PERSONALISED MEDICINE APPLIED TO IMMUNOTHERAPEUTICS

DNA damage ATR/Chk1 checkpoint signalling increases PD-L1 immune checkpoint activation and its implication for personalised combination therapy

N. Kumar1, P. Yadav2, A. Kumar3, S. Beniwal4, A. Kapoor5, A. Kalwar6

1Bio-Molecular Sciences, Institute of Experimental Endocrinology and Oncology, Naples, Italy, 2MBBS, Sardar Patel Medical College and associated Prince Bijningsh Memorial Hospital, Bikaner, India, 3MBBS, Medical College and SSG Hospital, Vadodara, India, 4Medical Oncology, Sardar Patel Medical College and associated Prince Bijningsh Memorial Hospital, Bikaner, India, 5Medical Oncology, Tata Memorial Hospital, Mumbai, India, 6Medical Oncology, Fortis Balmiki Hospital, Jodhpur, India

Background: DNA double-strand break (DSB) is the most critical type of genotoxic stress. Clinical studies have revealed a link between genomic instability and response to anti-PD-1/PD-L1 therapy in cancer management. We investigated role of DSB repair and ATR/Chk1 DNA damage checkpoint in regulating PD-L1 expression and their use in therapy selection and study design.

Methods: Protein expression data proteins and phosphoproteins with major clinical outcome endpoints were obtained from The Cancer Genome Atlas project. A statistical correlation analysis was performed between the expression and distribution DSB repair and ATR/Chk1 DNA damage checkpoint pathway and PD-L1. Signaling network was also analysed for of therapeutic target identification.

Results: The expression and distribution patterns of PD-L1 was measured in 7694 samples from 32 cancer type. Increased expression of PD-L1 was associated with higher tumor stage and grade. Analyses of the DNA damage ATR/Chk1 checkpoint signalling revealed strong correlation of PD-L1 expression. PD-L1 expression in was upregulated in response to DSBs with strong correlation with MRE11 (correlation coefficient (r)

Conclusions: DSB-mediated immune activation is balanced by concomitant inhibitory signaling, via the checkpoint kinases ATM, ATR, and Chk1 driven PD-L1 expression in tumors. These observations have important clinical implications for therapy selection, particularly following progression on DNA damaging agents suggesting that PD-1/PD-L1 inhibitors may be a useful therapeutic strategy (with or without concurrent DNA damaging agents) for tumors.

Legal entity responsible for the study: Narender Kumar.

Funding: Has not received any funding.

Disclosure: All authors have declared no conflicts of interest.