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NUMERICAL INTEGRATION RULES FOR
MUL TIV ARIA TE INVERSIONS
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Working from a known characteristic function, integration rules for the computation of the
multivariate distribution function are derived. Procedures for the automatic selection of step sizes are
one particular strength of the proposed method. Examples of the use of the procedure are given.
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INTRODUCTION1.

In this paper we develop rules for the numerical inversion of multivariate
characteristic functions in order to compute the distribution function. As such they
represent multivariate generalisations of the Imhof (1961) and Davies (1973, 1980)
techiques.

An example of the use of the multivariate inversion algorithm is discussed at
length, while three other cases of its use are referenced.

2. THE UNIV ARIA TE CASE

We will suppose 4> is a known characteristic function corresponding to the
distribution function F which in turn possesses a density f. For ease of exposition
we will assume f and 4> are Lebesgue integrable and that the random variable of
interest possesses a mean. These last three assumptions can be dropped without
affecting our integration rules by using principle values of Lebesgue integrals, but
we find that these types of details detract from the logical structure of our
approach and so prefer to maintain our stated assumptions. These will allow us to
develop the theory using standard manipulative techniques.

Gurland (1948) showed that F and 4> are related in the following way

.

where L1, ,,(t) = ,,(t) +,,( - t).
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F(x)=! - ~ j (L\t[ q,(t).e-lt"J)dt,2 2n 0 It
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Following Davies (1973) we will rewrite this to give an expression which can be
used to numerically invert characteristic functions. However, our proof is some-
what different from that used by Davies. Throughout the remaining parts of this
paper we will exploit the operator t5(g, j) which is defined so that t5(g, j) Pr(X ~ x) =
Pr(X ~ x - (21tj/hg» - Pr(X > x + (21tjjhg». In what follows hg should be thought of
as the step size of the integration procedure.

THEOREM 1 (Davies (1973» For hI >0,

co

F(x)+ L cos[21tzj][t5(1,j)Pr(X~x)]
j=1

=! - ~hl Im[4>(hIZ)eXp[ -iXhIZ]
]2 21t hiz

- ~hl f (L1z Im [ 4>(hl(Z + v»exp[ -iXhl(Z+V)] ]) ,
21t v=1 hl(z+v)

\l'her~ Im( . ) denotes the imaginary part of a complex function.

Proof Given in the appendix.

The second term of the left-hand side of this expression can be viewed as an
error caused by approximating the inversion integral.

Allowing Z to be zero means the integration is performed by the trapezium rule.
As the induced integration error is

which is rather difficult to manipulate, this rule has not been used for this type of
inversion. Instead the simpler Riemann sum has been exploited. This occurs when
we allow z=l

COROLLARY 1 (Davies (1973» For hi >0,

co

F(x)+ L (-1)i[<5(l,j)Pr(X~x)]
}=1
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.

I J~l [b(l,j)pr(X~X)]I,

=! - !h1 f Im[t!>(hl(V+!»eXp[ -iXhl(V+!)] ].
2 1t v=O h1(v+!)



The induced numerical integration error is much simpler here. The absolute
value of the error is,

I j~l (-1)i[t5(l,j)pr(x~X)]I~maX[F(X- ~:). I-F(x+~:)l

In turn we can deduce an automatic criterion for the selection of hi so that
this error is small. If <I> is analytic then the corresponding moment generating
function will exist. We will write it as M, then for small u>O we have (see Davies
(1973)) I-F(x)~M(u)exp(-ux). Writing t/J(u) =log M(u) and selecting
x=t/l(u)=dt/J(u)jdu implies we have I-F(t/J'(u))~exp(-u.t/J'(u)+t/J(u)). Equally
F(t/J'(u))~exp[t/J( -u)+ut/J'(u)]. Therefore, by appropriate choice of hi, we can
bound this induced error by any small positive real 8.

This formulation has successfully been applied to the problem of finding the
exact distribution function of a quadratic form in normal variables by Davies
(1980).

~

3. THE DIY ARIA TE CASE

In this section we transfer the development given in Section 2 over to the case of a
bivariate distribution function. From Gurland (1948) or more easily Shephard
(1991) we have

To make the notation in the theorem reasonably compact we will use L.i=o to
denote the double sum over the variables j 1 and j 2 which vary between zero and
infinity, but never equal zero simultaneously.

THEOREM 2 For h1,h2>O

2-2u(X1,X2)+ it (Lv1 cos[21tZ0k] <5(k, jk)] F(Xl>X2))

- -t [ 00 ( [ tP(h1Zl>a2) e-b:'(~l%l.a.)'

])- (2 ) 2hlh2 L 4%2 Re

h1t 112= -00 1z1a2

where a=[h1(zl +Vl)' h2(z2 + V2)]' =(al' a2)'.
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U(Xl,X2) =4F(X1>X2)-2[F(Xl) + F(X2)] + 1

22 IX> IX>( [tP(t)e-ix't])= (211:)2 !! All' At> itl it2 dtl dt2'

co co ( [4>(a)e-IX"' ])]L. L. ~%1 . ~%2 Re ,

vl=1 V2=-CO a1a2
+
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Proof Given in the appendix.

COROLLARY 2 For h1>h2>O

2-2u(Xl,X2)+ it ([ill

where b=(h1(Vl +t),hz(vz+t»'=(b1,bz)'.

The induced integration error is at most

max([ I-F(Xl + ~:) ]

Thus, we can use the bounds employed in Section 2 to provide a way of selecting
the step sizes, h1 and h2.

Although this integration error looks daunting, it is in fact in a very convenient
form. This is because to evaluate F(X1,X2) we would usually have to numerically
compute F(xd and F(X2)' which means h1 and h2 have already been chosen by the
univariate routines. These selected values will ensure that the error in the bivariate
numerical integral is small.

4. BIV ARIA TE IMHOF PROCEDURE

Let us suppose that we are interested in the joint distribution of the two quadratic
forms in form variables Yl =u'Au and Y2=u'Bu where A and Bare Tx T matrices
and, for sake of simplicity, u "'"' N(O, 1). The joint characteristic function of Yl and
Y2 is given by

where Aj(tl,t2) denotes the jth eigenvalue of the (tlA+t2B) matrix. We will be
able to use the analytic structure of the characteristic function to rewrite the right-
hand side of (1) in a productive way. Using the arguments of Imhof (1961) we
have
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F(Xl,X2»)
( -l)Jk c5(k, jk) ]

- -2 h h [~ ~ R [ ",(bt>b2)e-b:"' ]]- 2 1 2 L. t... e ,
(27t) Vl=O V2=-OO b1b2

(1)

»

.

+[ l-F( X2 + ~:) J. F( Xl - ~:)+F( X2 - ~:)).

q,(tl, t2) =E exp[i.U'(tlA + t2B)u]

e(t) =arg[cf>(t)e-iX't] =[ (~ Jl arctan [2Aj(th t2)] )-x'tJ



and

Thus we see that Re[t/J(b1, b2) exp( -ix'b)] =y(b1, b2)' cos[B(blo b2)].
If A and B do not commute the use of these expressions to evaluate t/J(tl,t2) can

be very expensive as eigenvalue calculations will be required each time t1 and t2
vary. An alternative sometimes available is to use the eigenvalue-free technique
suggested by Shively, Ansley and Kohn (1990). This exploits the Kalman filter
running in complex arithmetic to efficiently compute t/J(tlo t2)' Another approach
has been suggested by Krishnaiah (1977, 1980) and Khatri et al. (1977) who
proposed the use of asymptotic expansions to approximate the joint distribution
function.

5. THE MUL TIV ARIA TE CASE

The multivariate inversion formula given in Gurland (1948) and Shephard (1991)
shows that

where

u(x) =2PF(Xl," .,Xp)-2P-l [F(X2"" ,Xp)+" '+F(xt>... ,Xp-2,Xp-l)]

+2P-2 [F(X3,X4'" .,Xp)+" '+F(xt>.. "Xp-3,Xp-2)] +.. .+( -!)P,

Theorem 2 now generalises in a straightforward way to deal with p variables.
The resulting expression is not very compact and so we have not presented it here.
Instead we give the formula corresponding to z being a half as this is gives a
useful integration rule. Again we use the expression L~o to stand for the sum
over the variables j 1>' . .,j p' where these indexes vary between zero and infinity,
but never all equal zero simultaneously. Corollary 3 is the result.

CoROLLARY 3 For h1,h2,...,hp>O

2 - Pu(x) + Jo (Lv! (-l)ik <5(k, jk) ] F(X))

(-i)P2 [ 00 00 00

=~ h!...hp L L ... L
(2xJP VI=OVZ=-OO Vp=-OO
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(-2)P"" "" ( [ 4>(t)e-"'t ])u(x) = (2 ) p J ... J A,,' Atl'" Atp. . dt,
11: 0 0 ~tl...~tp

Re[q,(b)e-IX"'
]]b1 b2 .. . b" '
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if P is even, and

(-i)P-12 [ 00 00 00 [ cP(b)e-Ix'h]]= - hi . .. hI' L L .. . L 1m ,

(2n)P VI=O V2=-00 vp=-oo' bib2,..bp

where b=(hiH+vd, h2(-!+v2),"" hp(-!+vp»'=(bi,b2,...,bp)"

6. EXAMPLES OF THE USE OF THE BIVARIATE PROCEDURE

Consider the joint distribution function of the first two non-circular serial
correlation coefficients. We follow Durbin's (1980) definition of rj= y' Ajy/y'y for
j= 1,2, as the serial correlation coefficients, where A1 and A2 are given below

For the sake of simplicity we allow y to be a T x 1 vector, containing independent
and identically distributed zero mean Gaussian variables.

The eigenvalues of Aj are J.trj=cos[jn(r-l)/T], (r=I,..., T), while they share
the same eigenvectors (see Anderson (1971, pp. 282-290». This means that we can
write

pr(rl~dl,r2~d2)=P{Jl u:(Jl,.-d1)~O, Jl u:(Jl,>-d2)~Ol

where ",'" NID(O, 1).
Various joint probabilities for the serial correlation coefficients are given in

Table 1. In brackets beneath these probabilities are the number of terms in the
two dimensional sum used in their computation. The marginal distribution
functions were evaluated using Davies (1980) algorithm, with the corresponding
induced error chosen to be negligible.

A simulation experiment was performed to check the accuracy of these
calculations. When T was less than 100, one million replications were used in the
experiment, while for larger T we slowly reduced the number of replications. The
Gaussian white noise variables were generated using the Numerical Algorithms
Group (1984) routines G05DDF and G05CBF. The experiment showed that the
calculations were accurate to four decimal places in every case.

We can see that there is a surprisingly large probability of observing all the
serial correlation coefficients to be positive, and a smaller but non-negligible
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if p is odd,

':

and A2 = 2.Ai -1, as cas 28 = 2 cos28-1.

$



Table 1 Exact joint probability for the first two serial correlation coefficients with d = 1.96/.jT

T Pr(X1>d,Xz:;! -d) Pr(X1:;! -d,Xz>d) Pr(X1>d,Xz>d) Pr(X1:;! -d,Xz:;!-d)

8 0.00000 0.00001 0.00446 0.00000
(5209) (5829) (5822) (5350)

16 0.00000 0.00007 0.00389 0.00000
(1856) (1338) (1684) (1565)

32 0.00000 0.00100 0.00279 0.00000
(601) (664) (640) (686)

64 0.00007 0.00107 0.00204 0.00004
(373) (356) (374) (358)

128 0.00020 0.00101 0.00157 0.00014
(253) (261) (234) (236)

256 0.00031 0.00092 0.00125 0.00023
(209) (214) (214) (211)

512 0.00040 0.00085 0.00105 0.00033
(201) (181) (199) (203)

1024 0.00047 0.00079 0.00092 0.00041
(248) (246) (246) (248)

2048 0.00054 0.00077 0.00085 0.00049
(434) (432) (440) (434)

00 0.00062 0.00062

Note: The asymptotic result is calculated using large sample theory.

probability that they alternate in sign-starting with rl being negative. This is
rather worrying as these patterns are usually taken to indicate the presence of an
AR( 1) process.

Three other examples of the use of the bivariate inversion theorem exist. The
first is by Shively (1988) in tackling a problem in time series econometrics and the
second is by Shephard (1990a) in testing for linear restrictions in two different
regression models. Finally, by using this technique Shephard (1990b) derives the
distribution function of the maximum likelihood estimator of a noninvertible first
order moving average.

7. CONCLUSION

In this paper we have developed Riemann sum rules for the inversion of
characteristic functions in order to evaluate the distribution function. Although the
use of Riemann sums is at first sight primitive, the selection of this technique
allows the automatic choice of step sizes. In practice this means that the user only
has to be concerned with the issue of truncating the infinite sums at a sensible
point. As a result, the suggested rules should be easy to apply in many cases.

In practice these techniques will be used when the characteristic function is
cheap to evaluate and the dimension of the integration is reasonably small (less
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than five). In these cases there are possibilities of large computational economies
when compared with simulation experimentation techniques.
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MATHEMATICAL APPENDIX

Proof of Theorem 1
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=-21 - 21 . f exp[ -2nijz] j cos[2njy] (.1y

nJ=-oo 0

Using Proposition 1

=! _! ~ f (A [ <P(hl(Z + v» exp[ -iXhl(Z+V)] ])2 221tv=-ao % (z+v)i

=! - ! ~. A [ <P(hl z) exp[ - ixh1 Z]
]2 2 21t % zi

_! ~ f (A%oA%+v [ <P(hl(Z + v»exp[ -: ixh1(z + V)]
])2 21t v=l (z+v)J

=! - ~ Im[<P(hlZ)eXp[ -iXhlZ]
]2 21t z

-~ f (A% Im [ <P(hl(Z+V»eXp[ -iXhl(Z+V)] ]) o .
21t v=l (z+v)

'"

.

Proof of Theorem 2

Pr(X 1 ~Xl -tl,X2 ~X2 -t2)-Pr(X 1 ~Xl -tloX2 >X2 +t2)

-Pr(X 1 >Xl +tl,X2~X2 -t2)+Pr(X 1 >Xl +t1,X2 >X2 +t2)

( - 2)2 <X) <X)

(= (2n)2 ! ! (COS[t1Yl] COS[t2Y2]) Ay,

Hence

00

r 2U(Xh X2) + L (cos[27tZdlJ cos[27tz2.i2J)I5(1, jlb5(2, j2)F(Xl, X2)
}=o

=~ f f exp[ -27ti[jlZl + j2Z2JJ
(27t) Jt=-oo 12=-00
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[~(hly:;-ixhIYJ) dy.

. [ cjJ(!)~-b"YJ) dYl dY2o~Y2 JYl JY2

x I I (CO{2:~1. YllCO{2:~2. Y2])
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( , [ cP(hlYl' h2Y2)e-iX'(hm,h2Y2Y ]) . x L\Yl L\yZ 'h 'h dYl dY2'

I lYl'1 2Y2

So, using Proposition 1, we have for p=2

1 1 00 00 ( [cP(o)e-"""])=~"~ hih2 L L /).%1"/).%2

(2n) (2) VI = - 00 V2 = - 00 ioi i02-~"~[00(.[cP(hiZi'02)e-ix'(~I%I"'2)'])-
(2 )2 (2)2 hi h2 L /).%2 /).%1 "h' .n V2 = - 00 J 1 Z 1 J02

00 00 ( [cP(O)e-bC"' ])]+ L L /).%1 . /).%2 " /).'" "" "

vl=l V2=-00 JOiJ02

00

2- 2U(Xl' X2) + L (cos[2nziji] cos[2nz2j2]) 15(1, jd" 15(2, j2)F(Xi, X2)j=O-1/2[00([cP(h Z ,0)e-""(~1ZI"'2)'])- "h.h" '" ARe1 1 2-(2)2 1 2 L.. a%2hn V2=-00 " iZl02
00 00 ( [cP(a)e-"""])]+ L L /).%1 . /).%2 Re " .

vl=l V2=-00 0102

Thus

PROPOSITION 1 Assume A""

bounded. Then

...

where n=(nl,...,np)' and Z=(Zl""'Zp)"

Proof of Proposition 1 Trivial variant of Poisson's formula, cf. Bohmann
(1961) or Zygmund (1955, p. 37).

N. G. SHEPHARD

.

and is both continuous and

GO GO GO

L e-2"ill'zJ...J
IIp=-GO 0 0

... ~zpg(Zl'" .,Zp) eLP

ex>

"'Azpg(Vl +Zl,...,Vp+zp))=2P r
ft,= -ex>

(.::\%1
. ..

'J

\
"'L\ypg(Yl,...yp))dYl...dyp,


