Improved inference for vaccine-induced immune responses via shape-constrained methods

Nilanjana Laha

Department of Biostatistics, Harvard University

November 20, 2021
Joint work with

(a) Zoe Moodie
(b) Ying Huang
(c) Alex Luedtke

Section 1

Background
AIDS and vaccination

- HIV-1 is the most common strain of the virus.
AIDS and vaccination

- HIV-1 is the most common strain of the virus.
- **Effective slow-down of HIV-1 infection:** vaccine efficacy $\geq 50\%$ is desirable. (Medlock *et al.*, 2017).

Vaccine efficacy

Vaccine efficacy is the percentage reduction of the disease in a vaccinated group of people compared to the Placebo group.
AIDS and vaccination

- HIV-1 is the most common strain of the virus.
- Effective slow-down of HIV-1 infection: vaccine efficacy $\geq 50\%$ is desirable. (Medlock et al., 2017).

Vaccine efficacy

Vaccine efficacy is the percentage reduction of the disease in a vaccinated group of people compared to the Placebo group.
The RV 144 Trial

RV 144 vaccine (ALVAC-HIV vector + AIDSVAX B/E) trial showed 31% efficacy against HIV-1 (Rerks-Ngarm et al., 2009).

1 Image source: IChemE
The RV 144 Trial

▶ RV 144 vaccine (ALVAC-HIV vector + AIDSVAX B/E) trial showed 31% efficacy against HIV-1 (Rerks-Ngarm et al., 2009).

1 Image source: IChemE
HIV vaccine trials

RV 144

Phase III, Conducted in Thailand
The estimated efficacy of the vaccine regimen is 31%

HVTN 097
Phase 1b, Conducted in South Africa
Evaluated the safety and immune profile of RV 144 regimen in the new demography
Vaccine efficacy was still less than 50%, so researchers wanted modification!
HIV vaccine trials

RV 144
- Phase III, Conducted in Thailand
- The estimated efficacy of the vaccine regimen is 31%
HIV vaccine trials

RV 144
- Phase III, Conducted in Thailand
- The estimated efficacy of the vaccine regimen is 31%

HVTN 097
HIV vaccine trials

RV 144
- Phase III, Conducted in Thailand
- The estimated efficacy of the vaccine regimen is 31%

HVTN 097
- Phase 1b, Conducted in South Africa
- Evaluated the safety and immune profile of RV 144 regimen in the new demography
HIV vaccine trials

RV 144
- Phase III, Conducted in Thailand
- The estimated efficacy of the vaccine regimen is 31%

HVTN 097
- Phase 1b, Conducted in South Africa
- Evaluated the safety and immune profile of RV 144 regimen in the new demography

Vaccine efficacy was still less than 50%, so researchers wanted modification!
Modifications

- Clade C prevalent clade in South Africa
- RV144 efficacy decreased after the first year
Modifications

- Clade C prevalent clade in South Africa
- Replace the clade B/E inserts in RV 144/ HVTN 097 regimen with clade C inserts
- RV144 efficacy decreased after the first year
- Booster added after the first year.
HIV vaccine trials

RV 144
- Phase III, conducted in Thailand
- The estimated efficacy of the vaccine regimen is 31%

HVTN 097
- Phase 1b, conducted in South Africa
- Evaluated the safety and immune profile of RV 144 regimen in the new demography
HIV vaccine trials

RV 144
- Phase III, conducted in Thailand
- The estimated efficacy of the vaccine regimen is 31%

HVTN 097
- Phase 1b, conducted in South Africa
- Evaluated the safety and immune profile of RV 144 regimen in the new demography

HVTN 100
- Phase 1/2, conducted in South Africa
- Modified the RV 144 (HVTN 097) regimen, evaluated safety and immune profile

HVTN 702
- Phase 2b/3, finished in June 2021 in South Africa
- Uses HVTN 100 regimen, estimated efficacy 0.
HIV vaccine trials

- **RV 144**
 - Phase III, conducted in Thailand
 - The estimated efficacy of the vaccine regimen is 31%

- **HVTN 097**
 - Phase 1b, conducted in South Africa
 - Evaluated the safety and immune profile of RV 144 regimen in the new demography

- **HVTN 100**
 - Phase 1/2, conducted in South Africa
 - Modified the RV 144 (HVTN 097) regimen, evaluated safety and immune profile

- **HVTN 702**
 - Phase 2b/3, finished in June 2021 in South Africa
 - Uses HVTN 100 regimen, estimated efficacy 0.
HIV vaccine trials

- **RV 144**
 - Phase III, conducted in Thailand
 - The estimated efficacy of the vaccine regimen is 31%

- **HVTN 097**
 - Phase 1b, conducted in South Africa
 - Evaluated the safety and immune profile of RV 144 regimen in the new demography

- **HVTN 100**
 - Phase 1/2, conducted in South Africa
 - Modified the RV 144 (HVTN 097) regimen, evaluated safety and immune profile

- **HVTN 702**
 - Phase 2b/3, finished in June 2021 in South Africa
 - Uses HVTN 100 regimen, estimated efficacy 0.
HIV vaccine trials

RV 144
- Phase III, conducted in Thailand
- The estimated efficacy of the vaccine regimen is 31%

HVTN 097
- Phase 1b, conducted in South Africa
- Evaluated the safety and immune profile of RV 144 regimen in the new demography

HVTN 100
- Phase 1/2, conducted in South Africa
- Modified the RV 144 (HVTN 097) regimen, evaluated safety and immune profile

HVTN 702
- Phase 2b/3, finished in June 2021 in South Africa
- Uses HVTN 100 regimen, estimated efficacy 0.
Why HVTN 702 failed where RV 144 was partially efficacious?

- **Force of infection:** Difference in exposure to virus between Thailand and South Africa.
Why HVTN 702 failed where RV 144 was partially efficacious?

- **Force of infection:** Difference in exposure to virus between Thailand and South Africa.
- Difference in the **genetic diversity** of HIV-1.
Why HVTN 702 failed where RV 144 was partially efficacious?

- **Force of infection:** Difference in exposure to virus between Thailand and South Africa.
- Difference in the **genetic diversity** of HIV-1.
- **Host genetic factors:** Possible genetic difference between participants from Thailand and South Africa.
Why HVTN 702 failed where RV 144 was partially efficacious?

- **Force of infection:** Difference in exposure to virus between Thailand and South Africa.
- Difference in the **genetic diversity** of HIV-1.
- **Host genetic factors:** Possible genetic difference between participants from Thailand and South Africa.
- **Difference in immunogenicity:** Possible difference in induced immune response (attributable to the modifications).
Why HVTN 702 failed where RV 144 was partially efficacious?

- **Force of infection**: Difference in exposure to virus between Thailand and South Africa.
- **Difference in the genetic diversity** of HIV-1.
- **Host genetic factors**: Possible genetic difference between participants from Thailand and South Africa.
- **Difference in immunogenicity**: Possible difference in induced immune response (attributable to the modifications).
Why HVTN 702 failed where RV 144 was partially efficacious?

- **Force of infection:** Difference in exposure to virus between Thailand and South Africa.
- Difference in the **genetic diversity** of HIV-1.
- **Host genetic factors:** Possible genetic difference between participants from Thailand and South Africa.
- **Difference in immunogenicity:** Possible difference in induced immune response (attributable to the modifications). Testable with the available data!
HIV vaccine trials

- **RV 144**
 - Phase III, conducted in Thailand
 - The estimated efficacy of the vaccine regimen is 31%

- **HVTN 097**
 - Phase 1b, conducted in South Africa
 - Evaluated the safety and immune profile of RV 144 regimen in the new demography

- **HVTN 100**
 - Phase 1/2, conducted in South Africa
 - Modified the RV 144 (HVTN 097) regimen, added more Clade C antigens

- **HVTN 702**
 - Phase 2b/3, finished in June 2021 in South Africa
 - Uses HVTN 100 regimen, estimated efficacy 0.
HIV vaccine trials

- **HVTN 097**
 - Phase 1b, conducted in South Africa
 - Evaluated the safety and immune profile of RV 144 regimen in the new demography

- **HVTN 100**
 - Phase 1/2, conducted in South Africa
 - Modified the RV 144 (HVTN 097) regimen, added more Clade C antigens
Comparison between the designs of HVTN 097 and HVTN 100 trials

HVTN 097
- Conducted in South Africa
- Placebo controlled, randomized, double blind
- Age range: 18-40
- Male : female ∼ 9:7 (per protocol)

HVTN 100
- Conducted in South Africa
- Placebo controlled, randomized, double blind
- Age range: 18-40
- Male : female ∼ 3:2 (per protocol)
Comparison between the designs of HVTN 097 and HVTN 100 trials

HVTN 097

- Conducted in South Africa

HVTN 100

- Conducted in South Africa
Comparison between the designs of HVTN 097 and HVTN 100 trials

<table>
<thead>
<tr>
<th>HVTN 097</th>
<th>HVTN 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Conducted in South Africa</td>
<td>▶ Conducted in South Africa</td>
</tr>
<tr>
<td>▶ Placebo controlled, randomized, double blind</td>
<td>▶ Placebo controlled, randomized, double blind</td>
</tr>
</tbody>
</table>
Comparison between the designs of HVTN 097 and HVTN 100 trials

<table>
<thead>
<tr>
<th>HVTN 097</th>
<th>HVTN 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducted in South Africa</td>
<td>Conducted in South Africa</td>
</tr>
<tr>
<td>Placebo controlled, randomized, double blind</td>
<td>Placebo controlled, randomized, double blind</td>
</tr>
<tr>
<td>Age range: 18-40</td>
<td>Age range: 18-40</td>
</tr>
</tbody>
</table>
Comparison between the designs of HVTN 097 and HVTN 100 trials

<table>
<thead>
<tr>
<th>HVTN 097</th>
<th>HVTN 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Conducted in South Africa</td>
<td>▶ Conducted in South Africa</td>
</tr>
<tr>
<td>▶ Placebo controlled, randomized, double blind</td>
<td>▶ Placebo controlled, randomized, double blind</td>
</tr>
<tr>
<td>▶ Age range: 18-40</td>
<td>▶ Age range: 18-40</td>
</tr>
<tr>
<td>▶ Male : female ~ 9:7 (per protocol)</td>
<td>▶ Male : female ~ 3:2 (per protocol)</td>
</tr>
</tbody>
</table>
Key immune correlate: IgG antibody binding to HIV envelope

Studies (Rolland and Gilbert, 2012; Haynes et al., 2012) indicate that the binding of IgG antibody to the V1V2 region of glycoprotein (gp) 120 of HIV envelope may be associated with blocking the HIV-1 infection.

(a) Envelope of HIV virus

(b) IgG antibody

1 Image source: dreamstime.com
Our aim

- How does the modification in the HVTN 100 regimen change the IgG binding?
Our aim

- How does the modification in the HVTN 100 regimen change the IgG binding?
- Estimate the density of the IgG binding magnitude in both trials – may help in future vaccine development.
IgG binding rate in our trials
IgG binding rate in our trials

<table>
<thead>
<tr>
<th></th>
<th>HVTN 097</th>
<th>HVTN 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>68 out of 73</td>
<td>per-protocol vaccinees developed IgG binding immune responses to Clade C antigens</td>
<td>180 out of 185 per-protocol vaccinees developed IgG binding immune responses to Clade C antigens</td>
</tr>
</tbody>
</table>
Quantifying the immune response

We consider only the positive respondents for this study.

The magnitude of the IgG binding responses is measured in net MFI (mean fluorescence intensity) units. Variable of interest: log(net MFI).

We consider the aggregated immune responses corresponding to seven clade C antigens.
We consider only the positive respondents for this study.
Quantifying the immune response

- We consider only the positive respondents for this study.
- The magnitude of the IgG binding responses is measured in net MFI (mean fluorescence intensity) units. Variable of interest: log(net MFI).
Quantifying the immune response

- We consider only the positive respondents for this study.
- The magnitude of the IgG binding responses is measured in net MFI (mean fluorescence intensity) units. Variable of interest: log(net MFI).
- We consider the aggregated immune responses corresponding to seven clade C antigens.
Subsection 1

Some exploratory Analysis
Histogram and KDE

(a) Histograms of the immune responses

(b) KDEs of the immune responses
(a) Histograms of the immune responses
Histogram and KDE

(a) Histograms of the immune responses

(b) KDEs of the immune responses
Questions

Question 1
Will considering a unimodal density estimator improve the density estimation?
Shape-constrained estimation: advantage

Nonparametric and shape-constrained estimators have similar large sample guarantees in many cases but
Figure: KDEs (with Gaussian kernels) calculated from a sample of 100 standard Gaussian random variables. The true density is drawn in black dotted line. The optimal tuning parameter may vary depending on the context.
Shape-constrained estimation: advantage

- Little to no dependence on external tuning. Implementation does not require domain knowledge!
- Shape-constrained estimators may have better finite sample performance. Phase 1b trials are small/moderate sized.
Figure: Boxplot of the immune responses from the trials HVTN 097 and HVTN 100
Empirical distribution functions of the immune responses from the trials HVTN 097 and HVTN 100
Questions

Question 1
Will considering a unimodal density estimator improve the density estimation?

Question 2
Are the immune responses of the HVTN 097 trial higher than that of the HVTN 100 trial?
Questions

Question 1: Will considering a unimodal density estimator improve the density estimation?

Question 2: Are the immune responses of the HVTN 097 trial higher than that of the HVTN 100 trial?

Question 3: If the answer to Question 2 is “yes”, how can we measure the difference?
Questions

Question 1: Will considering a unimodal density estimator improve the density estimation?

Question 2: Are the immune responses of the HVTN 097 trial higher than that of the HVTN 100 trial?

Question 3: If the answer to Question 2 is “yes”, how can we measure the difference?
Questions

Question 1: Will considering a unimodal density estimator improve the density estimation?
Section 2

Density estimation
Shape-constrained density estimation

- The real advantage: Small shape-constrained class (e.g., monotone densities) \(\rightarrow\) log-likelihood can be exactly maximized \(\rightarrow\) the MLE exists.
Shape-constrained density estimation

- The real advantage: Small shape-constrained class (e.g. monotone densities) \Rightarrow log-likelihood can be exactly maximized \Rightarrow the MLE exists.

- Easier implementation, tuning parameter free estimation, good theoretical properties
The class of all unimodal densities

This class is too large to admit an MLE. (Birgé, 1997).
Unimodal density estimation

- Birgé (1997)'s estimator depends on one truncation parameter η. If $\eta \sim 1/n$, estimator not much sensitive on the choice of η.
Mode known \Rightarrow MLE exists (Rao, 1969) – the Grenander estimate.
Unimodal density estimation

- Mode known \implies MLE exists (Rao, 1969) – the Grenander estimate.
Unimodal density estimation

- Mode known \implies MLE exists (Rao, 1969) – the Grenander estimate.
- Birgé (1997)’s estimator depends on one truncation parameter η. If $\eta \sim 1/n$, estimator not much sensitive on the choice of η.
Unimodal density estimation

- Mode known \implies MLE exists (Rao, 1969) – the Grenander estimate.
- Birgé (1997)'s estimator depends on one truncation parameter η. If $\eta \sim 1/n$, estimator not much sensitive on the choice of η.
Figure: Plot of different unimodal density estimators for a standard Gaussian sample of size $n = 100$. The true density is drawn in black dotted line.
Subsection 1

Log-concave densities
Log-concave densities

- Subclass of unimodal densities.

- Many commonly used unimodal densities are log-concave, e.g. Gaussian, Beta, Gamma distribution with shape parameter greater than 1, Laplace, logistic, Gumbel etc.

- Structurally rich =⇒ MLE exists tuning parameter free, easily computable, no domain knowledge needed.
Log-concave densities

- Subclass of unimodal densities.
- Many commonly used unimodal densities are log-concave, e.g. Gaussian, Beta(a, b) with $a, b \geq 1$, Gamma distribution with shape parameter greater than 1, Laplace, logistic, Gumbel etc.
Log-concave densities

- Subclass of unimodal densities.
- Many commonly used unimodal densities are log-concave, e.g. Gaussian, Beta\((a, b)\) with \(a, b \geq 1\), Gamma distribution with shape parameter greater than 1, Laplace, logistic, Gumbel etc.
- **Structurally rich** → MLE exists tuning parameter free, easily computable, no domain knowledge needed.
Example of log-concave densities

Figure: Plot of standard Laplace, logistic, and normal density
Log-concave MLE

Concave affine function (Dümbgen and Rufibach, 2009).

Smoothed version (Chen and Samworth, 2013): data-dependent smoothing.

Figure: Log-concave MLEs based on a sample of 100 standard Gaussian observations. The true density in black dotted line.
Log-concave MLE

- Concave affine function (Dümbgen and Rufibach, 2009).

Figure: Log-concave MLEs based on a sample of 100 standard Gaussian observations. The true density in black dotted line.
Log-concave MLE

- Concave affine function (Dümbgen and Rufibach, 2009).
- Smoothed version (Chen and Samworth, 2013): data-dependent smoothing.

Figure: Log-concave MLEs based on a sample of 100 standard Gaussian observations. The true density in black dotted line.
Testing the null of log-concavity (Chen and Samworth, 2016)

P-values were 0.4890 and 0.4631 for HVTN 097 and HVTN 100, respectively.
Subsection 2

Density estimation for the immune responses
Density estimation

Compute the density estimators for the immune responses from both trials.

Perform a ten fold cross validation to estimate the mean integrated square error (MISE) of each density.
Density estimation

- Compute the density estimators for the immune responses from both trials.
Density estimation

- Compute the density estimators for the immune responses from both trials.
- Perform a ten fold cross validation to estimate the mean integrated square error (MISE) of each density.
The density estimators

Density estimators

Unimodal

Log-concave

KDE

Birge (1997), Turnbull and Ghosh (2014)
The density estimators

- Unimodal
 - Birgé (1997)
- Log-concave
- KDE

Birgé (1997)
The density estimators

- Unimodal
 - Birgé (1997)
- Log-concave
- KDE
 - Turnbull and Ghosh (2014)
Unimodal density estimator

- (a) Birg´e (1997)'s unimodal estimators

- (b) Turnbull and Ghosh (2014)'s unimodal estimators
Unimodal density estimator

(a) Birgé (1997)’s unimodal estimators
Unimodal density estimator

(a) Birgé (1997)’s unimodal estimators

(b) Turnbull and Ghosh (2014)’s unimodal estimators
The density estimators

- Unimodal
 - Birgé (1997)
 - Turnbull and Ghosh (2014)

- Log-concave

- KDE
 - Hall and Huang (2002)
 - Wolters (2012)
 - Wolters and Braun (2018)
The density estimators

Density estimators

- Unimodal
 - Birgé (1997)
 - Turnbull and Ghosh (2014)
 - Wolters (2012)

- Log-concave

- KDE
 - Wolters and Braun (2018)
 - Hall and Huang (2002)
 - Log-concave MLE
 - Smoothed log-concave MLE
The density estimators

- **Unimodal**
 - Birgé (1997)
 - Turnbull and Ghosh (2014)
 - Wolters (2012)
 - Wolters and Braun (2018)

- **Log-concave**

- **KDE**

- Birgé (1997)

- Hall and Huang (2002)

- Log-concave MLE

- Smoothed log-concave MLE
The density estimators

- Unimodal
 - Birgé (1997)
 - Turnbull and Ghosh (2014)
 - Wolters (2012)
 - Wolters and Braun (2018)
 - Hall and Huang (2002)

- Log-concave

- KDE
 - Birgé (1997)
 - Turnbull and Ghosh (2014)
 - Wolters (2012)
 - Wolters and Braun (2018)
 - Hall and Huang (2002)
The density estimators

Density estimators

- Unimodal
 - Birgé (1997)
 - Turnbull and Ghosh (2014)
 - Wolters (2012)
 - Wolters and Braun (2018)
 - Hall and Huang (2002)

- Log-concave
 - Log-concave MLE

- KDE
The density estimators

- Unimodal
 - Birgé (1997)
 - Turnbull and Ghosh (2014)
 - Wolters (2012)
 - Wolters and Braun (2018)
 - Hall and Huang (2002)

- Log-concave
 - Log-concave MLE
 - Smoothed log-concave MLE

- KDE
Log-concave density estimator

(a) The log-concave MLE
Log-concave density estimator

(a) The log-concave MLE

(b) The smoothed log-concave MLE
The density estimators

- Unimodal
 - Birgé (1997)
 - Turnbull and Ghosh (2014)
 - Wolters (2012)
 - Wolters and Braun (2018)
 - Hall and Huang (2002)

- Log-concave
 - Log-concave MLE
 - Smoothed log-concave MLE

- KDE
The density estimators

- Unimodal
 - Birgé (1997)
 - Turnbull and Ghosh (2014)
 - Wolters (2012)
 - Wolters and Braun (2018)
 - Hall and Huang (2002)

- Log-concave
 - Log-concave MLE
 - Smoothed log-concave MLE

- KDE
 - Cross-validated bandwidth
 - Plug-in bandwidth
The density estimators

Unimodal
- Birgé (1997)
- Turnbull and Ghosh (2014)
- Wolters (2012)
- Wolters and Braun (2018)
- Hall and Huang (2002)

Log-concave
- Log-concave MLE
- Smoothed log-concave MLE

KDE
- Cross-validated bandwidth
- Plug-in bandwidth
The density estimators

- **Unimodal**
 - Birgé (1997)
 - Turnbull and Ghosh (2014)
 - Wolters (2012)
 - Wolters and Braun (2018)
 - Hall and Huang (2002)

- **Log-concave**
 - Log-concave MLE
 - Smoothed log-concave MLE

- **KDE**
 - Cross-validated bandwidth
 - Plug-in bandwidth
Question 1
Will considering a unimodal or log-concave density estimator improve the density estimation?

Question 2
Are the immune responses of the HVTN 097 trial higher than that of the HVTN 100 trial?

Question 3
If the answer to Question 2 is “yes”, how can we measure the difference?
Questions

1. Will considering a unimodal or log-concave density estimator improve the density estimation?

2. Are the immune responses of the HVTN 097 trial higher than that of the HVTN 100 trial?

3. If the answer to Question 2 is “yes”, how can we measure the difference?
Question 2

Are the immune responses of the HVTN 097 trial higher than that of the HVTN 100 trial?
A more precise question

Are the immune responses from the HVTN 097 trial stochastically larger than that of HVTN 100?
Stochastic dominance (first order)

- $X \sim F$ and $Y \sim G$. $F \geq_{st} G$, i.e. X (or F) stochastically dominates Y (or G) if $F(x) \leq G(x)$, for all $x \in \mathbb{R}$.

The dominance is "strict" (we say $F >_{st} G$), if there exists $x \in \mathbb{R}$, such that $F(x) < G(x)$.

![Graph showing stochastic dominance between functions F and G](image)
Stochastic dominance (first order)

- $X \sim F$ and $Y \sim G$. $F \geq_{st} G$, i.e. X (or F) stochastically dominates Y (or G) if

 \[F(x) \leq G(x), \quad \text{for all } x \in \mathbb{R}. \]

- The dominance is “strict” (we say $F >_{st} G$), if there exists $x \in \mathbb{R}$, such that $F(x) < G(x)$.

![Graph showing stochastic dominance](image-url)
Section 3

Test of stochastic dominance
Testing stochastic dominance

Want to test the null of non-dominance ($G \preceq_{st} F$) against the alternative of strict stochastic dominance ($G <_{st} F$).

Rejection of this test makes the strongest case for ranking F over G.
Testing stochastic dominance

- Want to test the null of non-dominance ($G \not\succ_{st} F$) against the alternative of strict stochastic dominance ($G \prec_{st} F$).
Testing stochastic dominance

- Want to test the null of non-dominance ($G \not\geq_{st} F$) against the alternative of strict stochastic dominance ($G <_{st} F$).
- Rejection of this test makes the strongest case for ranking F over G.
Non-dominance of F over G
Non-dominance of F over G

F does not strictly stochastically dominate G ($G \not\prec_{st} F$).
Non-dominance of F over G

F does not strictly stochastically dominate G ($G \not\prec_{st} F$).
Caution! Two distribution functions always overlap at the tails

Rejection of the null of non-dominance is difficult (Davidson and Duclos, 2013; Álvarez-Esteban et al., 2016; Whang, 2019)

Here $F \sim \text{Gamma}(2, 1)$, a gamma distribution with shape parameter 2 and scale parameter 1, and G is the standard exponential distribution function.
Remedy: Restricted stochastic dominance

\[F \sim \text{Gamma}(2, 1) \] and \(G \) is the standard exponential distribution function.
Restricted stochastic dominance (Davidson and Duclos, 2000)

Our H_1 and H_0

C: compact subset of the combined support.

H_1: $F(x) < G(x)$ for all $x \in C$.

H_0: the above does not hold.
Notations and preliminaries

\[X_1, \ldots, X_m \sim f \quad \text{and} \quad Y_1, \ldots, Y_n \sim g. \]

\[F \quad \text{and} \quad G \quad : \quad \text{Distribution functions corresponding to} \quad f \quad \text{and} \quad g. \]

\[H \quad : \quad N = m + n. \]

\begin{tabular}{|c|c|c|}
 \hline
 Notation & Variable \\
 \hline
 \(F \) & \(X_1, \ldots, X_m \) \\
 \hline
 \(G \) & \(Y_1, \ldots, Y_n \) \\
 \hline
 \(H \) & \(X_1, \ldots, X_m, Y_1, \ldots, Y_n \) \\
 \hline
\end{tabular}
Notations and preliminaries

\[X_1, \ldots, X_m \sim f \] and \[Y_1, \ldots, Y_n \sim g. \]
Notations and preliminaries

- $X_1, \ldots, X_m \sim f$ and $Y_1, \ldots, Y_n \sim g$.
- F and G: Distribution functions corresponding to f and g.

$N = m + n$.

Empirical distribution function:

<table>
<thead>
<tr>
<th>Notation</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_m</td>
<td>X_1, \ldots, X_m</td>
</tr>
<tr>
<td>G_n</td>
<td>Y_1, \ldots, Y_n</td>
</tr>
<tr>
<td>H_N</td>
<td>$X_1, \ldots, X_m, Y_1, \ldots, Y_n$</td>
</tr>
</tbody>
</table>
Notations and preliminaries

- $X_1, \ldots, X_m \sim f$ and $Y_1, \ldots, Y_n \sim g$.
- F and G: Distribution functions corresponding to f and g.
- $N = m + n$.
Notations and preliminaries

- $X_1, \ldots, X_m \sim f$ and $Y_1, \ldots, Y_n \sim g$.
- F and G: Distribution functions corresponding to f and g.
- $N = m + n$.
- Empirical distribution function:

<table>
<thead>
<tr>
<th>Notation</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_m</td>
<td>X_1, \ldots, X_n</td>
</tr>
<tr>
<td>G_n</td>
<td>Y_1, \ldots, Y_n</td>
</tr>
<tr>
<td>H_N</td>
<td>$X_1, \ldots, X_m, Y_1, \ldots, Y_n$</td>
</tr>
</tbody>
</table>
Choice of the constrained set C

Fix $p \in (0, 1/2)$. We take the restricted set C in H_{0} to be $[H_{-1}N(p), H_{-1}N(1-p)]$.

We can utilize $100(1 - 2p)$% of data.
Choice of the constrained set C

Fix $p \in (0, 1/2)$. We take the restricted set C in H_0 to be

$$[\mathbb{H}^{-1}_N(p), \mathbb{H}^{-1}_N(1 - p)].$$
Choice of the constrained set C

- Fix $p \in (0, 1/2)$. We take the restricted set C in H_0 to be
 \[[\mathbb{H}_N^{-1}(p), \mathbb{H}_N^{-1}(1 - p)]. \]

- We can utilize $100(1 - 2p)$% of data.
Existing Methods:

▶ Kaur et al. (1994)'s method rejects the test for large values of $\inf z \in D_{p,m,n}$

\[G_n(z) - F_m(z)(1 - F_m(z))^{1/2} \]
Existing Methods:

- Kaur et al. (1994)'s method rejects the test for large values of

\[
\inf_{z \in D_{p,m,n}} \frac{G_n(z) - F_m(z)}{\left(\frac{F_m(z)(1 - F_m(z))}{m} + \frac{G_n(z)(1 - G_n(z))}{n} \right)^{1/2}}.
\]
Existing Methods:

- Kaur et al. (1994)’s method rejects the test for large values of

\[
\inf_{z \in D_{p,m,n}} \frac{G_n(z) - F_m(z)}{\left(\frac{F_m(z)(1 - F_m(z))}{m} + \frac{G_n(z)(1 - G_n(z))}{n}\right)^{1/2}}.
\]

- Nonparametric empirical likelihood method (Davidson and Duclos, 2013).
Our test statistics
Our test statistics

\(\hat{F} \) and \(\hat{G} \): some estimators of \(F \) and \(G \).
Our test statistics

\(\hat{F} \) and \(\hat{G} \): some estimators of \(F \) and \(G \).

- Minimum t-statistic (MT):

\[
T_1(\hat{F}, \hat{G}) = \inf_{x \in D_{p,m,n}} \frac{\hat{G}(x) - \hat{F}(x)}{\left(\frac{\hat{F}(x)(1 - \hat{F}(x))}{m} + \frac{\hat{G}(x)(1 - \hat{G}(x))}{n} \right)^{1/2}}.
\]
Our test statistics

\(\hat{F} \) and \(\hat{G} \): some estimators of \(F \) and \(G \).

- **Minimum t-statistic (MT):**

\[
T_1(\hat{F}, \hat{G}) = \inf_{x \in D_{p,m,n}} \frac{\hat{G}(x) - \hat{F}(x)}{\left(\frac{\hat{F}(x)(1 - \hat{F}(x))}{m} + \frac{\hat{G}(x)(1 - \hat{G}(x))}{n} \right)^{1/2}}.
\]

- **Two sample empirical process (TSEP):**

\[
T_2(\hat{F}, \hat{G}) = \sqrt{\frac{mn}{N}} \inf_{z \in [\rho, 1-\rho]} \frac{\hat{G}(\mathbb{H}_{N}^{-1}(z)) - \hat{F}(\mathbb{H}_{N}^{-1}(z))}{\sqrt{z(1-z)}}.
\]
Our test statistics

\(\hat{F} \) and \(\hat{G} \): some estimators of \(F \) and \(G \).

- **Minimum t-statistic (MT):**

\[
T_1(\hat{F}, \hat{G}) = \inf_{x \in D_{p,m,n}} \frac{\hat{G}(x) - \hat{F}(x)}{\left(\frac{\hat{F}(x)(1 - \hat{F}(x))}{m} + \frac{\hat{G}(x)(1 - \hat{G}(x))}{n} \right)^{1/2}}.
\]

- **Two sample empirical process (TSEP):**

\[
T_2(\hat{F}, \hat{G}) = \sqrt{\frac{mn}{N}} \inf_{z \in [p, 1-p]} \frac{\hat{G}(\mathbb{H}^{-1}_N(z)) - \hat{F}(\mathbb{H}^{-1}_N(z))}{\sqrt{z(1 - z)}}.
\]
Our test statistics

\(\hat{F} \) and \(\hat{G} \): some estimators of \(F \) and \(G \).

- **Minimum t-statistic (MT):**

\[
T_1(\hat{F}, \hat{G}) = \inf_{x \in D_{p,m,n}} \left(\frac{\hat{G}(x) - \hat{F}(x)}{\left(\frac{\hat{F}(x)(1 - \hat{F}(x))}{m} + \frac{\hat{G}(x)(1 - \hat{G}(x))}{n} \right)^{1/2}} \right).
\]

- **Two sample empirical process (TSEP):**

\[
T_2(\hat{F}, \hat{G}) = \sqrt{\frac{mn}{N}} \inf_{z \in [\rho, 1-\rho]} \frac{\hat{G}(\frac{1}{N}^{-1}(z)) - \hat{F}(\frac{1}{N}^{-1}(z))}{\sqrt{z(1-z)}}.
\]

Choice of \((\hat{F}, \hat{G})\): **NP** (ECDF), **UM** (the CDF of Birge’s estimators), **LC** (the CDF of LC MLEs).
Our test statistics
Subsection 1

Asymptotic critical values
Our test statistics

- Test statistics
 - MT
 - NP
 - UM
 - LC
 - TSEP
 - NP
 - UM
 - LC
Our test statistics

Test statistics

MT
- NP
- UM
- LC

TSEP
- NP
- UM
- LC
Regulatory conditions

- F and G have continuous densities f and g.

As $m, n \to \infty$, $m/N \to \lambda \in (0, 1)$. (1)
Regulatory conditions

- F and G have continuous densities f and g.
- As $m, n \to \infty$,
 \[m/N \to \lambda \in (0, 1). \] \hspace{1cm} (1)
Asymptotic critical values of the nonparametric tests

Z_α: $(1 - \alpha)$th quantile of $N(0, 1)$ distribution

Theorem (Davidson and Duclos, 2000; Kaur et al., 1994)

With the critical value Z_α, the NP MT test

- has asymptotic power one at all alternatives.
- controls asymptotic type I error at all null-configurations.

Theorem (Laha et al., 2021)

With the critical value Z_α, the NP TSEP test

- has asymptotic power one at all alternatives.
- controls asymptotic type I error at all null-configurations.
Asymptotic critical values of the nonparametric tests

Z_α: (1 − α)th quantile of $N(0, 1)$ distribution

Theorem (Davidson and Duclos, 2000; Kaur et al., 1994)

With the critical value Z_α, the NP MT test

- has asymptotic power one at all alternatives.
- controls asymptotic type I error at all null-configurations.

Theorem (Laha et al., 2021)

With the critical value Z_α, the NP TSEP test

- has asymptotic power one at all alternatives.
- controls asymptotic type I error at all null-configurations.
Result for unimodal (UM) tests (Laha et al., 2021)

<table>
<thead>
<tr>
<th>Curvature condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Lebesgue measure of the sets, where f or g is positive, but flat, is 0.</td>
</tr>
</tbody>
</table>
Result for unimodal (UM) tests (Laha et al., 2021)

Curvature condition

The Lebesgue measure of the sets, where f or g is positive, but flat, is 0.

\[f(x) \]

\[f(x) \]
Result for unimodal (UM) tests (Laha et al., 2021)

Curvature condition

The Lebesgue measure of the sets, where f or g is positive, but flat, is 0.

This condition + unimodality \implies Asymptotic critical values for UM tests: Z_α.
Result for log-concave (LC) tests (Laha et al., 2021)

Curvature condition

Neither $\log f$ nor $\log g$ are affine on any interval inside their respective supports.

This condition + log-concavity \implies Asymptotic critical values for LC tests: Z_α.
Subsection 2

Simulation
Simulation: general set-up

$m = n = 100$.

p of D_p, m, n is 0.05.

Estimate the power from 10000 Monte Carlo samples.
Simulation: general set-up

- \(m = n = 100 \).
Simulation: general set-up

- $m = n = 100$.
- p of $D_{p,m,n}$ is 0.05.
Simulation: general set-up

- $m = n = 100$.
- p of $D_{p,m,n}$ is 0.05.
- Estimate the power from 10000 Monte Carlo samples.
Choosing F and G
Choosing F and G

- We generate observations from (F_γ, G_γ), where γ varies between zero and one.
Choosing F and G

- We generate observations from (F_{γ}, G_{γ}), where γ varies between zero and one.
- $\nu(\gamma)$: power corresponding to the configuration (F_{γ}, G_{γ}).
Choosing F and G

- We generate observations from (F_γ, G_γ), where γ varies between zero and one.
- $\nu(\gamma)$: power corresponding to the configuration (F_γ, G_γ).
Choosing F and G

- We generate observations from (F_γ, G_γ), where γ varies between zero and one.
- $\nu(\gamma)$: power corresponding to the configuration (F_γ, G_γ).
Case (a): null of equity

\[F_\gamma \sim N(\gamma, 1), \quad G_\gamma \sim N(0, 1). \]
Case (b): crossing

\[F_\gamma \sim N(3\gamma, 1), \text{ and } G_\gamma \sim N(0.5, 2). \]

\[x_\gamma = 0.33 \quad G_\gamma \quad F_\gamma \]
\[x_\gamma = 0.5 \quad G_\gamma \quad F_\gamma \]
\[x_\gamma = 0.6 \quad G_\gamma \quad F_\gamma \]
\[x_\gamma = 0.7 \quad G_\gamma \quad F_\gamma \]
\[x_\gamma = 0.83 \quad G_\gamma \quad F_\gamma \]
\[x_\gamma = 1 \quad G_\gamma \quad F_\gamma \]

Gamma(a, b) is a Gamma random variable with shape parameter a and scale parameter b.
Case (c): crossing

\(F_\gamma \sim \text{Gamma}(2, 0.1 + 0.4\gamma) \) and \(G_\gamma \sim \text{Gamma}(1, 0.5) \).

\[
\begin{align*}
\gamma &= 0 \\
G_\gamma &\quad F_\gamma \\
\gamma &= 0.25 \\
G_\gamma &\quad F_\gamma \\
\gamma &= 0.5 \\
G_\gamma &\quad F_\gamma \\
\gamma &= 0.55 \\
G_\gamma &\quad F_\gamma \\
\gamma &= 0.62 \\
G_\gamma &\quad F_\gamma \\
\gamma &= 1 \\
G_\gamma &\quad F_\gamma
\end{align*}
\]
Plot of the power-curve: $\nu(\gamma) \text{ vs } \gamma$

Figure: The black horizontal line corresponds to level 0.05, and the black vertical line corresponds to the least favorable γ, 0.70 (middle) and 0.55 (right).
Plot of the power-curve: $\nu(\gamma)$ vs γ

Figure: The black horizontal line corresponds to level 0.05, and the black vertical line corresponds to the least favorable γ, 0.70 (middle) and 0.55 (right).

LC tests have the highest power!
Case (d): only log-concavity violated

\(F_\gamma \sim \text{Gamma}(2, 1) \) and \(G_\gamma \sim \text{Pareto}(0.5 + 2\gamma, 1) \).

Here \(\text{Pareto}(a, b) \) is the Pareto distribution function with shape parameter \(a \) and scale parameter \(b \).
Case (e): log-concavity and unimodality both violated

\[F_\gamma \sim N(0, 1) \text{ and } G_\gamma \sim N(2\gamma + 4, 1)/2 + N(2\gamma - 2, 1)/2. \]
Plot of the power-curve: $\nu(\gamma)$ vs γ

Figure: The black horizontal line corresponds to level 0.05, and the vertical line corresponds to the least favorable γ, 0.65 (left) and 0.80 (right).
Plot of the power-curve: $\nu(\gamma)$ vs γ

Figure: The black horizontal line corresponds to level 0.05, and the vertical line corresponds to the least favorable γ, 0.65 (left) and 0.80 (right).

TSEP shape-constraint tests do not perform much worse than nonparametric tests.
Subsection 3

Application to our data
The p-values of our tests

<table>
<thead>
<tr>
<th>Test</th>
<th>MT</th>
<th>TSEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>0.026</td>
<td>0.045</td>
</tr>
<tr>
<td>LC</td>
<td>0.014</td>
<td>0.035</td>
</tr>
<tr>
<td>UM</td>
<td>0.031</td>
<td>0.037</td>
</tr>
</tbody>
</table>

We take $p = 0.075$ in $D_{p,m,n}$.
Questions

Question 1: Will considering a unimodal or log-concave density estimator improve the density estimation?

Question 2: Are the immune responses of the HVTN 097 trial higher than that of the HVTN 100 trial?

Question 3: If the answer to Question 2 is “yes”, how can we measure the difference?
Questions

Question 1: Will considering a unimodal or log-concave density estimator improve the density estimation?

Question 2: Are the immune responses of the HVTN 097 trial higher than that of the HVTN 100 trial?

Question 3: If the answer to Question 2 is “yes”, how can we measure the difference?
Questions

Question 1: Will considering a unimodal or log-concave density estimator improve the density estimation?

Question 2: Are the immune responses of the HVTN 097 trial higher than that of the HVTN 100 trial?

Question 3: If the answer to Question 2 is “yes”, how can we measure the difference?
Section 4

Measure of discrepancy between two densities
Hellinger distance

Hellinger distance $H^2(f, g)$ between densities f and g:

$$H^2(f, g) = \frac{1}{2} \int_{-\infty}^{\infty} \left(\sqrt{f(x)} - \sqrt{g(x)} \right)^2 dx.$$
Hellinger distance

- Hellinger distance $H^2(f, g)$ between densities f and g:

 $$H^2(f, g) = \frac{1}{2} \int_{-\infty}^{\infty} \left(\sqrt{f(x)} - \sqrt{g(x)} \right)^2 dx.$$

- Plug-in or bias-corrected estimators.
Hellinger distance

- Hellinger distance $H^2(f, g)$ between densities f and g:

$$H^2(f, g) = \frac{1}{2} \int_{-\infty}^{\infty} \left(\sqrt{f(x)} - \sqrt{g(x)} \right)^2 dx.$$

- Plug-in or bias-corrected estimators.

- **Shape-constrained estimator of Hellinger distance**: simpler estimator? better performance?
Plug-in estimators of $H^2(f, g)$
Plug-in estimators of $H^2(f, g)$

Estimator

- Shape-constrained
- KDE: non-parametric

Unimodal
Plug-in estimators of $H^2(f, g)$

Estimator

- Shape-constrained
 - Unimodal
 - Log-concave

- KDE: non-parametric
Plug-in estimators of $H^2(f, g)$

- Shape-constrained
 - Unimodal
 - Log-concave
 - Smoothed log-concave
- KDE: non-parametric
Plug-in estimators of $H^2(f, g)$

Estimator

Shape-constrained

Unimodal

Log-concave

KDE: non-parametric

Naive

Smoothed log-concave
Estimators of $H^2(f, g)$

- **Shape-constrained**
 - Unimodal
 - Log-concave
 - Smoothed log-concave

- **KDE: non-parametric**
 - Naive
 - Bias-corrected
Asymptotic properties of the unimodal plug-in estimators:

<table>
<thead>
<tr>
<th>Theorem 3 of Laha et al. (2021) [rough]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suppose f and g are unimodal. Then under conditions, the centered and scaled (by \sqrt{N}) unimodal plug-in estimator is asymptotically normal with variance $\sigma_{f,g}^2$ depending on λ, f and g. Here $N = m + n$</td>
</tr>
</tbody>
</table>
Asymptotic properties of the unimodal plug-in estimators:

Theorem 3 of Laha et al. (2021) [rough]

Suppose f and g are unimodal. Then under conditions, the centered and scaled (by \sqrt{N}) unimodal plug-in estimator is asymptotically normal with variance $\sigma_{f,g}^2$ depending on λ, f and g. Here $N = m + n$

Under log-concavity, both log-concave estimators are strongly consistent. We conjecture (based on simulations) that under log-concavity + mild conditions, a result like Theorem 3 holds for the log-concave plug-in estimators.
Asymptotic properties of the KDE-based estimators:

- Under conditions (Kandasamy et al., 2015), the bias-corrected KDE estimator has same asymptotics as the unimodal plug-in estimator.
Asymptotic properties of the KDE-based estimators:

- Under conditions (Kandasamy et al., 2015), the bias-corrected KDE estimator has the same asymptotics as the unimodal plug-in estimator.
- Under conditions, the KDE estimator has a $O_p(N^{-2/5})$ bias term for smooth f and g (Robins et al., 2009).
Subsection 1

Simulation
Common set-up

- Set $m = n$ and consider $n = 50, 100, 150, \ldots, 500$.
- 10000 Monte Carlo samples.
Setting 1: location shift

\[f \sim N(1, 1), \ g \sim N(0, 1) \]

Method
- UM
- LC
- KDE
- KDE(BC)
- Smoothed LC

Scaled MSE (by n)

Coverage

\[n \]
Setting 2: Different density families

\(f \sim N(0, 1), \) and \(g \sim Gamma(3.61, 1.41) \)

<table>
<thead>
<tr>
<th>Method</th>
<th>UM</th>
<th>LC</th>
<th>KDE</th>
<th>KDE(BC)</th>
<th>Smoothed LC</th>
</tr>
</thead>
</table>

Scaled MSE (by n)

Coverage

\(n \)
Setting 3: Violation of shape-constraints

\(f \sim N(0, 1), \text{ and } g \sim \frac{[N(6, 1) + N(0, 1)]}{2} \)

<table>
<thead>
<tr>
<th>Method</th>
<th>UM</th>
<th>LC</th>
<th>KDE</th>
<th>KDE(BC)</th>
<th>Smoothed LC</th>
</tr>
</thead>
</table>

Scaled MSE (by n)

Coverage
Application to our data

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Point estimate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDE</td>
<td>0.16</td>
<td>–</td>
</tr>
<tr>
<td>KDE (BC)</td>
<td>0.19</td>
<td>(0.110, 0.274)</td>
</tr>
<tr>
<td>UM</td>
<td>0.21</td>
<td>(0.128, 0.300)</td>
</tr>
<tr>
<td>LC</td>
<td>0.18</td>
<td>(0.098, 0.256)</td>
</tr>
<tr>
<td>Smoothed LC</td>
<td>0.15</td>
<td>(0.079, 0.228)</td>
</tr>
</tbody>
</table>
Section 5

Conclusion
HIV vaccine trials

RV 144
- Phase III, conducted in Thailand
- The estimated efficacy of the vaccine regimen is 31%

HVTN 097
- Phase 1b, conducted in South Africa
- Evaluated the safety and immune profile of RV 144 regimen in the new demography

HVTN 100
- Phase 1/2, conducted in South Africa
- Modified the RV 144 (HVTN 097) regimen, added more Clade C antigens

HVTN 702
- Phase III, conducted in South Africa
- Uses HVTN 100 regimen, efficacy 0%
Implication:

- RV 144 trial (HVTN 097 regimen) has significantly higher efficacy than HVTN 702 trial (HVTN 100 regimen).
Implication:

- RV 144 trial (HVTN 097 regimen) has significantly higher efficacy than HVTN 702 trial (HVTN 100 regimen).
- Our findings indicate that HVTN 100 regimen induces significantly lower IgG binding.

IgG binding to V1V2 region of HIV envelope is associated with the prevention of HIV-1 infection. The decrease in IgG binding may be connected to the failure of HVTN 702 trial (HVTN 100 regimen).
Implication:

- RV 144 trial (HVTN 097 regimen) has significantly higher efficacy than HVTN 702 trial (HVTN 100 regimen).
- Our findings indicate that HVTN 100 regimen induces significantly lower IgG binding.
- IgG binding to V1V2 region of HIV envelope is associated with the prevention of HIV-1 infection.
Implication:

- RV 144 trial (HVTN 097 regimen) has significantly higher efficacy than HVTN 702 trial (HVTN 100 regimen).
- Our findings indicate that HVTN 100 regimen induces significantly lower IgG binding.
- IgG binding to V1V2 region of HIV envelope is associated with the prevention of HIV-1 infection.
Implication:

- RV 144 trial (HVTN 097 regimen) has significantly higher efficacy than HVTN 702 trial (HVTN 100 regimen).
- Our findings indicate that HVTN 100 regimen induces significantly lower IgG binding.
- IgG binding to V1V2 region of HIV envelope is associated with the prevention of HIV-1 infection.

The decrease in IgG binding may be connected to the failure of HVTN 702 trial (HVTN 100 regimen).
From a broader perspective

▶ In homogeneous populations, log-concave density estimators may improve density estimation in moderate sized samples.
From a broader perspective

- In homogeneous populations, log-concave density estimators may improve density estimation in moderate sized samples.
- We introduced novel shape-constrained tests for testing stochastic dominance. They have better overall performance compared to nonparametric counterparts.
From a broader perspective

- In homogeneous populations, log-concave density estimators may improve density estimation in moderate sized samples.
- We introduced novel shape-constrained tests for testing stochastic dominance. They have better overall performance compared to nonparametric counterparts.
- Shape-constrained plug in estimators of Hellinger distance: Smooth log-concave estimators outperform nonparametric estimators when the shape constraint is satisfied.
From a broader perspective

- In homogeneous populations, log-concave density estimators may improve density estimation in moderate sized samples.
- We introduced novel shape-constrained tests for testing stochastic dominance. They have better overall performance compared to nonparametric counterparts.
- Shape-constrained plug in estimators of Hellinger distance: Smooth log-concave estimators outperform nonparametric estimators when the shape constraint is satisfied.
From a broader perspective

- In homogeneous populations, log-concave density estimators may improve density estimation in moderate sized samples.
- We introduced novel shape-constrained tests for testing stochastic dominance. They have better overall performance compared to nonparametric counterparts.
- Shape-constrained plug in estimators of Hellinger distance: Smooth log-concave estimators outperform nonparametric estimators when the shape constraint is satisfied. They neither require tuning nor the extra step of bias correction.
Thank you

