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Cognitive biases like underinference, the hard-easy effect, and recurrently non-monotonic confidence are
evolutionarily puzzling when viewed as persistent flaws in how people learn from environmental feed-
back. To explain these empirically robust cognitive biases from an evolutionary perspective, we propose a
model of ancestral human learning based on the cultural-evolutionary-theoretic hypothesis that the pri-
mary selection pressure acting on ancestral human cognition pertained not to learning individually from
environmental feedback, but to socially learning task-specific knowledge. In our model—which is
inspired by classical Bayesian models—an ancestral human learner (the student) attempts to learn
task-specific knowledge from a role model, with the option of switching between different tasks and role
models. Suppose that the student’s method of learning from their role model is a priori uncertain—in that
it can either be successful imitation learning or de facto innovation learning—and the ecological fitness
costs of meaningfully retaining environmental feedback are high. Then, the student’s fitness-
maximizing strategy does not retain their environmental feedback and—depending on the choice of
model parameters—can be characterized by all of the aforementioned cognitive biases. Specifically, in
order for the evolutionarily optimal estimate of confidence in this learning environment to be recurrently
non-monotonic, it is necessary (as long as the environment’s marginal payoff function satisfies a plausible
quantitative condition) that a positive proportion of ancestral humans’ attempted imitation learning was
unknowingly implemented as de facto innovation learning. Moreover, an ecologically rational strategy of
selective social learning can plausibly cause the evolutionarily optimal estimate of confidence to be
recurrently non-monotonic in the empirically documented way: general increase with an intermediate
period of decrease.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Humans have evolved to meaningfully incorporate into their
beliefs the low-variance, essentially deterministic environmental
feedback they observe—the domain of causal inference—so as to
improve future decisions (Pinker, 2010). For example, people often
learn to pay credit card bills (Agarwal et al., 2008) and return
rented videos (Haselhuhn et al., 2012) on time after first paying
late fees. However, the same cannot be said when the variance is
high. In the domain of high-variance environmental feedback,
unbiased Bayesian updating should in theory be normatively
rational (Corner and Hahn, 2012) and even evolutionarily optimal
(McNamara and Houston, 1980) in many settings. In line with this,
a review of 11 empirical studies of animal foraging and reproduc-
tive decisions—spanning eight species of birds, three of non-human
mammals, one of fish, and one of insects—found the behavior of all
but one of the species to be consistent with the predictions of
Bayesian updating models (Valone, 2006). For humans, however,
learning in settings of high-variance environmental feedback devi-
ates from Bayesian updating in various ways (e.g., Tversky and
Kahneman, 1974). These deviations, referred to in the literature
as cognitive biases, result from evolved tendencies by which
humans systematically fail to learn meaningfully from high-
variance environmental feedback.

A myriad of cognitive biases are apparent from the insightful
experiments of Sanchez and Dunning (2018, 2020) on human
learning. In each variant of their experiment, subjects learned a
new task possessing a payoff structure with fixed uncertainty:
classifying profiles with lists of properties (for example, symp-
toms) into categories (for example, made-up diseases). The sub-
jects attempted this task 60 times while simultaneously
reporting their confidence: their self-estimate of the probability
that their answer is correct. After each of their 60 answers, they
received immediate feedback. Despite this, the subjects did not
learn from their environmental feedback in a Bayesian-rational
manner, as one can see from the following patterns in the data
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(see Sanchez and Dunning, 2018, Figs. 1–4; and Sanchez and
Dunning, 2020, Figs. 1–3).

1. The subjects’ confidence graph—that of their average self-estimate
as a function of trial number—was non-monotonic. Specifically,
the confidence graph was comprised of three phases: a begin-
ning phase of increase, an intermediate phase of decrease, and
a final phase that returned to increase. This pattern agrees with
the finding of the well-known experiment of Kruger and
Dunning (1999) on confidence as a function of true ability—as
well as its replications—that the former variable can be a non-
monotonic function of the latter (see Burson et al., 2006, Figs.
4–6; Haun et al., 2000, Figs. 5–7; and Kruger and Dunning,
1999, Figs. 2–3). This also agrees with the work of Hoffman
and Burks (2020) investigating truckers’ self-estimates of the
number of miles driven each week, which found their average
to be non-monotonic with respect to the level of experience
and the average of the true value, monotonically increasing in
the level of experience (see Hoffman and Burks, 2020, Fig. 1).

2. The average difference between confidence and the environmental
feedback eventually became positive—signifying overconfidence—
and proceeded to increase instead of decaying to zero. This pattern
is consistent with the extensive evidence on overconfidence in
the cognitive bias literature: for example, as a cause of wars
(Dixon, 1976; Johnson, 2004), stock market bubbles (Akerlof
and Shiller, 2009; Scheinkman and Xiong, 2003), and under-
preparation for catastrophes (MacKenzie, 1994; Schlosser,
2013). Consistently becoming overconfident compared to the
environmental feedback, by itself, likely suffices to contradict
Bayesian rationality (Augenblick and Rabin, 2021).

3. The confidence graphs from all variants of the experiment were
essentially indistinguishable from each other, even though the sub-
jects of each experimental variant on average performed differently
and thus received different environmental feedback. The confi-
dence graph in essence only depended on the number of past
observations, the level of experience. This pattern is consistent
with two well-documented cognitive biases: underinference
(Benjamin, 2019), the tendency to insufficiently update one’s
belief in the direction of new evidence compared to Bayesian
inference; and the hard-easy effect (Lichtenstein and
Fischhoff, 1977; Moore and Healy, 2008), the tendency to be
overconfident on difficult tasks and underconfident on easy
tasks. Indeed, a predetermined confidence function—one that
depends not on past environmental feedback, but only on other
types of information like one’s level of experience—would
generically differ from the Bayesian aggregate of the past envi-
ronmental feedback. The difference between the two would
generically persist, manifesting as both underinference and—
depending on the hard-easy effect—either persistent overconfi-
dence or underconfidence.

These three non-Bayesian patterns robustly replicated in all six
variants of the Sanchez–Dunning experiment (2018, 2020), includ-
ing the variant that used the incentive-compatible Becker-
DeGroot-Marschak method (Becker et al., 1964) to monetarily
incentivize accurate answers. The non-Bayesian inaccuracy of sub-
jects’ learning (Jansen et al., 2021) and the persistence of this inac-
curacy in the face of monetary incentivization (Ehrlinger et al.,
2008) have also been documented in replications of the Kruger–
Dunning experiment; these phenomena have been found in the
aforementioned work of Hoffman and Burks (2020) on truckers’
self-estimates of productivity, as well. Note that the Kruger–Dun-
ning experiment is similar in objective and design to the
Sanchez-Dunning experiment. A crucial difference, however, is
that accurate environmental feedback is immediately provided
by the experimenter in the latter, but not in the former. The
2

Sanchez-Dunning experiment thus compellingly raises the ques-
tion of why humans have evolved to underinfer from freely avail-
able environmental feedback, even when meaningfully learning
from it is made easy and monetarily advantageous.

How did our evolutionary past select for cognitive biases, traits
that systematically cause errors in judgement? To solve this puz-
zle, we appeal to cultural evolutionary theory’s extensive body of
evidence that humans primarily rely on learning from their fellow
group members, rather than from the environmental feedback
itself (Boyd and Richerson, 1985; Boyd and Richerson, 1988;
Boyd and Richerson, 1995; Cavalli-Sforza and Feldman, 1981;
Lew-Levy et al., 2017). This evidence informs and is informed by
a central hypothesis of cultural evolutionary theory: that adaptive,
socially exchanged, and intergenerationally accumulated knowl-
edge—relevant to fitness-relevant tasks like foraging, reproduction,
and warfare—comprised the primary selection pressure acting on
ancestral human cognition (Baimel et al., 2021; Henrich, 2015;
Humphrey, 1976; Laland, 2017; Muthukrishna and Henrich,
2016; Muthukrishna et al., 2018; Reader et al., 2011; Street et al.,
2017; van Schaik and Burkart, 2011; Whiten and van Schaik, 2007).

In this paper, we construct an evolutionary model of human
learning based on this cultural-evolutionary-theoretic hypothesis:
one in which an ancestral human learns primarily via knowledge
learned from group members, rather than via environmental feed-
back. The model is constructed by modifying a classical Bayesian
model of repeated task-learning to veridically represent the
hypothesized setting of social, knowledge-based task-learning.
Another key modification we add is our assumption that the cogni-
tively constrained agent of our model—representing an ancestral
human learner—faces selection pressures against meaningful
retention of high-variance environmental feedback, due to onerous
ecological fitness costs of overcommitting attention (e.g., increased
risks from ambushes and accidental injury caused by a lack of sit-
uational awareness). It follows from this assumption that the con-
fidence function comprising the agent’s fitness-maximizing
strategy is characterized by discrete confidence levels and system-
atic deviations from classical Bayesian inference (i.e., from unbi-
ased incorporation of environmental feedback), consistent with
the empirical finding of Lisi et al. (2021). Specifically, this confi-
dence function is characterized by various cognitive biases like
underinference, the hard-easy effect, and—depending on the
parameters of our model—recurrent non-monotonicity.

We begin by describing in Subsection 2.1 a finite-outcome-
space version of the classical Bayesian decision-theoretic model.
This general model serves both as an inspiration for our evolution-
ary model and as a reductio ad absurdum argument that humans
may not learn from high-variance environmental feedback via clas-
sical Bayesian inference. The contradiction is as follows. Classical
Bayesian inference is effective because a Bayesian-updating prior
(that has not a priori ruled out any possibility) is almost surely
guaranteed to eventually converge to the truth: the property of
consistency. However, this property is in contradiction with the
aforementioned findings from the cognitive biases literature: first,
that a human learner’s prior (such as that of their ability) can per-
sistently deviate from their past observations; and second, that it
can be recurrently non-monotonic with respect to the number of
observations, regardless of the actual observations themselves.

We then resolve these empirical contradictions by presenting in
Subsection 2.2 our evolutionary model: a modification of the clas-
sical Bayesian model, adapted to represent the knowledge-based
learning environment of ancestral humans in the context of high-
variance payoff observations. In our modified Bayesian model,
the agent learns a task over repeated attempts, each of which gen-
erates a payoff. When the expected cost of retaining high-variance
payoff observations—due to onerous ecological fitness costs from
overcommitting attention—is sufficiently high, the agent’s optimal
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learning strategy does not update their prior of their payoff-
acquisition ability in the given task (confidence) with respect to
the payoff observations. Instead, the agent updates their confi-
dence as a function of information in the complement of payoff
observations: in our model, knowledge and the speed of learning.
The consequent unavailability of payoff data—the key departure
from classical Bayesian decision theory—generates our first desired
conclusion: that evolved confidence generically deviates from the
past payoff observations in a recurrent manner. This conclusion
is a special case of a more general phenomenon: a given learning
strategy’s systematic departure from classical Bayesian updating
when the ancestral learning environment for which it is ecologi-
cally rational differs from the contemporary learning environment
in which it actually operates (Gigerenzer, 2000; Gigerenzer and
Todd, 1999; McKay and Efferson, 2010). Persistent underinference
and the hard-easy effect follow from the recurrent nature of this
evolutionary optimal confidence function.

The second desired conclusion—that this recurrent, evolutionar-
ily optimal confidence function can be non-monotonic—follows
from incorporating the cultural-evolutionary-theoretic hypothesis
that the agent’s learning occurs via attempted imitation of a role
model. This non-monotonicity can occur due to a dichotomy
between successful imitation learning and de facto innovation
learning: two learning methods whose classification is a priori
uncertain to the agent.

The details of this dichotomy and of other aspects of our model
are presented in Section 2. The predictions of this model are then
made mathematical precise in the theorem statements presented
in Section 3. The proofs of the theorems can be found in the
Appendix.

We thus find that several classes of cognitive biases can be par-
simoniously explained as evolutionary byproducts of the idiosyn-
cratically knowledge-based and social nature of ancestral
humans’ hypothesized learning environment. Often thought of as
structural flaws in humans’ individual learning, cognitive biases
may instead be evolutionarily rooted in two hypothesized charac-
teristics of our ancestral environment: first, the primarily
knowledge-based and social—not individual—nature of human
learning in natural settings, as theorized by cultural evolutionary
theory; and second, ecological fitness costs of meaningfully retain-
ing environmental feedback—due to cognitive constraints—and the
consequent pressure to rely instead on setting-specific sources of
information, as theorized by the ecological rationality hypothesis
(Gigerenzer, 2000; Gigerenzer and Todd, 1999).
2. The model

2.1. Classical Bayesian model

Suppose that an agent repeatedly attempts a task. Each yields a
random payoff that is contained in a finite set of values S � R. The
finiteness of S constitutes the realistic assumption that the agent,
due to cognitive constraints, categorizes observations into finitely
many bins. The payoff from each task attempt is drawn i.i.d. from
a fixed probability distribution / 2 U#P Sð Þ, which would depend
on the agent’s ability to acquire payoffs, the abundance of the envi-
ronment, and various other factors. Here, P Sð Þ denotes the set
(which can be thought of as a state space) of all probability distri-
butions on S, and U#P Sð Þ denotes the subset of probability distri-
butions that may feasibly occur in a given setting.

For the purpose of maximizing payoff, the agent is incentivized
to accurately predict the expected value of the future task
attempt’s payoff. This was likely the case for ancestral human for-
agers, who by default engaged repeatedly in a highly specialized
foraging role (Hooper et al., 2015), but also faced incentives to be
3

opportunistic: to accurately appraise—and based on the result of
said appraisal, possibly procure—additional foraging opportunities
as they arise (Bird-David, 1992). We model this dichotomy as fol-
lows. We assume that before each task attempt, the agent has
the choice of forgoing a fraction r of the time spent on it (corre-
sponding to the same fraction of the task attempt’s entire payoff)
for a payoff whose value is observed beforehand. The
opportunity-cost payoff is rc, where c drawn from a fixed distribu-
tion w 2 P Sð Þ whose support is all of S. It follows that the agent
maximizes the immediate payoff by taking the payoff from the task
attempt if its mean rE /½ � is greater than rc, take the opportunity
cost if rE /½ � is less than rc, and take either option when rE /½ � is
equal to rc.

The agent thus benefits from accurately estimating the task
attempt’s expected payoff E /½ �. This can likely be achieved by a
small number of observations—even just one—when / has low
variance. Under our assumption that payoffs are observationally
categorized by the agent into finitely many bins, assuming further
that the payoffs have low variance amounts to the condition that
nearly all payoffs (i.e., close to probability one) fall in a single bin
s 2 S. Consequently, the agent can productively use causal infer-
ence, in the sense that assuming every future task attempt will
yield the previously observed payoff of s will nearly always be cor-
rect. The payoff-maximizing strategy is to choose the higher value
between the task attempt’s expected payoff rE /½ � � rs; and the
observed opportunity cost rc.

The discernment of the payoff distribution /—and more specif-
ically, its expected value E /½ �—is more difficult when / has high
variance. In this domain, more than one bin in S occurs with signif-
icant probability. Consequently, the agent will in general need to
learn from a large sample size of payoffs in order to asymptotically
determine the true state / from the set of a priori possible states U.

Suppose that the true state / is initially drawn from a probabil-
ity distribution n 2 P Uð Þ. Then, Bayes’ theorem states that the
probability distribution of / conditional on the previous payoff
observations being s1; s2; . . . ; sn is given by

ns1 ;...;sn ¼ Bsn � � � � � Bs2 � Bs1 nð Þ; ð1Þ

where Bx : P Uð Þ ! P Uð Þ is the Bayes’-rule map

Bx xð Þ hð Þ ¼ h xð Þx hð ÞR
ĥ2U ĥ xð Þx ĥ

� �
dĥ

: ð2Þ

Consequently, the payoff-maximizing choice of whether to forgo
part of the task-attempt payoff is to compare its expected value

r
Z
/2U

E /½ �dns1 ;...;sn /ð Þ ð3Þ

with the observed opportunity cost rc. In summary, the agent’s evo-
lutionarily optimal strategy overall is to begin with the prior n,
update it via the Bayes’ rule map Bs in terms of each task attempt’s
observed payoff s, and decide whether to forgo part of the nth task
attempt for an observed opportunity cost by using the prior ns1 ;...;sn�1

at that point in time.
Bayesian inference can be effective even without explicit

knowledge of the true distribution n from which the state / is
drawn. An obvious obstruction to this effectiveness is Cromwell’s
rule: if a state is not contained in the support of the prior x, then
this will persist in xs1 ;...;sn for any sequence of observations
s1; . . . ; sn. It turns out that Cromwell’s rule is the only such obstruc-
tion when the outcome space S is finite. Specifically, suppose that
the true state / is contained in the support of the prior x. Then, as
n ! 1, the nth Bayesian update of x

xn ¼ xs1 ;...;sn ð4Þ
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will converge to the one-point distribution

v/ hð Þ ¼ 1 if h ¼ /;

0 otherwise:

�
ð5Þ

with prior probability one: the property of consistency (Doob, 1949;
Freedman, 1963). In other words, even an agent with a misspecified
initial prior—for example, one that evolved in a past environment
with a different distribution of /—will in all likelihood eventually
converge to the true state /, as long as the initial prior is not too
restrictive.

The property of consistency yields a practical test to reject the
null hypothesis that a given learner is Bayesian in the classical
sense. We can do so if the learner’s prior does not converge to
the (one-point distribution on the) true state as the number of
observations goes to infinity. A special case of this test is provided
by checking whether a learner’s estimate of their expected payoff-
acquisition ability converges to the true expected payoff. Indeed,
suppose that the learner’s prior were updated via classical Baye-
sian inference while starting from an initial prior x that has not
ruled out the true state /. Then, with prior probability one, the
learner’s estimate of their expected payoff-acquisition abilityZ
ĥ2H

E ĥ
h i

dxn ĥ
� �

; ð6Þ

would converge to the true expected payoff

E /½ � ð7Þ
as the number of observations n goes to infinity. While the true
expected payoff (7) is unobservable, it will with probability one
coincide with the mean of the past payoff data

s1 þ � � � þ sn
n

ð8Þ

as n ! 1, due to the law of large numbers. We should thus be skep-
tical of a learner’s Bayesianness if their estimate (6) of their
expected payoff-acquisition ability does not appear to converge to
the mean of the past payoff data (8). Note that this practical test
for falsifying a learner’s Bayesianness is not new; it is essentially
a corollary of standard Bayesian statistics.

To illustrate, consider a gambler who, over repeated attempts,
continues to be mistaken about the expected value of a fixed prob-
abilistic lottery. They may persistently believe that the expected
payoff from betting their money on a negative-expected-value lot-
tery is positive, even after gambling on it a large number of times
while observing the resulting payoff data. Then, we can be reason-
ably certain that the gambler is not, in the classical sense,
Bayesian-updating with respect to their payoff data. We hypothe-
size that the persistent deviation of the gambler’s prior from the
true state is caused by the high variance of the payoff data. Other
learners who may fail our test for classical Bayesianness include
professionals whose priors of their performance persistently devi-
ate from the true value (Park and Santos-Pinto, 2010; Hoffman and
Burks, 2020), traders and managers who persistently overestimate
future returns on their investments (Barber and Odean, 2001;
Malmendier and Tate, 2005), and gymgoers who repeatedly over-
pay on membership fees based on persistently overoptimistic pri-
ors of their attendance rate (DellaVigna and Malmendier, 2006).
Such field evidence against the hypothesis that human learning
from high-variance payoff data is classically Bayesian corroborates
the extensive lab evidence of the relevant cognitive biases.

2.2. Evolutionary model of ancestral human learning

To resolve the predictive inadequacies of the classical Baye-
sian paradigm, we modify it in the following way. We assume
that the agent estimates their payoff-acquisition ability as a func-
4

tion of task-specific knowledge, and not necessarily of the previ-
ously observed payoff data. Our evolutionary model incorporates
two veridical sources of uncertainty which are sufficient to gen-
erate recurrent non-monotonicity. First, tasks vary in difficulty, a
value that represents the total amount of knowledge required to
completely learn the task. The agent’s marginal payoff is a bivari-
ate function of the difficulty value and their current level of
knowledge: the subset of the total knowledge they have learned
so far.

Second, tasks vary in the method used to learn the relevant
knowledge: imitation and innovation. We incorporate into our
model the cultural-evolutionary-theoretic finding that the primary
source of an ancestral human’s task-specific knowledge was learn-
ing from role models who were ostensibly proficient in the task—
imitation—rather than learning individually from environmental
feedback—innovation (Boyd and Richerson, 1985; Cavalli-Sforza
and Feldman, 1981). The superior efficiency of imitation learning,
especially in the context of intergenerational knowledge accumu-
lation, is hypothesized to have enabled humans’ unprecedented
evolutionary success.

The dichotomy between imitation learning and innovation
learning is confusing at first glance, given that in our model, the
student always attempts to imitate a role model. This dichotomy
occurs because the helpfulness of role models in providing a gen-
uinely new path forward via imitation learning is not guaranteed.
A student may successfully learn via imitation of their role model,
as planned. It is also possible that the role model’s ostensible pro-
ficiency in the task does not translate to productive imitation
learning, in which case the student learns by de facto innovation.
Specifically, the role model may not actually be providing a new
learning path that the student would not have accessed if they
were to instead learn by innovation. In the context of direct teach-
ing, for instance, this may be due either to the method of teaching
(a teacher may use an open-ended or ambiguous teaching method,
such as the Socratic method, without actually guiding students to
think in a new way) or to the teacher’s own limitations (which
may not be discernible to students when their environmental feed-
back has high variance). It would be difficult for the student to
deduce from high-variance environmental feedback whether their
role model is meaningfully providing them with a new learning
path to imitate.

Throughout this paper, the term ‘‘task” will denote a student’s
package comprised of a repeated knowledge-intensive task that
produces fitness-aiding payoffs (i.e., foraging for food), their choice
of role model for it, and the learning method by which the student
obtains the relevant knowledge: classified into imitation learning
and innovation learning. The student’s task package can be thought
of as a pair j; að Þ for the type of learning method j 2 im; inf g with
which the student learns the task from the teacher (where j ¼ im
denotes imitation and j ¼ in denotes innovation) and the difficulty
value a 2 0;1ð Þ [ 1f g of the task.

The difficulty value a 2 0;1ð Þ [ 1f g of a task denotes the
amount a of knowledge the student needs to completely learn it,
given the specifics of the task package (the teacher, the learning
method, and the task itself). A task with the difficulty value
a ¼ 1 represents an impossible one, in that the specifics of the task
prevent the student from learning it to completion. Suppose the
student currently knows b 6 a of the total amount of knowledge
required to completely learn the task. The values of b and a deter-
mine the marginal payoff f a; bð Þ, which we assume is strictly
increasing in b, strictly decreasing in a, and continuously differen-
tiable. By scaling the marginal payoff values to have minimum 0
and maximum 1, we can suppose that the function f a; �ð Þ maps
the domain 0; a½ � to the range 0;1½ �. We assume that completely
learning a task guarantees the maximum marginal payoff:
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f a; að Þ ¼ 1 for every a. Moreover, we assume that impossible
tasks—unable to be meaningfully learned—always yield the mini-
mum marginal payoff: f 1; bð Þ ¼ 0 for all b.

One example of a marginal payoff function

f : a; bð Þ 2 0;1ð Þ [ 1f gð Þ � 0;1½ Þ : b 6 af g ! 0;1½ � ð9Þ
satisfying these conditions is

f a; bð Þ ¼ b
a

� �k

ð10Þ

for k > 0, which is extended to the point at infinity a ¼ 1 as

f 1; bð Þ ¼ lim
a!1

b
a

� �k

¼ 0: ð11Þ

This family of functions is characterized by polynomial growth in b.
Another example of such a marginal payoff function is

f a; bð Þ ¼ fa�b ð12Þ
for f 2 0;1ð Þ, which is also extended to the point at infinity a ¼ 1 as

f 1; bð Þ ¼ lim
a!1

fa�b ¼ 0: ð13Þ

This family of functions is characterized by exponential growth in b.
We assume that the risk of an infinitely difficult task a ¼ 1 only

exists when j ¼ in. In the other case of j ¼ im, the learnability of the
given task is guaranteed by the teacher already having learned it
completely. However, when j ¼ in, the teacher may not have actu-
ally learned the task completely despite serving as the student’s
role model. The lack of guarantee of the given task’s learnability
leads to a nontrivial probability of an unfortunate setting: one in
which the student squanders time on attempting to learn an
impossible task from a teacher, one or both of whom have not
yet realized the said impossibility. The exclusivity of unlearnability
to innovation learning can be seen by the comparison between
solving an exam problem and solving a research problem. The for-
mer—imitation learning—is guaranteed to complete in finite time,
because the teacher has solved the problem before assigning it as
an exam question. However, the latter—innovation learning—is
not guaranteed to complete in finite time. Indeed, a research prob-
lem, by definition, is one that has not yet been solved by anyone, so
it may a priori be impossible to solve. Overall, we assume that the
difficulty values of tasks with learning method j ¼ im are dis-
tributed as a regular exponential distribution (i.e., with p.d.f.
lim að Þ ¼ ga log 1

g for finite a and lim 1ð Þ ¼ 0, where 0 < g < 1),

whereas the distribution of difficulty values of tasks with learning
method j ¼ in is assumed instead to have a positive probability p
on a ¼ 1 (i.e., with p.d.f. lin að Þ ¼ 1� pð Þga log 1

g for finite a and

lin 1ð Þ ¼ p). The overall distribution of tasks j; að Þ on
U ¼ im; inf g � 0;1ð Þ [ 1f gð Þ; ð14Þ
defined by the p.d.f.

l j; að Þ ¼ qlim að Þ; if j ¼ im;

1� qð Þlin að Þ if j ¼ in;

�
ð15Þ

places probability q on the task’s learning type being imitation and
1� q on that being innovation.

Other than the risk of unlearnability, the second way in which
tasks of learning method j ¼ im differ from those of learning
method j ¼ in is in the speed of learning. Regardless of the learning
method, the student learns knowledge in discrete jumps, each fol-
lowing a task attempt. Let B tð Þ denote the knowledge level after the
tth task attempt, where B 0ð Þ ¼ 0, meaning that the initially naive
student has knowledge b ¼ B 0ð Þ ¼ 0 of the task when starting
out. The discrete knowledge levels 0 ¼ B 0ð Þ < B 1ð Þ < � � � are
5

assumed to satisfy limt!1B tð Þ ¼ 1. The amount of time the tth task
attempt takes for the student is assumed to differ between the two
learning types. Let Dim tð Þ (respectively, Din tð Þ) denote the amount
of time the tth task attempt takes when engaged in imitation learn-
ing (respectively, innovation learning); we require for both

j 2 im; inf g that limk!1
Pk

t¼1Dj tð Þ ¼ 1. Then, we assume that imita-
tion is (weakly) faster than innovation: that Dim tð Þ 6 Din tð Þ for all
t 2 N n f0g. Moreover, we denote by

Tj ið Þ ¼
Xi

n¼1

Dj nð Þ ð16Þ

the total amount of time that a task of learning type j occupies until
the end of the ith attempt.

With sufficient time in a fixed environment, natural selection is
likely to maximize the objective function (fitness) within the space
of feasible policies (fitness landscape). A policy is defined by a func-
tion p : H ! A, where A denotes the space of feasible actions;

H ¼ O1;A1; . . . ;OT�1;AT�1;OTð Þ : Oi 2 O; Ai 2 A;f
and the history is feasibleg; ð17Þ

the space of feasible histories; O, the space of feasible observations;
and a history

h ¼ O1;A1; . . . ;OT�1;AT�1;OTð Þ ð18Þ
is called feasible if its sequence of observations and actions can
occur in the model. It remains to specify the student’s action space
A, observation space O, and the objective function V pð Þ on the
space of policies p.

The student’s objective function V pð Þ is the expectation of the
total payoff. Most of it comes from the payoffs yielded by the stu-
dent’s task attempts. Suppose that the student finishes a task
attempt of time length D while at level of knowledge b for a task
of difficulty value a. At time T that ends a learning period, the stu-
dent obtains an expected payoff proportional to f a; bð Þ, scaling with
the length D of the learning period, and simultaneously accounting
for exponential time-discounting. The marginal payoff is obtained
as a high-variance probabilistic lottery u a; bð Þ 2 P Sð Þ with
expected value E u a; bð Þ½ � ¼ f a; bð Þ. Specifically, a payoff value �s is
drawn independently from u a; bð Þ to determine the payoff of the
task attempt

v a; b;D; Tð Þ ¼ �s
Z T

T�D
dtdt; ð19Þ

where d 2 0;1ð Þ denotes the factor of exponential time-discounting.
We see that the expected payoff yielded by the task attempt is

E v a; b;D; Tð Þ½ � ¼ f a; bð Þ
Z T

T�D
dtdt ¼ f a; B ið Þð Þ R T

T�D d
tdt if b ¼ B ið Þ < a;R T

T�D d
tdt if b ¼ a:

(
ð20Þ

Instantaneously after the acquisition of this payoff at time T, the
student’s level of knowledge jumps to the next discrete level of
knowledge B �ð Þ or to the maximum level of knowledge a for the
task, whichever is smaller. The expected sum of the student’s
task-attempt payoffs over all time T 2 0;1½ Þ is the main component
of the student’s objective function V pð Þ.

There are three auxiliary components of the student’s objective
function V pð Þ. The first such component is as follows. After obtain-
ing the payoff of expected value v a; b;D; Tð Þ, the student has the
option of committing the observed payoff value to memory. Doing
so requires the student to pay an expected cost of �Cretain, which
represents various ecological fitness risks that result from
overcommitting attention to the retention of high-variance payoff
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data. Due to the exponential time-discounting, the true value of the
expected cost as applied to the student’s objective function V pð Þ is

� dTCretain; ð21Þ
where T denotes the ending time of the task attempt that has
yielded the given payoff.

The second auxiliary component of the student’s objective func-
tion V pð Þ relates to a choice (described in Subsection 2.1) that the
student makes before every task attempt: whether to allocate a
fraction r of the task attempt’s time—and the corresponding frac-
tion of its payoff—to an alternative foraging opportunity unrelated
to the task. Like in the classical Bayesian model of Subsection 2.1,
the marginal payoff s 2 S of the alternative foraging opportunity is
drawn i.i.d. from a distribution w 2 P Sð Þ and known to the student
prior to their decision. If the student chooses to forgo a fraction of
the task attempt’s time for this alternative foraging opportunity,
their payoff is changed from (19) to

rs
Z T

T�D
dtdt þ 1� rð Þv a; b;D; Tð Þ ¼ rsþ 1� rð Þ�sð Þ

Z T

T�D
dtdt: ð22Þ

These unrelated foraging opportunities allow the student to
increase their expected payoff V pð Þ strictly above the baseline level
provided by the sum of the task-attempt payoffs v a; b;D; Tð Þ. Conse-
quently, the student is incentivized to accurately estimate each
task-attempt’s payoff—as best as allowed by their informational
constraints—prior to deciding whether to exploit an unrelated for-
aging opportunity instead.

The third auxillary component of the student’s objective func-
tion V pð Þ relates to the student’s other choice of action. In between
task attempts, the student not only chooses whether to exploit an
unrelated foraging opportunity before each task attempt, but also
chooses whether to quit on their current task package for an alter-
native one. If the student chooses to cut their losses on a given for-
aging task and/or their role model for it, they can choose a new task
package j; að Þ. All of the student’s task packages j; að Þ, including the
initial one and any intermediate ones assigned after quitting, are
drawn i.i.d. from the probability distribution l defined in (15).

In addition to the option of quitting the current task, the stu-
dent is also assumed to situationally possess the option of paying
a fitness cost to ascertain their current task package’s learning
method j 2 im; inf g, on which they can base their specific decision.
We propose that humans carry out this ascertainment via a mental
experiment to measure the length of time Dj tð Þ, which may be suf-
ficient to distinguish the speeds of the two learning methods.
Specifically, our assumption that Dim tð Þ 6 Din tð Þ can be divided into
two possibilities: Dim tð Þ < Din tð Þ and Dim tð Þ ¼ Din tð Þ. In the case of
the former, a time-measurement experiment can identify the
learning type j. In the case of the latter, however, it cannot. Each
mental time-measurement experiment requires the student to
pay an expected cost �Cidentify, again due to various ecological fit-
ness costs that can result from overloading a cognitively con-
strained forager’s decision-making. Due to the exponential time-
discounting, the true value of the expected cost as applied to the
student’s objective function V pð Þ is

� dTCidentify; ð23Þ
where T denotes the ending time of the task attempt during which
the time-measurement experiment was performed.

We have introduced all components of the student’s objective
function V pð Þ, as well as all components of the student’s action
space A. Unlike the classical Bayesian model of Subsection 2.1,
our model is characterized by a potential tradeoff between earlier
and later payoffs. In the classical Bayesian model, each of the
6

agent’s actions was only relevant to maximizing the payoff of the
corresponding task attempt, not to any future ones. Thus, the rela-
tive weights of each task attempt’s payoff do not affect the agent’s
decision problem. In contrast, in our model, the student has two
actions—quitting the current task and identifying the learning type
via a time-measurement experiment—that reduces payoffs in the
short-term for a potential gain in long-term payoffs. Thus, specify-
ing the relative weights of each task attempt’s payoff is essential for
the prescription of the optimal policy p. As is standard, we have set
these relative weights to be exponentially decaying in time, which
aids model tractability and captures the evolutionary fact that ear-
lier payoffs are likelier to be relevant to fitness than later payoffs.

Formally, the student’s actions are of the form

At ¼ xforgo tð Þ; xidentify tð Þ; xretain tð Þ; xquit tð Þ� �
; ð24Þ

where

xforgo tð Þ : S ! true; falsef g ð25Þ
denotes the choice of whether to forgo a fraction of the tth task
attempt’s time to exploiting an alternative foraging opportunity of
a known marginal payoff s 2 S;

xidentify tð Þ : S ! true; falsef g ð26Þ
denotes the choice of whether to pay an expected cost of �Cidentify to
identify the learning type j 2 im; inf g during the tth task attempt via
a time-measurement experiment, given the alternating foraging
opportunity’s previously drawn marginal payoff s;

xretain tð Þ : S� S ! true; falsef g ð27Þ
denotes the choice of whether to retain the observation of the tth
task attempt’s payoff given s;�sð Þ 2 S� S, where s is given as above
and �s denotes the task-specific marginal payoff; and

xquit tð Þ 2 K s;�s; j; cð Þ : S� S [ nullf gð Þ � im; in;nullf gf
� true; falsef g ! true; falsef gg

denotes the choice of whether to quit the current task after the tth
task attempt. When the student has not performed the identifica-
tion of the learning type j during the current task attempt,
xidentify tð Þ ¼ false, then the value xquit tð Þ takes the form of a
boolean-valued function K s;�s;null; cð Þ: a function of the alternative
foraging opportunity’s marginal payoff s; of the task’s yielded mar-
ginal payoff �s (which may be unretained and thus given by �s ¼ null);
and whether or not the level of knowledge has caught up to the task
difficulty a, denoted by

c 2 true; falsef g: ð28Þ
If c ¼ true, then we say that learning has completed during this task
attempt. In the opposite case of xidentify tð Þ ¼ true; xquit tð Þ takes the
form of a boolean-valued function K s;�s; j; cð Þ for j 2 im; inf g, repre-
senting the decision whether to quit conditional on the identified
learning type being imitation or innovation, on the payoff observa-
tion, and on whether learning has completed during this task
attempt. We also note the feasibility constraint that the value
xidentify tð Þ is required to satisfy the feasibility constraint that
xidentify tð Þ ¼ true is only possible if Dim tð Þ < Din tð Þ rather than
Dim tð Þ ¼ Din tð Þ.

The student’s observations are of the form

Ot ¼ b tð Þ; xtype tð Þ; xpayoff tð Þ� �
; ð29Þ

where

b tð Þ 2 0;1½ Þ ð30Þ
denotes the level of knowledge after the tth task attempt;

xpayoff tð Þ 2 S [ nullf g ð31Þ
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denotes the student’s observed payoff value (if the payoff observa-
tion was not retained, then we use the denotation ‘‘null”); and

xtype tð Þ 2 null; im; inf g ð32Þ
denotes whether the student has carried out a mental identification
of the learning type during the tth task attempt (if this is false, then
we use the denotation ‘‘null”), and if so, whether the result was imi-
tation (‘‘im”) or innovation (‘‘in”).

In summary, Table 1 provides the list of parameters comprising
our learning model, and Table 2 presents a step-by-step algorithm
for the model. The expected payoff of the policy p (correcting for
time-discounting) during the time remaining after a history h is
given by

Vh pð Þ ¼ E
X1
k¼0

rxforgo kð Þs kð Þ þ 1� rxforgo kð Þ� �
�s kð ÞÞ� � R T kþ1ð Þ

T kð Þ dtdt
�"

�dT kþ1ð Þ Cretainxretain kð Þ þ Cidentifyxidentify kð Þ� ��#
; ð33Þ

where we have abused notation by having �s kð Þ; s kð Þ, and the choices
x� kð Þ denote the values of �s; s, and the choices x� during the kth
learning period from the present, letting T kð Þ denote the ending
time of the kth learning period from the present, and setting the
boolean values of the choices x� kð Þ to be 0 when false and 1 when
true.

Given a choice of parameters, the corresponding model
parametrization M can be solved numerically with dynamic-
programming-type methods. However, we instead pursue an ana-
lytic study to demonstrate desired facts about the model that hold
more generally, regardless of the specific choice of parameters. The
results of this investigation are documented in Section 3.

3. Results

We denote the space of feasible policies of the model described
in Subsection 2.2 by P. A policy p is called optimal if it maximizes
the expected payoff in the remaining time at any feasible history h:

p 2 argmax
p2P

Vh pð Þ: ð34Þ

In the following, we obtain results on properties necessarily pos-
sessed by any optimal policy p, which can help simultaneously
Table 1
List of model parameters of the Bayesian model modified to represent ancestral
human learning, presented in Subsection 2.2. These model parameters are required to
satisfy the conditions discussed earlier in this subsection.

Model parameters of the modified Bayesian model

1. the marginal payoff distribution u a; bð Þ 2 P Sð Þ and its
expected value f a; bð Þ, for every a 2 0;1ð Þ [ 1f g and finite
0 6 b 6 a,

2. the discrete knowledge jumps B ið Þ : i 2 N; i > 0f g,
3. the learning period lengths Dj ið Þ : i 2 N; i > 0

	 

for

j 2 im; inf g,
4. the exponential discount factor d of time,
5. the proportion p of infinite-difficulty tasks among all inno-

vation-learning tasks,
6. the proportion q of imitation-learning tasks among all

tasks,
7. the exponential discount factor g of the distribution of task

difficulty values,
8. the fraction of time r of task attempts that can be devoted

to alternative foraging opportunities,
9. the distribution w 2 P Sð Þ of the marginal payoffs of alter-

native foraging opportunities,
10. the expected cost �Cretain of retaining a payoff observation,

and
11. the expected cost �Cidentify of a mental time-measurement

experiment to identify the learning type j.

7

explain the various empirically documented deviations of human
confidence from a classically Bayesian estimate of past payoff data.

First, if the magnitude Cretain of the expected cost of retaining
payoff observations is sufficiently large, then no optimal policy p
ever retains payoff observations. This can be seen, for example,
by taking

Cretain >

Z 1

0
dt max Sð Þdt; ð35Þ

an upper bound—for any time T at which a task attempt ends—to
the payoff (accounting for time-discounting) that can be obtained
during the remaining time. The upper bound (35) is obtained when
the student receives the maximal marginal payoff max Sð Þ for every
task, and does not pay any cost to retaining payoff observations or
identifying the task’s learning type. If Cretain were larger than this
maximum possible expected payoff in the remaining time, then
the information yielded by paying a cost of that magnitude would
clearly never be worth it.

Throughout this paper, we assume that the magnitude Cretain of
the expected cost of ‘‘observing” (in the ecological setting, retain-
ing in memory) payoff data is great enough that the student does
not ever do so: so that the optimal choice xretain tð Þ is always given
by

xretain tð Þ ¼ false: ð36Þ
This is functionally equivalent to assuming that the payoff data is
unavailable to the student.

The second characteristic that an optimal policy pmust possess
is the following. Every action p hð Þ of an optimal policy in response
to a history h might as well solely depend on the information of h
relevant to the current task j; að Þ, and not on the other information
(relevant to the previous tasks); this follows from the assumption
that the student’s tasks are statistically independent. Specifically,
the choices of xforgo tð Þ; xidentify tð Þ, and xquit tð Þ should only depend
on the conditional distribution lcond hð Þ of the current task’s value
j; að Þ, conditional on the information contained in the past history

h. This information, which allows the student to rule out (via Bayes’
formula of conditional probability) certain task values j; að Þ from
the initial conditional distribution of l, includes two components.
For one thing, if there has been a time-measurement experiment
on the current task, say with result j 2 im; inf g, then the student
can rule out all task values j0; a

� �
with j0–j.

For another, the student’s past sequence of knowledge levels on
the task, b 0ð Þ; b 1ð Þ; . . . ; b i� 1ð Þ, allows the student to rule out task
values. If the sequence ends in one or more instances of
b ¼ a R B ið Þ : i 2 Nf g, then the student knows that their level of
knowledge b has caught up to the maximum value a. In other
words, all task values j0; a0� �

with a0–a can be ruled out. However,
if the sequence has been completely consistent with the discrete
knowledge values B ið Þ : i 2 Nf g of the model, then the only task
values j0; a0� �

that can be ruled out are those with a0 6 b ¼ B ið Þ.
(Without loss of generality, we assume that the probability-zero
event that the task difficulty a drawn from l precisely equals
one of the model’s discrete knowledge levels B ið Þ, rather than fall-
ing between them, does not occur.)

Third, in an optimal policy p, every decision xforgo tð Þ whether to
forgo a fraction of a task attempt’s time for a known marginal pay-
off of s 2 Smust be of the form described in Subsection 2.1: forgo if
the task attempt’s expected marginal payoff

E j;að Þ,lcond hð Þ f a; bð Þ½ � ð37Þ
is greater than the alternative marginal payoff s, and do not forgo if
the latter is greater than the former (when they are equal, both
choices are optimal). In other words, the student should choose
the payoff that is greater in expectation. We call the quantity (37)



Table 2
An algorithmic description of the Bayesian model modified to represent ancestral human learning, presented in Subsection 2.2.

Algorithmic description of the modified Bayesian model

1. The student draws from the distribution l the task j; að Þ, the value of which is unknown to them. The attempt number specific to the task, i, is set to zero, and
their level of knowledge b is set to zero. The time value T is set to zero.

2. The student carries out the ith attempt of the current task, which constitutes the following.
	 First, the student draws from the distribution w a randommarginal payoff s 2 Swhose value is known to them, and decide whether to forgo a fraction r of the

task attempt for this alternative marginal payoff.
	 Second, the student decide whether to pay an expected cost �Cidentify for a time-measurement experiment to identify Dj ið Þ, which is only possible if

Dim ið Þ < Din ið Þ rather than Dim ið Þ ¼ Din ið Þ.
	 Third, they spend the time Dj ið Þ on the task attempt (T is incremented by this amount), at the end of which they receive a payoff of

dT rsþ 1� rð Þ�sð Þ R Dj ið Þ
0

dtdt if the student had decided to forgo;

dT�s
R Dj ið Þ
0

dtdt otherwise;

8<: ð99Þ

where �s 2 S is drawn from the distribution u a; bð Þ. The student chooses whether to retain the observation �s of the payoff value.
	 Fourth, if the student had performed a time-measurement experiment during this learning attempt, then they learn the value Dj ið Þ and thereby, the learning

type j.
	 Fifth, b discretely jumps to the next level—B iþ 1ð Þ or a, whichever is smaller—and the index i is incremented by one.
	 Finally, the student chooses whether to quit the current task. If so, they draw a new task j; að Þ from l (independently with respect to the previously drawn

tasks), b is set to zero, and i is set to zero. Otherwise, they continue to learn the task attempt at the new level of experience iþ 1.
3. Step 2 is infinitely repeated.
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the expected marginal payoff function or the confidence function. We
propose that the evolutionary pressure to optimally exploit alterna-
tive foraging opportunities shaped ancestral humans’ task-specific
notion of confidence to track the task’s expected marginal payoff
(37), conditional on both the information known so far and the
parameters of the ancestral environment.

The task’s expected marginal payoff (37) is a function of the stu-
dent’s two relevant pieces of information: their level of knowledge
b and their information set on the learning type j (whether they
have ruled out the event j ¼ imf g, the event j ¼ inf g, or neither).
Specifically, the confidence function can be written as ĝ Eb; Ej

� �
mapping the domain

b ¼ B ið Þf g : i 2 Nf g [ b ¼ a–B ið Þf gð Þ
� j ¼ im ruled outf g; j ¼ in ruled outf g; neither j ruled outf gf g 3 Eb; Ej

� �
to the range of marginal payoffs 0;1½ �, where Eb denotes the infor-
mation set regarding the student’s information on b and Ej, the
information set regarding the student’s information on j. We com-
pute that the confidence function (37) is generally given by

bg Eb;Ej
� �¼

1 if Eb ¼ b¼ a–B ið Þf g;
gim B ið Þð Þ if Eb ¼ b¼ B ið Þ< af g and Ej ¼ j¼ in ruled outf g;
gin B ið Þð Þ if Eb ¼ b¼ B ið Þ< af g and Ej ¼ j¼ im ruled outf g;
gu B ið Þð Þ if Eb ¼ b¼ B ið Þ< af g and Ej ¼ neither j ruled outf g;

8>>><>>>:
ð38Þ

for

gim bð Þ ¼
R
a>b f a; bð Þdlim að ÞR

a>b dlim að Þ ; ð39Þ
gin bð Þ ¼
R
a>b f a; bð Þdlin að ÞR

a>b dlin að Þ ; ð40Þ

and

gu bð Þ ¼
R
a>b f a; bð Þd�l að ÞR

a>b d�l að Þ ; ð41Þ

where �l denotes the probability distribution P � l : 0;1½ Þ ! 0;1½ �
for the projection map P j; að Þ ¼ a. We call gim; gin,and gu the
imitation-learning confidence function, the innovation-learning confi-
dence function, and the unconditional confidence function,
respectively.
8

Let qy be a distribution of the form qy að Þ ¼ 1� yð Þga log 1
g for

finite a and qy 1ð Þ ¼ y, where y 2 0;1½ Þ. Define the generalized con-
fidence function gqy

: 0;1½ Þ ! 0;1½ � by

gqy
bð Þ ¼

R
a>b f a; bð Þdqy að ÞR

a>b dqy að Þ : ð42Þ

Then, we see that

lim ¼ q0; lin ¼ qp; and �l ¼ q 1�qð Þp; ð43Þ
and therefore,

gim bð Þ ¼ gq0
bð Þ; gin bð Þ ¼ gqp

bð Þ; and gu bð Þ ¼ gq 1�qð Þp bð Þ: ð44Þ

One can then verify the following fact.

Proposition 1. For any b > 0, the value of the generalized confi-
dence function, gqy

bð Þ, is strictly monotonically decreasing in y. In

particular, the innovation-learning confidence function gin bð Þ is at
most the unconditional confidence function gu bð Þ, which is at most
the imitation-learning confidence function gim bð Þ. Specifically, we
have
gin bð Þ 6 gu bð Þ 6 gim bð Þ; ð45Þ
where the first inequality occurs with equality if and only if q ¼ 0
(or p ¼ 0, if this is allowed); and the second inequality, if and only
if q ¼ 1 (or p ¼ 0, if this is allowed).

In other words, the evolutionarily optimal estimate of confi-
dence at a level of knowledge b (conditional on learning not yet
having completed) is decreasing in the proportion y of unlearnable
tasks. This is due to the fact that the risk of unlearnability, of the
task difficulty a ¼ 1, has a reduction effect on the expected mar-
ginal payoff. This risk occurs with the highest probability within
the distribution of task difficulties a > b conditional on j ¼ in,
occurs with zero probability within the distribution conditional
on j ¼ im, and occurs with an in-between probability value within
the distribution that is unconditional of the learning type j. Thus,
the reduction effect on the confidence function also falls in this
order. This phenomenon is illustrated in the plots of the three con-
fidence functions for several model parametrizations in Fig. 1.

Another consequence of the risk of unlearnability is non-
monotonicity. Specifically, we will show that gim bð Þ is monotoni-
cally increasing in b under a non-restrictive assumption on the
marginal payoff function f a; bð Þ. Note that if all tasks were learned
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by imitation rather than innovation (q ¼ 1), then the confidence
function (37) is of the form

ĝ Eb; Ej
� � ¼ 1 if Eb ¼ b ¼ a–B ið Þf g;

gim B ið Þð Þ if Eb ¼ b ¼ B ið Þf g:

�
ð46Þ

and consequently, monotonically increasing in the level of experi-
ence i. In other words, if human confidence evolved in an environ-
ment where all tasks were learned by imitation, then we should
expect it to be monotonically increasing in the level of knowledge:
and thereby, the level of experience. The empirically documented
confidence is non-monotonic in the level of experience, and thus
unlikely to have evolved in such an environment.

On the other hand, we will show that due to the nontrivial risk
of unlearnability, the confidence functions gin bð Þ and gu bð Þ each
decay to zero as b ! 1. This opens up the possibility for the con-
fidence function (37) to be non-monotonic in the empirically doc-
umented way: general increase with an intermediate period of
decrease with respect to the level of experience. Whether this
non-monotonicity evolves depends on the two remaining actions
prescribed by the student’s optimal policy p: identifying the learn-
ing type, xidentify tð Þ; and quitting, xquit tð Þ.

3.1. Imitation learning alone cannot explain non-monotonic
confidence

Under reasonable assumptions on the model parameters,
whether each of the confidence functions gim bð Þ; gin bð Þ,and gu bð Þ
is monotonic is determined by the presence of the risk of unlearn-
able tasks. Since the distribution lim has zero probability on the
event a ¼ 1f g, its associated confidence function gim bð Þ is mono-
tonically increasing in b, as long as the payoff function f a; bð Þ sat-
isfies the following condition:

Assumption 1. For all m > 0 and a P m, the payoff function f a; bð Þ
satisfies

@

@a
f a; a�mð Þ > 0: ð47Þ
Fig. 1. The imitation-learning confidence function gim bð Þ, the innovation-learning confi
parameter choices p ¼ 0:4; q ¼ 0:5;g ¼ 0:6, and varying payoff function f a; bð Þ; note that t
Proposition 1, we have the inequalities gin bð Þ < gu bð Þ < gim bð Þ. Also, consistent with Prop
(b)—the imitation-learning confidence function gim bð Þ is strictly increasing. The payoff
imitation-learning confidence function gim bð Þ is not necessarily strictly increasing (in fac
gin bð Þ and gu bð Þ are eventually decaying to zero.

9

We argue that Assumption 1 is plausible because a fixed
amount m of knowledge constitutes a larger fraction of the total
knowledge of an easy task than a difficult task; consequently, the
argument goes, not knowing it should cause a harsher penalty in
the former case. However, whether this claim generally holds is a
question that should be studied empirically. Note that the assump-
tion is satisfied by the example family of payoff functions (10), but
not by the example family of payoff functions (12). Our aforemen-
tioned argument would then suggest that the former family (poly-
nomial growth) is plausible as the marginal payoff function of
ancestral learning environments, but not the latter family (expo-
nential growth).

On the other hand, since the distributions lin and �l have a pos-
itive probability on the event a ¼ 1f g, their associated confidence
functions gin bð Þ and gu bð Þ are non-monotonic. Specifically, both
gin bð Þ and gu bð Þ decay to zero for all sufficiently large b. In fact,
the functions are strictly decreasing to zero for all sufficiently large
b, as long as the following condition holds.

Assumption 2. As b ! 1, the payoff function f a; bð Þ satisfiesZ
a>b

@

@b
f a; bð Þgada 
 gb: ð48Þ

Here, the notation F bð Þ 
 G bð Þ denotes the asymptotic condi-
tion that F bð Þ=G bð Þ ! 0 as the input variable b ! 1. Note that
Assumption 2 is satisfied by the family of payoff functions (10)
for any parameter g 2 0;1ð Þ.

We summarize the above discussion in the following theorem
statement.

Proposition 2. The generalized confidence function gqy
satisfies

the following:

1. If y ¼ 0, then we have d
db gqy

bð Þ > 0 for all b P 0, as long as

Assumption 1 holds.
2. If 0 < y < 1, then we unconditionally have gqy

bð Þ ! 0 as b ! 1.
dence function gin bð Þ, and the unconditional confidence function gu bð Þ for model
he other model parameters do not affect these confidence functions. Consistent with
osition 2(a), when the payoff function f a; bð Þ satisfies Assumption 1—panels (a) and
function of panel (c) does not satisfy Assumption 1. As a result, the corresponding
t, it is constant). Finally, consistent with Proposition 2(b), the confidence functions
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3. If 0 < y < 1, then we have d
db gqy

bð Þ < 0 for all sufficiently large b,

as long as Assumption 2 holds.

The expected marginal payoff of a task is monotonically
increasing when there is no risk that the task is unlearnable, as is
the case when it is learned by innovation. In other words, since
lim ¼ q0, the function gim should be monotonically increasing.
However, there is a nontrivial probability y of unlearnability when
the learning type of the task is either uncertain or fully determined
as innovation: lin ¼ qp and �l ¼ q 1�qð Þp. In this case, the corre-
sponding expected marginal payoffs (gin and gu, respectively) both
eventually monotonically decrease to zero.

We have plotted in Fig. 1 confidence functions of an example
model parametrization with varying marginal payoff function
f a; bð Þ, which illustrate the conclusions of Proposition 2. We note

in particular that functions of the form f a; bð Þ ¼ b=að Þk—detailed
in (10)—satisfy Assumption 1. Thus, by Proposition 2(a), any model
parametrization with this choice of marginal payoff function will
have a strictly increasing imitation-learning confidence function
gim bð Þ. However, functions of the form f a; bð Þ ¼ fa�b—detailed in
(12)—do not satisfy Assumption 1, which opens up the possibility
that gim bð Þ will not be strictly increasing. In fact, we then can apply
the change of variables �a ¼ a� b to see that the imitation-learning
confidence function

gim bð Þ ¼ log1gð ÞR
a>b

fa�bgada

log1gð ÞR
a>b

gada
¼ log 1

g

� � R
a>b f

a�bga�bda

¼ log 1
g

� � R1
0 f�ag�ad�a

ð49Þ

is constant with respect to b. Thus, we see that Assumption 1 con-
stitutes a nontrivial necessary condition for gim bð Þ to be strictly
increasing.

3.2. Analyzing a subfamily of model parametrizations via
approximation

We have solved for the optimal choice of xforgo tð Þ, the decision of
when to forgo a proportion of the task payoff for an alternative for-
aging opportunity. Assuming the policy p always uses this optimal
choice, the only other components of p that can vary are xidentify tð Þ,
the decision whether to perform a time-measurement experiment
to identify the learning type j; and xquit tð Þ, the decision whether to
quit. Recall that the only information that is relevant for the opti-
mal choice of these components is the pair of information sets Eb

and Ej regarding the student’s current task. We abuse notation by
letting

p Eb; Ej
� � ¼ xidentify; xquit

� � ð50Þ
denote the action of the optimal policy p (omitting the components
xretain and xforgo, which have already been solved previously) at the
pair of information sets Eb; Ej

� �
.

We proceed to define a tractable subfamily of parametrizations
of our model for which the optimal estimate of confidence, as a
function of the level of experience i, displays the empirically docu-
mented non-monotonicity: general increase with an intermediate
period of decrease. Whether this non-monotonicity occurs would
depend, in general, on the action components xretain kð Þ and
xforgo kð Þ of the optimal policy p. Our subfamily of model
parametrizations will be constructed—via approximation—to have
the appropriate optimal action components xretain and xforgo that
guarantee the desired non-monotonicity.

Let us fix all choices of model parameters with the exception of
the discrete knowledge jumps B i; nð Þ : i 2 N; i > 0f g, the learning
period lengths Dj i;nð Þ : i 2 N; i > 0

	 

—and the corresponding
10
cumulative learning period lengths Tj i;nð Þ : i 2 N; i > 0
	 


—for
j 2 im; inf g, the fraction of time r nð Þ of task attempts that can be
devoted to alternative foraging opportunities, and the expected
cost Cidentify nð Þ of a time-measurement experiment to identify the
learning type j. This gives a sequence of model parameterizations
M nð Þf gn2N varying with n. We will construct M nð Þf gn2N so that as
n ! 1, the imitation-learning knowledge function and the
innovation-learning knowledge function, defined respectively by

Lim;n tð Þ ¼ B max i : Tim i;nð Þ 6 tf gð Þ ð51Þ
and

Lin;n tð Þ ¼ B max i : Tin i;nð Þ 6 tf gð Þ; ð52Þ
can be well-approximated by the continuous imitation-learning
knowledge function

Lim;1 tð Þ : 0;1½ Þ ! 0;1½ Þ; ð53Þ
and the continuous innovation-learning knowledge function

Lin;1 tð Þ : 0;1½ Þ ! 0;1½ Þ; ð54Þ
respectively. The knowledge functions Lim;1 tð Þ and Lin;1 tð Þ are
required to be bijective, continuous, and piecewise continuously
differentiable such that their respective derivatives d

dt Lim;1 tð Þ and
d
dt Lin;1 tð Þ are positive whenever they are well-defined. We will
describe the context of this continuous approximation in
Subsection 3.4.

We now formally define the continuous learning model, a contin-
uous approximation of our discrete learning model defined in
Subsection 2.2. Suppose that instead of obtaining discrete payoffs
at the end of discrete task attempts, the student obtains a flow
payoff

dt f a tð Þ; b tð Þð Þdt; ð55Þ
based on the task difficulty a and the student’s level of knowledge b.
The term a tð Þ denotes the difficulty level of the task that is being
learned at time t, and thus has zero derivative everywhere except
for the discrete set of points of time at which tasks are quit. When
a task is quit at time t, and at the starting time t ¼ 0, a task is drawn
i.i.d. from the distribution l as in the model of Subsection 2.2; and if
t > 0, the term a tð Þ is updated to the newly drawn task difficulty.

The term b tð Þ denotes the student’s level of knowledge, and in
the continuous learning model, updates continuously in the
amount of time t. Specifically, we have

b tð Þ ¼

Lim;1 �tð Þ if j ¼ im and Lim;1 �tð Þ < a;

a if j ¼ im and Lim;1 �tð Þ P a;

Lin;1 �tð Þ if j ¼ in and Lin;1 �tð Þ < a;

a if j ¼ in and Lin;1 �tð Þ P a;

8>>><>>>: ð56Þ

where

�t ¼ t � Tstart tð Þ ð57Þ
denotes the length of the time period Tstart tð Þ; t½ � spent learning the
current task (at time t) and

Tstart tð Þ ð58Þ
denotes the time at which the current task has been drawn.

We further suppose that in the continuous learning model,
there is no option to exploit alternative foraging opportunities.
Similarly, we suppose that the learning type of a task is not infor-
mation that can be learned by paying a cost. The justification for
these assumptions is that these quantities—the payoff difference
due to alternative foraging opportunities and the costs of identify-
ing the learning type—become negligible as n ! 1 in the continu-
ous approximation.



Table 4
An algorithmic description of the continuous learning model, which approximates our
modified Bayesian model of ancestral human learning. The continuous learning model
is presented in Subsection 3.2.

Algorithmic description of the continuous learning model

1. Time is set to T ¼ 0.
2. The student draws from the distribution l the task j; að Þ, the value of

which is unknown to them.
3. If the student’s quitting strategy is b ¼ b, then they receive a payoff ofZ TþL�1

j;1 bð Þ

T
dt f a; Lj;1 tð Þ� �

dt; ð100Þ

and T is incremented by L�1
j;1 bð Þ. If the student’s quitting strategy is

b ¼ bim ;binð Þ, then they receive a payoff ofZ TþL�1
j;1 bjð Þ

T
dt f a; Lj;1 tð Þ� �

dt: ð101Þ

and time is incremented by L�1
j;1 bj
� �

.
4. If T ¼ 1, the algorithm is complete. If T is finite, return to Step 2 and

repeat it along with the following steps.
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Finally, we suppose that the option to quit for an opportunity-
cost task satisfies the following. For a positive constant b, the stu-
dent can—when learning has not yet completed—either quit all
tasks (both j ¼ im and j ¼ in) at any level of experience b 2 0;1ð Þ
without identifying the task type, or quit j ¼ im tasks at a level of
experience bim 2 b;1½ Þ [ 1f g and j ¼ in tasks at a level of experi-
ence bin P b;1½ Þ [ 1f g.

The student’s strategy space in the continuous learning model
pertains entirely to quitting, and is given by

A1 ¼ Q1 ¼ 0;1ð Þ [1ð Þ [ b;1½ Þ [ 1f gð Þ2
� �1

ð59Þ

for

Q ¼ 0;1ð Þ [1ð Þ [ b;1½ Þ [ 1f gð Þ2: ð60Þ
Here, the first subset 0;1ð Þ denotes the set of quitting strategies b
that quit all tasks at any level of experience b > 0 without identify-

ing the learning type, and the second subset b;1½ Þ [ 1f gð Þ2 denotes
the set of quitting strategies bim; binð Þ that quit j ¼ im tasks at a level
of experience bim 2 b;1½ Þ [ 1f g and j ¼ in tasks at a level of expe-
rience bin P b;1½ Þ [ 1f g. The action

b1;b2; . . .ð Þ 2 A1 ð61Þ
denotes the overall strategy that quits the ith task using the strategy
action bi for i 2 N. The total payoff in the continuous learning model
is given byZ 1

0
dtf a tð Þ; b tð Þð Þdt; ð62Þ

where a tð Þ is the difficulty value of the task being learned at time t
(which discretely changes whenever a new task is drawn), and b tð Þ
is the student’s level of knowledge of this task.

In summary, Table 3 provides the list of parameters comprising
our continuous learning model, and Table 4 provides a step-by-
step algorithm for the model. The student’s objective is to maxi-
mize the expected payoff, the expected value of (62):

V1 b1;b2; . . .ð Þð Þ ¼ E

Z 1

0
dtf a tð Þ; b tð Þð Þdt

� �
: ð63Þ

Decision theory yields that the maximal expected payoff
V1 b1;b2; . . .ð Þð Þ is obtained by a strategy that acts in the same
way for every history sharing the same information set. In particu-
lar, the maximal payoff is obtained by a strategy that uses the same
quitting strategy b 2 Q for every drawn task, corresponding to the
strategy

b;b; . . .ð Þ 2 A1: ð64Þ
The expected total payoff of such a quitting strategy b is given by
the function
Table 3
List of model parameters of the continuous learning model, which approximates our
modified Bayesian model of ancestral human learning. The continuous learning model
is presented in Subsection 3.2.

Model parameters of the continuous learning model

1. the marginal payoff function f a; bð Þ,
2. the imitation-learning knowledge function Lim;1 tð Þ,
3. the innovation-learning knowledge function Lin;1 tð Þ,
4. the exponential discount factor d of time,
5. the proportion p of infinite-difficulty tasks among all innovation-

learning tasks,
6. the proportion q of imitation-learning tasks among all tasks,
7. the exponential discount factor g of the distribution of task difficulty

values,
8. the constant b constraining the student’s quitting.
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V1 bð Þ ¼ V1;u bð Þ if b ¼ b;

V1;c bim; binð Þ if b ¼ bim; binð Þ:

�
ð65Þ

Here, the value function V1;u bð Þ is defined by

V1;u bð Þ ¼ qVim;1;u bð Þ þ 1� qð ÞVin;1;u bð Þ; ð66Þ
where Vim;1;u bð Þ;Vin;1;u bð Þ� �

is the solution to the system of equations

Vim ¼R b
0

R L�1
im;1 að Þ

0 dt f a;Lim;1 tð Þ� �
dtþR1

L�1
im;1 að Þ d

tdt
� �

dlim að Þ

þRa>b

R L�1
im;1 bð Þ

0 dt f a;Lim;1 tð Þ� �
dtþdL

�1
im;1 bð Þ qVimþ 1�qð ÞVinð Þ

� �
dlim að Þ;

ð67Þ

and

Vin ¼
R b
0

R L�1
in;1 að Þ

0 dt f a;Lin;1 tð Þ� �
dtþR1

L�1
in;1 að Þ d

tdt
� �

dlin að Þ

þRa>b

R L�1
in;1 bð Þ

0 dt f a;Lin;1 tð Þ� �
dtþdL

�1
in;1 bð Þ qVimþ 1�qð ÞVinð Þ

� �
dlin að Þ;

ð68Þ

while the value function V1;c bim; binð Þ is defined by

V1;c bim; binð Þ ¼ qVim;1;c bim; binð Þ þ 1� qð ÞVin;1;c bim; binð Þ; ð69Þ
where Vim;1;c bim; binð Þ;Vin;1;c bim; binð Þ� �

is the solution to the system
of equations

Vim¼ R bim
0

R L�1
im;1 að Þ

0 dt f a;Lim;1 tð Þ� �
dtþR1

L�1
im;1 að Þd

tdt
� �

dlim að Þ

þRa>bim

R L�1
im;1 bimð Þ

0 dt f a;Lim;1 tð Þ� �
dtþdL

�1
im;1 bimð Þ qVimþ 1�qð ÞVinð Þ

� �
dlim að Þ;

ð70Þ
and

Vin ¼
R bin
0

R L�1
in;1 að Þ

0 dt f a;Lin;1 tð Þ� �
dtþR1

L�1
in;1 að Þ d

tdt
� �

dlin að Þ

þRa>bin

R L�1
in;1 binð Þ

0 dt f a;Lin;1 tð Þ� �
dtþdL

�1
in;1 binð Þ qVimþ 1�qð ÞVinð Þ

� �
dlin að Þ:

ð71Þ

In fact, we can explicitly solve for these value functions.

Lemma 3. The value functions Vim;1;c;Vin;1;c;Vim;1;u, and Vin;1;u are
given by

Vim;1;c bim; binð Þ;Vin;1;c bim; binð Þ� � ¼ bV im bim; binð Þ; bV in bim; binð Þ
� �

ð72Þ
�
and

Vim;1;u bð Þ;Vin;1;u bð Þ� � ¼ bV im b; bð Þ; bV in b; bð Þ
� �

:
�

ð73Þ
Here, the functions bV im; bV in : 0;1ð Þ [ 1f gð Þ2 ! ½0;1Þ are defined by
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bV im bim; binð Þ ¼ de� bf

g
ð74Þ

and

bV in bim; binð Þ ¼ af� ce

g
ð75Þ

for

a ¼ 1� qdL
�1
im;1 bimð Þgbim ð76Þ

b ¼ � 1� qð ÞdL�1
im;1 bimð Þgbim ; ð77Þ

c ¼ �qdL
�1
in;1 binð Þ pþ 1� pð Þgbin

� �
; ð78Þ

d ¼ 1� 1� qð ÞdL�1
in;1 binð Þ pþ 1� pð Þgbin

� �
; ð79Þ

e ¼ R bim
0

R L�1
im;1 að Þ

0 dt f a; Lim;1 tð Þ� �
dt þ R1

L�1
im;1 að Þ d

tdt
� �

dlim að Þ

þ Ra>bim

R L�1
im;1 bimð Þ

0 dt f a; Lim;1 tð Þ� �
dt

� �
dlim að Þ;

ð80Þ

f ¼ R bin
0

R L�1
in;1 að Þ

0 dt f a; Lin;1 tð Þ� �
dt þ R1

L�1
in;1 að Þ d

tdt
� �

dlin að Þ

þ Ra>bin

R L�1
in;1 binð Þ

0 dt f a; Lin;1 tð Þ� �
dt

� �
dlin að Þ;

ð81Þ

and

g¼1�dL
�1
in;1 binð Þ pþ 1�pð Þgbin

� �þq dL
�1
in;1 binð Þ pþ 1�pð Þgbin

� ��dL
�1
im;1 bimð Þgbim

� �
:ð82Þ

In particular, we have V1 bim; binð Þ ¼ V̂1 bim; binð Þ and V1 bð Þ ¼ V̂1 bð Þ
for

V̂1 ¼ qV̂ im þ 1� qð ÞV̂ in: ð83Þ
Note that it makes sense to view the space of quitting strategies

Q as the domain

�Q ¼ b; bð Þ : b 2 0;1ð Þ [ 1f gf g [ bim; binð Þ : bim; bin P bf g
� 0;1½ Þ [1ð Þ2; ð84Þ

representing the space of strategies that use the same quitting
strategy for every task. Note that the two subsets above nontriv-
ially intersect. This has the meaning that the strategy b ¼ b P b
that quits without identifying the learning type obtains the same
payoff as the strategy b ¼ b; bð Þ that identifies the learning type
before quitting, due to our assumption that the cost of identify-
ing the learning type limits to zero in the continuous
approximation.

We formalize the aforementioned assumptions regarding the
approximation of the discrete learning models M nð Þ by the contin-
uous learning model M 1ð Þ. A sequence of model parametrizations
M nð Þf gn2N is said to converge to the continuous model parametriza-
tion M 1ð Þ if:

1. The sequence of functions Lj;n
	 


n>0 monotonically converges
(increasing with respect to n) to Lj;1 in a way such that
Lj;1 T i;nð Þð Þ ¼ B i;nð Þ for all n and i.

2. The parameters d; f a; bð Þ; p; q, and g are shared by all M nð Þf gn2N
and M 1ð Þ.

3. We have Dim i; nð Þ ¼ Din i;nð Þ for all i such that B i;nð Þ < b, and
Dim i;nð Þ < Din i;nð Þ for all i such that B i;nð Þ P b.
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4. The parameters r nð Þ and Cidentify nð Þ are monotonically decreas-
ing to zero such that
r nð Þ 
 Cidentify nð Þ 
 1: ð85Þ

The first condition constitutes the assumption that the student’s
accumulation of knowledge is sufficiently fine, and thus can be
approximated by a continuous knowledge function. The second
condition specifies the shared parameters between the approxi-
mated model parametrizations and the approximating continuous
learning model. The third condition constitutes the assumption
that the speeds of imitation and innovation are too similar to dis-
tinguish in the early stages of learning (b < b), but branch off so
that they become distinguishable in the later stages (b P b). This
branch-off can occur, for example, if the respective speeds of learn-
ing increase over time—as they did in the experimental variant of
Sanchez and Dunning (2020) that measured learning speeds—such
that the rate of increase is faster for imitation than it is for innovation.
And finally, the fourth condition represents the assumption that the
additional payoffs from alternative foraging opportunities are negli-
gible compared to the ecological fitness cost of identifying a given
task’s learning type, which is negligible compared to task payoffs.

This notion of convergence is key to our approach of continuous
approximation. Recall that the optimal payoff of our original dis-
crete learning model is achieved by a policy p whose choice of
action p hð Þ is the same for all histories of the same pair of informa-
tion sets Eb; Ej

� �
. For such a policy p, define

iidentify ¼min i :p b¼B ið Þf g; neither j ruled out yetf gð Þ¼ true;xquit
� �	 


; ð86Þ

the level of experience at which the learning type j is identified. If
the policy p (conditional on learning not having completed) quits
earlier than iidentify, say at level of experience

iquit;u¼min i< iidentify :p b¼B ið Þf g; neither j ruled out yetf gð Þ¼ false;trueð Þ	 

;

ð87Þ
then we say that the quitting strategy of p is representable by
b ¼ B iquit;u

� �
. If the policy p (conditional on learning not having

completed) quits at or later than iidentify, then we define

iquit;im ¼min iP iidentify :p b¼B ið Þf g; j¼ in ruledoutf gð Þ¼ false;trueð Þ	 

;

ð88Þ
and

iquit;in ¼min iP iidentify :p b¼B ið Þf g; j¼ im ruledoutf gð Þ¼ false;trueð Þ	 

;

ð89Þ
which denote the earliest levels of experience i P iidentify at which
tasks of learning type j are quit (conditional on learning not having
completed). Then, we say that the quitting strategy of p is repre-
sentable by b ¼ B iquit;im

� �
;B iquit;in
� �� �

.
Assuming these conditions hold, we have the following approx-

imation result:

Proposition 4. Suppose we have a sequence of model
parametrizations M nð Þf gn2N that converges to the continuous
learning model M 1ð Þ. Let Vn denote the payoff function corre-
sponding to M nð Þ. For every e > 0, there exists N sufficiently large
that for all n P N, we have

Vn pð Þ � V1 b pð Þð Þj j < e ð90Þ
whenever p is representable as b pð Þ.

The intuition is that since the magnitude of the cost of identify-
ing the learning type Cidentify is negligible compare to the main
term, and the additional payoffs from alternative foraging opportu-



P.S. Park Journal of Theoretical Biology 541 (2022) 111031
nities are even more negligible, the main term of the payoff Vn pð Þ—
comprised of payoffs obtained from the task—will asymptotically
dominate. In the proof of Proposition 4, we will construct a func-

tion V̂n bim; binð Þ that can represent this main term. A key step in
the proof that the inequality (90) holds will be that the constructed

function with b placed in both inputs, V̂n b; bð Þ, is continuous at

b ¼ 0, and that the same holds for V̂1 b; bð Þ. This allows us to apply
Dini’s theorem that for a sequence of continuous functions on a
compact space that monotonically converges to another continu-
ous function on the compact space, the convergence is uniform.
Dini’s theorem, a tool we will use several times in this paper, is
the reason we have defined the notion of convergence of model
parametrizations M nð Þ in terms of monotonic convergence of the
knowledge functions Lj;n.

Through Proposition 4, we have essentially reduced the prob-
lem of studying the action components xidentify and xquit in suffi-
ciently fine model parametrizations M nð Þ to looking at the
analogous problem in the continuous approximation M 1ð Þ. We
proceed to analyze the latter in the following subsections to gain
an insight on the optimal choice of whether to quit the status-
quo task in a sufficiently fine model parametrization M nð Þ, i.e.,
with n sufficiently large. The advantage of studying the continuous
learning model M 1ð Þ is that it is significantly more tractable. For
it, we can obtain quite general results about the optimal quitting
strategy b, which can manifest in the evolutionarily optimal esti-
mate of confidence in the approximated model parametrizations
M nð Þ.

3.3. Dichotomy of quitting strategies based on the learning type

We begin by proving that tasks that are known to be learned by
imitation are never optimally quit in the continuous learning
model, as long as Assumption 1 holds and the knowledge function
Lim;1 tð Þ is convex. The intuition is the following. First, the optimal
expected marginal payoff is increasing in the level of knowledge
when the task is known to be learned by imitation, due to Assump-
tion 1. Second, tasks learned by imitation are learned at least as
fast at higher levels of knowledge, by the assumption of the con-
vexity of Lim;1 tð Þ. Finally, tasks learned by innovation in expecta-
tion yield less payoff than tasks learned by imitation. Thus,
quitting at any level of knowledge b > 0 has three negative effects
on expected payoff—reducing the expected marginal payoff, slow-
ing down learning, and replacing the current imitation-learning
task with an on-expectation inferior innovation-learning task—
and is thus suboptimal.

Proposition 5. In a continuous learning model, every b ¼ bim; binð Þ
that maximizes the payoff V1 bð Þ must have bim ¼ 1, as long as
Assumption 1 holds and the imitation-learning knowledge func-
tion Lim;1 tð Þ is convex.

As a result, the problem of finding the quitting strategy
b ¼ bim; binð Þ that maximizes the value function V1;c bim; binð Þ
becomes a one-dimensional maximization problem

max
bin2 b;1½ Þ[ 1f g

V1;c 1; binð Þ: ð91Þ

Note that the convexity of a knowledge function Lj;1 tð Þ constitutes
the assumption that knowledge-learning is (weakly) faster in its
later stages. If true, this may reflect a dynamic where potential
advances in task-specific knowledge are limited by the amount of
previously held knowledge, so that such advances are more likely
to arise from the substantial knowledge base in the late stages of
learning than from the lacking knowledge base in the early stages
of learning. However, the opposite assumption of a concave knowl-
edge function Lj;1 tð Þ, the assumption that knowledge-learning is
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(weakly) faster in its earlier stages, is also plausible. If true, this
may reflect a dynamic where there are more ‘‘low-hanging fruits”
in the early stages of learning than in the late stages. Empirical
studies can help quantitatively investigate aspects of knowledge
accumulation as a function of time: in particular, which of the
two aforementioned dynamics dominates at any given stage of
learning.

Next, we prove an unconditional result: that tasks known to be
either learned by innovation or of ambiguous learning type are
always optimally quit at an intermediate level of knowledge.

Proposition 6. In a continuous learning model, every b ¼ bim; binð Þ
that maximizes the value function V1 bð Þ satisfies bin < 1. Also,
every b ¼ b 2 0;1ð Þ [ 1f g that maximizes the value of the func-
tion V1 bð Þ satisfies b < 1.

The intuition is that these tasks, in contrast to tasks known to be
learned by imitation, come with a risk of unlearnability that
asymptotically dominates as the level of knowledge becomes suf-
ficiently high. As a result, conditional on learning not yet having
completed, the expected payoff from staying the course asymptot-
ically decays to the point of being overtaken by that yielded by
switching to an opportunity-cost task.

3.4. Implications for the evolutionarily optimal estimate of confidence

Consider the evolutionarily optimal estimate of confidence
ĝ Eb; Ej
� �

, defined in (38), for a model parametrization M nð Þ for a
sufficiently large n. Unlike in the continuous limitM 1ð Þ, the model
parametrization M nð Þ is characterized by alternative foraging
opportunities, whose exploitation factors into the payoff function
Vn pð Þ. Thus, the student in the model M nð Þ is predicted to evolve
the optimal estimate of confidence ĝ Eb; Ej

� �
.

The possible values of confidence as a function of the level of
knowledge b (conditional on learning not having completed yet,
b < a) are gim bð Þ; gin bð Þ, and gu bð Þ. Under Assumption 1 and the
assumption that the imitation-learning knowledge function
Lim;1 tð Þ is convex, tasks learned by imitation are never quit. Conse-
quently, there are two possibilities for how a payoff-maximizing
strategy b in the approximating continuous learning model M 1ð Þ
will learn tasks.

The first possibility, corresponding to the case that b ¼ b0, is that
tasks are learned until a level of knowledge b0 and quit if learning
has not completed by then. In this case, the optimal estimate of
confidence ĝ Eb; Ej

� �
, conditional on b < a, is given by gu bð Þ for

b < b0, and tasks are never learned to a higher level of knowledge
than b0. This conclusion seems empirically untenable for two rea-
sons. First, there are many instances of human learning of tasks
that continues on to high levels of experience and knowledge with-
out quitting. Second, the function gu bð Þ has been shown in Propo-
sition 2 to eventually decay to zero for b sufficiently high, which
contradicts the empirical pattern that confidence is generally
increasing in the level of experience (albeit with an intermediate
period of decrease).

The second possibility, corresponding to the case that
b ¼ 1; bimð Þ for bim 2 b;1½ Þ, is that tasks are learned until a level
of knowledge bim, at which point tasks of innovation-learning type
are quit if learning has not completed by then and tasks of
imitation-learning type are learned to completion. Recall that we
have assumed that the additional payoff obtainable from alterna-
tive foraging opportunities, which scale with r, is negligible com-
pared to the cost of identifying the learning type �Cidentify. A
consequence of this assumption is that in the limit n ! 1, the only
possible upside of identifying the learning type is to enable differ-
entiated choices pertaining to quitting that differ between the two
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learning types. Moreover, the negligibility of the cost �Cidentify in
comparison to payoffs from the task necessitate that this cost is
paid at the latest possible time which allows for the optimal such
differentiated quitting strategy to be played: specifically, during
the task attempt iidentify for which bim ¼ B iidentify;n

� �
is payoff-

maximizing among the possible quitting points B i; nð Þf gn2N;n>0.
Because of this, when the strategy of the form b ¼ 1; bimð Þ is

used, the optimal estimate of confidence ĝ Eb; Ej
� �

, conditional on
b < a, is given by gu bð Þ for b < bim and by gim bð Þ for b P bim. Since
gu bð Þ eventually decays to zero and gim bð Þ is monotonically increas-
ing, their piecewise combination (conditional on learning not yet
having completed),

g bð Þ ¼ gu bð Þ if b 6 bin;

gim bð Þ if b > bin;

�
ð92Þ

can be non-monotonic in the empirically observed way: generally
increasing with an intermediate period of decrease.

In order for the evolutionarily optimal estimate of confidence
ĝ Eb; Ej
� �

to be empirically tenable, the payoff-maximizing strategy
seems to need to be of the form b ¼ 1; bimð Þ, and not b ¼ b. To
show the plausibility of the former possibility, we construct model
parameters p (the proportion of unlearnable tasks among all tasks
learned by innovation) and q (the proportion of tasks learned by
imitation among all tasks) for which this is true. We do this by
showing that both p and q can be taken sufficiently small in our
continuous learning model M 1ð Þ so that any strategy maximizing
V1 bð Þ among the subset of strategies of the form b ¼ b quits at an
arbitrarily late level of knowledge b. In particular, this can be done
so that b is at least b, at which point we can appeal to Proposition 5
to see that the best strategy of the form b ¼ b is suboptimal in the
overall set of strategies �Q. Depending on the choice of model
parameters (e.g., see Fig. 2), the decreasing behavior at the tail
end of the component function gu bð Þ can be captured in the piece-
wise function g bð Þ, where it is followed by the monotonic increase
of the component function gim bð Þ. Thus, it is theoretically plausible
that the evolutionarily optimal estimate of confidence conditional
on learning not yet having completed, g bð Þ, is generally increasing
with an intermediate period of decrease.

Corollary 7. Suppose Assumption 1 holds and the imitation-
learning knowledge function Lim;1 tð Þ is convex. In the continuous
learning model, fix all parameter choices except those of p and q.
For every c P 0, there exist choice of p and q such that the
following simultaneously hold.
1. Any quitting strategy b ¼ 1; binð Þ maximizing V1 must satisfy
bin > c: ð93Þ
2. Any quitting strategy b ¼ bmaximizing V1 bð Þ (where we include

the limiting strategy b ¼ b ! 0 in the domain) must satisfy

b > c: ð94Þ

To prove this, we will use the following lemma, a comparative-
statics result which is also of independent interest. It is comprised
of two intuitive facts. First, the payoff value is decreasing in the
proportion p of unlearnable tasks among those learned by innova-
tion, which makes sense because unlearnable tasks yield the min-
imum possible payoff. Second, the payoff value is increasing in the
proportion q of tasks learned by imitation, which makes sense
because these tasks on expectation yield higher payoffs than those
learned by innovation.

Lemma 8. For any fixed bim; binð Þ 2 �Q[ 0;0ð Þf g, the following are
true.
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1. We have
@

@p
V̂1 bim; binð Þ 6 0; ð95Þ

with equality if and only if q ¼ 1.
2. If Assumption 1 holds and the imitation-learning knowledge func-

tion Lim;1 tð Þ is convex, then we have
@

@q
V̂1 1; binð Þ > 0: ð96Þ

3.5. An example showing the plausibility of non-monotonic confidence

We conclude by constructing a family of model parametriza-
tions M nð Þf gn2N whose approximating continuous learning model
M 1ð Þ can be used to show that the confidence function g bð Þ that
evolves in a sufficiently fine model parametrization M nð Þ can plau-
sibly be non-monotonic in the desired way: general increase with
an intermediate period of decrease. The choice of parameters for
M nð Þ is presented in Table 5. Then, the family of model
parametrizations M nð Þf gn2N is approximable by the continuous
learning model M 1ð Þ, which has knowledge functions Lim;n tð Þ
and Lin;n tð Þ that are determined—by the values Dj i;nð Þ and B i;nð Þ—
to be

Lim;1 tð Þ ¼ t if t < 2;
2 t � 1ð Þ if t P 2;

�
ð97Þ

which is convex; and

Lin;1 tð Þ ¼ t: ð98Þ
Also, the threshold for learning-type identification is determined—
by the values Dj i; nð Þ—to be b ¼ 2. Moreover, all other parameters
are shared with the model parametrizations M nð Þ. Plots relevant
to the family M nð Þf gn2N and its approximating continuous learning
model M 1ð Þ are shown in Fig. 2.

We use Mathematica 12.2’s NMaximize function to find a local-
maximizing, potentially global-maximizing quitting strategy
b ¼ 1; bimð Þ 2 �Q for bim � 5:32. That the quitting strategy
b ¼ 1; bimð Þ is local-maximizing and ostensibly global-
maximizing is illustrated in Fig. 2(f)’s plot of the global-
maximum candidates V1 bð Þ for b < 2 and V1 1; bð Þ for b P 2,
within the domain 0 6 b 6 100. Thus, it is plausible that the quit-
ting strategy b ¼ 1; bimð Þ evolves, and consequently, that b ¼ bim is
the cutoff point for the (limiting) piecewise-defined confidence
function g bð Þ that is optimal when using the quitting strategy
b ¼ 1; bimð Þ. As shown in Fig. 2(d), this cutoff point makes the con-
fidence function g bð Þ is non-monotonic in the desired way: general
increase with an intermediate period of decrease. By Proposition 4,
this type of non-monotonic pattern will manifest in the corre-
sponding confidence functions g bð Þ of the model parametrizations
M nð Þ for sufficiently large n, thereby illustrating via example the
theoretical plausibility of this pattern’s evolution.
4. Discussion

Classical Bayesian models are often used to represent task-
learning over repeated attempts, each of which yields an observ-
able payoff (e.g., Savage, 1972). In this paper, we have described
a practical test for rejecting the null hypothesis that a learner is
meaningfully learning from their environmental feedback in the
sense of classical Bayesian updating. The test—essentially a corol-
lary of standard Bayesian statistics—is to check whether the lear-
ner’s estimate of their expected payoff-acquisition ability is
converging to the mean of the past payoff data.
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Fig. 2. Plots of quantities relevant to the family of model parametrizations M nð Þf gn2N and the approximating continuous learning modelM 1ð Þ, presented in Table 5. Panel (a)
plots the knowledge functions Lim;1 tð Þ and Lin;1 tð Þ of M 1ð Þ, panel (b) shows how Lim;1 tð Þ approximates the imitation-learning knowledge functions Lim;n tð Þ of M nð Þ (n ¼ 3 is
pictured), panel (c) shows how Lin;1 tð Þ approximates the imitation-learning knowledge functions Lin;n tð Þ of M nð Þ (n ¼ 3 is pictured), panel (d) plots the evolutionarily optimal
estimate of confidence g bð Þ (conditional on learning not yet having completed) in M 1ð Þ, panel (e) plots the payoff V1 bð Þ of the quitting strategy b ¼ 1; bð Þ for b P b, and
panel (f) increases the domain and additionally plots the payoff V1 bð Þ of the quitting strategy b ¼ b for b < b. The value of the local-maximizing (in fact, ostensibly global-
maximizing) value bin � 5:32 is such that the confidence function g bð Þ when using the quitting strategy b ¼ 1; binð Þ is non-monotonic in the desired way: general increase
with an intermediate period of decrease.

Table 5
An example family of parametrizations M nð Þ of our modified Bayesian model of
ancestral human learning. The continuous learning model approximating this family,
M 1ð Þ, is characterized by a non-monotonic confidence function (see Figure 2). It
follows that for sufficiently large n, the evolutionarily optimal confidence function of
the model parametrization M nð Þ is also non-monotonic.

Example family of model parametrizations M nð Þ of the modified
Bayesian model

1. The time-discount factor is d ¼ 0:9.
2. The marginal payoff function is f a; bð Þ ¼ b=a.
3. The proportion of unlearnable tasks among those learned

by innovation is p ¼ 0:01.
4. The proportion of tasks that are learned by imitation is

q ¼ 0:01.
5. The decay factor of task difficulty values is g ¼ 0:5.
6. The learning period lengths are given by

Dim i;nð Þ ¼
2

nþ1 if i < nþ 1;
1

nþ1 if i P nþ 1;

(
ð102Þ

and

Din i;nð Þ ¼ 2
nþ 1

: ð103Þ

7. The knowledge jump values are given by B i;nð Þ ¼ 2i
nþ1.

8. The expected cost of a time-measurement experiment to
identify the learning type is �Cidentify for Cidentify ¼ 1

nþ1.
9. The fraction of time of task attempts that can be devoted

to alternative foraging opportunities is given by r ¼ e� nþ1ð Þ .
10. The distribution w of the marginal payoffs of alternative

foraging opportunities is arbitrary.
11. The distributions u a; bð Þ can be arbitrarily chosen, as long

as we have E u a; bð Þ½ � ¼ f a; bð Þ.
12. As we have assumed throughout the paper, the expected

cost of retaining a payoff observation, �Cretain, has suffi-
ciently high magnitude Cretain so that payoff data are never
retained: e.g., large enough so that the inequality (35)
holds.
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However, there is extensive empirical evidence of people’s per-
sistent failures to meaningfully learn from high-variance environ-
mental feedback. This manifests in cognitive biases like
underinference, the hard-easy effect, and recurrently non-
monotonic confidence. Our test thus suggests that we should con-
sider rejecting the null hypothesis that humans by default mean-
ingfully learn (in the sense of classical Bayesian updating) from
high-variance payoff data. Indeed, the version of the classical Baye-
sian model we have presented in Subsection 2.1 is specialized to
repeated task-learning and incorporates the realistic assumption
that a cognitive biological agent bins observations into finitely
many bins. Under this assumption, tasks that yield low-variance
payoff data are easily learned via deterministic causal inference,
because it is likely that nearly all payoff data will fall in a single
observational bin. However, learning tasks that yield high-
variance payoff data requires a large number of observations for
classical Bayesian inference to reliably learn the true state. Over-
committing attention to meaningfully retain a large number of
high-variance observations could result in onerous ecological fit-
ness costs, which we hypothesize is the causal mechanism behind
the proposed non-selection of classically Bayesian learning strate-
gies in settings of high-variance payoff data.

Next, we have modified the classical Bayesian model to repre-
sent ancestral humans’ learning environment in a way that can
evolutionary explain the puzzling predictive inadequacies of classi-
cal Bayesian updating models (when applied to humans). When
the ecological fitness cost of retaining payoff data is high, the opti-
mal strategy does not retain them, in contrast to the Bayesian prin-
ciple that free information should always be taken. The optimal
strategy then instead relies on setting-specific sources of informa-
tion, as theorized by the ecological rationality hypothesis. The
informational setting of ancestral human learning is hypothesized
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by cultural evolutionary theory to be one where social learning of
task-specific knowledge is paramount.

Our modified Bayesian model seeks to represent this hypothe-
sized learning environment. In it, a student attempts to learn a
fitness-relevant task via attempted imitation of a role model, with
the option of switching between tasks and role models (between
task packages). The main term of the student’s payoff function is
comprised of payoffs yielded by task attempts, which are obtained
in the form of high-variance probabilistic lotteries and thus unfea-
sible to meaningfully retain. However, the payoff function also has
a secondary term comprised of the ecological fitness cost of iden-
tifying the learning type (we hypothesize that this is accomplished
via a mental time-measurement experiment to distinguish learn-
ing speeds), as well as a tertiary term comprised of additional pay-
offs obtained by devoting a fraction of a task attempt’s time to
opportunistically exploiting alternative foraging opportunities
instead.

Optimal exploitation of alternative foraging opportunities
requires an accurate estimate of the task’s expected marginal pay-
off conditional on the known information, which—in our hypothe-
sized domain of high-variance, difficult-to-retain payoff data—is
comprised of the task’s learning type, if known (successful imita-
tion versus de facto innovation); and their level of knowledge on
the task. This evolutionarily optimal estimate of the expected mar-
ginal payoff—of the student’s confidence at the task—is a piecewise
function of their level of experience, whose piecewise cutoff point
is determined by the optimal point at which tasks learned by de
facto innovation are quit. In order for this confidence function to
not be always monotonically increasing, it is necessary (as long
as Assumption 1 holds) that not all attempted imitation learning
is successful: that a positive proportion of tasks are learned instead
via de facto innovation.

Moreover, we demonstrate that this confidence function can be
non-monotonic in the specifically desired way: general increase
with an intermediate period of decrease. This specific non-
monotonic pattern, which we have demonstrated for a tractable
subfamily of model parametrizations, arises because of the follow-
ing interplay. Learning via de facto innovation while attempting to
imitate a role model is not guaranteed to complete in finite time,
because the task may be unlearnable. On the other hand, this risk
does not exist when the student learns from authentically imitat-
ing a role model, since conditional on the imitation being authen-
tic, the role model must have successfully learned the task
beforehand. The student’s optimal estimate of the task’s expected
marginal payoff (confidence) is monotonically increasing in the
level of knowledge when it is guaranteed to be learnable in finite
time, but eventually decays to zero when it may instead be impos-
sibly difficult. We thus hypothesize that the evolutionarily optimal
estimate of the expected marginal payoff can be non-monotonic
due to its piecewise definition. The increasing, then decreasing
portion of the expected marginal payoff function is conditional
on the fact that the task may be unlearnable. The final increasing
portion is conditional on having ruled out the risk of unlearnability,
because the tasks to which this risk is exclusive—those learned by
innovation—should optimally be quit at an intermediate level of
knowledge.

In short, we hypothesize that the desired pattern of recurrent
non-monotonicity evolved due to a particular interplay between
the ecologically rational estimate of task-specific confidence and
the ecologically rational strategy of task/role-model turnover. A
necessary condition for this interplay is the dichotomy between
tasks learned by imitation (for which the risk of unlearnability
does not occur) and those learned by innovation (for which it
does).

We emphasize that the aforementioned subfamily of model
parametrizations was specifically constructed to demonstrate the
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theoretical plausibility of the desired non-monotonicity in an ana-
lytically tractable subset of the family of all parametrizations of our
model. We anticipate that the full subset of model parametriza-
tions whose evolutionary optimal estimate of confidence is recur-
rently non-monotonic in the desired way will be larger.

We are agnostic about the precise combination of adaptive and
biological mechanisms by which the ecologically rational strategy
(of task-payoff estimation and task/role-model turnover) in an
environment of social task-specific learning was achieved. Plausi-
ble adaptive mechanisms relevant to this strategy include genetic
evolution and contemporary, likely social learning. Given that peo-
ple often fail to adapt their decision-making to settings of unam-
biguous individual learning with zero ecological fitness costs of
retaining payoff data—such as those of the experiments of
Sanchez and Dunning (2018, 2020)—we propose that genetic evo-
lution plays at least a partial role in the sense of the ecological
rationality hypothesis. On the other hand, cultural evolutionary
theory implies that contemporary social learning may also play
at least a partial role, especially given the sheer variation of rele-
vant parameters among the myriad environments and groups
humans have inhabited and moved between. The biological mech-
anisms through which ecologically rational strategies of social
task-learning are implemented are likely neurological, but may
also be partly hormonal. Future research on both the adaptive
and the biological mechanisms relevant to strategies of task-
payoff estimation, task/role-model turnover, and other aspects of
social task-learning would potentially be fruitful.

4.1. Implications

Our model proposes to help explain in an interwoven way two
related topics: the evolutionary explanation of cognitive biases,
and of why people underuse high-variance environmental feed-
back in the selection of role models. It does so by incorporating—
into the general framework of Bayesian decision theory—the
cultural-evolutionary-theoretic hypothesis that the primary infor-
mational setting of ancestral human learning was the social learn-
ing of task-specific knowledge; as well as the insight of the
ecological rationality hypothesis that the method by which biolog-
ical cognitive agents learn from information is constrained in a
setting-specific manner, such as by their ancestral environments’
ecological fitness costs of overcomitting attention.

First, our model demonstrates the evolutionarily plausibility of
empirically robust cognitive biases regarding confidence, and
informs us of potentially useful necessary conditions and sufficient
conditions for these patterns to evolve.

1. Task-specific confidence can persistently deviate from the envi-
ronmental feedback, in a way that conforms to the hard-easy
effect. This requires that the ecological fitness cost of retaining
payoff data is nonzero, and is guaranteed to occur if the cost is
sufficiently high.

2. Task-specific confidence can be recurrently non-monotonic in
the desired way: general increase with an intermediate period
of decrease. This requires (as long as Assumption 1 holds) that
a positive proportion of attempted imitation learning is
unknowingly implemented as de facto innovation learning,
and is guaranteed to occur in our constructed subfamily of
model parametrizations.

In the course of producing these desired conclusions while aim-
ing to maintain model parsimony, our work has identified a rela-
tively short list of environmental parameters that are potentially
key to predicting certain aspects (i.e., task-specific confidence
and strategies of task/role-model turnover) of descriptive human
learning of a high-variance-payoff task over repeated attempts.
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Also, our model augments our understanding of how role-
model-selection strategies that persistently fail to meaningfully
learn from certain environmental feedback evolved. Cultural evo-
lutionary theory hypothesizes that once some capacity for cultural
transmission evolved, natural selection would have favored
increasingly effective strategies for cultural learning (Henrich,
2015). In this hypothesis, ancestral humans somehow achieved
the threshold level of cultural-learning capacity at which cumula-
tive cultural evolution becomes the primary selection pressure act-
ing on cognition. After crossing this threshold, ancestral humans
with a better-than-average capacity for cultural learning would
have been favored by natural selection, which would then further
amplify cumulative cultural evolution. Thus, gene-culture coevolu-
tion caused an autocatalytic cycle of more effective cultural-
learning strategies and greater cumulative cultural evolution. A
hypothesized example of such an effective cultural-learning strat-
egy is selective social learning: the strategy of learning from pref-
erentially chosen role models who are likely to possess better-
than-average knowledge (Boyd and Richerson, 1985).

However, empirical studies have uncovered what at first appear
to be surprising suboptimalities for the role-model selection
strategies that humans have actually evolved. For example, stu-
dents are substantially inaccurate in assessing the help provided
by their teachers (Insler et al., 2021; Weinberg et al., 2009). Also,
people are persistently vulnerable to maladaptive advice from role
models (de Francesco, 1939; Uscinski et al., 2016; Gladwell, 2019),
such as that regarding female genital cutting (Jones et al., 1999;
Wagner, 2015), funerary cannibalism (Lindenbaum, 2001),
unfounded shamanistic predictions (Singh, 2018), membership in
an exploitative cult (Galanter, 1989), and medical pseudoscience
(Scheirer, 2020). This body of evidence begs a question: why did
ancestral humans evolve to not meaningfully learn from certain
environmental observations relevant to the accurate assessment
of role-model quality? One might presume that an informationally
rational social learner would base their role-model selection on the
payoff data of potential role models, and on the learner’s own pay-
off data in the process of imitating a given role model.

Our theory contributes to explaining this phenomenon by spe-
cializing the ecological-rationality framework (in our setting, by
incorporating high ecological fitness costs of retaining environ-
mental observations) to not only the estimation of task-specific
payoffs, but also the selection of tasks/role models. Specifically,
in our model, these ecological fitness costs can cause role-model-
selection strategies (in our model, task/role-model turnover strate-
gies which determine when to quit the status-quo task package for
a new one) based on retaining such observations to be informa-
tionally inefficient. Classically Bayesian-rational strategies, such
as those of role-model selection, are much more likely to be subop-
timal when environmental observations occur with high variance.
Also, our model proposes explicit mechanisms by which ancestral
humans—even in the absence of feasibly retainable environmental
feedback—could still have plausibly evolved on-average selective
role-model-selection strategies which relied instead on setting-
specific sources of information (e.g., the student’s level of knowl-
edge and their speed of learning). By hypothesizing precisely
how people’s ostensibly suboptimal role-model-selection strate-
gies may actually be potentially ecologically rational, our model
adds to cultural evolutionary theory’s understanding of its hypoth-
esized on-average selective social learning.

To corroborate the hypothesis that humans achieved on-
average selective social learning even for high-variance-payoff
tasks, our work highlights the importance of identifying and inves-
tigating the relevant mechanisms of selective social learning,
which would need to be robust in the face of high ecological fitness
costs of overcommitting attention. One such mechanism, hypothe-
sized by our model, is the potential dependence of task/role-model
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turnover strategies on setting-specific information, which can
inform turnover even in the absence of retained environmental
feedback. Another example of such a mechanism is the conformist
or reputation-based nature of human role-model-selection strate-
gies (Cavalli-Sforza and Feldman, 1981; Boyd and Richerson,
1985; Henrich, 2009). To illustrate, descriptive human role-
model-selections rely at least partially on granting prestige status
to role models based on popularity rather than on the relevant
environmental feedback (Henrich and Gil-White, 2001).

These two mechanisms—reliance on setting-specific informa-
tion and conformist role-model-selection strategies—are not com-
peting explanations for on-average selective social learning in
settings of high-variance environmental feedback. In fact, the latter
mechanism may require the former, because in order for con-
formist role-model-selection strategies to facilitate selective social
learning in the absence of environmental feedback, the prestige
status granted to a popular role model may need to have had incor-
porated other helpful information at some point in the past. If this
information could not feasibly have been environmental feedback,
then it must have been setting-specific information in the comple-
ment of environmental feedback. Our theory proposes that the stu-
dent’s level of knowledge and their speed of learning can provide
such setting-specific information to achieve an on-average selec-
tive strategy of task/role-model choice, even when retaining envi-
ronmental feedback is unfeasible.

Regardless of whether our model is a good model of ancestral
humans’ learning environment, our test for verifying whether a
learner is meaningfully incorporating their environmental obser-
vations into their decision-making—in the sense of classical Baye-
sian inference—may be general enough to have various potential
applications. To illustrate, public-policy plans are often aimed at
least partially at improving societal well-being. Arguably, the dom-
inant paradigm with which this goal is approached is the assump-
tion that each person’s decisions (e.g., the price they are willing to
pay or take for an item) reveal an informationally rational aggre-
gate of their private observations relevant to their well-being
(e.g., Harberger, 1971). Policymakers thus aim to economize on
the cost of gathering copious, potentially idiosyncratic information
by relying on each person’s purported aggregate of their individual
observations encapsulated by their decisions. The reliability of this
information-gathering strategy is determined by whether each
person is actually aggregating their observations in an informa-
tionally rational way.

However, as we have seen above, an extensive body of empirical
evidence suggests that this assumption of informational rationality
may not hold true when the relevant observations occur with high
variance. Moreover, we have demonstrated the plausible ecological
rationality of empirically robust cognitive biases by constructing
an evolutionary model of social learning of task-specific knowl-
edge, hypothesized by cultural evolutionary theory to be the pri-
mary mode of ancestral human learning. Our work thus
contributes to raising the following research question: in which
situations do public-policy plans aimed at improving societal
well-being under the assumption of people’s informational
rationality actually succeed in doing so? It also begs a potentially
important follow-up question: can public-policy plans be
improved by replacing the assumption of informational rationality
with the more empirically tenable assumption of ecological
rationality? Domains of high-variance payoff data, such as gam-
bling, may potentially be better served by the latter assumption
over the former.

Another preliminary point is that informational rationality may
not be an unattainable goal for human cognition. The decision-
making of a person who is both trained in statistical methods
and has the habit of applying this training to their own observa-
tions may be informationally rational. It may thus be fruitful not
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only to question the default assumption of people’s informational
rationality, but also to explore the potential upside of practical
statistics training: such as the habit of keeping track of the mean
past payoff data, as implied by our test for informational rational-
ity. This statistical skill can be both a possible remedy to the poten-
tially detrimental misassumption of informational rationality, and
a facilitator of improved judgement and role-model selection at the
individual level. One potential such benefit is dissuading people
from socially learning the practice of repeated gambling on
negative-expected-value lotteries.
4.2. Model limitations and directions for generalization

Our model is almost certainly an oversimplification of descrip-
tive social task-learning, which in general involves extremely com-
plex social dynamics. We non-exhaustively list several ways in
which this is the case. We also note potential remedies, in the form
of potential directions for generalization. Thereby generalizing our
model may potentially enable it to better represent descriptive
social task-learning and thereby better explain the relevant empir-
ical data. We thus propose our model as a barebones representa-
tion of social, knowledge-based task learning, on which more
sophisticated variants can potentially be built in the future (as-
suming, of course, that the thrust of the model’s story is essentially
correct).

First, our model’s conclusion that the student retains no infor-
mation from payoff data is oversimplified. Realistically, people
can plausibly retain easy-to-remember aspects of their past payoff
data, which may include the maximum and minimum payoff val-
ues observed so far. People may also temporarily retain a small
number of recent payoff data, even when they fail to draw on more
distant past data that a Bayesian-updating belief would incorpo-
rate. The realistic assumption that a small number of recent payoff
observations may inform decision-making can account for addi-
tional empirically documented patterns in descriptive human
learning, such as reinforcement learning (Nax and Perc, 2015).

Also, our model’s assumption that knowledge affects decision-
making through a unidimensional quantification—the level of
knowledge b—is an oversimplification. There is no reason to
believe that knowledge is unidimensional, an assumption we have
used for the sole sake of tractably showing the evolutionary plau-
sibility of recurrently non-monotonic confidence. In fact, given the
sheer multifaceted nature of knowledge, we hypothesize that
knowledge in general should affect decision-making through a
more faithful, multidimensional quantification.

Moreover, our model’s two-dimensional spectrum of task pack-
ages—assumed in our model to be comprised of a unidimensional
knowledge-based difficulty level and a binary learning type—is
an oversimplification. First, as we have noted above, knowledge
is likely experienced as a multidimensional quantity, which makes
it likely that a unidimensional knowledge-based classification of
tasks is an oversimplification. Second, when a student attempts
to learn from a role model, their method of learning would in gen-
eral be placed somewhere on the spectrum between full imitation
and full innovation. Third, our two-dimensional spectrum is unli-
kely to capture all the relevant variations in the task-learning pro-
cess; idiosyncrasies of the task itself, of how the student learns, of
how the teacher imparts (or ostensibly imparts) knowledge, and of
the degree to which learning is student-directed as opposed to
role-model-directed (for example, whether the student seeks out
the role model for a task they already had in mind) may also influ-
ence the learning process. In particular, potentially consequential
quantities like the speed of learning may vary with respect to char-
acteristics of the task package that are not captured by this two-
dimensional parametrization.
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Finally, our model’s assumption that task packages are drawn i.
i.d. from a fixed probability distribution is an oversimplification.
For one thing, the i.i.d. assumption on our model—added for the
sake of tractability—ignores the likely correlations between differ-
ent task packages due to similarities in either the teachers or the
underlying tasks. For another, descriptive selection of tasks/role
models is not well-modeled by an i.i.d. draw from a fixed distribu-
tion; it is better described as an intrinsically social process that
involves dynamically occurring interactions between other stu-
dents and other potential role models, such as via conformist
role-model selection strategies (e.g., prestige status). Such a
multi-agent interaction would need to be modeled by a complex
game-theoretic model, rather than a comparatively tractable Baye-
sian decision-theoretic model (which can be solved by dynamic-
programming-type methods under quite non-restrictive condi-
tions). Regardless, only a model in the former formulation could
veridically represent the relevant social dynamics, such as coordi-
nation and punishment.

4.3. Empirical tests

We sketch an empirical program to study descriptive human
learning in the formulation of our theory. One of the primary goals
of such a program would be the eventual corroboration or falsifica-
tion of the theory itself. However, the program—by pursuing theo-
retical formulation—may also potentially yield other advances in
the psychological sciences’ understanding of descriptive human
learning and decision-making, especially since the field is arguably
held back by a shortage of theoretical formulation at the moment
(Muthukrishna and Henrich, 2019).

First, we propose the empirical estimation of the true parame-
ters of various social task-learning environments. Several parame-
ters which we have proposed to be evolutionarily relevant include
the proportion of attempted imitation that is successful, the pro-
portion of unlearnable tasks among those that are learned by
unsuccessful imitation (de facto innovation learning), the speed
of each type of learning, ecological fitness costs of various action
choices, and the situation-specific marginal payoff from a task.
Empirical studies of how these parameters varied across both
ancestral and contemporary human learning environments, as well
as studies of whether they can predict the respective evolution of
task-specific confidence and strategies of task/role-model turn-
over, would potentially contribute to a more robust and granular
understanding of human cognition. Such studies would also allow
us to test whether our model can veridically represent ancestral
and contemporary human learning environments.

Estimates of such model parameters in ancestral environments
would often be necessarily crude, given the general lack of archae-
ological and other relevant forms of evidence. As a start, one may
feasibly expect ancestral humans who lived in areas where food
is complicated to obtain (e.g., tundra)—when compared to those
who lived in areas with easy food availability (e.g., rainforests)—
to either have a generally lower-valued payoff function, a task dif-
ficulty distribution biased towards higher difficulty values, or a
greater probability of unlearnable tasks. Empirical studies can then
test whether these hypothesized parameter differences in the
ancestral environments affect strategies of task-payoff estimation
and task/role-model turnover in the ways predicted by our model,
such as Proposition 1’s prediction that task-specific confidence
(conditional on learning not yet having completed) decreases in
the proportion of unlearnable tasks. Such efforts, however, may
be inevitably limited, due to the multitude and granular variation
of the model parameters, the difficulty of measuring many of them
for ancestral environments, and the uncertainty in whether ecolog-
ically rational social task-learning strategies were selected via
genetic evolution.
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More immediately promising would be applying such efforts to
investigating the social task-learning of evolutionarily relevant for-
agers whose lifestyles are hypothesized to be faithful continuations
of their ancestors’, such as the Hadza people (Marlowe, 2010; Lew-
Levy et al., 2021). Such efforts will not be confounded by our cur-
rent uncertainty in whether the adaptive mechanism by which
ecologically rational social task-learning strategies were selected
was genetic evolution or contemporary learning. We propose
empirical studies of the social task-learning of such peoples as a
potentially fruitful first step in testing whether our model (or a suf-
ficient generalization) is a good model of descriptive human learn-
ing. If the answer to this question is affirmative, empirical
researchers can proceed to study learning environments with gran-
ular variations in model parameters, genetic-evolutionary back-
ground, and cultural-evolutionary background. Doing so may
further corroborate or potentially falsify our model, determine
the role of genetic evolution and contemporary learning in the
selection of its ecological rational strategies, and investigate the
scientific consequences of any such findings.

For instance, suppose that our model is a good model of descrip-
tive human learning, and that the adaptive mechanism by which
its ecologically rational strategies were selected was at least par-
tially genetic evolution. Then, our model may provide a way in
which otherwise mysterious aspects of ancestral human learning
environments can be studied indirectly: via empirical studies (of
task-specific confidence and task/role-model turnover) investigat-
ing people living today. Specifically, empirical data of these psy-
chological aspects—which are comparatively easy to obtain—can
narrow down the feasible region of model parametrizations that
can evolutionarily explain the data of such studies. This would
then potentially inform us of characteristics of the respective
ancestral human learning environments that would otherwise be
difficult to discern. On the other hand, suppose that the adaptive
mechanism by which the model’s ecologically rational strategies
were selected was at least partially contemporary cultural learn-
ing. Then, our model may similarly enable certain aspects of a cul-
tural group’s social task-learning environment to yield
consequences about certain aspects of their decision-making, and
vice versa. Such a bridge between different objects of study can
increase the number of ways we can study each, and thereby con-
tribute to a more comprehensive literature on human cognition.

It is evident that in all lines of inquiry described above, empirical
data from contemporary people’s learning (including, but not lim-
ited to social task-specific learning) could be crucial. Such data
can be obtained from lab studies and field studies of the relevant
psychological aspects. A prediction of our theory is that these psy-
chological aspects may be evolutionarily affected by independent
variables that are specific to social, knowledge-based learning and
not to individual learning: even when in ostensibly unambiguous
settings of individual learning with costless environmental feed-
back. Therefore, it may be potentially beneficial for empirical stud-
ies of these psychological aspects—even in domains of individual
learning—to keep track of potentially social-learning-specific inde-
pendent variables like the level of knowledge, the speed of learning,
and whether the method of learning is imitation or innovation.

Another prediction is that two psychological aspects in
particular—task-specific confidence and task/role-model turn-
over—are evolutionarily related. We thus propose that they should
be studied concurrently. In particular, empirical studies should
look for our theory’s hypothesized, potentially discernable piece-
wise cutoff point (a ‘‘phase transition”) in the student’s task-
specific confidence, which should exist and coincide with the iden-
tification of the learning type. They should then investigate pre-
cisely when this cutoff point—as well as task/role-model
turnover—occurs, which should vary with respect to whether the
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student’s learning method is authentic imitation or de facto inno-
vation in ways that are elucidated by our model.

Lab studies would do well to incorporate the excellent experi-
mental design of Sanchez and Dunning (2018, 2020), which is
effective at studying task-specific confidence over the course of
learning a high-variance-outcome task over repeated attempts.
To arrive at the setting of our model, the Sanchez–Dunning exper-
imental design could be modified to represent an unambiguous
setting of task-specific learning via attempted imitation. Ideally,
this modified design would achieve a dichotomy between success-
ful imitation and de facto innovation (e.g., by having some role
models teach via the Socratic method, and other role models pro-
vide actually helpful knowledge: but not to the point of trivializing
task learning), include unlearnable tasks (e.g., by having payoffs of
unlearnable tasks occur with full randomness that cannot ever be
predicted), grant the option of drawing a new task and/or role
model, and—just as in the original experiment—offer an
incentive-compatible reward. Such an experimental design could
then essentially be a parametrization of our learning environment,
albeit an artificial one and not an ancestral one. These artificial
model parameters, the genetic and cultural-evolutionary back-
ground of the experimental subjects, and other potentially relevant
treatment effects (independent variables) can then be varied across
studies to test the quantitative predictions of our theory regarding
task-specific confidence and task/role-model turnover.

Also, on top of such an artificial model parametrization, empir-
ical researchers could add other hypothesized cultural-
evolutionary-theoretic mechanisms that would endow its learning
environment with an unambiguously social context. Key examples
of such mechanisms include a nontrivial amount of choice in the
selection of new tasks and/or role models, the ability to observe
the number of other students that have chosen each task/role
model, and the ability to exchange information with other students
and role models. The inclusion and veridical representation of such
mechanisms could be key to investigating cultural-evolutionary-
theoretic dynamics that are not fully captured in a decision-
theoretic setting such as that of our model.

In addition, empirical researchers could pursue field research of
social task-specific learning, especially pertaining to tasks with
high-variance payoffs. In contrast to the lab research proposed
above, field research would allow for a more veridical representa-
tion of social task-specific learning, at the potential expense of
experimental controls and granular variation of the independent
variables. Doing such field studies in a manner that comprehen-
sively measures all data relevant to our model would be undoubt-
edly challenging, given that it may need to keep track of every
student and role model’s interactions, respective levels of experi-
ence, respective speeds of learning, respective payoff data, and—if
technologically feasible—informative measurements of knowledge.
Even if all such data were collected, there may additionally need to
be some degree of nontrivial inference from the data to discern cer-
tain model parameters: for example, which packages of tasks and
role models were learned via successful imitation rather than de
facto innovation. Future advances towards improving and widen-
ing the collected data in such field studies would potentially help
on these fronts.

In both field studies and lab studies investigating descriptive
social learning of high-variance-payoff tasks, empirical researchers
would do well to take into account the sheer diversity in potential
subjects’ psychological profiles and treatment effects, which should
ideally be recorded as comprehensively as possible in order to keep
track of all potential independent variables (Yarkoni, 2020). In fact,
consider the following two hypotheses. First, subjects who aremost
likely to be studied by lab research—individuals of Western, Edu-
cated, Industrialized, Rich, and Democratic (WEIRD) societies—are
in important ways psychological outliers relative to the rest of the
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human population (Henrich et al., 2010). Second,much of the genus
homo’s two-million-year existence was spent in the non-WEIRD
lifestyle ofmobile foragers (Townsend, 2018). A consequence is that
a comprehensive understanding of descriptive human learningmay
require studying the social task-learning of mobile foragers whose
lifestyles are faithful continuations of their ancestors’: and studying
that of non-WEIRD peoples in general. To their credit, field studies
are already doing so extensively (e.g., Kline et al., 2013; Lew-Levy et
al., 2017, 2021; Lew-Levy & Boyette, 2018; Salali et al., 2019, 2016;
Schniter et al., 2015). It may potentially be fruitful to have more of
the relevant lab studies, such as the Sanchez–Dunning experimen-
tal design (2018, 2020), to also be targeted at individuals of
non-WEIRD societies.

Empirical tests of our model’s assumptions themselves would
be potentially valuable for the purpose of assessing whether it is
a good model of ancestral learning environments. The program to
investigate whether social task-learning comprised the primary
selection pressure of ancestral human learning is not new. It is a
vibrant line of inquiry that constitutes the center of the debate
between cultural evolutionary theory and its competing hypothe-
ses (Baimel et al., 2021), whose resolution has potential implica-
tions for other debates: like that regarding the hypothesized
evolution of moral, norm-based preferences (Capraro and Perc,
2021). Our model contributes new insights that can add to this
program. Most notably, it demonstrates that cultural evolutionary
theory can explain otherwise puzzling cognitive biases like recur-
rently non-monotonic confidence. The fact that descriptive human
learning is thereby cognitively biased—even in unambiguous set-
tings of individual learning with costless environmental feed-
back—grants plausibility to cultural evolutionary theory’s
hypothesis that the primary selection pressure on ancestral human
cognition was social, knowledge-based task-learning.

Also, our model identifies several potentially relevant mecha-
nisms in a hypothesized learning environment of social,
knowledge-based task-learning: for example, the classification of
attempted imitation learning into successful imitation and de facto
imitation learning, as well as the risk of an unlearnable task in the
case of the latter. In particular, it explicitly posits the predictive
importance of ecological fitness costs of overcommitting attention,
which determine whether the evolutionarily optimal strategy of
selective role-model selection meaningfully learns from the rele-
vant payoff data. Our model’s formalization of these parameters
can augment empirical assessments of cultural evolutionary theory
by informing a potentially fruitful avenue of research: specifically,
the estimation of these parameters for various, potentially ances-
tral learning environments; combined with an investigation of cul-
tural evolutionary theory’s relevant predictions and of the degree
to which these predictions hold. One such prediction from our
model (and suitable generalizations of it) would be that when
the ecological fitness cost of retaining payoff data is sufficiently
high, the optimal strategy of task/role-model turnover would not
retain it, and instead rely on other sources of information that
are specific to the hypothesized setting of social, knowledge-
based task-learning.

A stronger claim of our theory is that the costly cognitive mech-
anism by which ancestral humans distinguished successful imita-
tion from de facto innovation was a mental time-measurement
experiment, to distinguish their respective learning speeds. Our
hypothesized existence of such mental time-measurement experi-
ments is a special case of the generally theorized mental evidence-
sampling process preceding a decision (e.g., Pleskac and
Busemeyer, 2010). Empirical tests of our assumption that the
speed of imitation is faster than that of innovation, as well as of
our assumption that human learners can and do differentiate
between the two speeds via mental time-measurement, could help
probe the plausibility of our theory.
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Other plausible hypotheses for the cognitive mechanism by
which the student differentiates between imitation and innova-
tion include a costly-to-observe signal effused by the teacher, or
one effused by the accumulated task-specific knowledge at any
given point of time. Our model can be suitably modified to use
such an alternative hypothesis for this cognitive mechanism. In
fact, incorporating such an alternative hypothesis would make
the model considerably simpler, since it would not need to con-
sider variation in learning speeds. However, a disadvantage of
such an alternative hypothesis is that empirically testing it may
be less straightforward, at least without relying on neuroscientific
methods. We have thus not pursued these alternatively hypothe-
sized mechanisms in the present paper, although we do not rule
their veracity out and hope that they may be feasibly testable in
the future.

More generally, it may be plausible that future developments in
our neuroscientific knowledge will enable a detailed mechanistic
understanding of descriptive human learning. While remarkable
empirical advances have been made on this front, our current level
of neuroscientific understanding has a long way to go, given the
extreme complexity of human cognition and the relative adoles-
cence of the field of neuroscience. However, our sketches of poten-
tial empirical studies demonstrate that even at our currently
limited level of understanding of descriptive human learning, sub-
stantive progress—towards testing our theory and in general—may
be plausible. Moreover, evolutionary-theoretic hypotheses like
those of our model can inform the design, data collection, and anal-
yses of such empirical studies, and thereby partially compensate
for the preliminary nature of the current neuroscientific literature.
Given the immediate and far-reaching upside of a comprehensive
understanding of descriptive human decision-making, we propose
that the eventual benefits of a cumulative program of research
working towards this goal (even prior to a full neuroscientific
understanding) may outweigh the costs.
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Appendix A. Proofs

A.1. Proof of Proposition 1

Note that
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Recall that g 2 0;1ð Þ, and that f �; bð Þ is a continuous, non-negative
function satisfying f b; bð Þ ¼ 1. It follows that the integral
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is strictly positive, since we can find a positive-measure subset
b; bþ e½ � � b;1½ Þ on which the integrand
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is strictly positive.
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as desired. In particular, gqy
bð Þ is strictly monotonically decreasing

in y, which yields the inequalities (45) as a corollary.

A.2. Proof of Proposition 2

To show part (a), we check that

d
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is positive. First, we apply a change of variables to obtain
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This equality can also be deduced from the memorylessness prop-
erty of the exponential distribution q0,

q0 að Þ ¼ log
1
g

� �
ga: ð112Þ

Then, we differentiate the expression (111) with respect to b by
Leibniz’s integral rule, which yields
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Recall that g 2 0;1ð Þ, and that @
@b f bþm; bð Þ > 0 by Assumption 1.

Thus, the expression (113) is an integral of a positive and continu-
ous function
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over 0;1½ Þ. Just as in Appendix A.1, we can find a positive-measure
subset of 0;1½ Þ on which the integrand is lower-bounded by a pos-
itive constant. Thus, the integral (113) is positive, as desired.

To show part (b), observe that
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where qcond;a>b
y að Þ denotes the conditional distribution of qy condi-

tional on a > b. Its p.d.f. is given by
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Observe that the conditional distribution qcond;a>b
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on a ¼ 1 as b ! 1. Equivalently, qcond;a>b
y places probability con-

verging to zero on the subset of finite difficulty values, b;1ð Þ, as
b ! 1. Since f 1; bð Þ ¼ 0, we can apply the dominated convergence
theorem to conclude that
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To show part (c), we use the quotient rule and Leibniz’s integral rule:
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and thereby the entire expression (119) for d
db gqy

bð Þ, is negative for

all sufficiently large b, as desired.

A.3. Proof of Lemma 3

The proof of this lemma solely uses the fact that the unique
solution
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to a nondegenerate system of equations
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is given by
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Substituting the suitable expressions for the quantities a; b; c; d; e,
and f completes our proof. Note that

g ¼ ad� bc: ð124Þ
A.4. Proof of Proposition 4

Choose N large enough that the expected payoff deviation due
to the procurement of alternative foraging opportunities in the
model parametrization M nð Þ is less than e=3 for all n P N. By pos-
sibly making N larger, the expected payoff deviation due to time-
measurement experiments in the model parametrization M nð Þ is
also less than e=3.

Furthermore, by possibly making N even larger, the difference
between the expected total payoff Vn pð Þ in the model parametriza-
tion M nð Þ—henceforward excluding deviations due to side oppor-
tunities and time-measurement costs—and that of its
approximating continuous learning model M 1ð Þ, given by
V1 b pð Þð Þ, is less than e=3 for all n P N. To show this, we may as
well assume that the task payoff of each learning period (say, the
kth one) of the model parametrization M nð Þ, given by

f a kð Þ; b kð Þð Þ
Z T kþ1ð Þ

T kð Þ
dtdt; ð125Þ

is obtained as a flow payoff of

dt f a kð Þ; b kð Þð Þdt: ð126Þ
We then define the functionbVn bim; binð Þ ¼ qbV im;n þ 1� qð ÞbV in;n ð127Þ

in terms of the function bV im;n; bV in;n : 0;1ð Þ [ 1f gð Þ2 ! 0;1½ Þ,
defined by
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By construction, the functions bVn have the property that

Vn pð Þ ¼ bVn b; bð Þ ð137Þ
for a policy p represented by b ¼ b, and

Vn pð Þ ¼ bVn bim; binð Þ ð138Þ
for a policy p represented by b ¼ bim; binð Þ.

Under the assumption that V̂1 and all functions bVn are contin-

uous at b ¼ 0, we will complete our proof. We have that bVn
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�Q [ 0;0ð Þf g ¼ b; bð Þ : b 2 0;b½ �f g
[ bim; binð Þ : bim; bin 2 b;1½ Þ [ 1f gf g ð139Þ

that is monotonically converging to V̂1, which is also continuous.
Thus, this convergence is uniform by Dini’s theorem. In particular,
we have

sup
p2P

Vn pð Þ � V1 b pð Þð Þj j 6 sup
bim ;binð Þ2 �Q[ 0;0ð Þf g

V̂n bim; binð Þ � bVn bim; binð Þ
 

<
e
3

ð140Þ
for sufficiently large n as desired, where we have used the fact that
the set of all strategies b of the continuous learning model that rep-
resent policies p 2 P of M nð Þ is a subset of �Q. Our overall theorem
statement then follows from the triangle inequality.

It remains to show that V̂1 (respectively, all functions bVn),
which are only defined for b > 0, can be continuously extended
to b ¼ 0. For this, it suffices to show that the constituent functions

V̂ im;1 and V̂ in;1 (respectively, V̂ im;n and V̂ im;n) can be continuously
extended to b ¼ 0. Observe that the numerator and denominator
of each constituent function are both equal to zero at b ¼ 0, which
creates the a priori possible obstruction to continuity. However, by
L’Hôspital’s rule, if both the numerator and the denominator are
differentiable at b ¼ 0 and the derivative of the denominator has
nonzero value at b ¼ 0, then the limit of the function as b ! 0 is
well-defined, as desired.

The derivative of the denominator g ¼ gn at zero is computed by
the product rule and chain rule:
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d
dbg b;bð Þjb¼0 ¼ 1�qð Þ log1dð ÞdL�1

in;1 0ð Þ

d
dtLin;1 0ð Þ pþ 1�pð Þg0

� �þdL
�1
in;1 0ð Þ 1�pð Þ log1

g

� �
g0

 !

þq
log1dð ÞdL�1

im;1 0ð Þ

d
dtLin;1 0ð Þ g0þdL

�1
im;1 0ð Þ log1

g

� �
g0

 !
ð141Þ

¼ 1�qð Þ log1dð Þ
d
dtLin;1 0ð Þ pþ 1�pð Þð Þþ 1�pð Þ log1

g

� �� �
þq

log1dð Þ
d
dtLin;1 0ð Þþ log1

g

� �� �
>0: ð142Þ

To conclude via the product rule that the derivatives of the numer-

ators of each of the functions V̂ im;1 and V̂ in;1 (respectively, V̂ im;n, and

V̂ im;n) is well-defined at b ¼ 0, it suffices to check whether the
derivatives of e (respectively, en) and f (respectively, fn) are well-
defined at b ¼ 0; this is because

a ¼ an; ð143Þ

b ¼ bn; ð144Þ

c ¼ cn; ð145Þ
and

d ¼ dn; ð146Þ
are clearly differentiable via the chain rule. Indeed, Leibniz’s inte-
gral rule yields that the derivatives of en and fn are well-defined
and given at b ¼ 0 by

d
db enjb¼0 ¼ lim 0ð Þ R L�1

im;1 0ð Þ
0 dt f a; Lim;n tð Þ� �

dt þ R1
L�1
im;1 0ð Þd

tdt
� �

�lim 0ð ÞR L�1
im;1 0ð Þ
0 dt f a; Lim;n tð Þ� �

dt þ R a>0
d
L�1
im;1 0ð Þ

f a;0ð Þ
d
dtLim;1 0ð Þ dlim

¼ log 1
g

� �
1

log1d
þ R a>0

d
L�1
im;1 0ð Þ

f a;0ð Þ
d
dtLim;1 0ð Þ dlim

ð147Þ

and

d
db fnjb¼0 ¼ lin 0ð Þ R L�1

in;1 0ð Þ
0 dtf a; Lin;n tð Þ� �

dt þ R1
L�1
in;1 0ð Þd

tdt
� �

�lin 0ð ÞR L�1
in;1 0ð Þ
0 dtf a; Lin;n tð Þ� �

dt þ R a>0
d
L�1
in;1 0ð Þ

f a;0ð Þ
d
dtLin;1 0ð Þ dlin

¼ 1� pð Þ log 1
g

� �
1

log1d
þ R a>0

d
L�1
in;1 0ð Þ

f a;0ð Þ
d
dtLin;1 0ð Þ dlin:

ð148Þ

The calculations for e and f are analogous—the only difference being
that the function Lj;n tð Þ in the integrand is replaced with Lj;1 tð Þ—and
give the identical answers for the derivative at b ¼ 0. The product
rule thus yields the derivative of the numerators at b ¼ 0, as needed.

A.5. Proof of Proposition 5

For every strategy b ¼ bim; binð Þ such that bim < 1, we construct
another strategy b0 that achieves a strictly higher value V1 b0� �

. This
shows that a necessary condition for b ¼ bim; binð Þ to maximize V1
is that bim ¼ 1. Note that the constructed strategy b0 will not be of
the form b0 ¼ b0

im; b
0
in

� �
, i.e., will not repeat the same quitting strat-

egy for every drawn task.
Consider the probability measure l1 on the sample space of

sequences of tasks drawn i.i.d. from l (some of which may not
be drawn if the student quits finitely many times),

X ¼ U1: ð149Þ
23
The distribution is defined as follows. Let F denote the r-algebra
generated by the algebra

F 0 ¼
[1
n¼1

F n; ð150Þ

where F n denotes the collection of events whose occurrence can be
determined by the results of the first n draws. The probability dis-
tribution l on U canonically endows F with a probability measure
l1, which is used to defined the compute the expected value of the
payoff.

Let V1 b00
;x

� �
denote the total payoff when the student uses a

strategy b00 and the sequence of task types is x 2 X. Then, the total
payoff V1 b00� �

is given by

V1 b00� � ¼ Z
X
V1 b00� �

dl1 xð Þ: ð151Þ

We modify b ¼ bim; binð Þ to obtain the alternative strategy

b0 ¼ q; b0
im; 1� qð Þp; b0

in

� �
; bin

� �
; bim; binð Þ; bim; binð Þ; . . .� �

; ð152Þ
where the first factor

q; b0
im; 1� qð Þ; b0

in

� � ð153Þ
denote the probabilistic quitting strategy of, assuming learning has
not completed by then, quitting with probability q at

b0
im ¼ Lim;1 2L�1

im;1 bimð Þ
� �

ð154Þ

and quitting with probability 1� qð Þ at

b0
in ¼ Lim;1 L�1

im;1 bimð Þ þ L�1
im;1 binð Þ

� �
: ð155Þ

The probabilistic strategy b0 can be written as a combination of two
deterministic strategies:

b0
im ¼ b0

im; bin
� �

; bim; binð Þ; bim; bin; . . .ð Þ� ð156Þ
with probability q and

b0
im ¼ b0

in; bin
� �

; bim; binð Þ; bim; bin; . . .ð Þ� ð157Þ
with probability 1� q.

We will show that

V1 bð Þ ¼
Z
X
V1 bð Þdl1 xð Þ ð158Þ

is strictly less than

V1 b0� � ¼ Z
X
V1 b0� �

dl1 xð Þ; ð159Þ

thus showing that b0 strictly outperforms b.
First, we partition the sample space X into subsets

X ¼ X1 [X2; ð160Þ
defined by

X1 ¼ x ¼ j1; a1ð Þ; . . .ð Þ : j1 ¼ in or a1 6 bimf g ð161Þ

X2 ¼ x ¼ j1; a1ð Þ; . . .ð Þ : j1 ¼ im and a1 > bimf g: ð162Þ
Note thatZ
X1

V1 b;xð Þdl1 xð Þ ¼
Z
X1

V1 b0
;x

� �
dl1 xð Þ: ð163Þ

Indeed, if j1 ¼ im and a1 6 bim for x 2 X1, then both b and b0 learn
the first task until completion and stick with it forever; and if
j1 ¼ in, the strategies b and b0 play in the same way for such a task
sequence x.
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It thus suffices to show thatZ
x2X2

V1 b;xð Þdl1 <

Z
x2X2

V1 b0
;x

� �
dl1: ð164Þ

Partition X2 into subsets

X2 ¼ X3 [X4 [X5 ð165Þ
defined by

X3 ¼ x ¼ j1; a1ð Þ; j2; a2ð Þ; . . .ð Þ : j1 ¼ im; a1 > bim; and j2 ¼ imf g
ð166Þ

X4 ¼ x ¼ j1; a1ð Þ; j2; a2ð Þ; . . .ð Þ : j1 ¼ im; a1 > bim; j2 ¼ in; and a2 < 1f g
ð167Þ

and

X5 ¼ x ¼ j1; a1ð Þ; j2; a2ð Þ; . . .ð Þ : j2 ¼ in; a2 ¼ 1; j2 ¼ in; and a2 ¼ 1f g:
ð168Þ

It suffices to show thatZ
x2X3

V1 b;xð Þdl1 < q
Z
x2X2

V1 b0
im;x

� �
dl1; ð169Þ

Z
x2X4

V1 b;xð Þdl1 < 1� qð Þ 1� pð Þ
Z
x2X2

V1 b0
in;x

� �
dl1; ð170Þ

andZ
x2X5

V1 b;xð Þdl1 < 1� qð Þp
Z
x2X2

V1 b0
in;x

� �
dl1; ð171Þ

since b0 plays as the strategy b0
im with probability q (the proportion

of X3 in X2) and as the strategy b0
in with probability (the proportion

of X4 and X5 combined in X2).
We first show inequality (169). Check that the left-hand side is

given byR
x2X3

V1 b;xð Þdl1 ¼ R �x2X0
3
V1 b; im; bim þ eð Þ; �xð Þð ÞÞR

im;a1ð Þ:a1>bimf g dl
� �

dl1

¼ qgbim
R
�x2X0

3
V1 b; im; bim þ eð Þ; �xð Þð Þdl1;

ð172Þ

where �x 2 X0
3 parametrizes the task subsequence of x 2 X3 given

by

�x ¼ j2; a2ð Þ; j3; a3ð Þ; . . .ð Þ; ð173Þ
bim þ e is an arbitrary task difficulty level greater than bim,

V1 b; im; bim þ eð Þ; �xð Þð ÞÞ ð174Þ
does not depend on the choice of bim þ e, and we have an isomor-
phism of probability spaces

X0
3 ffi im; að Þ : a > 0f g � U1: ð175Þ

Next, check that the right-hand side can be written as

q
R
x2X2

V1 b0
im;x

� �
dl1 ¼ q

R
im;a1ð Þ:a1>bimf gR
x̂2X0

2
V1 b0

; j1; a1ð Þ; x̂ð Þ� �
dl1

� �
dl

¼ qgbim
R

im;að Þ:a>0f gR
x̂2X0

2
V1 b0

; j1; aþ bimð Þ; x̂ð Þ� �
dl1

� �
dl;

ð176Þ
where x̂ 2 X0

2 parametrizes the task subsequence of x 2 X2 given
by
24
x̂ ¼ j2; a2ð Þ; j3; a3ð Þ; . . .ð Þ; ð177Þ
and we have an isomorphism of probability spaces

X0
2 ffi U1: ð178Þ

Using the isomorphisms, we reduce our inequality (169) to the
following:R

j2 ;að Þ; j3 ;a3ð Þ;...ð Þ2 im;a0ð Þ:a0>0f g�U1 V1 b; im;bimþeð Þ; j2;að Þ; j3;a3ð Þ . . .ð Þð Þdl1

<
R

j1 ;að Þ; j2 ;a2ð Þ;...ð Þ2 im;a0ð Þ:a0>0f g�U1 V1 b0
; j1;aþbimð Þ; j2;a2ð Þ . . .ð Þ� �

dl1:
ð179Þ

There is a clear isomorphism of the probability space of task
sequences

j2; að Þ; j3; a3ð Þ; . . .ð Þ 2 im; a0ð Þ : a0 > 0f g � U1 ð180Þ
and the probability space

j1; að Þ; j2; a2ð Þ; . . .ð Þ 2 im; a0ð Þ : a0 > 0f g � U1: ð181Þ
It suffices to show that the strict inequality holds for the one-to-
one-corresponding integrands in this isomorphism, which we will
refer to as the left-hand-side value function

V1 b; im; bim þ eð Þ; j2; að Þ; j3; a3ð Þ . . .ð Þð Þ ð182Þ
and the right-hand-side value function

V1 b0
; j1; aþ bimð Þ; j2; a2ð Þ . . .ð Þ� � ð183Þ

We need to show that

V1 b; im; bim þ eð Þ; im; að Þ; j03; a
0
3

� �
; . . .

� �� �
< V1 b0

; im; aþ bimð Þ; j02; a
0
2

� �
; j03; a

0
3

� �
; . . .

� �� � ð184Þ
Note that the sub-payoff values in the subinterval of time

0; L�1
im;1 bimð Þ

h �
ð185Þ

for both value functions are identical. This is because the first task is of
type j ¼ im and is learned to the point of time L�1

im;1 bimð Þ for both value
functions. Also, conditional on the assumption that the task that is
learned at time t ¼ L�1

im;1 bimð Þ (second task and first task, respectively)

does not learn to completion—that a1 < bim and a1 þ bim < b0
im, respec-

tively—the sub-payoff values in the subinterval of time

2L�1
im;1 bimð Þ;1

h �
ð186Þ

are also identical for both value functions. This is because condi-
tional on this assumption, the aforementioned task is quit at time
t ¼ 2L�1

im;1 bimð Þ, after which the payoff in the remaining time is the
same. Next, we show that if the task that is learned at time
t ¼ L�1

im;1 bimð Þ learns to completion for the left-hand-side value func-
tion in that a1 < bim, then it also learns to completion for the right
hand-side value function in that a1 þ bim < b0

im. This is a conse-
quence of the assumption that Lim;1 tð Þ is convex. It follows that at

time t ¼ L�1
im;1 bimð Þ, the difference a in knowledge that is required

to complete the task learning requires less (or equal) time for the
right-hand-side value function, spanning

t ¼ L�1
im;1 bimð Þ to t ¼ L�1

im;1 bim þ að Þ; ð187Þ
than the time required to complete the task learning for the left-
hand-side value function, spanning

t ¼ L�1
im;1 bimð Þ to t ¼ L�1

im;1 bimð Þ þ L�1
im;1 að Þ: ð188Þ
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Indeed, our assumption that Lim;1 tð Þ is convex yields the fact that

L�1
im;1 bð Þ is concave, which yields

L�1
im;1 bim þ að Þ 6 L�1

im;1 bimð Þ þ L�1
im;1 að Þ: ð189Þ

If learning of this task completes for the left-hand-side, then it also
completes for the right-hand-side; consequently, no future tasks are
drawn, and the sub-payoff values for the subperiod of time (186)
are equal. On the other hand, if learning of this task completes for
the right-hand-side value function, then no future tasks are drawn
for it (but may be drawn for the left-hand-side value function); con-
sequently, the sub-payoff values for the subperiod of time (186)
automatically satisfy the desired direction of inequality.

Moreover, the respective sub-payoff values in the remaining
subperiod of time

L�1
im;1 bimð Þ;2L�1

im;1 bimð Þ
h �

ð190Þ

are given byZ 2L�1
im;1 bimð Þ

L�1
im;1 bimð Þ

dt
f a;Lim;1 t�L�1

im;1 bimð Þ
� �� �

for t<L�1
im;1 bimð ÞþL�1

im;1 að Þ
1 for tPL�1

im;1 bimð ÞþL�1
im;1 að Þ

8<:
9=;dt

ð191Þ
for the left-hand-side value function andZ 2L�1

im;1 bimð Þ

L�1
im;1 bimð Þ

dt
f bim þ a; Lim;1 tð Þ� �

for t < L�1
im;1 bim þ að Þ

1 for t P L�1
im;1 bim þ að Þ

( )
dt

ð192Þ
for the right-hand-side value function. It follows from the inequal-
ities (189),

f a;Lim;1 t�L�1
im;1 bimð Þ

� �� �
< f bimþa;bimþLim;1 t�L�1

im;1 bimð Þ
� �� �

6 f bimþa;Lim;1 tð Þ� �
;

ð193Þ

and

f a; bð Þ 6 1 ð194Þ
that the sub-payoff value (191) of the left-hand-side value function
is strictly less than that (192) of the right-hand-side value function.

We have overall shown the inequality of integrands (184), which
implies the inequality (176), and thereby, the inequality (169).

The second of our desired inequality (170) will be shown anal-
ogously. Check that the left-hand side is given byR

x2X4
V1 b;xð Þdl1

¼ R
in;a2ð Þ; �xð Þ2 in;a2ð Þ:a22 0;1ð Þf g�X0

4
V1 b; im; bim þ eð Þ; in; a2ð Þ; �xð Þð ÞR

im;a1ð Þ:a1>bimf g dl
� �

dl1

¼ qgbim
R

in;a2ð Þ; �xð Þ2 in;a2ð Þ:a22 0;1ð Þf g�X0
4
V1 b; im; bim þ eð Þ; in; a2ð Þ; �xð Þð Þdl1

¼ qgbim 1� qð Þ 1� pð Þ Ra22 0;1ð Þ

log 1
g

� �
ga2

R
�x2X0

4
V1 b; im; bim þ eð Þ; in; a2ð Þ; �xð Þð Þdl1

� �
da2;

ð195Þ

where �x 2 X0
4 parametrizes the task subsequence of x 2 X4,

�x ¼ j3; a3ð Þ; j4; a4ð Þ; . . .ð Þ; ð196Þ
bim þ e is an arbitrary task difficulty level greater than bim,

V1 b; im; bim þ eð Þ; in; a2ð Þ; �xð Þð Þ ð197Þ
does not depend on the choice of bim þ e, and we have an isomor-
phism of probability spaces

X0
4 ffi U1: ð198Þ

Next, check that the right-hand-side inequality can be written as
25
1� qð Þ 1� pð Þ Rx2X2
V1 b0

in;x
� �

dl1

¼ 1� qð Þ 1� pð Þ R im;a1ð Þ:a1>bimf gR
x̂2X0

2
V1 b0

in; im; a1ð Þ; x̂ð Þ� �
dl1

� �
dl

¼ 1� qð Þ 1� pð Þqgbim
R
a2 0;1ð Þ log 1

g

� �
gaR

x̂2X0
2
V1 b0

in; im; aþ bimð Þ; x̂ð Þ� �
dl1

� �
da

ð199Þ

Using the isomorphisms (219) and (175), we reduce our inequality
(170) toR

a; j3 ;a3ð Þ;...ð Þ2 0;1ð Þ�U1 V1 b; im; bim þ eð Þ; in; að Þ; j3; a3ð Þ . . .ð Þð Þdl1dlg

<
R

a; j2 ;a2ð Þ;...ð Þ2 0;1ð Þ�U1 V1 b0
; im; aþ bimð Þ; j2; a2ð Þ . . .ð Þ� �

dl1dlg;

ð200Þ
where lg ¼ lim ¼ linja<1 denotes the exponential distribution of
decay factor g on 0;1ð Þ.

There is a clear isomorphism of the probability space of task
sequences

a; j3; a3ð Þ; . . .ð Þ 2 0;1ð Þ � U1 ð201Þ
and the probability space

a; j2; a2ð Þ; . . .ð Þ 2 0;1ð Þ � U1: ð202Þ
It suffices to show that the strict inequality holds for the one-to-
one-corresponding integrands in this isomorphism, which we will
refer to as the left-hand-side value function

V1 b; im; bim þ eð Þ; in; að Þ; j3; a3ð Þ . . .ð Þð Þ ð203Þ
and the right-hand-side value function

V1 b0
; im; aþ bimð Þ; j2; a2ð Þ . . .ð Þ� �

: ð204Þ
We need to show that

V1 b; im; bim þ eð Þ; in; að Þ; j3; a3ð Þ . . .ð Þð Þ
< V1 b0

; im; aþ bimð Þ; j2; a2ð Þ . . .ð Þ� �
: ð205Þ

Just as before, the sub-payoff-values in the subinterval of time

0; L�1
im;1 bimð Þ

h �
ð206Þ

for both value functions are identical.
Also, similarly to before, conditional on the assumption that

task that is learned at time t ¼ L�1
im;1 bimð Þ (second task and first task,

respectively) does not learn to completion—that a1 < bin and
a1 þ bim < b0

in, respectively—the sub-payoff values in the subinter-
val of time

L�1
im;1 bimð Þ þ L�1

in;1 binð Þ;1
h �

ð207Þ

are identical for both value functions.
Next, we show that if the task that is learned at time

t ¼ L�1
im;1 1ð Þ learns to completion for the left-hand sidevaue func-

tion in that a1 < bin, then it also learns to completion for the
right-hand-side value function in that a1 þ bim < b0

in. This is a con-
sequence of two assumptions: the assumption that Lim;1 tð Þ is con-

vex (equivalently, that L�1
im;1 bð Þ is concave) and the assumption that

Lin;1 tð Þ 6 Lim;1 tð Þ (equivalently, that L�1
im;1 bð Þ 6 L�1

in;1 bð Þ). It follows

that at time t ¼ L�1
im;1 bimð Þ, the difference a in knowledge that is

required to complete the task learning requires less (or equal) time
for the right-hand-side value function, spanning

t ¼ L�1
im;1 bimð Þ to t ¼ L�1

im;1 bim þ að Þ; ð208Þ
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than the time required to complete the task learning for the left-
hand-side value function, spanning

t ¼ L�1
im;1 bimð Þ to t ¼ L�1

im;1 bimð Þ þ L�1
in;1 að Þ; ð209Þ

Indeed, our two aforementioned assumptions together yield

L�1
im;1 bim þ að Þ 6 L�1

im;1 bimð Þ þ L�1
im;1 að Þ 6 L�1

im;1 bimð Þ þ L�1
in;1 að Þ: ð210Þ

If learning of this task completes for the left-hand-side, then it also
completes for the right-hand-side; consequently, no future tasks are
drawn, and the sub-payoff values for the subperiod of time (207)
are equal. On the other hand, if learning of this task completes for
the right-hand-side value function, then no future tasks are draw
for it (but may be drawn for the left-hand-side value function); con-
sequently, the sub-payoff values for the subperiod of time (207)
automatically satisfy the desired direction of inequality.

Finally, the respective sub-payoff values in the remaining sub-
period of time

L�1
im;1 bimð Þ; L�1

im;1 bimð Þ þ L�1
in;1 binð Þ

h �
ð211Þ

are given byZ L�1
im;1 bimð ÞþL�1

in;1 binð Þ

L�1
im;1 bimð Þ

dt
f a; Lin;1 t � L�1

im;1 bimð Þ
� �� �

for t < L�1
im;1 bimð Þ þ L�1

in;1 að Þ
1 for t P L�1

im;1 bimð Þ þ L�1
in;1 að Þ

8<:
9=;dt

ð212Þ
for the left-hand-side value function andZ L�1

im;1 bimð ÞþL�1
in;1 binð Þ

L�1
im;1 bimð Þ

dt
f bim þ a; Lim;1 tð Þ� �

for t < L�1
im;1 bim þ að Þ

1 for t P L�1
im;1 bim þ að Þ

( )
dt

ð213Þ
for the right-hand-side value function. It follows from the inequal-
ities (210),

f a; Lin;1 t � L�1
im;1 bimð Þ

� �� �
6 f a; Lim;1 t � L�1

im;1 bimð Þ
� �� �

< f bim þ a; bim þ Lim;1 t � L�1
im;1 bimð Þ

� �� �
6 f a; Lim;1 tð Þ� �

;

ð214Þ

and f a; bð Þ 6 1 that the sub-payoff value (212) of the left-hand-side
value function is strictly less than that (213) of the right-hand-side
value function.

Overall, we have shown the inequality of integrands (205),
which implies the inequality (200) and thereby, the inequality
(170).

It remains to show the inequality (171). Check that the left-
hand side is given by

:
R
x2X5

V1 b;xð Þdl1

¼ R
in;a2ð Þ; �xð Þ2 in;1ð Þf g�X0

5
V1 b; im;bimþeð Þ; in;a2ð Þ; �xð Þð ÞÞ

� R
im;a1ð Þ:a1>bimf gdl

� �
dl1

¼ qgbim
R

in;a2ð Þ; �xð Þ2 in;1ð Þf g�X0
5
V1 b; im;bimþeð Þ; in;a2ð Þ; �xð Þð Þdl1

¼ qgbim 1�qð Þp R
�x2X0

5
V1 b; im;bimþeð Þ; in;1ð Þ; �xð Þð Þdl1

� �
ð215Þ

¼qgbim 1�qð Þp
Z
�a2 0;1ð Þ

Z
�x2X0

5

V1 b; im;bimþeð Þ; in;1ð Þ; �xð Þð Þdl1
 !

dlg;

ð216Þ

where �x 2 X0
5 parametrizes the task subsequence of x 2 X5,
26
�x ¼ j3; a3ð Þ; j4; a4ð Þ; . . .ð Þ; ð217Þ
bim þ e is an arbitrary task difficulty level greater than bim,

V1 b; im; bim þ eð Þ; in;1ð Þ; �xð Þð Þ ð218Þ
does not depend on the choice of bim þ e, we have an isomorphism
of probability spaces

X0
5 ffi U1; ð219Þ

and �a, distributed as lg, is a dummy variable. Next, check that the
right-hand side of the inequality

1�qð Þ p
R
x2X2

V1 b0
in;x

� �
dl1

¼ 1�qð ÞpR im;a1ð Þ:a1>bimf g
R
x̂2X0

2
V1 b0

in; im;a1ð Þ;x̂ð Þ� �
dl1

� �
dl

¼ 1�qð Þpqgbim
R
a2 0;1ð Þ

R
x̂2X0

2
V1 b0

in; im;aþbimð Þ;x̂ð Þ� �
dl1

� �
dlg:

ð220Þ
There is a clear isomorphism of the probability space of task
sequences

a; j3; a3ð Þ; . . .ð Þ 2 0;1ð Þ � U1 ð221Þ
and the probability space

a; j2; a2ð Þ; . . .ð Þ 2 0;1ð Þ � U1: ð222Þ
It suffices to show that the strict inequality holds for the one-to-
one-corresponding integrands in this isomorphism, which we will
refer to as the left-hand-side value function

V1 b; im; bim þ eð Þ; in;1ð Þ; j3; a3ð Þ . . .ð Þð Þ ð223Þ
and the right-hand-side value function

V1 b0
; im; aþ bimð Þ; j2; a2ð Þ . . .ð Þ� �

: ð224Þ
We need to show that

V1 b; im; bim þ eð Þ; in;1ð Þ; j3; a3ð Þ . . .ð Þð Þ
< V1 b0

; im; aþ bimð Þ; j2; a2ð Þ . . .ð Þ� �
: ð225Þ

Just as before, the sub-payoff-values in the subinterval of time

0; L�1
im;1 bimð Þ

h �
ð226Þ

for both value functions are identical.
Also, similarly to before, conditional on the assumption that task

that is learned at time t ¼ L�1
im;1 bimð Þ (second task and first task, respec-

tively) does not learn to completion—that a1 < bin and a1 þ bim < b0
in,

respectively—the sub-payoff values in the subinterval of time

L�1
im;1 bimð Þ þ L�1

in;1 binð Þ;1
h �

ð227Þ

are identical for both value functions.
Next, we show that if the task that is learned at time

t ¼ L�1
im;1 1ð Þ learns to completion for the left-hand sidevaue func-

tion in that a1 < bin, then it also learns to completion for the
right-hand-side value function in that a1 þ bim < b0

in. In fact, note
that learning for this task can never complete for the left-hand-
side value function, since the task difficulty is a ¼ 1. Thus, this
step is trivially satisfied. consequently, the sub-payoff values for
the subperiod of time (227) automatically satisfy the desired direc-
tion of inequality.

Finally, the respective sub-payoff values in the remaining sub-
period of time

L�1
im;1 bimð Þ; L�1

im;1 bimð Þ þ L�1
in;1 binð Þ

h i
; ð228Þ

are given by
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Z L�1
im;1 bimð ÞþL�1

in;1 binð Þ

L�1
im;1 bimð Þ

dt f 1; Lin;1 t � L�1
im;1 bimð Þ

� �� �
dt ¼ 0 ð229Þ

for the left-hand-side value function andZ L�1
im;1 bimð ÞþL�1

in;1 binð Þ

L�1
im;1 bimð Þ

dt
f bim þ a; Lim;1 tð Þ� �

for t < L�1
im;1 bim þ að Þ

1 for t P L�1
im;1 bim þ að Þ

( )
dt

ð230Þ
for the right-hand-side value function. It follows that the sub-payoff
value (229) of the left-hand-side value function is strictly less than
that (230) of the right-hand-side value function.

We have overall shown (225). This shows the inequality (220),
and thereby, the desired inequality (171). This completes our
proof.

A.6. Proof of Proposition 6

We use a similar proof strategy as that of the proof of Proposi-
tion 5. For every strategy b ¼ bim;1ð Þ, we construct another strat-
egy b0, not of the form b0 ¼ b0

im; b
0
in

� �
, that achieves a strictly higher

value V1 b0� �
. This shows that a necessary condition for

b ¼ bim; binð Þ to maximize V1 is that bin ¼ 1.
The modification b0 is defined by

b0 ¼ bim; b
0� �
; bim;1ð Þ; bim;1ð Þ; . . .� �

; ð231Þ
for a value b0 that will be specified later.

We partition the sample space X into subsets

X ¼ X6 [X7 ð232Þ
defined by

X6 ¼ x ¼ j1; a1ð Þ; . . .ð Þ : j1 ¼ im or a1 6 b0	 
 ð233Þ
and

X7 ¼ x ¼ j1; a1ð Þ; . . .ð Þ : j1 ¼ in and a1 > b0	 

: ð234Þ

Note thatZ
X6

V1 b;xð Þdl1 ¼
Z
X6

V1 b0
;x

� �
dl1 ð235Þ

Indeed, if j1 ¼ in and a1 6 b0 forx 2 X1, then both b and b0 learn the
first task until completion and stick with it forever; and if j1 ¼ im,
the strategies b and b0 play in the same way for such a task sequence
x.

It thus suffices to show thatZ
x2X7

V1 b;xð Þdl1 <

Z
x2X7

V1 b0
;x

� �
dl1: ð236Þ

Observe that for each x 2 X7, the sub-payoff value of the value
function V1 b;xð Þ and that of the value function V1 b0

;x
� �

for the
subperiod of time

0; L�1
in;1 b0� �h �

ð237Þ

are identical, since both strategies learn the first task during this
subperiod.

The key insight is that the sub-payoff value of the value function
V1 b0

;x
� �

in the remaining subperiod of time

L�1
in;1 b0� �

;1
h �

ð238Þ
27
is always given by

dL
�1
in;1 b0ð ÞV1 b00

; �x
� �

; ð239Þ
where

b00 ¼ bim;1ð Þ; bim;1ð Þ; . . .ð Þ ð240Þ
and

�x ¼ j2; a2ð Þ; . . .ð Þ ð241Þ
are obtained from b0 and x, respectively, by truncating the leftmost
term. It follows that the integral of this sub-payoff value over X7 isR
x2X7

dL
�1
in;1 b0ð ÞV1 b00

; �x
� �

dl1

¼ dL
�1
in;1 b0ð Þ R

in;a1ð Þ:a1>b0f g
R
�x2U1 V1 b00

; �x
� �

dl1dl

¼ dL
�1
in;1 b0ð Þ pþ 1� pð Þgb0

� �
V1 b00� �

:

ð242Þ

In contrast, the integral of the sub-payoff value of the value function
V1 b;xð Þ in the subperiod (238) is given byR
x2X7

R1
L�1
in;1 b0ð Þ f a1; Lin;1 tð Þ� �

dt
� �

dl1

¼ R x2X7 :a1¼1f g
R1
L�1
in;1 b0ð Þ f a1; Lin;1 tð Þ� �

dt
� �

dl1

þ R x2X7 :a1<1f g
R1
L�1
in;1 b0ð Þ f a1; Lin;1 tð Þ� �

dt
� �

dl1

¼ R
x2X7 :a1<1f g

R1
L�1
in;1 b0ð Þ f a1; Lin;1 tð Þ� �

dt
� �

dl1

6
R

x2X7 :a1<1f g dl
1 R1

L�1
in;1 b0ð Þ 1dt

� �
¼ 1� pð Þgb0

� �
dL

�1
in;1 b0ð Þ 1

log1d
:

ð243Þ

Note that as b0 ! 1, the expression (242) divided by dL
�1
in;1 b0ð Þ

converges to

pV1 b00� �
> 0; ð244Þ

whereas the upper bound (243) divided by dL
�1
in;1 b0ð Þ converges to 0.

This shows that for b0 sufficiently large, the inequality (236) holds.
For b ¼ b ¼ 1, since V1 bð Þ ¼ V1 b; bð Þ, we can modify the strat-

egy b; bð Þ ¼ 1;1ð Þ in the same way as above (for a sufficiently
large b0) to find a strategy that outperforms b.

A.7. Proof of Corollary 7

Let V̂ �p;�q
1 bim; binð Þ denote the expression V̂1 bim; binð Þ when the

parameter choices p ¼ �p and q ¼ �q are made. Similarly, let

V̂
�p;�q;�Lim;1 ;�Lin;11 bim; binð Þ denote the expression V̂1 bim; binð Þ when the

parameter choices p ¼ �p; q ¼ �q; Lim;1 ¼ �Lim;1 and Lin;1 ¼ �Lin;1 are
made. When parameters Lim;1 and Lin;1 are omitted from the super-
script, the meaning is that they are assumed to be the original fixed
ones.

For each of part (a) and part (b), we will show a stronger state-
ment than the theorem statement. Specifically, we will show that
for any pair of decreasing sequences pnf gn2N and qmf gm2N converg-
ing to zero, there exists N such that for any n P N, we can find Mn

such that the quitting point of innovation-learning tasks bin of any
strategy b ¼ 1; binð Þ maximizing Vpn ;qm

1 is greater than c for all
m P Mn.
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We note that the sequence of continuous functions V̂pn ;01
n o

n2N
pointwise converge to the continuous function V̂0;0

1 . By part (a) of
Lemma 8, this sequence of continuous functions in fact monoton-

ically converges (increasing with respect to n) to V̂0;0
1 . An applica-

tion of Dini’s theorem thus shows that the convergence of

V̂pn ;01
n o

n2N
to V̂0;0

1 on the compact space �Q[ 0;0ð Þf g is uniform.

The proof of Proposition 5 implies that the maximum of V̂0;0
1 on

�Q[ 0;0ð Þf g is attained at bim; binð Þ ¼ barbitrary;1
� �

; note that the
subscript ‘‘arbitrary” means the choice of that parameter has no
effect. Indeed, check that

V̂0;0
1 barbitrary; b
� � ¼ V̂

parbitrary ;1;Lin;1 ;Lin;11 b; b0
arbitrary

� �
; ð245Þ

since when p ¼ 0, we have the equality of distributions lin ¼ lim;
and we have set the learning function of imitation-learning tasks
to be Lin;1 as well. The proof of Proposition 5 shows that we have

V̂
parbitrary ;1;Lin;1 ;Lin;11 b; bð Þ < V̂

parbitrary ;1;Lin;1 ;Lin;11 1; bð Þ; ð246Þ

where we have set b0
arbitrary ¼ b. This shows that 1; b0

arbitrary

� �
max-

imizes the function V̂
parbitrary ;1;Lin;1 ;Lin;11 ; equivalently, barbitrary;1

� �
max-

imizes the function V̂0;0
1 .

We will now avoid the use of the term barbitrary, and instead
define

~V bð Þ ¼ V̂0;0
1 barbitrary; b
� �

: ð247Þ
Let c P 0. Consider the positive number

e ¼ ~V 1ð Þ �max
b6c

~V bð Þ: ð248Þ

By uniform convergence, there exists N such that for all n P N, we
simultaneously have

jV̂pn ;01 b1;1ð Þ � V̂0;0
1 b1;1ð Þj < e

2
ð249Þ

and

jV̂pn ;01 b2; bð Þ � V̂0;0
1 b2; bð Þj < e

2
ð250Þ

for all b 6 c. Since

V̂0;0
1 b1; bð Þ ¼ ~V bð Þ < ~V 1ð Þ < V̂0;0

1 b2;1ð Þ ð251Þ
for every b 6 c with a difference of at least e, it follows from the tri-
angle inequality that for any n P N, we have

V̂pn ;01 b2; bð Þ < V̂pn ;01 b1;1ð Þ ð252Þ
for all b 6 c. Note that the choice of b1 and b2 has no effect on the

values V̂pn ;01 b2; bð Þ and V̂pn ;01 b1;1ð Þ.
Fix n P N. By part (b) of Lemma 8, the continuous functions

V̂pn ;qm1
n o

m2N
monotonically converge (decreasing with respect to

m) to V̂pn ;01 , which is also continuous. It thus follows from Dini’s

theorem that the convergence of V̂pn ;qm1
n o

m2N
to V̂pn ;01 on the com-

pact space �Q [ 0;0ð Þf g is uniform. Let

e ¼ V̂pn ;01 b1;1ð Þ � sup
b6c

V̂pn ;01 b2; bð Þ; ð253Þ

which is positive by our choice of n. By uniform convergence, there
exists Mn such that for all m P Mn, we simultaneously have the
inequality

V̂pn ;qm1 1;1ð Þ � V̂pn ;01 1;1ð Þ
  < e

2
; ð254Þ

where we have set b1 ¼ 1; and the inequality
28
V̂pn ;qm1 b2; bð Þ � V̂pn ;01 b2; bð Þ
  < e

2
ð255Þ

for any b2; bð Þ 2 �Q. Since

V̂pn ;01 b2; bð Þ < V̂pn ;01 1;1ð Þ ð256Þ
for all b 6 c with a difference of at least e, it follows from the trian-
gle inequality that for any m P Mn, we have

V̂pn ;qm1 b2; bð Þ < V̂pn ;qm1 1;1ð Þ ð257Þ
for all b 6 c. Setting b2 ¼ 1 yields part (b), while setting b2 ¼ b
yields part (a).

In this proof, we have applied the proof of Proposition 5 to show
a necessary lemma that can be described as the following. In the
continuous learning model with parameters q ¼ 1 and
Lim;1 tð Þ ¼ L tð Þ, the unique strategy to maximize V1 bð Þ is b ¼ 1,
where the single entry denotes that there is no ambiguity in learn-
ing types. Strictly speaking, the proof of Proposition 5 applied to
this continuous learning game only shows that b ¼ 1 outperforms
b0 ¼ b 2 0;1ð Þ, and not necessarily b ! 0. This leaves the possibil-
ity that V1 bð Þ is also maximized at b ! 0, with the same function
value as b ¼ 1. This implies that V1 is decreasing near b ¼ 0. How-
ever, a quick application of the proof of Proposition 5 shows that
this possibility does not arise. Specifically, this proof shows that
for small b > 0, the strategy b0 ¼ b is strictly outperformed by

b00 ¼ L 2L�1 bð Þ
� �

; b; b; . . .
� �

; ð258Þ

which—as a subsequent application of this proof shows—is strictly
outperformed by

b000 ¼ L 2L�1 bð Þ
� �

; L 2L�1 bð Þ
� �

; b; b; . . .
� �

: ð259Þ

Continuing iteratively, we obtain that b0 is strictly outperformed by
the strategy

b̂ ¼ L 2L�1 bð Þ
� �

: ð260Þ

Taking b to be small, we see that ~V 0ð Þ ¼ limb!0V bð Þ cannot be
decreasing near b ¼ 0, and thus it is impossible that the maximum
is attained at the two endpoints b ¼ 0 and b ¼ 1.

A.8. Proof of Lemma 8

Recall thatbV1 bim; binð Þ ¼ qV̂im bim; binð Þ þ 1� qð ÞV̂ in bim; binð Þ ð261Þ
for

bV im bim; binð Þ ¼ de� bf

g
ð262Þ

and

bV in bim; binð Þ ¼ af� ce

g
: ð263Þ

First, we show that

@

@p
bV1 bim; binð Þ 6 0; ð264Þ

with equality if and only if q ¼ 1. Note that the only one of
a; b; c; d; e; f, and g that is not constant with respect to p is f . We thus
have

@

@p
bV1 bim; binð Þ ¼ @

@p
V̂1 bim; binð Þ ¼ �qbþ 1� qð Þa

g

@

@p
f

� �
: ð265Þ

Check that
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�qbþ 1� qð Þa ¼ q 1� qð ÞdL�1
in;1 binð Þgbim þ 1� q� q 1� qð ÞdL�1

im;1 bimð Þgbim

P 1� q� q 1� qð ÞdL�1
im;1 bimð Þgbim

P 1� q� q 1� qð Þ ¼ 1� qð Þ2;
ð266Þ

which is nonnegative, and positive if and only if q < 1. Check also
that

g ¼ 1� q� 1� qð ÞdL�1
in;1 binð Þ pþ 1� pð Þgbin

� �þ q� qdL
�1
im;1 bimð Þgbim P 0: ð267Þ

with equality if and only if bim; binð Þ ¼ 0;0ð Þ, since

dL
�1
in;1 binð Þ pþ 1� pð Þgbin

� �
; dL

�1
im;1 bimð Þgbim 6 1: ð268Þ

Then, check that

@
@pf¼ @

@p p �0þ 1�pð Þ R bin
0

R L�1
in;1 að Þ

0 dt f a;Lin;1 tð Þ� �
dtþR1

L�1
in;1 að Þd

tdt
� �

dlg að Þ
��

þRa>bin

R L�1
in;1 binð Þ

0 dt f a;Lin;1 tð Þ� �
dt

� �
dlg að Þ

��
¼ � R bin

0

R L�1
in;1 að Þ

0 dt f a;Lin;1 tð Þ� �
dtþR1

L�1
in;1 að Þd

tdt
� �

dlg að Þ
�

þRa>bin

R L�1
in;1 binð Þ

0 dt f a;Lin;1 tð Þ� �
dt

� �
dlg að Þ

�
60;

ð269Þ

with equality if and only if bin ¼ 0, which is equivalent to
bim; binð Þ ¼ 0;0ð Þ in our domain �Q[ 0;0ð Þf g. Finally, it follows from
the calculation via L’Hôspital’s rule in the proof of Proposition 4 that

@
@p f

g
!

log 1
g

log 1
d

� �
d
db g b; bð Þjb¼0

> 0 ð270Þ

as b ! 0 for bim; binð Þ ¼ b; bð Þ. The condition bim; binð Þ ¼ 0;0ð Þ does
not make (265) zero.

We thus have shown (264), where equality holds if and only if
q ¼ 1.

Next, suppose that Assumption 1 holds and the imitation-
learning knowledge function Lim;1 tð Þ is convex. We need to show
that

@

@q
V̂1 1; binð Þ > 0: ð271Þ

Note that e and f are constant in q, while a; b; c; d, and g are not.
Check that at bim; binð Þ ¼ 1; binð Þ, we have

a ¼ 1; ð272Þ

b ¼ 0; ð273Þ

c ¼ �qdL
�1
in;1 binð Þ pþ 1� pð Þgbin

� �
; ð274Þ

and

d ¼ 1� 1� qð ÞdL�1
in;1 binð Þ pþ 1� pð Þgbin

� �
: ð275Þ

Let

h ¼ dL
�1
in;1 binð Þ pþ 1� pð Þgbin

� �
: ð276Þ

We next apply the quotient rule to obtain

@
@q V̂1 1; binð Þ
¼ 1

g2
g @

@q qdeþ 1� qð Þf� 1� qð Þceð Þ � qdeþ 1� qð Þf� 1� qð Þceð Þ @g
@q

� �
¼ 1� 1�qð Þhð Þ e�fð Þ�h fþq e�fð Þð Þ

1� 1�qð Þhð Þ2

¼ e�f�eh

1� 1�qð Þhð Þ2 :

If bim ¼ 1 so that h ¼ 0, then we have
29
@

@q
V̂1 1; binð Þ ¼ e� f; ð277Þ

which is positive; indeed, check that

e ¼
Z 1

0

Z L�1
im;1 að Þ

0
dt f a; Lim;1 tð Þ� �

dt þ
Z 1

L�1
im;1 að Þ

dtdt

 !
dlg að Þ; ð278Þ

while

f ¼ 1� pð Þ

�
Z 1

0

Z L�1
in;1 að Þ

0
dtf a; Lin;1 tð Þ� �

dt þ
Z 1

L�1
in;1 að Þ

dtdt

 !
dlg að Þ: ð279Þ

We see that

1� pð Þ R1
0

R L�1
in;1 að Þ

0 dtf a; Lin;1 tð Þ� �
dt þ R1

L�1
in;1 að Þ d

tdt
� �

dlg að Þ

<
R1
0

R L�1
in;1 að Þ

0 dtf a; Lin;1 tð Þ� �
dt þ R1

L�1
in;1 að Þ d

tdt
� �

dlg að Þ

6
R1
0

R L�1
im;1 að Þ

0 dtf a; Lim;1 tð Þ� �
dt þ R1

L�1
im;1 að Þ d

tdt
� �

dlg að Þ;

ð280Þ
as needed, since Lin;1 tð Þ 6 Lim;1 tð Þ.

Now, suppose that bim < 1, so that h > 0. Then, we can write

@

@q
V̂1 1; binð Þ ¼ e� f� eh

1� 1� qð Þhð Þ2
¼ V̂ im 1; binð Þ � V̂ in 1; binð Þ

1� 1� qð Þh ; ð281Þ

since

V̂ im 1; binð Þ � V̂ in 1; binð Þ ¼ de� bf� af� ceð Þ
g

¼ e� f� eh

1� 1� qð Þh : ð282Þ

Thus, we need to show that

V̂ im 1; binð Þ > V̂ in 1; binð Þ: ð283Þ
This inequality is proven by showing that

V̂ im 1; binð Þ > V̂ im bð Þ > V̂ in 1; binð Þ; ð284Þ
for

b ¼ Lim;1 L�1
in;1 binð Þ

� �
; bin

� �
; 1; binð Þ; 1; binð Þ; . . .

� �
: ð285Þ

The comprising inequality

V̂ im bð Þ < V̂ im 1; binð Þ ð286Þ
follows from the optimality of never quitting tasks of type j ¼ im,
demonstrated in the proof of Proposition 5. Indeed, conditional on
the current task being of type j ¼ im, the strategy 1; binð Þ is equiv-
alent to never quitting this curren task.

Only the comprising inequality

V̂ in 1; binð Þ < V̂ im bð Þ: ð287Þ
remains to be shown. The sample space of task sequences for the

left-hand-side value function V̂ im b; binð Þ is
0;1ð Þ � U1 ð288Þ
with the probability measure

lim � l1 ¼ lg � l1; ð289Þ
and the sample space of task sequences of the right-hand-side value

function V̂ in bim; binð Þ is
0;1ð Þ [ 1f gð Þ � U1 ð290Þ
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with the probability measure

lin � l1; ð291Þ
where we recall that lin places probability p on a ¼ 1 and dis-
tributes the remaining probability 1� p as the exponential distribu-
tion lg. It suffices to show thatZ

a12 0;1ð Þ

Z
j2 ;a2ð Þ;...Þ2U1

Vin 1;binð Þ; in;a1ð Þ; j2;a2ð Þ; . . .ð Þdl1ð Þdlg

 

6
Z
a12 0;1ð Þ

Z
j2 ;a2ð Þ;...ð Þ2U1

Vim b; im;a1ð Þ; j2;a2ð Þ; . . .ð Þð Þdl1
 !

dlg ð292Þ

andZ
a12 1f g

Z
j2 ;a2ð Þ;...Þ2U1

Vin 1;binð Þ; in;a1ð Þ; j2;a2ð Þ; . . .ð Þdl1ð Þdv
 

<

Z
a12 0;1ð Þ

Z
j2 ;a2ð Þ;...ð Þ2U1

Vim b; im;a1ð Þ; j2;a2ð Þ; . . .ð Þð Þdl1
 !

dlg ð293Þ

for v the one-point distribution on 1f g. Indeed, adding the product
of the inequality (292) with 1� pð Þ with the product of the inequal-
ity (293) with p yields the desired inequality (287).

The second inequality (293) holds immediately because it sim-
plifies to

0 <

Z
a12 0;1ð Þ

Z
j2 ;a2ð Þ;...ð Þ2U1

Vim b; im; a1ð Þ; j2; a2ð Þ; . . .ð Þð Þdl1
 !

dlg:ð294Þ

The first inequality (292) holds because for every sample

a1; j2; a2ð Þ; . . .ð Þ; ð295Þ
the payoff of the left-hand-side value function

Vin 1; binð Þ; in; a1ð Þ; j2; a2ð Þ; . . .ð Þð Þ ð296Þ
is at most the payoff of the right-hand-side value function

Vim b; im; a1ð Þ; j2; a2ð Þ; . . .ð Þð Þ: ð297Þ
This is demonstrated by partitioning 0;1½ Þ into various subintervals
and looking at the respective sub-payoff values corresponding to
each subinterval.

In the subinterval

0; L�1
in;1 binð Þ

h �
; ð298Þ

the sub-payoff value of the left-hand-side value function is at most
that of the right-hand-side value function, because the learning of
the first task is faster for the latter than the former:
Lin;1 tð Þ 6 Lim;1 tð Þ.

In the subinterval

L�1
in;1 binð Þ;1

h �
; ð299Þ

the sub-payoff value of the left-hand-side value function is equal to
that of the right-hand-side value function conditional on the first
task being quit at time t ¼ L�1

in;1 binð Þ for both, i.e., conditional on
learning not yet having completed. And conditional on the oppo-
site—that learning of the first task completes for at least one of
the value functions by time t ¼ L�1

in;1 binð Þ—we have the following.
If this occurs for the left-hand-side value function, then it also
occurs for the right-hand side value function, since
Lin;1 tð Þ 6 Lim;1 tð Þ. Thus, we have the desired inequality for the
sub-payoff values corresponding to the subinterval (299). If this
occurs for the right-hand-side value function, then its sub-payoff
value corresponding to the subinterval (299) is maximal, so the
30
inequality holds anyway. Thus, we have obtained (293), and
thereby the desired inequality (287).

This concludes our proof of (271).
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