of cross validation for linear dynamic models 

Data 1 Data2 Data 1 Data2 Data 1 Data2

Linear Static  3.9306 4.0603 4.3980 3.5160 4.0582 3.6503

1st order linear dynamic 1.9818 2.1553 2.5446 1.4197 2.0803 1.7402

2nd order linear dynamic 1.8200 1.4347 2.5289 1.3900 2.0631 1.7190
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3rd order linear dynamic 1.8034 1.4297 2.4782 1.3815 1.8654 1.4323

4th order linear dynamic 1.8006 1.4285 2.5198 1.3487 1.7689 1.4194



2. First Principle Model

Figure S24 shows  the validation result for  the  1st principle model. We still use data set 1 as training 

data and  data set 2 as validation data. The three tradeoff parameters (qp, qO, qH) in the cost function of 

the first principle model are fitted  using data set 1 (training data) with workload input and HR output. 

This first principle model is simulated for each data set with workload as input (blue) and HR (black) 

as output, which can  be compared with measured HR data (red).  Simulations of blood pressure (Pas, 

purple) and tissue oxygen saturation ([O2]T, green) are consistent with the literature but were not 
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measured. . From the simulation results, we can see that the 1st principle model can predict HR 

response to workloads well.
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Figure S24: Subject #2’s data using first principle models: optimal control model of response to 
the two different workload (blue) demands including exercise levels between 50 watts and 100 
watts.  The three tradeoff parameters in the cost function of the first principle model are fitted using 
th i d t (i t i i d t ) ith kl d i t d HR t t Thi fi t i i l

Time (second)
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40
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the upper exercise data (i.e. training data) with workload input and HR output. This first principle 
model is simulated for each data set with workload as input (blue) and HR (black) as output, which 
can be compared with measured HR data (red).  Simulations of blood pressure (Pas, purple) are 
consistent with the literature but were not measured. 
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3. Nonlinear System Identification Model—Piecewise Linear Dynamic Model

We carried out cross validation on the nonlinear system identification model by repeating theWe carried out cross validation on the nonlinear system  identification  model by repeating the 

same process  as that for the linear system  identification model in SOM-Section IV-1. We call 

the upper data set in Figure S21 data set A and the lower data set data set B. A piecewise 1st order 

linear model (“black box”) with 2 linear pieces and 7 parameters was fit using data set 1 with 

workload input and HR output and simulations of this model is done with the 2 workload as 

120 HR data

inputs. Then we fit and simulate different models with different complexities on the two data sets 

to study how validation results correlate with model complexities which is shown in Fig. S25-26. 

40

80

Workload 
(watts)HR model

Training

0 50 100 150 200 250 300 350 400 450 5000

120

160

HR data

Training

0 50 100 150 200 250 300 350 400
0

40

80

Workload 
(watts)

HR model

Validation

0 50 100 150 200 250 300 350 400

Figure S25: Validation results for the nonlinear system  identification  model. HR (left axis, 
red) is plotted for two different workload demands (right axis, blue). We use the upper data set 
(called as data set A) in Fig. S21 as training data and the lower data set (called as data set B) as 
validation data. A piecewise 1st order linear model (“black box”) with 2 linear pieces and 7
parameters was fit using the training data with workload input and HR output. Simulations of this 
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Figure S26: In this figure, we use the two experiments’ data in Fig. S21 to show how validation 
results correlate with the complexity of the model. We call the upper experiment data set in 
Fig.S21 as data set A and  the lower one as data set B. The classes of models we compare in the 
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figure are: 1 piece linear static model (blue), 1st order piecewise linear models with 1 piece 
(orange), 2 pieces (red), 3 pieces (green), and 4 pieces (purple). For each class of models, we do 
three different fittings: using data set 1 to fit a model; using data set 2 to fit a model; using both 
data set 1 and data 2 fit a model. Then we use those models to simulate the two data sets and 
calculate the corresponding mean squared errors on those data sets. The mean squared error is 
defined as:                                          

21 N

where H(t) and HR(t) are respectively the simulated and the measured heart at time point t, and 
N is the total number of time points. The three markers in each line for each class of models 
show the simulated errors using the corresponding three different fitted models, which are, from 
left to right, the fitted model using data set 1, the fitted model using the two data sets; the fitted 
model using data set 2.  From this plot, we claim that 2 linear pieces are an optimal balance 
b d l d fi d lid i

 2

1

1
error= ( ) ( )

N

t
H t HR t

N 


between model order, fit, and cross validation. 
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V. Tables S2-S4: 

Table S2: Parameters value 

Parameter Value Parameter Value Parameter Value 
 0.01016(L/mmHg)  0.5(mmHg min/L)  6.0 (L) 

 0.6500(L/mmHg)  6.5(mmHg min/L)  0.2 (L O2/L blood) 

 0.0361(L/mmHg)  18(mmHg min /L) 0.012(L/min/watt) 

 0.1408(L/mmHg) 5.0580 (L)  0.36 (L/min) 

 

Table S3: Parameters value for cardio output 

Subject Parameter Value Parameter Value 
1 

 
0.03(L/mmHg) 0.05(L/mmHg) 

2 
 

0.025(L/mmHg) 0.045(L/mmHg) 

3
 

 
0.02(L/mmHg) 0.04(L/mmHg) 

4
 

 
0.032 (L/mmHg) 0.052(L/mmHg) 

5 
 

0.03 (L/mmHg) 0.05(L/mmHg) 

                                           

Table S4: q value for dynamic 1st principle model 

Subject  Parameter Value Parameter Value Parameter Value 
1 0-50 

watts 
 30  100000  1 

100-
150watts 

 
65 

 
100000 

 
15 

2 0-50 
watts 

 30  100000  1 

100-
150watts 

 
80 

 
100000 

 
35 

3 0-50 
watts 

 40  100000  5 

50-
100watts 

 
65 

 
100000 

 
15 

4 0-50 
watts 

 45  100000  1 

100-
150watts 

 
85 

 
100000 

 
50 

5 0-50 
watts 

 40  100000  1 

100-
150watts 

 
80 

 
100000 

 
40 
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VI: System Identification Techniques

1 Parametric Dynamical Model

A discrete linear time invariant (LTI) system with single input single output (SISO) is applied to approximate

causal dependencies between various physiological variables in our study. This LTI system is parameterized in the

following obervable canonical form:

∆x[k] , x[k + 1]− x[k] = Ax[k] +Bu[k] + [0, . . . , 0, 1]T c

y[k] = [1, 0, . . . , 0]x[k] k = 0, 1, 2, ...
(SI-16)

where A is parameterized as

A =



a1 1 0 0 · · · 0

a2 0 1 0 · · · 0

...
...

...
...

. . .
...

an 0 0 0 · · · 0


.

x[k] ∈ Rn,u[k] ∈ R and y[k] ∈ R denote the state, input and output of the system, respectively. The unknowns of

the system are A ∈ Rn×n, B ∈ Rn, c ∈ R and x[0] ∈ Rn, the initial condition. Given a positive discrete time instant

N and two sequences of scalar data from measured physiological variables, û := {û[k]}N−1
k=0 and ŷ := {ŷ[k]}N−1

k=0 , we

estimate the unknowns of the system (A,B, c, x[0]) so that when û is applied as input to the system, the resulting

output, y, is close to ŷ.

The advantage of using observable canonical form is that it reduces unknown parameter dimension and thus re-

duces computational complexity without loss of generality. Moreover, we have observed that this form is empirically

more accurate at fitting stiff systems than other state-space techniques.

2 Parameter Estimation

Denote Ec = [0, . . . , 0, 1]T and Er = [1, 0, . . . , 0]. Using the parameterization given above, the solution to (SI-16)

for a given input signal û is

y[k] = ErA
k−1x[0] +

k−1∑
i=1

ErA
k−1−iBu(i) +

k−1∑
i=1

ErA
k−1−iEcc
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for k = 0, 1, 2, . . . , N − 1. The parameter estimation problem can then be stated as follows. For fixed n, we wish to

find A,B, c and x[0] that minimize the mean squared error between y and ŷ, i.e. we wish to minimize

V (A,B, c, x[0]) =
1

N

N−1∑
k=0

1

2
[ŷ[k]− y[k]]

2
.

Letting ϕA[k] =

[
ErA

k−1
∑k−1
i=1 u(i)ErA

k−1−i ∑k−1
i=1 ErA

k−1−iEc

]
and ξ =

[
x[0]T BT c

]T
, the so-

lution to (SI-16) can be rewritten as y[k] = ϕTA[k]ξ, and the quadratic cost criterion becomes

V (A, ξ) =
1

N

N−1∑
k=0

1

2

[
ŷ[k]− ϕTA[k]ξ

]2
.

From this it is clear that if ϕA[k] is known for k = 0, . . . , N − 1, minimizing V with respect to ξ is a linear least-

squares problem that has a unique global minimum and can be solved efficiently. Since ϕA only depends on A, for

fixed A, ϕA[k] can be computed for k = 0, . . . , N−1. Thus, our approach to the parameter estimation problem is to

employ a direct search over the space parameterizing A, wherein the cost associated with a point A0 is min
ξ
V (A0, ξ).

Since A is parameterized in observable canonical form, the direct search occurs over an n-dimensional space. Letting

Ŷ =

[
ŷ[0] ŷ[1] · · · ŷ[N − 1]

]T
and ΦA =

[
ϕA[0] ϕA[1] · · · ϕA[N − 1]

]T
we have that, for fixed A,

(
ΦTAΦA

)−1
ΦTAŶ = arg min

ξ
V (A, ξ). (SI-17)

Thus, the cost criterion used in the direct search for A can be written as

V (A) =
1

N

N−1∑
k=0

1

2

[
ŷ[k]− ϕTA[k]

(
ΦTAΦA

)−1
ΦTAŶ

]2
.

We use the Nelder-Mead simplex algorithm as our direct search method for estimating A. This is a nonlin-

ear unconstrained optimization algorithm that attempts to minimize scalar-valued nonlinear functions using only

function values, i.e. without gradient information. Because the objective V (A) is nonconvex, we cannot guarantee

that our estimate for A is globally optimal. Nonetheless, A is parametrized by relatively few variables, and our

direct search is thus restricted to a low-dimensional space. We therefore expect that our method of eliminating

parameters (B, c, x[0]) and then searching only for A provides a more optimal estimate than would be obtained via

a joint optimization over (A,B, c, x[0]). Though the Nelder-Mead algorithm is not guaranteed to find the globally

optimal A, we observe in practice that this direct search is insensitive to our initial search point. We suspect this is

because we focus on 1st and 2nd oder LTI models, and the search space for A is consequently very low dimensional.
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