Almost universally, societies have non-falsifiable beliefs about their origins, life after death, and rituals that activate supernatural processes to help navigate life. Many such beliefs are almost certainly incorrect, but are nonetheless ubiquitous. Some religious belief systems, such as monotheistic religions, are relatively well known, but many others, such as superstitions, witchcraft, or sorcery, are much less well understood (Bulbulia et al. 2013). Yet, these belief systems are widespread within developing countries in general, and in Africa in particular, and can have implications for behavior (Gershman 2016). Their prevalence raises an important question. Given that they are often incorrect, why do they exist and how can they persist?

In this paper, we examine the role of magical beliefs in warfare in the context of the Eastern Democratic Republic of the Congo (DRC). The region has experienced persistent violence and large-scale conflict since the Rwandan Genocide of 1994, when Hutu militia fled Rwanda into the area. Eastern Congo became the epicenter of the First Congo War (1996–1997) and the Second Congo War (1998–2003). Since this time, conflict has persisted, with dozens of militant groups still operating in the region today. It is common for villages to be under the de facto rule of militants who collect taxes and govern. For villages that are not under the control and “protection” of a militant group, it is common for them to be frequently raided (Sanchez de la Sierra 2016).

In the face of this insecurity, beliefs in spells that protect villagers and militants against death in combat have become widespread. We turn now to a description of one of these beliefs, bulletproofing. The information we present was collected from interviews that were undertaken in the province of South Kivu in the DRC in 2015.

I. Motivating Example: Ethnography of Bulambika

Although we have accumulated a large number of examples, we focus our discussion here on the village of Bulambika (Bunyakiri) in the province of Sud Kivu. The village, which is shown in Figure 1, is typical of villages in the area. Until 2012, the area had been exposed to attacks by Hutu militias who operated with impunity in the absence of state forces to repel them (the Front Démocratique de Libération du Rwanda—henceforth, FDLR). The Hutu militias, hiding in the forest and the hills, would regularly engage in pillage, rape, and killings in Bulambika and neighboring villages. Villagers could not work in their fields far from the village due to the high risk that they would be attacked. In January 2012, the FDLR killed 13 villagers in the neighboring village of Lumendje, and May 2012, they killed gruesomely 32 villagers in the neighboring village of Kamananga, leaving their mutilated bodies in public sight. Many of the villagers, including those we spoke with, had experienced the trauma of having friends and family murdered, or of directly witnessing violence.

One evening in 2012, an elder of the village had a dream. In his dream, the ancestors of his tribe taught him to use supernatural forces to bulletproof the young men in the village and help them confront the source of the village insecurity. The protection would make those who had been bestowed protection immune...
to the bullets of the machine guns used by the FDLR. Any bullets fired at them would either miss or bounce off.

This elder had a history of having similar dreams and was believed by villagers to have the ability to be informed about such powers. To obtain the necessary ingredients to implement the bulletproofing spell, the elder had to travel to a distant tropical forest. There, he searched for the roots, plants, and animal organs that the ancestors had instructed him to obtain. Upon his return, the elder tested the newly produced powder. He asked other villagers to shoot at a goat to whom he had administered the powder. The goat survived, and this proved to the villagers that the newly discovered "gri-gri" was effective.

To become bulletproof one had to participate in a ritual that was typically performed in the forest. The bulletproofing protection requires that certain conditions be followed in order for the protection to be in place. Failing to respect the conditions would cause the protection against bullets to stop working. The "gri-gri" only lasts for a short period of time, often hours or days.

After the discovery, the elder would perform the protection rituals on those who volunteered to protect the village and fight back against the Hutu militiants. In general, these were the young men of the village. Now when the village (or other villages in the area) were raided by the Hutu militia, rather than fleeing, the young men would stay, undergo the ritual to activate the bulletproofing spell, and fight against the FDLR, and follow them deep in the forest. The gri-gri quickly spread throughout the area of Bunyakiri, where it became one of the adaptations of the gri-gri that a defense group called the Raia Mutomboki was using against the Hutu militia in other areas. Raia Mutomboki, which means "angry population" in Swahili, is a group that formed from multiple villages in the region to defend the population against attacks by the FDLR. Initially, the defenders of the villages did not have guns. The villagers only had machetes and their gri-gri to fight the FDLR. Over time, they began to kill their enemies, from whom they also obtained firearms.

Some of those from the villages that stayed to fight were shot and died. But, the cause of their death did not prove the spell to be false. Given the set of conditions that had to be respected, it was logical that if they died, it must have been because they did not follow some of the conditions. By the time we arrived in the village in March of 2015, the village of Bulambika (and the others in the area) had been freed and had experienced peace for the past two years.

This case provides one example for why false beliefs might persist. The bulletproofing ritual allowed the community to mobilize combatants by altering their beliefs about the likelihood that they would die in combat (i.e., about the costs of fighting back). While, at the individual level, this false belief is costly—it causes individuals to underestimate the risk of combat—it nonetheless allowed the community to mobilize against the aggressors, and to successfully eradicate them. Thus, although detrimental for some, it was beneficial for the community as a whole. We now turn to a formal illustration of this explanation.

II. Theoretical Structure

Consider a simultaneous move game where N players (i.e., citizens who are each potential defenders of the village) each chooses the amount of effort to allocate toward protecting their village, e_1, e_2, e_3, etc. Denote output (i.e., success in freeing the village) by $q(e_1, \ldots, e_N)$. Output occurs through team production. Thus,
Figure 2. Best Response Functions of Player 1, Player 2, and Nash Equilibria for Different Misunderstandings of the Cost of Fighting due to a Belief in Bulletproofing

Panel A. No bias, $\gamma = 1$

Panel B. Mild bias, $\gamma = 0.75$

Panel C. Significant bias, $\gamma = 0.5$

it is increasing in the effort levels of all players, $\partial q(\cdot)/\partial e_i > 0$ for all i, and by definition $\partial q(\cdot)/\partial e_i \partial e_j \neq 0$. Moreover, we assume that greater effort by one villager increases the marginal product of other villagers, $\partial q(\cdot)/\partial e_i \partial e_j > 0$. One is better able to defend the village if others are fighting alongside him/her as well.

Preferences are symmetric and are given by $U_i = V(q(e_1, \ldots, e_N), e_i)$ for all $i = 1, \ldots, N$. That is, the payoff of every citizen depends on the public good that is jointly produced, as well as his/her own effort. Each player’s utility is increasing in the amount of public good that is produced and decreasing in the amount of effort exerted: $\partial U_i/\partial q > 0$; $\partial U_i/\partial e_i < 0$.

Given these assumptions, players’ efforts are strategic complements. One property of the Nash equilibrium in this type of game is well understood: effort levels will be below the efficient levels (e.g., Alchian and Demsetz 1972; Holmstrom 1982; Eaton and Eswaran 2002).

A belief in the efficacy of bulletproofing serves to decrease the perceived costs of effort to an individual. If one believes that they are protected from the enemy’s bullets, then the perceived cost of bravery and effort is lower. This results in greater effort provision by all individuals and a provision of the public good that is closer to efficient.

The following example provides a simple illustration of this point. Assume there are two players, 1 and 2, and each chooses the level of effort to protect the village: $e_i \in (0, 1]$. Total output is given by $q = \sqrt{e_1 e_2}$, and the perceived cost of effort is $\gamma_i \left[\frac{1}{2} e_i^2 \right]$, for $i = 1, 2$. The parameter γ_i indicates the bias of individual i’s belief about the cost of effort. Given that $\frac{1}{2} e_i^2$ is the true cost of effort, a value of γ_i less than one indicates that player’s beliefs underestimate the true cost of effort. Beliefs about bulletproofing serve to lower γ_i.

In this setup, each player’s best response function is $e_i^* = \left[\frac{1}{2 \gamma_i} \right]^{2/3} e_j^{1/3}$ for player $i \neq j$.

In the Nash equilibrium, $e_i^* = \frac{1}{2 \gamma_i}$ for $i = 1, 2$.

Both player’s best response functions (and the resulting Nash equilibria) are shown in Figure 2 panels A–C, for differing values of γ. Without false beliefs (Figure 2, panel A), each player’s effort is equal to $1/2$ and each player’s payoff is $3/8$. It is straightforward to see that this is not Pareto efficient. Instead, Pareto efficiency is achieved when both players exert maximal effort, $e_1^* = e_2^* = 1$. In this case, the payoff of each player is $1/2$, higher than $3/8$.

As shown in Figure 2, panels B and C, stronger beliefs in bulletproofing (a decrease in γ_i) shifts the player’s best response functions upward, so that for a given level of effort of the other player, the chosen level of effort is higher. The case where the beliefs in bulletproofing generates a value of γ_i equal to $3/4$ (i.e., costs are underestimated by both players by 25 percent) is shown in Figure 2, panel B. Thus, the false belief results in effort levels that are greater and closer to Pareto efficient levels. If bulletproofing induces γ_i to be equal to $1/2$ (i.e., costs are underestimated by 50 percent), then $e_1^* = e_2^* = 1$ and Pareto efficiency is achieved.3

3Note that it is necessary that both players have the false belief for the Pareto efficient outcome to be achieved.
Thus, false beliefs in bulletproofing, as long as they are not too extreme, result in higher levels of effort being exerted and to higher payoffs to both players.

In the presence of group-level selection, villages with the false belief of bulletproofing will be more likely to survive, and therefore we would expect this belief to spread throughout the population. Thus, in an evolutionary setting where groups compete for survival, such false beliefs increase the average fitness of villages that hold them. Group-level imitation of successful groups would also have the same consequence (Boyd and Richerson 2002). Eastern Congo, like many other war-torn parts of the world, has characteristics that make it particularly likely that group-level selection is strong (see Henrich 2004). The groups (i.e., rural villages, lineages, and armed units) are small and homogeneous. They also have relatively low levels of migration between the groups. In militia groups, individuals are typically prevented from leaving the group. In rural areas, there is little migration between villages. Most migration is to urban centers, while between village migration of males is relatively limited. Lastly, because of the high rates of between-group conflict and their contestation over a limited tax base, selection between groups is likely. With these characteristics, strong group-selection forces can induce false beliefs to spread and persist.

III. Implications and Further Discussion

We have focused on one example of a situation where false beliefs were socially beneficial and thus could arguably be sustained with group-level competition. Although this is just one example, beliefs about bulletproofing and other similar beliefs about protection are widespread in Eastern DRC. The spells are continuously fine-tuned and adapted to the changes in the (natural and supernatural) warfare technology of the enemies. This is done through explicit research and development by elders and individuals who can communicate with dead ancestors of the tribe. For example, the anti-balle (bulletproofing) evolved from the anti-machete and arrete-canon aimed respectively at rendering machetes and traditional guns ineffective. Yet, as machine guns became widespread, the speed with which they shoot bullets rendered the arrete-canon obsolete, which relied on movements of the hand to stop bullets from leaving the gun. This motivated the development of the anti-balle, which protects fighters against bullets, no matter their speed.

Bulletproofing spells are just one of many spells, rituals, and superstitions that are present in the Eastern DRC. Over the past few years, we have collected information about the universe of rituals and spells that armed groups use in North and South Kivu. We have documented the existence of a total of 46 different military spell variants. These 46 spells arise from 17 recognizable different major lineages of inventions. Each spell can serve multiple functions. One of these is bulletproofing. Others include: scaring the enemy, distracting the enemy, providing invisibility during combat, preventing soldiers from leaving the group, facilitating communication within the group, increasing the compliance of the civilian populations, and even stopping helicopters in the air. These forms of magic are widespread among the militant groups in the region. Among 53 active armed groups for which we were able to obtain information on their magical warfare technology (not including their factions), 46 rely on gri-gri. Interestingly, the 7 that do not are of Rwandese origin or affinity (Nyatura, M23, CNDP, FDLR, Mudundu 40, Ngumino, and Masunsu). Although further research is needed, these spells have consequences similar to bullet-proofing. They reduce the perceived costs (or increase the perceived efficacy) of effort in conflict, helping to approach the socially efficient levels of effort for the group.

These magical beliefs emerge from a culture where spells are widespread. In addition to military spells of all armed groups, we collected the universe of civilian spells that we could document to exist, or have existed, in the territories of Walikale, Masisi, Rutshuru, Nyiragongo, and the city of Goma, comprising most of North Kivu (excluding the “Grand Nord”). We documented the existence of 39 well-known spells.
While the spells serve a range of functions, many of them provide individuals with a greater sense of security and confidence, which can serve to increase the effort provision of villagers for activities that are strategic complements and therefore otherwise underprovided in equilibrium, but also to reduce their anxiety and thus improve their performance. For example, most of the spells provide protection, whether it be from drought, disease, attacks on the village, or even to harm potential thieves—and thieves also believe in their efficacy, which acts as a deterrent. Also common are spells of monitoring (i.e., to find lost items, to find out who is a thief, to know when someone is coming, and to find witches), and spells of production (to increase productivity, and to decrease their productivity of one’s business competitors). As in bulletproofing, while these beliefs would lead to effort levels that are individually suboptimal, if effort levels are strategic complements, then they could lead to socially efficient effort levels and could persist as a result of group-level competition. The final type of spell that is common are spells to harm others (to make someone crazy, to harm someone in order to obtain money, to render someone infertile, or to inflate the foot of others). Although they can potentially be used for coercive purposes, these spells may have benefits that also fit within the framework of this paper. For example, the knowledge of such spells may induce individuals to behave in a more socially beneficial way, e.g., to not steal from or harm others. These spells effectively increase the perceived cost of bad behavior. Thus, individuals will exert less effort into activities that exert negative externalities on others. In equilibrium, theft levels, though individually optimal, will be higher than is socially optimal. Beliefs in such spells will increase the perceived cost of theft (and similar bad behaviors), reducing individual effort on these activities, moving the society closer to the social optimum.

As mentioned, a common characteristic of bulletproofing spells is their necessary behavioral conditions that must be respected by the subjects in order for the spells to be effective. We view these conditions as playing two functions. First, they serve to make the belief harder to falsify. For the example of the bulletproofing spell, the death of a fellow combatant is equally consistent with the belief being false, as it is with the combatant violating one of the conditions. Many of the common conditions have the feature of their adherence being difficult to observe, e.g., you cannot drink rainwater, cannot eat cucumbers, etc. Second, conditions also result in the regulation of behaviors by increasing the perceived costs of behaviors that are damaging for the group. Common conditions for magical warfare spells to work are that the individual cannot steal from civilians, cannot rape, cannot kill civilians, etc. Thus, through the conditions, such beliefs serve to reduce the prevalence of undesired actions, which are often socially inefficient. These conditions, especially for spells of armed groups, evolved over the years together with the objective of armed groups: initially, many popular militia had stringent conditions against abusing the population, which eroded when armed groups’ ties to the population weakened. Again, the (false) belief results in individually suboptimal actions that are socially beneficial.

IV. Conclusions

The purpose of this paper is to explore the answer to a simple question: How can false beliefs persist? We provided one answer to this question through a description of the traditional belief of bulletproofing in the Eastern DRC. Using a case study and a simple theoretical framework, we have shown how such a (false) belief can be beneficial for the group, and how intergroup competition can result in its persistence. This can account for why beliefs about protection in combat are ubiquitous in the DRC and other conflict ridden locations.

REFERENCES

