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Cooperation in alternating interactions with
memory constraints
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In repeated social interactions, individuals often employ reciprocal strategies to maintain

cooperation. To explore the emergence of reciprocity, many theoretical models assume

synchronized decision making. In each round, individuals decide simultaneously whether to

cooperate or not. Yet many manifestations of reciprocity in nature are asynchronous. Indi-

viduals provide help at one time and receive help at another. Here, we explore such alter-

nating games in which players take turns. We mathematically characterize all Nash equilibria

among memory-one strategies. Moreover, we use evolutionary simulations to explore various

model extensions, exploring the effect of discounted games, irregular alternation patterns,

and higher memory. In all cases, we observe that mutual cooperation still evolves for a wide

range of parameter values. However, compared to simultaneous games, alternating games

require different strategies to maintain cooperation in noisy environments. Moreover, none of

the respective strategies are evolutionarily stable.
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Cooperation can be maintained by direct reciprocity, where
individuals help others in repeated interactions1–3. Tra-
ditionally, researchers capture the logic of direct recipro-

city with the repeated prisoner’s dilemma4–17. According to that
model, two individuals—usually referred to as players—interact
with each other over several rounds. In each round, both players
can either cooperate or defect. Mutual cooperation yields a better
payoff than mutual defection, but each individual has an incen-
tive to defect. Theoretical and experimental work suggests that
cooperation can evolve if there are sufficiently many interactions
between the individuals18. This work has been used to explain a
wide variety of behaviors, including why humans are more likely
to cooperate in stable groups19, why certain animal species share
food20, and why firms are able to achieve higher market prices
when they engage in collusion21.

A standard assumption that underlies much of this research is
that individuals make their decisions simultaneously (or at least
in ignorance of the co-player’s current decision). We refer to this
kind of repeated interaction as a simultaneous game (Fig. 1a). For
many natural manifestations of reciprocity, however, simulta-
neous cooperative exchanges are unlikely or even impossible,
such as when people ask for favors22, vampire bats donate
blood to their conspecifics20, sticklebacks engage in predator
inspection23, or ibis take turns when leading their flock24. Such
interactions are better captured by alternating games, in which
players consecutively decide whether to cooperate25–28. When
individuals decide asynchronously, they make their decisions
based on different histories. The most recent events one player
has in memory differ from the most recent events that the next
player takes into account (Fig. 1b). Such asymmetries in turn
make it more difficult to successfully coordinate on cooperation.
As a result, many well-known strategies like Tit-for-Tat or Win-
Stay Lose-Shift fail to evolve when players move alternatingly25,26.
Instead, previous computational25–27 and experimental studies29

suggest that individuals need to be more forgiving. However, a
full understanding of optimal play in alternating games is lacking,
even though optimal behavior in the simultaneous game is by
now well-analyzed30–38.

Here, we propose an analytical approach to describe when
cooperation evolves in the alternating game. In line with the
previous literature, we typically focus on individuals with so-
called memory-one strategies3. Memory-one strategies depend on
each player’s most recent move. Our analysis involves two steps.
First, we show that successful play in alternating games does not

require a sophisticated cognitive apparatus. More specifically,
when interacting with a given memory-one opponent, it suffices
to respond with a reactive strategy that only depends on the co-
player’s most recent move. This result is reminiscent of a previous
finding of Press and Dyson for the simultaneous game39. They
showed that against a memory-one strategy, there is nothing to
gain from having a larger memory than the opponent. Our result
for the alternating game goes one step further. Against a memory-
one strategy, players can afford to have a strictly lower memory,
without any loss to their or their co-player’s payoff. As we show,
this result crucially depends on the alternating move structure; it
is not true when players move simultaneously. In a second step,
we show that in order to identify the best response to a given
memory-one player, we only need to check the four most extreme
reactive strategies: unconditional defection, unconditional coop-
eration, Tit-for-Tat, and Anti-Tit-for-Tat. Using this approach,
we identify all Nash equilibria among the memory-one strategies.

In the absence of errors, we find an unexpected equivalence. The
very same memory-1 strategies that can be used to enforce coop-
eration in the simultaneous game also enforce cooperation in the
alternating game. However, once we take into account errors, the
predictions for the two models diverge. In the simultaneous game,
Win-Stay Lose-Shift is evolutionarily stable when the benefit to cost
ratio is sufficiently large and when errors are sufficiently rare40,41. In
that case, there is a simple rule for how to sustain full cooperation:
individuals should repeat their previous action if it yielded a suffi-
ciently large payoff, and switch to the opposite action otherwise. In
contrast, in the alternating game, all stable cooperative strategies
require players to randomize. After mutual defection, they need to
cooperate with some well-defined probability that depends on the
game parameters and the error rate. Although the respective stra-
tegies in the alternating game are Nash equilibria, we show that
none of them is evolutionarily stable. As a result, evolving coop-
eration rates in the alternating game often tend to be lower than in
the simultaneous game, although this difference is smaller than
perhaps expected from static stability considerations alone. We
summarize our analytical findings in Fig. 2.

Our work suggests that in most realistic scenarios, successful
play in alternating games requires different kinds of behaviors than
predicted by the earlier theory on simultaneous games. In this way,
we corroborate earlier experimental work on human cooperation29

and provide theoretical methods to further analyze repeated games
in the future. Overall, we find that cooperation is still feasible in
alternating games. However, the strategies that enforce cooperation
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Fig. 1 Game dynamics for the simultaneous and the alternating game. In both the simultaneous and the alternating game, two players interact repeatedly.
In each turn, they decide whether to cooperate (C) or to defect (D). In the simultaneous game (a), they make their decision at the same time (or at least
not knowing the other player’s decision). In the alternating game (b), one player decides before the other player does. In both cases, we study memory-1
strategies. That is, an individual’s next action only depends on each individual’s previous action. We illustrate the information each individual takes into
account for their last decision with colored ellipses. In the simultaneous game, individuals take into account the same information. In the alternating game,
decisions are based on different sets of information.
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can be neutrally invaded, and hence cooperation tends to be more
short-lived than in the simultaneous game.

Results
Model description. In the following, we formulate a simple
baseline scenario, which we use to derive our main analytical
results (see also Supplementary Note 1). More general scenarios
are discussed in a later section, and in full detail in Supplementary
Note 3. We consider interactions between two players, player 1
and player 2. Both players repeatedly decide whether to cooperate
(C) or defect (D). These repeated interactions can take place in
two different ways. In the simultaneous game, there is a discrete
number of rounds. In each round, both players make their
decision at the same time, not knowing their co-player’s decision
(Fig. 1a). In contrast, in the alternating game, the players move
consecutively. We consider the strictly alternating game: Player 1
moves first, and then player 2 learns about player 1’s decision and
moves next (Fig. 1b). We note that there are also variants of the
alternating game in which the order of moves is random25,28. In
particular, one player may by chance make two or more con-
secutive moves before it is the other player’s turn again. The effect
of such irregular alternation patterns will be discussed later.

For the simultaneous game, the possible payoffs in each round
can be represented by four parameters. Players receive the reward
R in rounds in which they both cooperate; they receive the
temptation payoff T and the sucker’s payoff S, respectively, if only
one player cooperates; and they receive the punishment payoff
P in case they both defect. For T > R > P > S, we obtain the
prisoner’s dilemma. In the alternating game, however, it is useful
to assume that payoffs can be assigned to each player’s individual
action25. In that case, the value of one player’s cooperation is
independent of the co-player’s previous or subsequent decision

(or equivalently, payoffs are independent of how the two players’
decisions are grouped into rounds). As a result, we obtain the
donation game3. Here, cooperation means to pay a cost c > 0 in
order to provide a benefit b > c to the co-player. The donation
game is a special case of a prisoner’s dilemma for which

R ¼ b � c; S ¼ �c; T ¼ b; P ¼ 0: ð1Þ
To compare the alternating game with the simultaneous game, we
assume payoffs satisfy (1) throughout.

In the baseline scenario, we consider infinitely repeated games,
and we study players who make their decisions based on each
player’s most recent move. In the simultaneous game, the
respective strategies are called memory-1 strategies42; they take
into account the outcome of one previous round (Fig. 1a). Such
strategies can be represented as a 4-tuple, p= (pCC, pCD, pDC, pDD).
The entry pij denotes the probability to cooperate in the next
round. This probability depends on the player’s action i and the
co-player’s action j in the previous round. The equivalent strategy
class also exists in alternating games25. In alternating games,
however, there is no longer a unique previous round to which
both players refer. Instead, the last round that is taken into
account depends on the perspective of each player. It consists of
the respective last moves of the two players (Fig. 1b). An
important subset of memory-1 strategies is the set of so-called
reactive strategies. Here, players ignore their own previous action
and only condition their behavior on what the co-player
previously did. Reactive strategies are therefore those memory-1
strategies for which pCC= pDC and pCD= pDD.

Some well-known examples of memory-1 strategies for the
simultaneous game include Always Defect, ALLD= (0, 0, 0, 0), Tit-
for-Tat, TFT= (1, 0, 1, 0), and Win-Stay Lose-Shift, WSLS= (1, 0,
0, 1). In the alternating game, a strategy called Firm-but-Fair3,

Fig. 2 A characterization of partners among the memory-1 strategies. Within the class of memory-1 strategies, we provide an overview of the strategies
that sustain full cooperation in a Nash equilibrium. The respective strategies are called partner strategies, or partners18. a For the simultaneous game
without errors, partners have been first described by Akin34,35 (he calls them “good strategies”). Akin’s approach has been extended by Stewart and
Plotkin31 to describe all memory-1 Nash equilibria of the simultaneous game. In the absence of errors, none of these strategies is evolutionarily stable55,57.
Instead, one can always find neutral mutant strategies which act as a stepping stone out of equilibrium58. b For the alternating game without errors, Eq. (2)
provides a full characterization of all partner strategies. Cooperation is maintained by the same strategies as in the simultaneous game. c Despite decades
of research, the exact set of partner strategies for the simultaneous game with errors is not known. However, there are at least two instances of partner
strategies, GTFT6,49, and Win-Stay Lose-Shift, WSLS42,53. For repeated games with errors, evolutionary stability is generally feasible56. In particular, WSLS
is evolutionarily stable if the benefit to cost ratio is sufficiently large and if errors are sufficiently rare40. d For the alternating game with errors, we
characterize all partner strategies in Eq. (5). None of them is deterministic. As a result, none of them is evolutionarily stable (see Supplementary
Information for details).
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defined by FBF= (1, 0, 1, 1) and also referred to as Forgiver27, has
been successful in evolutionary competitions. Out of these
examples, ALLD and TFT are reactive, whereas WSLS and FBF
are not. We say a strategy is deterministic if each conditional
cooperation probability is either zero or one. In particular, all of the
above examples are deterministic. Otherwise, we call the strategy
stochastic.

Note that our analysis includes the possibility that players
sometimes make errors. That is, when a player decides to
cooperate, there is some probability ε that the player defects by
mistake. Conversely, a player who intends to defect may
cooperate with the same probability. We refer to the case of
ε= 0 as the game without errors, and to the case of ε > 0 as the
game with errors. We note that even a strategy that is
deterministic becomes fully stochastic in the game with errors
because in that case, a player’s effective cooperation probability is
always between ε and 1− ε.

Considering memory-1 strategies is useful for two reasons. First,
such strategies are straightforward to interpret, and the respective
conditional probabilities can be easily inferred from experiments29.
Second, when both players use memory-1 strategies, their average
payoffs are simple to compute (see also Methods). To this end,
suppose player 1 uses the strategy p and player 2 adopts strategy q.
By representing the game as a Markov chain, we can compute the
stationary distribution v= (vCC, vCD, vDC, vDD). The entries of this
stationary distribution give the probabilities of observing each of
the four possible combinations of the players’ actions over the
course of the game. Based on this stationary distribution, we define
player 1’s payoff as π(p, q)= (vCC+ vDC)b− (vCC+ vCD)c, and
similarly for player 2. While the baseline scenario focuses on
memory-1 strategies, our results are more general. For example,
when we describe which memory-1 strategies are Nash equilibria
in the following, co-players are allowed to deviate to strategies with
arbitrarily long (but finite) memory. Moreover, similar approaches
can also be used to explore the evolutionary dynamics of memory-
2 strategies, as we will discuss later.

A recipe for identifying Nash equilibria for alternating games.
To predict which memory-1 strategies evolve in the alternating
game, we first characterize which of them are Nash equilibria. In
the following, we refer to a strategy q as a Nash equilibrium if
π(q, q) ≥ π(p, q) for all alternative memory-1 strategies p (for
stronger results, see Supplementary Note 2). That is, against a co-
player who adopts the Nash equilibrium strategy q, a player has
no incentive to choose any different memory-1 strategy. The

notion of Nash equilibrium is closely related to evolutionary
robustness30. In a population of size N, a resident strategy q is
called evolutionary robust if no mutant strategy p has a fixation
probability larger than neutral, 1/N. When selection is sufficiently
strong, strategies are evolutionary robust if and only if they are
Nash equilibria31.

Verifying that a given strategy q is a Nash equilibrium is not
straightforward. In principle, this requires us to compare its
payoff to the payoff of all possible mutant strategies p, taken from
the uncountable set of all memory-1 strategies. However, for
alternating games, it is possible to simplify the task in two steps
(see Supplementary Note 2 for details). The first step is to show
that it is sufficient to compare q to all reactive strategies, a
strategy set of a lower dimension. The intuition for this result is as
follows. Even if player 1 starts out with an arbitrary memory-1
strategy p, it is always possible to find an associated reactive
strategy ~p that yields the same stationary distribution and the
same payoff against q (Fig. 3). That is, to find the best response to
a strategy that remembers both players’ last moves, it is sufficient
to explore all strategies that only remember the co-player’s last
move. In particular, not only is there no advantage of having a
strictly larger memory than the opponent, as shown by Press and
Dyson for simultaneous games39. A player can afford to
remember strictly less in the alternating game.

The second step is to show that we do not need to consider all
reactive strategies to find the best response against q. Instead, it
suffices to consider all deterministic reactive strategies. By
combining these two steps, it becomes straightforward to check
whether a given memory-1 strategy is a Nash equilibrium. We
only need to compare its payoff against itself to the four payoffs
that can be achieved by deviating to Always Defect (ALLD),
Always Cooperate (ALLC), Tit-for-Tat (TFT), or Anti-Tit-for-Tat
(ATFT).

Equilibria in alternating games without errors. Using the above
recipe, we first explore which memory-1 strategies can sustain full
cooperation in games without errors (see Supplementary Note 2
for all derivations). To this end, we call a memory-1 strategy a
partner32,33 if (i) it is fully cooperative against itself, and (ii) if it is
a Nash equilibrium (such strategies are referred to as ‘good’ by
Akin34–36). We find that partners are exactly those memory-1
strategies q for which the following three conditions hold,

qCC ¼ 1; qCD ≤ 1�
c

b � c
qDD; qCD ≤ 1�

c
b
qDC: ð2Þ

Fig. 3 In alternating games, individuals can afford to remember less than their opponent. We prove the following result: if two memory-1 players
interact, any of the players can switch to a simpler reactive strategy (that only depends on the co-player’s previous action) without changing the resulting
payoffs. Here, we illustrate this result for player 1. a Initially, both players use memory-1 strategies. That is, a player’s cooperation probability depends on
the most recent decision of each player. There are four conditional cooperation probabilities. b The strategies determine how players interact in the
alternating game. c Based on the strategies, we can compute how often we are to observe each pairwise outcome over the course of the game by
calculating the game’s stationary distribution. d Based on the stationary distribution, and on player 1’s memory-1 strategy, we can compute an associated
reactive strategy. This reactive strategy only consists of two conditional cooperation probabilities. They determine what to do if the co-player cooperated
(or defected) in the previous round. The cooperation probabilities can be calculated as a weighted average of the respective memory-1 strategy’s
cooperation probabilities. The resulting reactive strategy for player 1 yields the same outcome distribution against player 2 as the original memory-1
strategy. We note that for this result, the assumption of alternating moves is crucial. In the simultaneous game, the respectively defined reactive strategy
does not yield the same outcome distribution against player 2 as the original memory-1 strategy (see Supplementary Information).
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The first condition is needed to ensure that the strategy is fully
cooperative against itself. The other two conditions restrict how
cooperative a player is allowed to be after having been exploited
by the co-player. If these last two conditions are violated, the
strategy q can either be invaded by ALLD or ATFT. Together, the
three requirements in (2) define a three-dimensional polyhedron
within the space of all memory-1 strategies (Fig. 4a). The volume
of this polyhedron increases with the benefit to cost ratio b/c.
While the polyhedron never contains ALLC, it always contains
the conditionally cooperative strategies TFT and GRIM (for these
two strategies, we additionally require the respective players to
cooperate in the very first round to ensure payoffs are well-
defined, see Supplementary Information). Moreover, for b ≥ 2c,
the polyhedron contains WSLS and FBF (independent of the
outcome of the first round).

Similarly, we can also identify all Nash equilibria where the
players mutually defect. We refer to the respective strategies as
defectors. We obtain the following necessary and sufficient
conditions,

qDD ¼ 0; qDC ≤
c
b
ð1 � qCDÞ; qDC ≤

c
b � c

ð1 � qCCÞ: ð3Þ

Again, the first equation ensures that two players with the
respective strategy end up mutually defecting against each other.
The other two conditions ensure that the strategy is comparably
unresponsive towards a co-player who tries to initiate coopera-
tion. Similar to before, the three conditions define a three-
dimensional polyhedron (Supplementary Fig. 2a). The set of
defectors is non-empty for all parameter values, and it always
contains the strategy ALLD.

Finally, we identify a third class of Nash equilibria, referred to
as equalizers43. As in the simultaneous game39, equalizers are
strategies that unilaterally control the co-player’s payoff. If one

player adopts an equalizer strategy, the co-player’s payoff is fixed,
independent of the co-player’s strategy44–48. In the alternating
game, these strategies are characterized by

qCD ¼ b qCC � c ð1 þ qDDÞ
b� c

; qDC ¼ b qDD þ cð1 � qCCÞ
b� c

: ð4Þ

When both players adopt an equalizer strategy, neither player has
anything to gain from deviating; the resulting outcome is a Nash
equilibrium.

We also show a converse result: If a memory-1 strategy for the
alternating game is a Nash equilibrium, then it either needs to be
a partner, a defector, or an equalizer. Remarkably, the same three
strategy classes also arise as Nash equilibria of the simultaneous
game31. Even the algebraic conditions for being a partner,
defector, or equalizer coincide (however, the existing proof for the
simultaneous game31 is somewhat more intricate than the proof
for the alternating game that we provide in Supplementary
Note 4). There is, however, one difference. In the simultaneous
game, there is a fourth class of Nash equilibria, referred to as
‘alternators’31. Alternators cooperate in one round, only to defect
in the next. In Supplementary Note 2, we show that such patterns
of behavior cannot emerge among memory-1 players in the
alternating game.

Equilibria in alternating games with errors. Next, we explore
how the Nash equilibria change when we introduce errors. In the
following, we discuss the case of partner strategies; the analogous
results for defectors and equalizers are derived in Supplementary
Note 2. For partner strategies, we find that errors impose addi-
tional constraints. First, partners only exist when errors are suf-
ficiently rare, ε< 1

2 1� c
b

� �
. Second, the respective conditions are

Fig. 4 Partner strategies in alternating games with and without errors. Partner strategies sustain cooperation in a Nash equilibrium. All such strategies
are required to cooperate after mutual cooperation, such that the respective cooperation probability qCC is equal to one. a In the absence of errors, the
remaining three cooperation probabilities can be chosen arbitrarily, subject to the constraints in Eq. (2). The resulting set of partner strategies takes the
shape of a polyhedron. b In the presence of errors, this polyhedron degenerates to a single line segment. This line segment comprises all strategies
between Generous Tit-for-Tat (GTFT) and Stochastic Firm-but-Fair (SFBF). c, d We compare these equilibrium results to evolutionary simulations. To this
end, we record all strategies that emerge over the course of the simulation. Here, we plot the probability distribution of those strategies that yield at least
80% cooperation against themselves. Without errors, the probability distributions for qCD, qDC, qDD are comparably flat. With errors, players tend to
cooperate if they exploited their opponent in the previous round, qDC≈ 1. Moreover, they cooperate with some intermediate probability after mutual
defection, qDD≈ 2/3. Both effects are in line with previous simulation studies25,26, and they confirm the theory. Simulations are run for b/c= 3, and ε= 0
or ε= 0.02. For the other parameter values and further details on the simulations, see Methods. Source data are provided as a Source Data file.
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now considerably more restrictive,

qCC ¼ qDC ¼ 1; qCD ≤ 1 � c
ð1 � 2εÞb ;

qDD ¼ ð1 � 2εÞ ðb þ εc qCDÞ � c
ð1 � 2εÞ ðb þ εcÞ :

ð5Þ

In particular, if the co-player cooperated in the previous round,
partners are strictly required to cooperate in the next round,
independent of their own previous action (because now pDC= 1).
If the co-player defected, partners need to cooperate with a well-
defined probability, as defined by the last two conditions in (5).
The last condition guarantees that neither ALLC nor TFT has a
selective advantage against q. In the game without errors, this
requirement is satisfied automatically. There, all strategies with
qCC= 1 yield the full cooperation payoff b− c against each other.
In the game with errors, however, such strategies are no longer
neutral. Instead, they differ in how quickly they are able to restore
cooperation after an error, and to which extent they are able to
capitalize on their co-players’ mistakes. Noisy environments thus
impose additional constraints on self-cooperative strategies to be
stable.

As a result of these additional constraints, the three-
dimensional polyhedron degenerates to a one-dimensional line
segment (Fig. 4b). On one end of this line segment, there is
Generous Tit-for-Tat, which also arises in the simultaneous
game6,49,

GTFT ¼ 1 ; 1 � c
ð1 � 2εÞb ; 1 ; 1 � c

ð1 � 2εÞb

� �
ð6Þ

On the other end of this line segment, we find a strategy that
resembles the main characteristics of Firm-but-Fair3; we thus
refer to this strategy as Stochastic Firm But Fair,

SFBF ¼ 1; 0; 1;
ð1 � 2εÞb � c

ð1 � 2εÞðb þ εcÞ

� �
ð7Þ

Behaviors similar to Stochastic Firm-but-Fair (SFBF) have been
observed in early simulations of alternating games25,26. There, it
was found that evolutionary trajectories often lead to strategies
that are deterministic, except that they randomize after mutual
defection. Our results provide an analytical justification: SFBF is
the only such strategy that is a Nash equilibrium.

The above conditions in (5) provide a complete characteriza-
tion of all partner strategies in the alternating game with errors.
Despite decades of research, an analogous characterization for the
simultaneous game is not yet available (Fig. 2). However, it is
known that particular strategies, most importantly WSLS, can be
evolutionarily stable in the presence of noise40. That is, in the
simultaneous game, cooperation can be sustained with a simple
deterministic strategy if b > 2c. In contrast, conditions (5) imply
that no such deterministic strategy is available in the alternating
game. Moreover, while the partner strategies characterized by (5)
are Nash equilibria, we show in the Supplementary Information
that they all are vulnerable to neutral invasion by either ALLC or
TFT (in fact by all strategies with qCC= qDC= 1). These results
suggest that cooperation can still evolve in alternating games, but
it may be less robust than in the simultaneous game.

Evolutionary dynamics of alternating games. In order to test
these equilibrium predictions, we next explore which behaviors
emerge when the players’ strategies are subject to evolution. To
this end, we consider a population of N players. Each member of
the population is equipped with a memory-1 strategy. They
obtain payoffs by interacting with all other population members.
To model the spread of successful strategies, we assume indivi-
duals with high payoffs are imitated more often50 (or

equivalently, such individuals produce more offspring51). In
addition, new strategies are introduced through random
exploration (or equivalently, through mutations). These random
strategies are uniformly taken from the space of all memory-1
strategies. We capture the resulting dynamics with computer
simulations. For details, see Methods.

First, we explore the evolutionary dynamics for fixed game
parameters. We record which strategies the players use over the
course of evolution to sustain cooperation. In Fig. 4, we represent
those strategies that yield a cooperation rate against themselves of
at least 80%; other threshold values lead to similar conclusions.
We call these strategies “self-cooperative”. By definition, players
with these strategies are likely to cooperate after mutual
cooperation. Here, we are thus interested in how they react
when either one or both players defected. Without errors, the
respective conditional cooperation probabilities show quite some
variation. As a result, the distributions in Fig. 4c are comparably
flat. Overall, players act in such a way that the partner conditions
(2) are satisfied, but they show no preference for a particular
partner strategy. Once we allow for errors, the evolving strategies
change (Fig. 4d). Players tend to always cooperate if the co-player
did so in the previous round, with qCC ≈ qDC ≈ 1. Moreover, after
mutual defection, they cooperate with some strictly positive
probability. Both patterns are predicted by our equilibrium
conditions (5). We find a similar match between static theory and
evolutionary simulations for defectors, or when we explore
evolution in the simultaneous game (Supplementary Figs. 1–3).

In a next step, we compare the dynamics of the alternating and
the simultaneous game across different parameter values. To this
end, we systematically vary the benefit of cooperation, the
population size, the selection strength, and the mutation rate
(Fig. 5). In games without errors, we observe hardly any
difference between the alternating and the simultaneous game.
Both games yield almost identical cooperation rates over time,
and these cooperation rates are similarly affected by parameter
changes. A difference between the two games only becomes
apparent when players need to cope with errors. Here, the
simultaneous game leads to systematically higher cooperation
rates than the alternating game. This difference is most visible for
intermediate benefit-to-cost ratios and intermediate error rates, as
one may expect: For small benefits and frequent errors,
cooperation evolves in neither game, whereas for large benefits
and rare errors, cooperation evolves in both games (Supplemen-
tary Fig. 4).

Evolutionary results beyond the baseline scenario. Our baseline
scenario represents an idealized model of alternating interactions.
It assumes (i) the game is infinitely repeated, (ii) players move in
a strictly alternating fashion, (iii) games take place in a well-
mixed population, and (iv) players use memory-1 strategies. In
the following, we use simulations to explore the effect of each of
these assumptions in turn. Here, we briefly summarize the
respective results. For an exact description of the models, and for
a more detailed discussion of the results, we refer to Supple-
mentary Note 3.

We start by considering games with finitely many rounds. To
incorporate a finite game length, we assume that each time both
players have made a decision, the game continues with a constant
probability δ. Figure 6a–c shows the respective evolutionary
results for δ= 0.96 (such that games last for 25 rounds on
average). We observe similar results as in the infinitely repeated
game: The simultaneous game leads to more cooperation (Fig. 6a);
moreover, if players cooperate, their strategies exhibit the main
characteristics of WSLS in the simultaneous game, and of SFBF
and GTFT in the alternating game (Fig. 6b). Further simulations
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suggest that these qualitative results hold when players interact
for at least ten rounds (Supplementary Fig. 5). When interactions
are shorter, cooperation is unlikely to evolve at all (Fig. 6c).

In the next step, we explore irregular alternation patterns. To
this end, we assume that every time a player has made a decision,
with probability s it is the other player who moves next. We refer
to s as the game’s switching probability. For s= 1, we recover the
baseline scenario, in which players strictly alternate. For s= 1/2,
the player to move next is determined randomly. Simulations
suggest that in both cases, players again use strategies akin to
GTFT and SFBF to sustain cooperation (Fig. 6e). However, the
robustness of the strategies depends on the switching probability.
In particular, mutual cooperation is most likely to evolve when
players alternate regularly (Fig. 6f, Supplementary Fig. 6).

To explore the effect of population structure, we follow the
framework of Brauchli et al.52. Instead of well-mixed populations,
players are now arranged on a two-dimensional lattice. They use
memory-1 strategies to engage in pairwise interactions with each
of their neighbors. For the simultaneous game, we recover the
main results of Brauchli et al.52: population structure can further
enhance cooperation, and it makes it more likely that strategies
similar to WSLS evolve (Fig. 6g–i). For the alternating game, we
observe that cooperation remains the most abundant outcome,
but the spatial structure does not necessarily result in homo-
geneous populations any longer. Instead, in some simulations, we
find cooperative and non-cooperative strategies to stably coexist
(one particular instance is shown in Fig. 6h).

Finally, we also analyzed the impact of a larger memory.
Exploring the dynamics among general memory-k strategies is
not straightforward, as the strategy space increases rapidly. For
instance, while there are only 16 pure memory-1 strategies, there

are 65,536 memory-2 strategies and more than 1019 memory-3
strategies41. We thus confine ourselves to pure memory-2
strategies in the following. In a first step, we explored which of
these strategies are evolutionarily stable, see Supplementary
Fig. 7a. For the simultaneous game, we find many such strategies,
including several strategies with high cooperation rates. In the
alternating game, we only find one strategy that is evolutionarily
stable for a wide range of parameters, ALLD. Nevertheless, with
respect to the evolving cooperation rates, stochastic evolutionary
trajectories hardly show any difference between alternating and
simultaneous games. The two games differ, however, in terms of
the strategies that evolve, and in how robust these strategies are
(Supplementary Fig. 7b–e).

Discussion
An overwhelming majority of past research on reciprocity deals
with repeated games where individuals simultaneously decide
whether to cooperate3,18. In contrast, most natural occurrences of
reciprocity require asynchronous acts of giving. Cooperation
routinely takes the form of assisting a peer, providing a gift, or
taking the lead in a joint endeavor22–24. In such examples,
simultaneous cooperation can be unfeasible, undesirable, or
unnecessary. Herein, we have thus explored which strategies arise
in alternating games where individuals make their decisions in
turns. In such games, one individual’s cooperation is reciprocated
not immediately, but at some point in the future.

To explore the dynamics of cooperation in alternating games,
we first describe all Nash equilibria among the memory-1 stra-
tegies. Memory-1 strategies are classical tools that have been used
to describe the evolutionary dynamics of repeated games for
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Fig. 5 Comparing evolution in the alternating and the simultaneous game. To compare the two game versions, we have run additional evolutionary
simulations. We systematically vary the benefit of cooperation, the population size, the selection strength, and the mutation rate. In addition, we vary how
likely players make errors. Either they make no errors at all (ε= 0), or they make errors at some intermediate rate (ε= 0.02). a In the absence of errors,
there is virtually no difference between the simultaneous and the alternating game. Both games yield the same cooperation rates, and they respond to
parameter changes in the same way. For the given baseline parameters, cooperation is favored for large benefits of cooperation, population sizes, and
selection strengths. It is disfavored for intermediate and large mutation rates. b With errors, the cooperation rates in the alternating game are
systematically below the simultaneous game. The lower cooperation rates are related to our analytical result that no cooperative memory-1 strategy in the
alternating game is evolutionarily stable. In contrast, in the simultaneous game with errors,WSLS can maintain cooperation42,53, it is evolutionarily stable41,
and it readily evolves in evolutionary simulations (Supplementary Fig. 1). As baseline parameters we use a benefit of cooperation b= 3, population size
N= 100, selection strength β= 1, and the limit of rare mutations μ→ 065,66. Source data are provided as a Source Data file.
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several decades25,42,53. However, most of the early work on
memory-1 strategies was restricted to evolutionary simulations.
Only with the pioneering work of Press and Dyson39 and
others30–38, better mathematical techniques have become avail-
able. Using these techniques, it has become possible to describe all
Nash equilibria of the infinitely repeated simultaneous game

without errors31. Herein, we make similar progress for the
alternating game, both for the case with and without errors (for
the simultaneous game with errors, a complete characterization of
the Nash equilibria remains an open problem, see Fig. 2).

Our results suggest that there are both unexpected parallels and
important differences between simultaneous and alternating

Fig. 6 Robustness of evolutionary results. We have explored the robustness of our results with various model extensions. Here, we display results for
three of them, illustrating the impact of finitely repeated games, of irregular alternating patterns, and of population structure. a–c The baseline model
assumes infinitely repeated games; here we show simulations for games with a finite expected length. If there are sufficiently many rounds, the
simultaneous game again leads to more cooperation than the alternating game, and the evolving strategies are largely similar to the ones observed in the
baseline model. d–f The baseline model assumes that players move in a strictly alternating fashion. Instead, here we assume that after each player’s move,
the other player moves with some switching probability s. The case s= 1 corresponds to strict alternation, whereas s= 1/2 represents a case in which the
next player to move is completely random. We observe that irregular alternation patterns hardly affect which strategies players use to cooperate. However,
it affects the robustness of these strategies. Overall, cooperation is most likely to evolve under strict alternation. g–i Finally, instead of well-mixed
populations, we consider games on a lattice. For the given parameter values, we observe that simultaneous games eventually lead to homogeneous
cooperative populations. While this outcome is also possible for alternating games, some simulations also lead to the coexistence of cooperators and
defectors (shown here in panel (h)). The evolving self-cooperative strategies are similar to the strategies that evolve in the baseline model. For a detailed
description of these simulations, see Methods and Supplementary Information. Source data for panels a–f, i are provided as a Source Data file.
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games. The parallels arise when individuals do not make errors.
Here, the two models of reciprocity make the same predictions
about the feasibility of cooperation. Cooperation evolves in the
same environments, and it can be maintained using the same
strategies. However, once individuals make mistakes, the pre-
dictions of the two models diverge. First, the two models require
different kinds of strategies to maintain cooperation. In the
simultaneous game, cooperation can be sustained with the
deterministic memory-1 strategy Win-Stay Lose-Shift42,53. Indi-
viduals with that strategy simply reiterate their previous behavior
if it was successful, and they switch their behavior otherwise. In
contrast, in the alternating game, no simple deterministic rules
for cooperation exist. Although there are still infinitely many
memory-1 strategies that can maintain cooperation, all of them
require individuals to randomize occasionally. One example of
such a strategy for alternating games is SFBF. Individuals with
this strategy always reciprocate a co-player’s cooperation, never
tolerate exploitation, and cooperate with some intermediate
probability if both players defected. Similar behaviors have been
observed in earlier simulations25,26. Our results provide a theo-
retical underpinning: SFBF is the unique memory-1 strategy that
can sustain cooperation while retaliating against unconditional
defectors in the strongest possible way.

The simultaneous game and the alternating game also differ in
how stable cooperation is in evolving populations. In the simul-
taneous game, the evolution of cooperation is hardly affected by
errors, provided the error rate is below a certain threshold (Fig. 5,
Supplementary Fig. 4). In some instances, errors can even
enhance cooperation54. This body of work is based on the insight
that evolutionarily stable cooperation is impossible in simulta-
neous games without errors55–59. For any cooperative resident, it
is always possible to find neutral mutant strategies that eventually
lead to the demise of cooperation. However, once individuals
occasionally commit errors, a strategy like WSLS is no longer
neutral with respect to other cooperative strategies; it becomes
evolutionarily stable40,56. The situation is different in alternating
games. Even in the presence of rare errors, strategies like SFBF
remain vulnerable. They can be invaded by unconditional coop-
erators or by any other strategy that fully reciprocates a co-
player’s cooperation.

Despite these differences in the stability of their main strate-
gies, evolving cooperation rates in the simultaneous and the
alternating game are often surprisingly similar. To interpret these
results, we note that when evolution is stochastic and takes place
in finite populations, no strategy persists indefinitely. Even evo-
lutionarily stable strategies are invaded eventually. As a result, the
overall abundance of cooperation is not only determined by the
stability of any given strategy. Instead, it depends on additional
aspects, such as the time it takes cooperative strategies to reappear
when they are invaded. The relative importance of these
different aspects depends on the details of the considered evo-
lutionary process. To further illustrate these observations, we
have run additional simulations for memory-1 players with local
mutations60 (see Supplementary Note 3). Because evolutionary
stability considerations are less relevant when mutations are local,
we observe that the cooperation rates of the alternating and the
simultaneous game become more similar (Supplementary Fig. 8).

Cooperation is defined as a behavior where individuals pay a
cost in order to increase the payoff or fitness of someone else2.
When individuals interact repeatedly, such cooperative interac-
tions can be maintained by reciprocity. Here, we have argued that
in many examples, reciprocity arises as a series of asynchronous
acts of cooperation. Most often, people do favors not to be
rewarded immediately, but to request similar favors in the future.
Such consecutive acts of cooperation also appear to be at work
when vampire bats20, sticklebacks23, ibis24, tree swallows61, or

macaques62 engage in reciprocity. We have shown that mutual
cooperation is still possible in such alternating exchanges. But
compared to the predominant model of reciprocity in simulta-
neous games, cooperation requires different kinds of strategies,
and it is more volatile.

Methods
Calculation of payoffs. When two players with memory-1 strategies interact, their
expected payoffs can be computed by representing the game as a Markov chain3.
To this end, suppose the first player’s strategy is p= (pCC, pCD, pDC, pDD), and the
second player’s strategy is q= (qCC, qCD, qDC, qDD). Depending on the most recent
actions of the two players (which can be either CC, CD, DC, or DD), we can
compute how likely we are to observe each of the four outcomes in the following
round. For the alternating game, we obtain the following transition matrix25,

MA ¼

pCCqCC pCCð1 � qCCÞ ð1 � pCCÞqCD ð1 � pCCÞð1 � qCDÞ
pCDqDC pCDð1 � qDCÞ ð1 � pCDÞqDD ð1 � pCDÞð1 � qDDÞ
pDCqCC pDCð1 � qCCÞ ð1 � pDCÞqCD ð1 � pDCÞð1 � qCDÞ
pDDqDC pDDð1 � qDCÞ ð1 � pDDÞqDD ð1 � pDDÞð1 � qDDÞ

0
BBB@

1
CCCA:

ð8Þ
Based on this transition matrix, we compute how often players observe each of the
four outcomes. To this end, we solve the equation for the stationary distribution,
v= vMA. In most cases, the solution of this equation is unique. Uniqueness is
guaranteed, for example, when the players’ strategies p and q are fully stochastic, or
when the error rate is positive. In exceptional cases, however, the transition matrix
can allow for two or more stationary distributions. In that case, the outcome of the
game is still well-defined, after specifying how players act in the very first round.

Given the stationary distribution v= (vCC, vCD, vDC, vDD), we define the players’
payoffs as

π1 ¼ ðvCC þ vDCÞb� ðvCC þ vCDÞc;
π2 ¼ ðvCC þ vCDÞb� ðvCC þ vDCÞc:

ð9Þ

This definition implicitly assumes that the game is indefinitely repeated and that
future payoffs are not discounted. However, analogous formulas can be given in
case there is a constant continuation probability δ, or equivalently if future payoffs
are discounted by δ (see Supplementary Note 3).

We compare our results for the alternating game with the corresponding results
for the standard repeated prisoner’s dilemma, where players decide simultaneously.
Payoffs for the simultaneous game can be calculated in the same way as before.
Only the transition matrix needs to be replaced by3

MS ¼

pCCqCC pCCð1 � qCCÞ ð1 � pCCÞqCC ð1 � pCCÞð1 � qCCÞ
pCDqDC pCDð1 � qDCÞ ð1 � pCDÞqDC ð1 � pCDÞð1 � qDCÞ
pDCqCD pDCð1 � qCDÞ ð1 � pDCÞqCD ð1 � pDCÞð1 � qCDÞ
pDDqDD pDDð1 � qDDÞ ð1 � pDDÞqDD ð1 � pDDÞð1 � qDDÞ

0
BBB@

1
CCCA:

ð10Þ
Although the two matrices share many similarities, the resulting dynamics can be
very different. For example, if the two players use TFT, then the matrix MS allows
for three invariant sets (corresponding to mutual cooperation, mutual defection,
and alternating cooperation). However, the respective matrix MA only allows for
the first two invariant sets25. More generally, MS allows for equilibria where players
cooperate in one round but defect in the next round. Such equilibria are impossible
for MA (see Supplementary Note 2).

We sometimes assume players commit errors. We incorporate errors by
assuming that with probability ε, a player who intends to cooperate defects by
mistake. Analogously, a player who wishes to defect cooperates instead with the
same probability. Such errors are straightforward to incorporate into the model.
For ε > 0, a player’s strategy p translates into an effective strategy pε≔ (1− ε)
p+ ε(1− p). To compute the payoffs of strategy p against strategy q in the
presence of errors, we apply the formulas (8)–(10) to the strategies pε and qε.

Evolutionary dynamics. In the following, we describe the evolutionary process for
the baseline scenario. For the various model extensions (Fig. 6, Supplementary
Fig. 5–Supplementary Fig. 8), we use appropriately adapted versions of this process,
as described in more detail in Supplementary Note 3. To model how successful
strategies spread in well-mixed populations, we use a pairwise comparison
process50. This process considers a population of constant size N. Initially, all
population members are unconditional defectors. Each player derives a payoff by
interacting with all other population members; for each pairwise interaction,
payoffs are given by Eq. (9).

To model how strategies with a high payoff spread within a population, we
consider a model in discrete time. In each time step, one player is chosen from the
population at random. This player is then given an opportunity to revise its
strategy. The player can do so in two ways. First, with probability μ (the mutation
rate), the player may engage in random strategy exploration. In this case, the player
discards its strategy and samples a new strategy uniformly at random from the set
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of all memory-1 strategies. Second, with probability 1− μ, the player considers
imitating one of its peers. In this case, the player selects a random role model from
the population. If the role model’s payoff is πR and the focal player’s payoff is πF,
then imitation occurs with a probability given by the Fermi function63

ρ ¼ 1

1þ exp �βðπR � πF Þ
� � : ð11Þ

If imitation occurs, the focal player discards its previous strategy and adopts the
role model’s strategy instead. In the formula for the imitation probability, the
parameter β ≥ 0 is called the strength of selection. It measures the extent to which
players are guided by payoff differences between the players’ strategies. For β= 0,
any payoff differences are irrelevant. The focal player adopts the role model’s
strategy with a probability of 1/2. As β becomes larger, payoff differences become
increasingly important. In the limiting case β→∞, imitation only occurs if the role
model’s payoff at least matches the focal player’s payoff.

Overall, the two mechanisms of random strategy exploration and directed
strategy imitation give rise to a stochastic process on the space of all population
compositions. For positive mutation rates, this process is ergodic. In particular, the
average cooperation rate (as a function of the number of time steps) converges, and
it is independent of the considered initial population. Herein, we have explored this
process with computer simulations. We have recorded which strategies the players
adapt over time and how often they cooperate on average. For most of these
simulations, we assume that mutations are sufficiently rare64. For those
simulations, we require mutant strategies to either fix in the population or to go
extinct before the next mutation occurs. Under this regime, the mutant’s fixation
probability can be computed explicitly9. This in turn allows us to simulate the
evolutionary dynamics more efficiently65,66.

Parameters and specific procedures used for the figures. For the simulations in
well-mixed populations, we used the following baseline parameters

Benefit of cooperation : b ¼ 3

Cost of cooperation : c ¼ 1

Population size : N ¼ 100

Selection strength : β ¼ 5 ðFig: 4; Supplementary Figures 1�3Þ and β ¼ 1 ðall other figuresÞ
Error rate : ε ¼ 0 ðwithout errorsÞ; or ε ¼ 0:02 ðwith errorsÞ
Mutation rate : μ ! 0:

ð12Þ

Changes in these parameters are systematically explored in Fig. 5 and Supple-
mentary Fig. 4. For Figs. 4, 5, and Supplementary Fig. 1–Supplementary Fig. 6, the
respective simulations are run for at least 107-time steps each (measured in a
number of introduced mutant strategies over the course of a simulation). For Fig. 6,
Supplementary Fig. 7, and Supplementary Fig. 8, simulations are run for a shorter
time (as illustrated in the respective panels that illustrate the resulting dynamics).
However, here all results are obtained by averaging over 50–200 independent
simulations.

To report which strategies the players use to sustain cooperation (or defection),
we record all strategies that arise during a simulation that have a cooperation rate
against themselves of at least 80% (in the case of self-cooperators), or a cooperation
rate of less than 20% (in the case of self-defectors). In Fig. 4, Supplementary
Fig. 1–Supplementary Fig. 3, and Supplementary Fig. 5, we show the marginal
distributions of all strategies that we have obtained in this way. For these
distributions, each strategy is weighted by how long the strategy has been present in
the population. In Fig. 6, Supplementary Fig. 7, and Supplementary Fig. 8, we
represent the self-cooperative strategies by computing the average of the respective
marginal distributions. In some cases (Fig. 6e, Supplementary Fig. 7,
Supplementary Fig. 8), we also report how robust self-cooperative strategies are on
average. To this end, we record for each self-cooperative resident strategy how
many mutants need to be introduced into the population until a mutant strategy
reaches fixation. We consider self-cooperative strategies that resist invasion by
many mutant strategies as more robust.

Finally, for the simulations for spatial populations (Fig. 6g–i), we closely follow
the setup of Brauchli et al.52. Here, we consider a population of size N= 2500.
Players are arranged on a 50 × 50 lattices with periodic boundary conditions.
Players use memory-1 strategies (initially they adopt the strategy ALLD). In every
generation, every player interacts in a pairwise game with each of its eight
immediate neighbors. After these interactions, all players are independently given
an opportunity to update their strategies. With probability μ= 0.002, an updating
player chooses a random strategy, uniformly taken from all memory-1 strategies
(global mutations). With probability 1− μ, the updating player adopts the strategy
of the neighbor with the highest payoff (but only if this neighbor’s payoff is better
than the focal player’s payoff). This elementary process is then repeated for 20,000
generations. Figure 6g, i shows averages across 50 independent simulations of the
process. Figure 6h illustrates two particular realizations.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data for Fig. 4, Fig. 5, Fig. 6a–f and i are provided with this paper. Moreover, the
raw data generated with the computer simulations, including the data that is necessary to
create all figures are available online67, at osf.io: https://doi.org/10.17605/osf.io/
v5hgd. Source data are provided with this paper.

Code availability
All simulations were performed with MATLAB_R2019b. The respective code is available
online67, at osf.io: https://doi.org/10.17605/osf.io/v5hgd.
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Supplementary Figure 1: Partners in the simultaneous game. Here, we present results analogous to those
of Fig. 4, but illustrating the outcome of simultaneous games. a,c, Without errors, the two models make the
same predictions, and also the evolving cooperative strategies are similar. b, With errors, there is no theory yet
that characterizes all partner strategies of the simultaneous game. It is only known that particular cooperative
strategies are stable under certain conditions. For example, WSLS is a partner strategy if b > 2c, provided the
error rate is sufficiently small1. Another example of a partner strategy is GTFT (defined in the same way as in the
alternating game; for reactive strategies, the two games are equivalent2). d, For simultaneous games with errors,
our evolutionary simulations confirm that players predominantly maintain cooperation with WSLS. Parameters are
the same as in Fig. 4.
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Supplementary Figure 2: Defectors in the alternating prisoner’s dilemma. As we have done for partners, we
have also characterized all defectors among the memory-1 strategies for the alternating game. a,b, We provide
explicit conditions for the case without errors and the case with errors, see Supplementary Note 2. With errors,
there are two classes of defector strategies. First, there is the atomic class of unconditional defection (ALLD).
Second, there is a line segment that connects a stochastic version of GRIM to the strategy EXT; the latter is a
limiting version of the previously described extortionate strategies3–7. c,d, For the evolutionary simulations, we
use the same parameters as in Fig. 4.
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Supplementary Figure 3: Defectors in the simultaneous game. a,b, The figure is analogous to Supplementary
Fig. 2, but for the case of the simultaneous game instead of the alternating game. For the simultaneous game with
errors, there is no complete characterization of defector strategies as of yet. However, it is known that ALLD is a
Nash equilibrium for all parameter values, because it simply reiterates the Nash equilibrium of the one-shot game.
c,d, For the evolutionary simulations, we use the same parameters as in Fig. 4.
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Supplementary Figure 4: Comparing the alternating and the simultaneous game across different error rates
and benefit values. We have run further simulations to explore the joint effect of the error rate and the benefit
of cooperation, for both the alternating game (a) and the simultaneous game (b). In both cases, we observe high
cooperation rates for high benefit values and sufficiently small error rates. c, Here, we plot the difference in
cooperation rates between the simultaneous and the alternating game. This difference is small for small benefit
values (where defection evolves in both settings). It is also small for large benefits when the error rate is small (for
which nearly full cooperation evolves in both settings). In between, for intermediate benefit values and intermediate
error rates, the simultaneous game yields systematically more cooperation than the alternating game. Baseline
parameters are the same as in Fig. 5.
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Supplementary Figure 5: Self-cooperative strategies in the finitely repeated alternating game. We explore
which strategies the players use to maintain cooperation in finitely repeated alternating games. To this end, we
consider two different error scenarios (a-c: ε = 0 and d-f: ε = 0.02), and three expected game lengths (5, 10,
or 100 rounds, corresponding to a continuation probability of δ = 0.8, δ = 0.9, and δ = 0.99). In each case,
we run simulations and record those strategies that have a self-cooperation rate of at least 80%. Here, we show
the distribution of these strategies. We observe the following regularities: (i) The players’ first round behavior
is only under selection when players interact for a few rounds. For δ > 0.9, the distribution of the respective
cooperation probabilities q00, q0C , q0D is comparably flat. (ii) The conditional cooperation probabilities for all
subsequent rounds generally resemble the evolving strategies of the baseline model. Apart from the parameters
varied explicitly, parameters are the same as in Fig. 4.
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Supplementary Figure 6: Cooperation in the finitely repeated game with irregular alternation patterns.
Using the same basic setup as in Fig. 6, we have explored how likely players are to cooperate in finitely repeated
alternating games with irregular alternation patterns. To this end, we vary (i) the expected number of rounds, and
(ii) the switching rate that measures how strictly players are to alternate. In addition, we consider two scenarios,
depending on whether or not players commit implementation errors (a,b). As already indicated by Fig. 6, players
are most likely to cooperate when there are no errors, when the number of rounds is large, and when players move
in a strictly alternating fashion.
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Supplementary Figure 7: Stability and evolutionary dynamics of pure memory-2 strategies. We have also
run simulations for (infinitely repeated) simultaneous and alternating games when players have access to all 65,536
memory-2 strategies. These strategies are 16-dimensional vectors that take each player’s last two actions into ac-
count. a, In a first step, we have computed which of these strategies are evolutionarily stable for an error rate of
ε= 0.02. Here, we display the respective strategies (encoded by the 16 integers on the right hand side), the range
of b/c values for which these strategies are stable (indicated by the length of the lines), and the self-cooperation
rates of these strategies (indicated by the color of the respective line). In the simultaneous game, there are many
evolutionarily stable strategies, including strategies that yield almost full cooperation. In contrast, in the alternating
game, ALLD is the only strategy that is evolutionarily stable for a positive range of b/c values. b,c Although only
the simultaneous game allows for evolutionarily stable cooperation, simulations suggest that alternating games
yield similar average cooperation rates. d, In a next step, have recorded which strategies the players use to coop-
erate among themselves (for this simulation we again call a strategy self-cooperative if it yields a cooperation rate
of at least 80% against itself). In the simultaneous game, the self-cooperative strategies resemble the previously
reported all-or-none strategies1. Here, the two players are most likely to cooperate if they both cooperated in the
last two rounds, if none of them cooperated in the last two rounds, or if they both cooperated in the last round but
defected in the second-to-last round. In the alternating game, the players’ conditional cooperation probabilities
seem more irregular. e, We have also computed how robust self-cooperative strategies are, by recording how many
mutant strategies it takes on average to successfully invade into a resident population of self-cooperators. As ex-
pected from our evolutionary stability analysis, self-cooperative strategies are more robust in simultaneous games.
For details, see Supplementary Note 3.
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Supplementary Figure 8: Evolutionary dynamics under local mutations. The previous simulations assume that
mutations are global: mutant strategies can be arbitrarily far away from the resident strategy. Here we compare this
scenario with the case of local mutations, where mutant strategies are required to be in a small neighborhood of the
resident strategy. We measure the size of this neighborhood by the mutation range m. The mutation range reflects
by how much the mutant’s conditional cooperation probabilities are allowed to differ from the resident strategy.
Unless noted otherwise, we use m=0.05. a,b, In both the simultaneous and the alternating game, local mutations
lead to less cooperation. However, the effect is more notable in the simultaneous game. c,d, Local mutations do
not affect which strategies the players use on average to maintain cooperation. However, they affect how robust
these strategies are. Under local mutations, all mutants have approximately the same fitness as the resident. As a
result, the evolutionary competition is almost neutral; on average, it thus takes an order of N mutants to invade
any given resident population (here, the population size is N = 100). e,f, We have repeated these simulations for
different mutation ranges. The mutation range has a strong effect on cooperation in the simultaneous game (where
evolutionarily stable cooperation is possible). It has a comparably weak effect in the alternating game (in which
no evolutionarily stable strategy exists that leads to full cooperation).
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Supplementary Figure 9: A characterization of partners among the reactive strategies. Here, we describe
the set of partner strategies within the class of reactive strategies. Reactive strategies are a subset of memory-1
strategies. They consist of two conditional cooperation probabilities, qC and qD. The two probabilities describe
how a player responds to a co-player’s cooperation and defection, respectively. a,b, For reactive strategies, the
alternating and the simultaneous game lead to the same payoffs2. As a result, also the partner strategies coincide
in each case. c,d, With errors, GTFT is the only partner strategy. It can be neutrally invaded by ALLC, and hence
it is not evolutionarily stable.
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We note that in the following, all references to equations refer to the respective equation in the Supple-

mentary Information document; we do not refer to main text equations herein.

Supplementary Note 1: Baseline model

Game setup. In the following, we introduce the model in slightly more general terms than in the main

text. We consider two players who interact repeatedly. Each turn, they either decide at the same time

whether or not to cooperate (simultaneous game), or they decide consecutively, one after the other (al-

ternating game). In the former case, players do not know of the other player’s decision when making

their own decision. In the latter case, player 1 moves first and player 2 learns the outcome before making

its own decision. To ensure payoffs are well-defined in both cases, we assume the payoff of an action

can be defined based on that particular action alone (that is, the payoff consequences of one player’s

cooperation does not depend on the co-player’s action). This implies that payoffs take the form of the

donation game2. That is, cooperation (C) implies a cost of c>0 to the cooperating player, and it yields

a benefit b>c to the co-player. Defection (D) comes with no cost and yields no benefit.

Here we assume the game proceeds indefinitely and future payoffs are not discounted. For such

repeated games, we can define the players’ payoffs as follows. Let va1,a2(t) denote the probability that

the t-th actions of player 1 and player 2 are a1 and a2, respectively, with a1, a2 ∈ {C,D}. Throughout

this paper, we assume that for all a1, a2 the respective limiting averages are well-defined,

va1,a2 := lim
T→∞

1

T

T∑
t=1

va1,a2(t). (1)

These limits are guaranteed to exist, for example, when the two players have finite recall. We collect the

four limiting averages defined by Eq. (1) in a vector,

v=(vCC , vCD, vDC , vDD). (2)

Each entry corresponds to the probability to observe the respective outcome at a randomly picked time t.

Based on these four probabilities, we define the players’ payoffs by

π1 = b·(vCC+vDC)− c·(vCC+vCD)

π2 = b·(vCC+vCD)− c·(vCC+vDC).
(3)

These formulas apply to both the alternating and the simultaneous game (however, the respective limiting

averages v will generally differ, see below).

Memory-1 strategies. We assume players use memory-1 strategies. That is, to decide whether to cooper-

ate in a given round, a player only takes into account each player’s most recent decision. Such strategies
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can be written as a 4-tuple

p = (pCC , pCD, pDC , pDD). (4)

An entry paã is the probability the focal player cooperates, given that the focal player’s last decision was

a∈{C,D} and that the opponent’s last decision was ã∈{C,D}. Such a strategy is deterministic if all

entries are either zero or one; it is semi-stochastic if some but not all entries are between zero and one;

and it is fully stochastic if all entries are between zero and one.

When both players use memory-1 strategies, the payoffs according to Eq. (3) can be calculated

explicitly. To this end, let us consider two players with strategies p = (pCC , pCD, pDC , pDD) and q =

(qCC , qCD, qDC , qDD), respectively. The game can be represented as a Markov chain, where the states

are the possible combinations of the two players’ actions at a given point in time, {CC,CD,DC,DD}.
For the alternating game, the Markov chain’s transition matrix is

MA(p,q) :=


pCCqCC pCC(1−qCC) (1−pCC)qCD (1−pCC)(1−qCD)

pCDqDC pCD(1−qDC) (1−pCD)qDD (1−pCD)(1−qDD)

pDCqCC pDC(1−qCC) (1−pDC)qCD (1−pDC)(1−qCD)

pDDqDC pDD(1−qDC) (1−pDD)qDD (1−pDD)(1−qDD)

 . (5)

By the Perron-Frobenius Theorem, the vector v defined by Eq. (2) is an invariant distribution ofMA(p,q).

That is, to compute how often players visit each of the four states, we only need to solve the following

linear equation in the unknown v(p,q),

v(p,q) = v(p,q) ·MA(p,q). (6)

Based on this invariant distribution, one can then compute payoffs based on Eq. (3),

π(p,q) = b·
(
vCC(p,q)+vDC(p,q)

)
− c·

(
vCC(p,q)+vCD(p,q)

)
π(q,p) = b·

(
vCC(p,q)+vCD(p,q)

)
− c·

(
vCC(p,q)+vDC(p,q)

)
.

(7)

For the simultaneous game, payoffs can be computed analogously, but using a different transition ma-

trix8,

MS(p,q) :=


pCCqCC pCC(1−qCC) (1−pCC)qCC (1−pCC)(1−qCC)

pCDqDC pCD(1−qDC) (1−pCD)qDC (1−pCD)(1−qDC)

pDCqCD pDC(1−qCD) (1−pDC)qCD (1−pDC)(1−qCD)

pDDqDD pDD(1−qDD) (1−pDD)qDD (1−pDD)(1−qDD)

 . (8)

In cases in which it is clear which game and which strategies p and q are considered (or in case the game

and the exact strategies do not matter), we will sometimes write v and M instead of v(p,q), MA(p,q),

and MS(p,q).
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We note that in degenerate cases, the solution of v = vM does not need to be unique. In that

case, the correct invariant distribution v needs to be derived from the players’ actions in the very first

round. As an example, consider an alternating game in which both players adopt the strategy TFT. The

corresponding transition matrix MA has two absorbing states. The first absorbing state corresponds to

indefinite mutual cooperation, and the other corresponds to indefinite mutual defection. Which of these

absorbing states is reached (and hence which of the invariant distributions is relevant for the calculation

of the players’ payoffs) depends on player 1’s action in the very first round (when no previous history

of actions is yet available). If player 1 cooperates, both players continue to cooperate, and the appro-

priate invariant distribution is v = (1, 0, 0, 0). Otherwise, if player 1 defects, the appropriate invariant

distribution is v = (0, 0, 0, 1). We note that if the two TFT players interact in a simultaneous game,

the respective transition matrix MS has a third absorbing state. According to that state, players switch

between cooperation and defection. In the alternating game this state is no longer absorbing2, because

players now condition their behavior on different past events (as illustrated in Fig. 1).

Reactive strategies. An important subset of memory-1 strategies are the so-called reactive strategies.

While the behavior of a reactive strategy still depends on the opponent’s previous decision, it is in-

dependent of the player’s own previous decision. Such strategies correspond to those 4-tuples p =

(pCC , pCD, pDC , pDD) for which pCC = pDC and pCD = pDD. Slightly abusing notation, we denote

reactive strategies as 2-tuples p=(pC , pD). The first entry pC :=pCC =pDC is the player’s cooperation

probability given that the opponent’s last decision was to cooperate. The second entry pD :=pCD =pDD

is the player’s cooperation probability given that the opponent’s last decision was to defect. Examples of

reactive strategies include ALLD=(0, 0), ALLC=(1, 1), TFT=(1, 0) and ATFT=(0, 1).

Supplementary Note 2: Equilibrium analysis for alternating games

In the following, we aim to characterize all symmetric Nash equilibria of the alternating game in the

space of memory-1 strategies. In a Nash equilibrium, no player can increase her payoff by unilaterally

deviating. To do so, we use an approach that is different from previous approaches for the simultaneous

game9–13. Our approach involves two steps. First, we show that for any game between two memory-1

players, one can replace one player’s strategy by an appropriately chosen reactive strategy without af-

fecting the resulting payoffs. This step is somewhat reminiscent of a result by Press and Dyson3. They

showed for the simultaneous game that there is no advantage of having a longer memory than the oppo-

nent. For alternating games, a stronger result holds. Against a memory-1 opponent, a player can even

afford to have a lower memory. It suffices to only remember the opponent’s last move and to forget one’s

own. Second, we show that to find a best response to a given memory-1 strategy, it is sufficient to check

it against those reactive strategies that are deterministic. This result implies that one needs to explore

only four possible deviations, ALLD, ALLC, TFT, and ATFT, as defined above.
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Based on these two results, we show that the alternating game allows for three qualitatively different

classes of memory-1 equilibria. According to the first two classes, players either mutually cooperate

or mutually defect. We refer to the respective strategies as partners and defectors, respectively. In the

last class, players act in such a way that the opponent’s payoff is guaranteed to be fixed, irrespective of

the opponent’s strategy. These strategies have been called equalizers in the context of the simultaneous

game3,14.

Sufficiency of reactive strategies

As our first result, we show that when two memory-1 players interact, one player’s strategy can be re-

placed by an appropriate reactive strategy without affecting the game’s outcome (all proofs are presented

as an appendix in Supplementary Note 4). For simplicity, we show this result for the first player. How-

ever, because payoffs are independent of the position of the players2, an analogous result holds for the

second player.

Proposition 1 (Sufficiency of reactive strategies when both players use memory-1 strategies).
Consider two memory-1 players with strategies p=(pCC , pCD, pDC , pDD) and q=(qCC , qCD, qDC , qDD),

and suppose v(p,q) = (vCC , vCD, vDC , vDD) is an invariant distribution of the resulting alternating

game. We define a reactive strategy p̃ = (p̃C , p̃D) for player 1 as a solution of

(vCC+vDC) p̃C = vCC pCC + vDC pDC

(vCD+vDD) p̃D = vCD pCD + vDD pDD.
(9)

Then v(p̃,q)=v(p,q). We call such a strategy p̃ a reactive marginalization of p with respect to q.

Several remarks are in order.

(a) Intuition for the result. To gain some intuition for Proposition 1, let us assume that the strategies

p and q are such that player 2 both cooperates and defects with positive probability. In that case,

vCC +vDC > 0 and vCD +vDD > 0, and the reactive marginalization of p with respect to q is

unique,
p̃C =

vCC

vCC+vDC
pCC +

vDC

vCC+vDC
pDC

p̃D =
vCD

vCD+vDD
pCD +

vDD

vCD+vDD
pDD.

(10)

That is, to obtain the value of p̃C , we only need to consider how often the first player cooperates

in response to the opponent’s cooperation on average. To this end, all outcomes in which the first

player cooperates are weighted according to how often these outcomes occur in the first place.

Fig. 3 provides an illustration for two particular examples of strategies p and q.

(b) Proposition 1 only applies to alternating games. To illustrate that the statement is not true for si-

multaneous games, consider the strategies used in Fig. 3, with p = (0.9, 0.1, 0.5, 0.3) and q =
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(0.8, 0.25, 0.75, 0.2). By computing the respective transition matrix MS according to Eq. (8), and

by solving for v = vMS , we obtain the invariant distribution v(p,q) ≈ (0.23, 0.21, 0.24, 0.32).

If we use this expression and formula (10) to compute the unique reactive marginalization of p

with respect to q, we obtain p̃≈(0.698, 0.220). However, the respective invariant distribution of a

simultaneous game between p̃ and q is v(p̃,q)≈ (0.22, 0.23, 0.25, 0.30), which is different from

v(p,q). Hence the simultaneous game between the two memory-1 strategies p̃ and q induces a

dynamics that is different from the simultaneous game between p and q.

(c) Non-uniqueness of reactive marginalizations. In some cases of alternating games, a strategy’s re-

active marginalization is not unique. This happens, for example, if player 1 uses the strategy

p = (0, 0, 1, 0) and the opponent uses GRIM = (1, 0, 0, 0). The respective transition matrix

MA according to Eq. (5) has a unique invariant distribution according to which everyone defects,

v = (0, 0, 0, 1). By Proposition 1 it follows that for any reactive strategy p̃ = (p̃C , 0) with

p̃C ∈ [0, 1], again v is an invariant distribution of the game against q. We note however, that one

of these reactive strategies, p̃ = (1, 0), allows for a second invariant distribution, v = (1, 0, 0, 0).

When this reactive marginalization is chosen, we additionally need to require that player 1 defects

in the very first round, such that the correct invariant distribution is selected.

The above Proposition 1 suggests that against a given memory-1 opponent, there is no advantage of

choosing a memory-1 strategy instead of a reactive strategy: any payoff a player can achieve with a

memory-1 strategy can also be achieved with a reactive strategy. This result holds more generally, even

if player 1 has access to more complex strategies.

Proposition 2 (Sufficiency of reactive strategies when only the second player uses a memory-1 strategy).
Consider an alternating game in which the second player uses the memory-1 strategy q=(qCC , qCD, qDC , qDD)

whereas the first player uses an arbitrary strategy. Denote by pa1,a2(t) the first player’s expected prob-

ability to cooperate at time t conditional on the players’ previous decisions a1 and a2. Suppose the

limiting distribution v according to Eq. (2) and the following limits on the right hand side exist, such

that we can define p̃C and p̃D implicitly as a solution of

(vCC+vDC) p̃C = lim
T→∞

1

T

T∑
t=1

vCC(t) pCC(t) + vDC(t) pDC(t)

(vCD+vDD) p̃D = lim
T→∞

1

T

T∑
t=1

vCD(t) pCD(t) + vDD(t) pDD(t).

(11)

The reactive strategy p̃=(p̃C , p̃D) so defined satisfies v(p̃,q)=v.

The requirements imposed by Proposition 2 are comparably mild. The existence of the respective limits

is guaranteed, for example, if player 1 adopts an arbitrary strategy with finite recall (in some cases,

this may again require players to specify their initial actions to make sure the invariant distribution is
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well-defined). In the following, we say that those strategies that satisfy the conditions in Proposition 2
are generic with respect to q. That is, generic strategies are those for which one can compute how

likely a player is to cooperate on average, conditional on the co-player’s previous action. In particular,

all memory-1 strategies are generic (given their initial actions are defined). In that special case, the

respective definition of p̃ according to Eqs. (9) and (11) coincide, as one may expect.

We can summarize the results in this section as follows. Given a fixed memory-1 strategy q for

the second player, we can define the following three sets. These sets describe both players’ feasible

payoffs, given the first player either adopts a reactive strategy, a memory-1 strategy, or a generic strategy,

respectively,

ΠR(q) :=
{(
π(p,q), π(q,p)

)
∈ R2

∣∣∣ p is a reactive strategy
}

ΠM (q) :=
{(
π(p,q), π(q,p)

)
∈ R2

∣∣∣ p is a memory-1 strategy
}

ΠG(q) :=
{(
π(p,q), π(q,p)

)
∈ R2

∣∣∣ p is a generic strategy
} (12)

Then Propositions 1 and 2 imply the following.

Corollary 1. If q is a memory-1 strategy, then ΠR(q) = ΠM (q) = ΠG(q).

That is, against a memory-1 opponent, all payoffs that can either be achieved with a generic strategy, or

a memory-1 strategy, can already be achieved with a reactive strategy.

Best responses to memory-1 strategies

In this section, we aim to identify best responses to a given memory-1 strategy. We restrict ourselves to

generic best responses. A strategy p is a generic best response to strategy q if it is generic, and if

π(p,q) ≥ π(p′,q) for all generic strategies p′. (13)

By Proposition 2, there is always a generic best response in the space of reactive strategies. The follow-

ing two results simplify the search for a generic best response even further.

Lemma 1. Consider a reactive player with strategy p = (pC , pD) who interacts with a memory-1

opponent with strategy q=(qCC , qCD, qDC , qDD). Then, the payoff of the reactive player is given by

π(p,q) =
bqDD − cqDD ·pC +

(
(qDC−qDD)b−(1−qCD)c

)
·pD + c(qCC−qCD−qDC+qDD)·pCpD

1−qCD+qDD − (qCC−qCD)·pC − (qDD−qDC)·pD
. (14)

In particular, the payoff of the reactive player depends monotonically on each of its inputs pC and pD.

The first part of the Lemma gives an explicit formula to compute payoffs. The monotonicity property

mentioned in the second part is useful because it allows us to derive the following result.

16



Proposition 3 (Optimality of deterministic reactive strategies).
Let q be some given memory-1 strategy and let p∈ [0, 1]2 be an arbitrary reactive strategy. Then there

is a deterministic reactive strategy p′∈{0, 1}2 for which π(p′,q) ≥ π(p,q).

In particular, if p is a best response to q, then there is at least one deterministic and reactive strategy p′

that yields the same payoff (that is, p′ is also a best response). By combining Propositions 2 and 3, we

can thus conclude that to find a generic best response to an arbitrary memory-1 strategy, it suffices to con-

sider the four deterministic reactive strategies ALLD=(0, 0), ATFT=(0, 1), TFT=(1, 0), ALLC=(1, 1).

We can use this observation to characterize all generic Nash equilibria among the memory-1 strategies.

We say a strategy q is a generic Nash equilibrium if q is a generic best reply to itself. By Eq. (7), the

payoff of a memory-1 strategy q against itself is

π(q,q) =
(1−qCC+qDC)qDD

(1−qCC)(1−qCD+qDD)+ (1−qCC+qDC)qDD
· (b−c). (15)

Because of Propositions 2 and 3, we only need to compare this self-payoff to the payoffs of the four

deterministic reactive strategies. By Eq. (14), the respective payoffs are

π(ALLD,q) =
qDD

1−qCD+qDD
· b

π(ATFT,q) =
qDC

1−qCD + qDC
· b− 1−qCD

1−qCD+qDC
· c

π(TFT,q) =
qDD

1−qCC+qDD
· (b−c)

π(ALLC,q) =
qDC

1−qCC+qDC
· b− c,

(16)

Overall, we obtain the following result.

Theorem 1 (Characterization of generic Nash equilibria).
Let q be an arbitrary memory-1 strategy such that the payoffs (15) and (16) are well-defined. Then q is

a generic Nash equilibrium if and only if

π(q,q) ≥ max
(
π(ALLD,q), π(ATFT,q), π(TFT,q), π(ALLC,q)

)
(17)

The assumption on the payoffs (15) and (16) to be well-defined is not a major restriction. Those cases

in which some of the expressions in Eqs. (15) and (16) cannot be evaluated (for example, when qCC =1

and qDD =0), correspond to those cases in which the invariant distribution v according to Eq. (6) is not

unique. In that case, one can resolve the ambiguity by defining an initial cooperation probability for the

very first round. In this way, all relevant payoffs become well-defined, and condition (17) remains valid.
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Classification of memory-1 Nash equilibria

In the following, we use the general characterization provided in Theorem 1 to give a qualitative classifi-

cation of all generic memory-1 Nash equilibria. To this end, we first describe three distinct behaviors that

can be sustained in equilibrium. These three behaviors correspond to players who mutually cooperate,

players who mutually defect, and players who unilaterally fix the co-player’s payoff to a fixed level. In

line with the previous literature on simultaneous games, we refer to the respective equilibrium strategies

as partners11, defectors15, and equalizers14. Then we show that these three classes of behaviors com-

prise in fact all Nash equilibria of the alternating game.

Partners. We say a strategy is self-cooperative if two players with that strategy obtain the mutual

cooperation payoff b−c against each other. For a memory-1 strategy q to be self-cooperative, Eq. (15)

implies that qCC needs to be set to one (if qDD =0, the strategy is additionally required to cooperate in the

first round). We call a strategy a partner if it is self-cooperative and if it satisfies the Nash condition (17).

To check whether the Nash condition holds, we note that for any self-cooperative strategy q, the equality

π(q,q) = π(TFT,q) = π(ALLC,q) = b− c holds. Thus, we only need to verify the two remaining

inequalities, π(ALLD,q) ≤ b − c and π(ATFT,q) ≤ b − c. Based on the respective expressions in

Eqs. (16), we conclude that q is a partner if and only if the following three conditions are satisfied,

qCC = 1

(b−c)(1−qCD) ≥ c qDD

b(1−qCD) ≥ c qDC .

(18)

These conditions define a 3-dimensional subspace of the memory-1 strategies (see Fig. 4). This subspace

is non-empty: since b>c, all conditions can be met by choosing sufficiently small cooperation probabil-

ities qCD, qDC , qDD. The subspace of partner strategies increases with b and it decreases with c. That is,

the more profitable cooperation is, the easier it becomes to satisfy the conditions for being a partner.

Defectors. We call a strategy self-defective if two players with that strategy end up with the mutual

defection payoff when playing against each other. In particular, a self-defective memory-1 strategy q

needs to set qDD to zero (in case payoffs are not well-defined otherwise, it additionally needs to defect

in the first round). We say a self-defective strategy is a defector if it additionally satisfies the Nash

condition (17). Similar to before, two of the four conditions in Eq. (17) are automatically met because

a self-defective strategy satisfies π(q,q) = π(ALLD,q) = π(TFT,q) = 0. Thus, we only need to verify
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π(ATFT,q)≤0 and π(ALLC,q)≤0. Overall, we obtain the following characterization of defectors,

qDD = 0

b qDC ≤ c (1−qCD)

(b−c) qDC ≤ c (1−qCC).

(19)

Again, these conditions define a 3-dimensional non-empty subspace of memory-1 strategies (Supple-
mentary Fig. 2). The volume of this subspace increases if we either reduce b or increase c.

Equalizers. For simultaneous games, it has been noted that the memory-1 strategies contain a subset

of so-called equalizers3,14. If player 2 adopts such a strategy q, player 1’s payoff π(p,q) is a constant,

independent of player 1’s strategy. Obviously, if both players choose an equalizer strategy, the resulting

strategy profile is a Nash equilibrium. In that case, no player can get a different payoff – let alone a larger

payoff – by unilaterally deviating.

In the following we aim to identify equalizers in the context of alternating games. That is, we ask

which strategies player 2 can use to make sure that player 1’s payoff is independent of player 1’s strategy.

As a minimum requirement, player 2’s strategy q needs to enforce the same payoff upon all co-players

with reactive and deterministic strategies, such that

π(ALLD,q) = π(ATFT,q) = π(TFT,q) = π(ALLC,q). (20)

This yields three equations in the four unknown entries of q. By using Eqs. (16) to solve π(ALLD,q)=

π(TFT,q) for qCD and π(ALLC,q)=π(TFT,q) for qDC , we obtain

qCD =
b qCC − c (1+qDD)

b− c

qDC =
b qDD + c(1−qCC)

b− c
.

(21)

Given these two relations hold, one can verify that the last relation π(ATFT,q) = π(TFT,q) holds au-

tomatically. Conversely, suppose a memory-1 strategy q satisfies these two conditions. Because these

conditions imply Eq. (20) and because the payoffs of a reactive player p = (pC , pD) are monotonic in

pC and in pD (due to Lemma 1), it follows that any reactive strategy obtains the same payoff against q.

Moreover, because generic strategies can be replaced by reactive strategies (Proposition 1), it follows

that any generic strategy obtains the same payoff against q. We conclude that equalizers are exactly

those strategies that satisfy Eq. (21). In particular, equalizers correspond to a 2-dimensional subspace of

memory-1 strategies.

The following technical result allows us to show that the three above classes of partners, defectors, and

equalizers are in fact all generic Nash equilibria within the space of memory-1 strategies.
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Lemma 2. Consider a memory-1 strategy q = (qCC , qCD, qDC , qDD) that is a generic Nash equilib-

rium, and let q̃=(q̃C , q̃D) denote its reactive marginalization with respect to itself.

1. If q̃ is fully stochastic, then q is an equalizer.

2. If q̃ is semi-stochastic or deterministic, then q is either a partner or a defector.

We can summarize the previous results as follows.

Theorem 2 (Classification of generic Nash equilibria).
A memory-1 strategy q= (qCC , qCD, qDC , qDD) is a generic Nash equilibrium if and only if it is either

a partner, a defector, or an equalizer: that is, if and only if it meets the conditions (18), (19), or (21).

Comparing Theorem 2 for the alternating game with the respective classification of equilibrium out-

comes in the simultaneous game10–12 yields the following two insights:

1. The three classes that we have identified, partners, defectors, and equalizers, also exist in the

simultaneous game. In fact, even the respective equilibrium conditions are identical: a memory-1

strategy q=(qCC , qCD, qDC , qDD) is a partner, a defector, or an equalizer in the alternating game

if and only if it is a a partner, defector, or equalizer in the simultaneous game (assuming that the

game parameters b and c are the same).

2. However, the simultaneous game allows for one additional class of equilibrium strategies, called

self-alternators12. When two self-alternators interact, they cooperate in turns: one player unilater-

ally cooperates in one round, and the other player unilaterally cooperates in the next. To be a Nash

equilibrium for the simultaneous game, self-alternators need to have the form12

qCC ≤
2c

b+c
, qCD =0, qDC =1, qDD ≤

b−c
b+c

. (22)

However, according to Theorem 2, strategies that satisfy the conditions in (22) do not give rise to

a Nash equilibrium in the alternating game.

The intuition is easy to convey with an example. To this end, let us consider the memory-1 strategy

q = (0, 0, 1, 1/3) which satisfies conditions (22) for all games with b > 2c. In the simultaneous

game, two players with strategy q reliably learn to cooperate in turns irrespective of their first-

round behavior. This is illustrated by the following sample path (an asterisk indicates a decision

that is partly due to chance). In this path, players reliably alternate from the fourth round onwards,

Player 1 C D D∗ C∗ D C D C D . . .
Player 2 C D D∗ D∗ C D C D C . . .

In the alternating game, the same first-round behavior gives rise to a more irregular trajectory,

Player 1 C D D∗ C∗ D D∗ C D D∗ . . .
Player 2 C D D∗ C D C∗ D D∗ C∗ . . .
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Here, there are always two consecutive instances of cooperation, which leads both players to defect

on their next turn (because qCC = qCD =0). Once both players have defected, it may take several

turns for one player to re-start cooperation (because qDD =1/3). As a result, the limiting average

payoff in the alternating game is only (b−c)/3. If one of the players were to switch to ATFT, the

resulting payoff is π(ATFT,q) = (b−c)/2> (b−c)/3. Hence, q is unstable. We conclude that

strategies of the form (22) are no longer a Nash equilibrium in the alternating game because they

no longer induce a stable pattern of alternating cooperation.

Alternating games with implementation errors

In the following, we explore how equilibrium behavior is affected by noise. To this end, we assume

the players’ actions are subject to implementation errors or trembling hand errors,16. That is, each time

a player wishes to cooperate, there is some probability ε that the player defects by mistake, with 0 <

ε< 1/2. Conversely, each time a player wishes to defect, she may cooperate with the same probability.

Under this assumption, a player with strategy p employs an effective strategy pε, with

pε = ϕε(p) := (1−ε)p + ε(1−p) = ε+ (1−2ε)p. (23)

This transformation maps memory-1 strategies p∈ [0, 1]4 to noisy memory-1 strategies pε ∈ [ε, 1−ε]4.

It has two useful properties. First, it is bijective, with the inverse function being defined by

(
ϕε(pε)

)−1
=

pε − ε
1−2ε

. (24)

Second, the transformation is monotonic: For any previous round’s outcome (a, ã) ∈ {C,D}2 and for

any two memory-1 strategies p and q, we have paã<qaã if and only if pεaã<q
ε
aã. That is, if player 1’s

nominal strategy is more cooperative than player 2’s, then the same is true for the respective effective

strategies. A few examples of effective strategies are

ALLDε = (ε, ε) ATFT ε = (ε, 1−ε) GRIM ε = (1−ε, ε, ε ε)
ALLC ε = (1−ε, 1−ε) TFT ε = (1−ε, ε) FBF ε = (1−ε, ε, 1−ε, 1−ε).

(25)

In particular, even if the nominal strategy is deterministic, the corresponding effective strategy is fully

stochastic. For an alternating game with errors between two memory-1 strategies p and q we can de-

fine the resulting transition matrix, the invariant distribution, and the payoffs based on the respective

quantities for the game without errors, given by Eqs. (5) – (7). This yields

M ε
A(p,q) := MA(pε,qε), vε(p,q) := v(pε,qε), πε(p,q) := π(pε,qε). (26)

Since ε > 0, each entry of MA(pε,qε) is positive. Hence, the unique invariant distribution and the re-

sulting payoffs are now well-defined irrespective of the players’ actions in the first round.
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In the following, we aim to characterize all equilibria among the memory-1 strategies for the alternating

game with errors. We follow the same approach as before. In analogy to Propositions 1 and 2, the

following shows that games between a generic player and a memory-1 player can be reduced to a game

between a reactive player and a memory-1 player.

Proposition 4 (Sufficiency of reactive strategies in games with errors).
Consider an alternating game with a positive error rate 0<ε<1/2, and suppose the second player uses

the memory-1 strategy q.

1. Suppose the first player uses the memory-1 strategy p= (pCC , pCD, pDC , pDD) and the resulting

invariant distribution is given by vε(p,q)=(vεCC , v
ε
CD, v

ε
DC , v

ε
DD). Define the reactive marginal-

ization of p with respect to q as the unique reactive strategy p̃ = (p̃C , p̃D) for which

p̃C =
1

1−2ε

(
vεCC p

ε
CC + vεDC p

ε
DC

vεCC+vεDC

− ε
)

p̃D =
1

1−2ε

(
vεCD p

ε
CD + vεDD p

ε
DD

vεCD+vεDD

− ε
)
.

(27)

Then, the reactive marginalization satisfies vε(p̃,q)=vε(p,q).

2. Suppose the first player uses an arbitrary strategy such that pεa1,a2(t)∈ [ε, 1−ε] is the player’s con-

ditional probability to cooperate at time t if the previous outcome is (a, ã)∈{CC,CD,DC,DD}.
Let v(t) =

(
vCC(t), vCD(t), vDC(t), vDD(t)

)
be the resulting probability distribution for the

player’s actions at time t. We assume the following limiting averages to exist,

vaã := lim
T→∞

1

T

T∑
t=1

vaã(t) for all a ∈ {C,D}, ã ∈ {C,D}.

p̃εã := lim
T→∞

1

T

T∑
t=1

vCã(t) pεCã(t) + vDã(t) pεDã(t)

vCã + vDã
for all ã ∈ {C,D}.

(28)

We define the reactive marginalization p̃=(p̃C , p̃D) of player 1’s strategy with respect to q by

p̃C =
1

1−2ε
(p̃εC − ε) and p̃D =

1

1−2ε
(p̃εD − ε) . (29)

Then, this reactive marginalization satisfies vε(p̃,q) = v.

Both results follow in a straightforward manner from the respective results on alternating games without

errors, by applying Propositions 1 and 2 to the players’ effective strategies. In a similar way, we can also

generalize Proposition 3. To this end, we say a strategy is generic with respect to the opponent strategy

and the error rate if the respective limits in Eq. (28) exist. In particular, all strategies with finite recall are
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generic. In addition, we say a strategy p is a generic best response to q if it is generic, and if

πε(p,q) ≥ πε(p′,q) for all generic strategies p′. (30)

Then we can again show that one can always find a generic best response to a memory-1 strategy among

the deterministic reactive strategies.

Proposition 5 (Optimality of deterministic reactive strategies in games with errors).
Let q be some given memory-1 strategy and let p∈ [0, 1]2 be an arbitrary reactive strategy. Then, there

is a deterministic reactive strategy p′∈{0, 1}2 for which πε(p′,q) ≥ πε(p,q).

Similar to before, we say a memory-1 strategy q is a Nash equilibrium if πε(q,q)≥ πε(q′,q) for any

generic deviation strategy q′. Proposition 5 then again allows us to identify memory-1 Nash equilibria

more effectively. It suffices to compare the payoff of the strategy q against itself to the payoffs one could

achieve with deterministic reactive strategies. However, now the payoff expressions are more complex.

Using Eq. (26), we calculate the self-payoff as

πε(q,q) =
(1−qεCC+qεDC)qεDD

(1−qεCC)(1−qεCD+qεDD)+ (1−qεCC+qεDC)qεDD

· (b−c). (31)

For the possible deviations towards deterministic reactive strategies, we obtain

πε(ALLD,q) =
εqεDC + (1−ε)qεDD

1− ε(qεCC−qεDC)− (1−ε) (qεCD−qεDD)
· b− ε · c

πε(ATFT,q) =
(1−ε)qεDC + εqεDD

1−ε(qεCC−qεDD)−(1−ε) (qεCD−qεDC)
· b

− 1−ε−ε(1−ε)qεCC−(1−ε)2qεCD+ε(1−ε)qεDC+ε2qεDD

1−ε(qεCC−qεDD)−(1−ε) (qεCD−qεDC)
· c

πε(TFT,q) =
εqεDC + (1−ε)qεDD

1−(1−ε)(qεCC−qεDD)−ε(qεCD−qεDC)
· b

− ε−ε(1−ε)qεCC−ε2qεCD+ε(1−ε)qεDC+(1−ε)2qεDD

1−(1−ε)(qεCC−qεDD)−ε(qεCD−qεDC)
· c

πε(ALLC,q) =
(1−ε)qεDC+εqεDD

1− (1−ε)(qεCC−qεDC)−ε(qεCD−qεDD)
· b− (1−ε) · c

(32)

We define partners, defectors, and equalizers analogously to the case without errors. We call a memory-1

strategy q self-cooperative if it yields the mutual cooperation payoff against itself as errors become

rare, ε→ 0 (in particular, it must satisfy qCC = 1). Similarly, q is self-defective if it yields the self-

defection payoff against itself in the limit of rare errors (in particular, qDD =0). Partners are again those
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Nash equilibria that are self-cooperative, and defectors as those Nash equilibria that are self-defective.

As before, a strategy is an equalizer for a given error probability ε if any generic co-player yields the

same payoff against that strategy. The following then generalizes the results of Theorems 1 and 2 to the

case of alternating games with errors.

Theorem 3 (Classification of Nash equilibria in alternating games with errors).
Consider a memory-1 strategy q=(qCC , qCD, qDC , qDD) for an alternating game with error probability

0< ε< 1
2

(
1− c

b

)
. Then, the following are equivalent.

1. The strategy q is a generic Nash equilibrium.

2. The strategy q satisfies

πε(q,q) ≥ max
(
πε(ALLD,q), πε(ATFT,q), πε(TFT,q), πε(ALLC,q)

)
. (33)

3. The strategy q is either a partner, a defector, or an equalizer. It is a partner if and only If

qCC = qDC = 1,

qCD ≤ 1− c

(1−2ε)b
,

qDD =
(1−2ε) (b+εc qCD)− c

(1−2ε) (b+εc)
.

(34)

It is a defector if and only if it is either ALLD or

qDD = qCD = 0,

qDC ≤
c

(1−2ε)b
,

qCC =
ε(1−2ε)c qDC + c

(1−2ε)(b+εc)
.

(35)

It is an equalizer if and only if

qCD =
(1−2ε)(b qCC−c qDD)−c

(1−2ε) (b−c)

qDC =
(1−2ε)(b qDD−c qCC) + c

(1−2ε) (b−c)
.

(36)

Several remarks are in order:
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(a) Dimension of the Nash equilibrium classes. Errors lead to a discontinuous reduction in the number

of Nash equilibria. For example, for any arbitrarily small (but positive) error probability the set of

partners is now one-dimensional instead of three-dimensional. The proof of Theorem 3 suggests

there are two reasons for this reduction.

First, in games without errors, pCC = 1 is sufficient to ensure that the reactive marginalization

of q with respect to itself satisfies q̃C = 1, see Eq. (10). Game outcomes different from mutual

cooperation are (almost) never visited, and hence vDC =0. For games with errors, this is no longer

true. Independent of the players’ strategies, each game outcome occurs at least when both players

choose the respective action by mistake, such that vaã≥ ε2 for all (a, ã)∈{CC,CD,DC,DD}.
To guarantee that the reactive marginalization still satisfies q̃C =1, we therefore additionally need

to require that qDC =1.

Second, in alternating games without errors, a partner q cannot be invaded by the two boundary

strategies ALLC and TFT. Instead, all three strategies yield the same payoff b−c against q. In

contrast, in games with errors, the payoffs of the three strategies are generally different. Moreover,

by Lemma 1 the payoff πε(q,q) is either strictly in between πε(TFT,q) and πε(ALLC,q), or all

three payoffs are the same. For q to be a Nash equilibrium, we thus need to require

πε(TFT,q)=πε(q,q)=πε(ALLC,q). (37)

This equality is equivalent to the last equality in condition (34). Finally, the upper bound on qCD

ensures that neither a deviation to ALLD nor to ATFT is profitable.

As a consequence of these observations, we conclude that many of the well-known self-cooperative

memory-1 strategies fail to be partners in alternating games with errors. In particular, TFT, WSLS,

GRIM and FBF are either no longer self-cooperative, or they are no longer Nash equilibria. Similar

considerations also explain why the class of defectors is now one-dimensional.

(b) Evolutionary stability. While all partner strategies for the alternating game are Nash equilibria by

definition, we note that none of them are evolutionarily stable in the sense of Maynard-Smith17.

Instead, by (37), mutants who either adopt TFT or ALLC can invade through neutral drift – in fact,

due to the monotonicity property in Lemma 1, any mutant strategy q′ with qCC =qDC =1 yields

the same payoff against q as q does against itself.

Thus, as a corollary of Theorem 3, we conclude that in alternating games with errors, there are no

evolutionarily stable memory-1 strategies that sustain cooperation. Note that this result is differ-

ent from previous work suggesting that no strategy in the simultaneous game is stable18–21. This

previous work considers games without errors. Only in that case does it show that for each Nash

equilibrium one can identify neutral mutant strategies that eventually lead out of that equilibrium.

These arguments do not apply to games with errors, where evolutionary stability is generally fea-

sible22. For example, for games with b > 2c, one can show that WSLS is evolutionarily stable in
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the simultaneous game, provided the error probability is positive but sufficiently small1,23.

(c) Existence of the Nash equilibrium classes and comparative statics. Partners do not exist for all

parameter values. Because qCD and qDD need to be values in the unit interval, condition (34)

implies that partners exist if and only if

ε <
1

2

(
1− c

b

)
. (38)

In particular, the conditions for partners to exist are easiest to satisfy if either implementation

errors are sufficiently rare, or if the benefit of cooperation is large compared to its costs. The same

condition (38) also determines whether or not equalizer strategies exist.

In contrast, defectors exist for all parameter values b > c and 0 ≤ ε ≤ 1/2, because ALLD is

always a Nash equilibrium. When condition (38) does not hold, mutual defection is in fact the

only behavior that can be sustained in equilibrium.

(d) Examples of partner strategies. Provided condition (38) holds, the set of partners is given by the

line segment connecting the two strategies

q′ =

(
1, 0, 1,

(1−2ε)b−c
(1−2ε)(b+εc)

)
(39)

q′′ =

(
1,

(1−2ε)b−c
(1−2ε)b

, 1,
(1−2ε)b−c

(1−2ε)b

)
(40)

In particular, we note that while qCD may be chosen to be zero, qDD always needs to be strictly

in between zero and one. The first example above, q′ can be considered as a stochastic version of

Firm-but-Fair, and hence we refer to it as SFBF. Strategies resembling SFBF have been described

previously. For example, Nowak and Sigmund2 observe that the simulations in their Figure 3

converge to the strategy (1, 0, 1, 2/3). Using their parameters b = 3, c = 1 and ε = 0.001, this

is exactly what is predicted by expression (39). The second example above, q′′ corresponds to

the well-known Generous Tit-for-Tat strategy24,25 (GTFT) which has been previously described

for the simultaneous game. According to Eqs. (39) and (40), GTFT is the only partner among

the reactive strategies. For reactive strategies, the simultaneous and the alternating game coincide

with respect to their dynamics2. In this light, the fact that GTFT also makes an appearance in the

alternating game is somewhat less surprising.

In the limit of rare errors, ε→0, the above expressions simplify further. We obtain

q′ =
(

1, 0, 1, 1− c
b

)
and q′′ =

(
1, 1− c

b
, 1, 1− c

b

)
(41)

(e) Alternative specification of errors. Throughout this section we have assumed that errors originate

from players who misimplement their intended actions with a constant probability ε. In this case,
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a player’s effective strategy qε is a linear function of the player’s actual strategy q, as described by

Eq. (23). However, analogous results can be derived for more general error mappings. Our main

results only require that the effect of errors on a player’s strategy can be described by a strictly

monotonic and bijective transformation ϕε : [0, 1]4 → [ε, 1− ε]4 and that ALLD, ATFT, TFT,

ALLC are mapped to the values in Eq. (25). Under that more general assumption, condition (33)

continues to characterize which memory-1 strategies q are equilibria. Only the exact description

of partners, defectors, and equalizers needs to be adapted correspondingly. In addition, one can

also extend our results to cases where the error rate depends on the previous outcome, or where it

depends on the player’s intended action. In this way, one could model cases in which a player who

intends to cooperate is more likely to make a mistake than a player who intends to defect.

Supplementary Note 3: Extensions of the baseline model

The baseline model makes a number of simplifying assumptions: (i) the game is infinitely repeated;

(ii) the players move in a strictly alternating fashion; (iii) the simulations only take into account memory-1

strategies; (iv) interactions take place in a well-mixed population; and (v) mutations are global. In the

following, we study the impact of each of these assumptions in more detail. In each case, we explore

how the respective assumption affects emerging cooperation rates and the strategies that evolve.

Finitely repeated games

Motivation. Our baseline model considers an infinitely repeated game with no discounting of the fu-

ture. There are two major reasons why the analysis of such games is useful. First, from a mathematical

perspective, infinitely repeated games are more convenient to work with because their results tend to be

independent of the players’ behavior in the early rounds of the game. This in turn allows researchers

to consider a simpler strategy space; the players’ first-round behavior no longer needs to be specified8.

Second, such games often serve as a good approximation for games where the number of rounds is large

but finite26. In many cases, results for finitely repeated games resemble the results of infinitely repeated

games already for a moderate number of rounds27. To elaborate on the above two points, and to extend

the results of the baseline model, in the following we study a model in which players only engage in

finitely many interactions.

Game setup. We assume the game proceeds in rounds. In the simultaneous game, the two players move

simultaneously in each round. In the alternating game, one player moves first and the other player moves

second. Here, the player who moves first is determined randomly, but kept constant during the game.

After each round, the game continues for another round with a constant continuation probability δ. As a
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result, the expected number of rounds follows a geometric distribution with mean 1/(1−δ). Let va1,a2(t)

denote the conditional probability that the two players choose actions a1 and a2 in round t, given that

round t is reached. Then we can calculate the average probability to observe the respective outcome over

the course of the entire game as

va1,a2 := (1−δ)
∞∑
t=0

δt · va1,a2(t). (42)

In the limiting case that there is always another round, δ→ 1, this weighted average converges to the

time average (1) of the baseline model, provided the limit in Eq. (1) exists. As before, we collect these

four averages in a vector v=(vCC , vCD, vDC , vDD). Based on this vector, we can compute the players’

payoffs in the same way as in the baseline model, using Eq. (3).

Memory-1 strategies. To introduce memory-1 strategies for finitely repeated games, we distinguish be-

tween the simultaneous and the alternating game. In the simultaneous game, memory-1 strategies take

the form11

p = (p00; pCC , pCD, pDC , pDD). (43)

The first entry p00 is the player’s probability to cooperate in the initial round. The other entries pij are

the respective conditional cooperation probabilities in all subsequent rounds, as defined in the baseline

model. In the alternating game, memory-1 strategies take the form

p = (p00; p0C , p0D; pCC , pCD, pDC , pDD). (44)

Here, p00 is the probability to cooperate in the first round if the focal player moves first. The next two

probabilities p0C and p0D are the player’s probability to cooperate in the first round if the player moves

second. In that case, the focal player may condition its decision on the co-player’s first round behav-

ior (C or D). The other entries pij are again the conditional cooperation probabilities that the focal

player applies in all subsequent rounds. In particular, we note that while strategies in the baseline model

are 4-dimensional, they are now 5-dimensional in the case of simultaneous games, and 7-dimensional in

the case of alternating games.

Explicit formulas for the players’ payoffs. When two memory-1 players interact, their payoffs can be

computed in a similar way as in the baseline model26. To this end, we consider first the simultaneous

game. Suppose the strategies of the two players are

p = (p00; pCC , pCD, pDC , pDD)

q = (q00; qCC , qCD, qDC , qDD),
(45)

28



respectively. Then the outcome distribution in the initial round is

v0 :=
(
vCC(0), vCD(0), vDC(0), vDD(0)

)
=

(
p00 ·q00, p00 ·(1−q00), (1−p00)·q00, (1−p00)·(1−q00)

)
.

(46)

Given this initial outcome distribution, we can iteratively compute all subsequent distributions as

v(t) = v0 ·M t
S . (47)

Here,MS = MS(p,q) is the standard transition matrix for the simultaneous game, as defined by Eq. (8).

For the average distribution v according to Eq. (42), we therefore obtain

v = (1−δ)
∞∑
t=0

δt · v(t) = (1−δ)v0

∞∑
t=0

(δMS)t = (1−δ)v0(I − δMS)−1. (48)

Here, I denotes the 4×4 identity matrix, and (I − δMS)−1 refers to the respective inverse matrix. Based

on v, we compute player’s payoffs using Eq. (3). That is,

π1 = b·(vCC+vDC)− c·(vCC+vCD)

π2 = b·(vCC+vCD)− c·(vCC+vDC).
(49)

The payoffs of the alternating game can be computed analogously. However, here we have to distinguish

two cases, depending on which of the two players moves first. Suppose the two players’ strategies are

given by
p = (p00; p0C , p0D; pCC , pCD, pDC , pDD)

q = (q00; q0C , q0D; qCC , qCD, qDC , qDD).
(50)

If it is player 1 who moves first, the initial outcome distribution is

v
(1)
0 =

(
p00 ·q0C , p00 ·(1−q0C), (1−p00)·q0D, (1−p00)·(1−q0D)

)
. (51)

The respective average distribution over the entire game can then be calculated as

v(1) = (1−δ)v(1)
0

(
I − δMA(p,q)

)−1
, (52)

where MA(p,q) is the standard transition matrix (5) of the alternating game. Similarly, if it is player 2

who moves first, the initial distribution is

v
(2)
0 =

(
q00 ·p0C , q00 ·(1−p0C), (1−q00)·p0D, (1−q00)·(1−p0D)

)
. (53)
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The average distribution becomes

v(2) = (1−δ)v(2)
0

(
I − δMA(q,p)

)−1
. (54)

Because each of the two players is equally likely to move first, average payoffs are now

π1 = b·
(

1
2

(
v

(1)
CC+v

(1)
DC

)
+ 1

2

(
v

(2)
CC+v

(2)
CD

))
− c·

(
1
2

(
v

(1)
CC+v

(1)
CD

)
+ 1

2

(
v

(2)
CC+v

(2)
DC

))
π2 = b·

(
1
2

(
v

(1)
CC+v

(1)
CD

)
+ 1

2

(
v

(2)
CC+v

(2)
DC

))
− c·

(
1
2

(
v

(1)
CC+v

(1)
DC

)
+ 1

2

(
v

(2)
CC+v

(2)
CD

))
.

(55)

Evolutionary dynamics. Given the payoffs (49) and (55), we can explore the evolutionary dynamics of

the finitely repeated game with the same process we used for the infinitely repeated game. That is, again

we consider a finite and well-mixed population in which players adopt new strategies by imitation and

mutation, as described in the main text.

Fig. 6a,b shows the corresponding results for a continuation probability of δ = 0.96, such that in-

dividuals interact on average for 25 rounds. The figure suggests that the main evolutionary findings are

in qualitative agreement with the findings of the baseline model. First, and as in the baseline model,

the simultaneous game is slightly more conducive to the evolution of cooperation compared to the alter-

nating game (Fig. 6a). Second, the self-cooperative strategies that evolve in the simultaneous game are

markedly different from the self-cooperative strategies that evolve in the alternating game (Fig. 6b). In

the simultaneous game, the average self-cooperative strategy shares the main characteristics of win-stay

lose-shift28. Players are most likely to cooperate after mutual cooperation or mutual defection. In the

alternating game, evolving strategies rather resemble a mixture of Generous Tit-for-Tat and Stochastic

Firm-but-Fair. Here, players are most likely to cooperate if the co-player cooperated in the previous

round. In addition, players exhibit a positive probability to cooperate after both players defected. In

either game, the payoff derived in the first round only has a modest impact on the player’s overall fitness,

given the game length. As a result, the values of q00, q0C , q0D are close to 1/2, as one would expect from

traits that are almost neutral.

We explore the dynamics for other continuation probabilities in Fig. 6c and Supplementary Fig. 5.

If the continuation probability exceeds some moderate threshold, δ ≈ 0.8 (which corresponds to games

with five rounds in expectation), the qualitative results are largely comparable to the results of the base-

line model. Below this threshold, cooperation is rare in both the simultaneous and the alternating game.

Discussion of the model. We note that by structuring the game into rounds, we implicitly assume that

the two players always make the same number of decisions in the alternating game, independent of the

realized length of the game. In particular, every time the first player makes a decision, this player can

be sure that the second player will have an opportunity to reciprocate. We have made this assumption

to make it easier to compare the alternating game to the simultaneous game. By making sure that both
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players make the same number of decisions, the continuation probability δ has an analogous interpre-

tation in both games. Alternatively, we could have assumed that after each player’s decision, the game

stops with a certain probability. That alternative scenario is a special case of the model that we consider

in the following.

Irregular alternation patterns

Motivation. For both the finitely and the infinitely repeated alternating game, we assumed in the baseline

model that players move in a strictly alternating fashion. That is, every time player 1 makes a decision, it

is player 2 who makes the next decision. Conversely, every time, player 2 makes a decision, it is player 1

who makes the next decision (provided there is another round). Instead, here we explore what happens

when the alternation pattern can be more irregular, such that players may have to make a decision two

times in a row before it’s the other player’s turn to move.

Game setup. To allow for such irregular patterns, we structure the alternating game into a sequence of

moves. The player who makes the initial move is determined randomly, with each player having the

same chance to move first. After a player has made a move (by deciding whether or not to cooperate),

there is a constant probability λ that the game continues. If the game continues, the player who makes

the next move is determined randomly. With probability s (the ‘switching probability’), it is the other

player who makes the next move. With the converse probability s̄ := 1−s, it is the same player. In the

special case s= 1, we recover a setup in which the two players move in a strictly alternating fashion. If

s= 1/2, the next move is assigned completely randomly, independent of who moved before. Finally, if

s= 0, there is no alternation at all; the player who moves first is guaranteed to move in all subsequent

interactions. The payoffs of each player are defined analogously to the previous cases, by averaging the

received benefits and paid costs over all moves of the two players (for more detail, see further below).

Memory-1 strategies. Similar to the baseline model, we assume that players condition their behavior

only on the respective last move of either player (that is, they remember one move per player). In the

case of irregular interaction patterns, such strategies take the form of a nine-dimensional vector,

p = (p00; pC0, pD0; p0C , p0D; pCC , pCD, pDC , pDD). (56)

Here, p00 is the player’s cooperation probability if no player has moved before. The next two entries,

pC0 and pD0 are the player’s cooperation probability if only the focal player has moved before (but not

the co-player). The other two entries, p0C and p0D are the player’s cooperation probability if only the

co-player has moved before (but not the focal player). And finally, the entries pij with i, j∈{C,D} are

the usual conditional cooperation probabilities in all subsequent rounds.

Explicit formulas for the players’ payoffs. Again assuming that both players use memory-1 strategies,
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we can compute their payoffs explicitly. To this end, suppose the strategies of player 1 and player 2 are

p = (p00; pC0, pD0; p0C , p0D; pCC , pCD, pDC , pDD)

q = (q00; qC0, qD0; q0C , q0D; qCC , qCD, qDC , qDD)
(57)

respectively. We describe the dynamics among the two players by a Markov chain with twelve possible

states. The twelve states are (in this order):

(1, C, ∅), (1, D, ∅), (2, ∅, C), (2, ∅, D),

(1, C, C), (1, C,D), (1, D,C), (1, D,D), (2, C, C), (2, C,D), (2, D,C), (2, D,D).
(58)

Here, the state (i, a1, a2) refers to the case that the previous move was made by player i ∈ {1, 2}, and

that after this move, the last move by either player is a1, a2∈ {C,D, ∅}; the empty set symbol indicates

that the respective player did not make a move yet. We obtain the following distribution for the state of

the Markov chain after the first move:

v0 =
(p00

2
,
p̄00

2
,
q00

2
,
q̄00

2
, 0, 0, 0, 0, 0, 0, 0, 0

)
. (59)

For this initial distribution, we have used the shortcut notation p̄00 := 1−p00 and q̄00 := 1−q00. The

transition matrix of the Markov chain is given by

MI(p,q) =



s̄pC0 s̄p̄C0 0 0 0 0 0 0 sq0C sq̄0C 0 0

s̄pD0 s̄p̄D0 0 0 0 0 0 0 0 0 sq0D sq̄0D
0 0 s̄qC0 s̄q̄C0 sp0C 0 sp̄0C 0 0 0 0 0

0 0 s̄qD0 s̄q̄D0 0 sp0D 0 sp̄0D 0 0 0 0

0 0 0 0 s̄pCC 0 s̄p̄CC 0 sqCC sq̄CC 0 0

0 0 0 0 0 s̄pCD 0 s̄p̄CD sqDC sq̄DC 0 0

0 0 0 0 s̄pDC 0 s̄p̄DC 0 0 0 sqCD sq̄CD

0 0 0 0 0 s̄pDD 0 s̄p̄DD 0 0 sqDD sq̄DD

0 0 0 0 spCC 0 sp̄CC 0 s̄qCC s̄q̄CC 0 0

0 0 0 0 0 spCD 0 sp̄CD s̄qDC s̄q̄DC 0 0

0 0 0 0 spDC 0 sp̄DC 0 0 0 s̄qCD s̄q̄CD

0 0 0 0 0 spDD 0 sp̄DD 0 0 s̄qDD s̄q̄DD



. (60)

Based on the initial distribution v0 and on the transition matrix MI(p,q), we can again compute the

average distribution to observe any of the twelve states over the course of the game as

v = (1−λ)v0

(
I − λMI(p,q)

)−1
. (61)

The payoffs of the two players are then given by the formula

π1 = 2v · (−c, 0, b, 0,−c,−c, 0, 0, b, 0, b, 0)>

π2 = 2v · (b, 0,−c, 0, b, b, 0, 0,−c, 0,−c, 0)>.
(62)
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Here, the factor of two is a normalization constant to take into account that in half of the rounds it’s

the focal player who moves, whereas in the other half it’s the co-player. This constant ensures that two

unconditional cooperators obtain an expected payoff of (1−ε)(b−c), as one would expect.

Evolutionary dynamics. We explore the evolutionary dynamics of the game with irregular alternation

patterns using the same process we used for the baseline model. In Fig. 6d we compare two scenarios.

In the first scenario, we assume that players strictly alternate (s=1). In the other scenario, it is randomly

determined which player moves next (s=1/2). In both cases, we consider the dynamics of a game that is

infinitely repeated (λ→1), with a moderate error rate (ε=0.02) and rare mutations (µ→1). We observe

that a strictly alternating game leads to higher cooperation rates. To explore this result in more detail,

we also recorded which self-cooperative strategies the players are most likely to adopt over the course of

time. Surprisingly, both the strictly alternating and the randomly alternating game lead to overall similar

strategies (Fig. 6e). In each case, the average strategy reflects the basic patterns of Stochastic Firm-but-

Fair. However, in the strictly alternating case, these self-cooperative strategies tend to be more robust.

When players are strictly alternating, it takes on average 1,600 mutants until a resident self-cooperative

strategy is successfully invaded. In contrast, for randomly alternating games, this number drops to 980

mutants. More generally, we observe that cooperation is most likely to evolve the more likely players

alternate in a regular manner (Fig. 6f). In the extreme case that players do not alternate at all (s= 0),

cooperation does not evolve, as one may expect.

In addition to these simulation results for infinitely repeated games, we have also explored the dy-

namics when the number of rounds is finite (Supplementary Fig. 6). There we show the outcome of two

sets of simulations, one in the absence of errors (ε=0) and one with a moderate error rate (ε=0.02). In

both cases, we vary the expected number of rounds (between 1 and 100), and the switching probability

(between 0 and 1). These simulations confirm the previously observed regularities for alternating games:

Cooperation is most likely to evolve when (i) errors are rare, (ii) players interact for many rounds, and

(iii) players alternate in a regular fashion.

Memory-2 strategies

Motivation. For all evolutionary results so far, we have assumed that players only take into account

each player’s last action. While it has been argued that memory-1 strategies are good approximations

for human behavior in laboratory experiments in simultaneous games29, it is natural to ask which of

our qualitative results depend on the one-round memory assumption. Exploring the evolutionary dy-

namics among more complex strategies is not straightforward because the number of available strategies

increases super-exponentially in the players’ memory capacity. In the baseline case of an infinitely re-

peated game, there are 16 pure memory-1 strategies, 65,536 pure memory-2 strategies, and 1.84 ·1019

pure memory-3 strategies1. In the following, we thus confine ourselves to pure memory-2 strategies.

Those are all strategies that consider the last two moves of each player, and for which the corresponding
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cooperation probability (in the absence of errors) is either zero or one.

Memory-2 strategies. For simplicity, we shall only consider the case of infinitely repeated games here

(although the case of finitely games can be treated similarly, as discussed in the previous sections). In

infinitely repeated games, memory-2 strategies can be represented by a 16-dimensional vector,

p=
(
pCC
CC

, pCC
CD

, pCD
CC

, pCD
CD

, pCC
DC

, pCC
DD

, pCD
DC

, pCD
DD

, pDC
CC

, pDC
CD

, pDD
CC

, pDD
CD

, pDC
DC

, pDC
DD

, pDD
DC

, pDD
DD

)
. (63)

The entries again reflect the player’s conditional cooperation probabilities. The upper two indices of

an entry represent the last two moves of the focal player (with the very last move coming first and the

second-to last move coming second). Analogously, the lower two indices represent the last two moves

of the co-player. The space of memory-2 strategies trivially contains the set of all memory-1 strategies

as a subset. For example, within the space of memory-2 strategies, Tit-for-Tat takes the form

p = (1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0). (64)

Because each pure memory-2 strategy is a 16-dimensional vector, and each entry is either zero or one,

there are indeed 216 =65, 536 such strategies in total.

Explicit formulas for the players’ payoffs. The payoffs of two memory-2 players can again be computed

with a Markov chain approach. To this end, suppose the strategies of player 1 and player 2 are p and

q, respectively, and each of these strategies is of the form (63). Then, the respective Markov chain

has sixteen possible states, summarizing the last two moves of either player, CC
CC

, CC
CD

, CD
CC

, . . . , DD
DD

.

Slightly abusing notation, here the upper indices refer to the past two actions of player 1 and the lower

two indices refer to the past two actions of player 2. Given this ordering of the states, the transition

matrix MA of the alternating game takes the following form (The transition matrix for the simultaneous

game takes a similar form, and has been derived elsewhere1):
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pCC
CC

qCC
CC

0 0 0 pCC
CC

q̄CC
CC

0 0 0 p̄CC
CC

qCC
DC

0 0 0 p̄CC
CC

q̄CC
DC

0 0 0

pCC
CD

qCD
CC

0 0 0 pCC
CD

q̄CD
CC

0 0 0 p̄CC
CD

qCD
DC

0 0 0 p̄CC
CD

q̄CD
CC

0 0 0

pCD
CC

qCC
CC

0 0 0 pCD
CC

q̄CC
CC

0 0 0 p̄CD
CC

qCC
DC

0 0 0 p̄CD
CC

q̄CC
DC

0 0 0

pCD
CD

qCD
CC

0 0 0 pCD
CD

q̄CD
CC

0 0 0 p̄CD
CD

qCD
DC

0 0 0 p̄CD
CD

q̄CD
DC

0 0 0

0 pCC
DC

qDC
CC

0 0 0 pCC
DC

q̄DC
CC

0 0 0 p̄CC
DC

qDC
DC

0 0 0 p̄CC
DC

q̄DC
DC

0 0

0 pCC
DD

qDD
CC

0 0 0 pCC
DD

q̄DD
CC

0 0 0 p̄CC
DD

qDD
DC

0 0 0 p̄CC
DD

q̄DD
DC

0 0

0 pCD
DC

qDC
CC

0 0 0 pCD
DC

q̄DC
CC

0 0 0 p̄CD
DC

qDC
DC

0 0 0 p̄CD
DC

q̄DC
DC

0 0

0 pCD
DD

qDD
CC

0 0 0 pCD
DD

q̄DD
CC

0 0 0 p̄CD
DD

qDD
DC

0 0 0 p̄CD
DD

q̄DD
DC

0 0

0 0 pDC
CC

qCC
CC

0 0 0 pDC
CC

q̄CC
CC

0 0 0 p̄DC
CC

qCC
DC

0 0 0 p̄DC
CC

q̄CC
DC

0

0 0 pDC
CD

qCD
CD

0 0 0 pDC
CD

q̄CD
CD

0 0 0 p̄DC
CD

qCD
DD

0 0 0 p̄DC
CD

q̄CD
DD

0

0 0 pDD
CC

qCC
CD

0 0 0 pDD
CC

q̄CC
CD

0 0 0 p̄DD
CC

qCC
DD

0 0 0 p̄DD
CC

q̄CC
DD

0

0 0 pDD
CD

qCD
CD

0 0 0 pDD
CD

q̄CD
CD

0 0 0 p̄DD
CD

qCD
DD

0 0 0 p̄DD
CD

q̄CD
DD

0

0 0 0 pDC
DC

qDC
CD

0 0 0 pDC
DC

q̄DC
CD

0 0 0 p̄DC
DC

qDC
DD

0 0 0 p̄DC
DC

q̄DC
DD

0 0 0 pDC
DD

qDD
CD

0 0 0 pDC
DD

q̄DD
CD

0 0 0 p̄DC
DD

qDD
DD

0 0 0 p̄DC
DD

q̄DD
DD

0 0 0 pDD
DC

qDC
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0 0 0 pDD
DC

q̄DC
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0 0 0 p̄DD
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qDC
DD

0 0 0 p̄DD
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q̄DC
DD

0 0 0 pDD
DD

qDD
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0 0 0 pDD
DD

q̄DD
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0 0 0 p̄DD
DD

qDD
DD

0 0 0 p̄DD
DD
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.

(65)

Given the transition matrix, we compute the invariant distribution of the respective Markov chain by

solving v = vMA. This invariant distribution is now a 16-dimensional vector,

v=
(
vCC
CC

, vCC
CD

, vCD
CC

, vCD
CD

, vCC
DC

, vCC
DD

, vCD
DC

, vCD
DD

, vDC
CC

, vDC
CD

, vDD
CC

, vDD
CD

, vDC
DC

, vDC
DD

, vDD
DC

, vDD
DD

)
. (66)

Using this invariant distribution, we calculate how often each player cooperates on average. To this end,

we sum up over all outcomes in which the player cooperates in the last round,

ρ1 = vCC
CC

+vCC
CD

+vCD
CC

+vCD
CD

+vCC
DC

+vCC
DD

+vCD
DC

+vCD
DD

,

ρ2 = vCC
CC

+vCC
CD

+vCD
CC

+vCD
CD

+vDC
CC

+vDC
CD

+vDD
CC

+vDD
CD

.
(67)

Given these average cooperation rates, the players’ payoffs are

π1 = bρ2 − cρ1 and π2 = bρ1 − cρ2. (68)

Stability of pure memory-2 strategies. In Hilbe et al1, the authors introduce an algorithm to describe the

Nash equilibria of the simultaneous game among all pure memory-2 strategies. In addition, this algorithm

outputs the range for the benefit-to-cost ratio b/c for which the respective strategy is an equilibrium. In
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the following, we briefly recapitulate that algorithm and apply it to the alternating game.

To test whether a given pure strategy p is stable, we first compute the average probability ρ with

which the strategy cooperates against itself, using Eq. (67). In particular, the payoff of two players who

both use strategy p is π = bρ−cρ. Now, if one player instead switches to some other pure strategy q,

the payoff of the deviating player is π̃q = bρ̃p−cρ̃q. Here, ρ̃p is the average cooperation probability of

the p-player, and ρ̃q is the cooperation probability of the q-player. For (p,p) to be a Nash equilibrium,

it needs to be the case that π ≥ π̃q. This condition simplifies to

b · xp,q ≥ c · yq,p, (69)

with xp,q := ρ−ρ̃p and yq,p := ρ−ρ̃q. Depending on xp,q and yq,p, there are four possible cases.

1. If xp,q>0 and yq,p>0, condition (69) is satisfied if and only if b/c ≥ yq,p/xp,q.

2. If xp,q<0 and yq,p≤0, condition (69) is satisfied if and only if b/c ≤ yq,p/xp,q.

3. If xp,q≤0 and yq,p>0, condition (69) is never satisfied.

4. If xp,q≥0 and yq,p≤0, condition (69) is always satisfied.

Based on these considerations, we define the following three subsets of memory-2 strategies with respect

to the focal strategy p,
Q1(p) =

{
q
∣∣ xp,q>0 and yq,p>0

}
,

Q2(p) =
{
q
∣∣ xp,q<0 and yq,p≤0

}
,

Q3(p) =
{
q
∣∣ xp,q≤0 and yq,p>0

}
.

(70)

Taking into account the four cases described above, the first set Q1(p) contains all memory-2 strategies

against which p is only stable if b/c is sufficiently large. The second set Q2(p) contains all memory-2

strategies against which p is only stable if b/c is sufficiently small. The last set contains the strategies

against which p is never stable, for no b/c. In particular, we can use these sets to define lower und upper

bounds for the benefit-to-cost ratio for p to be a Nash equilibrium,

(b/c)LB = max
{
yq,p/xp,q

∣∣ q∈Q1(p)
}

and (b/c)UB = min
{
yq,p/xp,q

∣∣ q∈Q2(p)
}
. (71)

Using these thresholds, it follows that p can only be a Nash equilibrium if

(b/c)LB ≤ b/c ≤ (b/c)UB and Q3(p) = ∅. (72)

For a given strategy p, these conditions can be checked by computing xp,q and yq,p for all 216 pure

memory-2 strategies q. In Supplementary Fig. 7a, we illustrate the result of this algorithm for both

the simultaneous game and the alternating game. For that figure, we call a Nash equilibrium locally

robust if it is an equilibrium for a substantial portion of the parameter space; specifically, we require

36



(b/c)UB − (b/c)LB > 0.2. The figure then displays all locally robust Nash equilibria for b/c ≤ 5.

We find that in the simultaneous game, there are 34 such equilibria. Out of those, there are several

equilibria that yield very little cooperation (colored in red). These equilibrium strategies include, for

example, ALLD. On the other hand, for b/c > 3/2, there are also several equilibria that yield almost

full cooperation. These strategies display so-called all-or-none behavior1,30. Players with these AONk

strategies tend to cooperate if in each of the past k rounds, either both players cooperated or no one did.

For the alternating game, we find that the only locally robust Nash equilibrium among the pure

memory-2 strategies is ALLD. There are two additional strategies that are Nash equilibria without being

locally robust. These are:

p1 = (0, 0, 0, 0, 1 , 0, 1 , 0, 1, 0, 0, 1, 0, 1, 0, 1)

p2 = (1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0)
(73)

Both of these strategies are only stable for a single value of b/c. For the given error rate of ε = 0.02,

this value is b/c= 4.1464 for the first strategy and b/c= 1.04166 for the second. Moreover, none of the

two strategies is self-cooperative. The cooperation rate of the first strategy against itself is 64.9%; the

self-cooperation rate of the second strategy is 50.0%.

These results show that there is no Nash equilibrium among the pure memory-2 strategies that can

sustain full cooperation in the alternating game. Since any evolutionarily stable strategy needs to be a

pure strategy, we conclude that evolutionarily stable cooperation in the alternating game is infeasible (as

in the case of the memory-1 strategies).

Evolutionary dynamics. In addition to these static results, we have also explored the evolutionary dynam-

ics among pure memory-2 strategies with simulations. For these simulations we consider the case of an

infinitely repeated game with a positive error rate (ε=0.02) in the limit of rare mutations. Supplemen-
tary Fig. 7b shows the evolving average cooperation rate for both the simultaneous and the alternating

game (averaged over 100 independent simulation runs for b=3). Although only the simultaneous game

has fully cooperative Nash equilibria, the two scenarios lead to largely comparable overall cooperation

rates. We obtain similar results for other benefit values (Supplementary Fig. 7c).

To explore this result in more detail, Supplementary Fig. 7d analyzes the players’ average coopera-

tion probabilities when players adopt a self-cooperative strategy. In the simultaneous game, the player’s

average cooperation probabilities resemble the typical behavior of AON2 strategies: players have a high

cooperation probability if either (i) both players mutually cooperated for two rounds, (ii) if both players

mutually defected for two rounds, or (iii) if both players cooperated in the last round but defected in

the second-to-last round. In all other cases, the conditional cooperation probability is below 50%. In

contrast, in the alternating game, players seem to be prepared to cooperate as long as the co-player did

not defect more often than the focal player did.

However, Supplementary Fig. 7e shows that in line with the equilibrium analysis, the self-cooperative

strategies in the simultaneous game tend to be more robust. For this panel, we have recorded for each
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self-cooperative strategy adopted by the resident population how many mutant strategies it takes on av-

erage until the first mutant reaches fixation. We find that in the simultaneous game, it takes on average

almost 3,000 mutant strategies to invade a self-cooperative resident. In the alternating game, this number

is considerably lower; on average it takes less than 800 random mutant strategies until the resident strat-

egy is successfully invaded. Overall, these results suggest that cooperation in the simultaneous game is

generally more robust. However, also in the alternating game, individuals adopt self-cooperative strate-

gies for a substantial amount of time.

Games in spatial populations

Motivation. The simulation results for the baseline model and the previous model extensions are based

on the assumption that the population is well-mixed. This assumption has two consequences. First, when

playing games, all members of the population are equally likely to interact with everyone else. Second,

for the evolutionary updating, all population members are equally likely to act as a role model for any

given focal player. The assumption of well-mixed populations has a long tradition in evolutionary game

theory (see, for instance, the text books in Refs. 8, 31). However, there is also a rich literature asking

how strategies spread in structured populations32–35. In the following, we thus explore the strategies that

evolve when both interactions and imitation events are local.

To explore the dynamics of spatial games, we closely follow the approach of Brauchli et al36. They

study the simultaneous game on a square lattice with periodic boundary conditions. The set of avail-

able strategies consists of all (stochastic) memory-1 strategies. With extensive computer simulations,

the study shows that spatial games are generally more conducive to the evolution of cooperation. More-

over, evolutionary trajectories are less chaotic, and more likely to result in eventual behavior that is

consistent with the strategy Win-Stay Lose-Shift. In the following, we use their setup to (i) repeat their

simulations for the simultaneous game, and (ii) extend these simulations to the case of alternating games.

Model setup. For our exploration of games in structured populations, we consider a population with

2,500 individuals placed on a 50×50 square lattice. Individuals use memory-1 strategies to engage in a

repeated game with each of their eight immediate neighbors (we use a Moore neighborhood with periodic

boundary conditions). We consider two independent scenarios. These scenarios differ in whether the

game being played is the simultaneous game or the alternating game. In both cases we use the baseline

versions of these games (in which there is no discounting of the future). A player’s payoff at any point

in time is defined as the player’s average payoff against its eight neighbors (taking the sum of the eight

pairwise payoffs would yield the same result).

Initially, we assume that all population members adopt the strategy ALLD. In each generation of

the simulation, all population members update their strategies. With probability 1−µ, an individual

who is to update its strategy adopts the strategy of the neighbor with the highest payoff. With the

converse probability µ, the individual adopts a random memory-1 strategy, by drawing four numbers
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(pCC , pCD, pDC , pDD) from the hypercube [0, 1]4 uniformly at random. This elementary process is then

repeated for 20, 000 generations. For each generation, we record the strategy that is adopted by each

individual, and the average cooperation rate across all interactions taking place in the population.

This overall setup agrees with the setup considered by Brauchli et al36, with a few minor exceptions.

First, we use a different initial population, ALLD, to better visualize the emergence of cooperation in a

population of defectors. In contrast, Brauchli et al36 assume that all players initially use the perfectly

random strategy p = (0.5, 0.5, 0.5, 0.5). Second, because we are also interested in the outcome of al-

ternating game, we use one-shot payoffs based on the infinitely repeated donation game, as defined by

Eq. (7). Brauchli et al36 instead use the payoff values of Axelrod37, and they consider games that last on

average between 100 and 200 rounds. Despite these differences, our simulation results for the simulta-

neous game are comparable to theirs (as described in more detail below).

Evolutionary dynamics. For our evolutionary simulations, we used parameters that are comparably hos-

tile to cooperation: the benefit of cooperation is smaller than in previous simulations (now b=2 instead

of b = 3), and errors occur at an appreciable rate, ε = 0.02. Fig. 6g shows the resulting cooperation

dynamics (averaged over 50 independent simulations). Despite the hostile conditions, we observe that

spatial games lead to predominantly cooperative populations rather quickly. When we compare the si-

multaneous game to the alternating game, we observe that the simultaneous game leads to more (and to

more robust) cooperation. To explore these results in more detail, Fig. 6h shows snapshots of the popu-

lation at different points in time. In the simultaneous game, we observe that populations almost always

converge to a largely homogeneous configuration of cooperative players. In contrast, in the alternating

game, different simulation runs can exhibit very different behaviors. In some simulations, we observe

a similar dynamics towards almost uniform cooperation as in the simultaneous game. Other simulation

runs, however, result in stable mixtures of cooperating and defecting players (this latter case is displayed

in the bottom panel of Fig. 6h).

In a next step, we explored which strategies the players use to maintain cooperation in the two

scenarios. To this end, we recorded all used strategies that yield a cooperation rate of at least 80%

against themselves; then we computed the respective average cooperation probabilities across all these

strategies (Fig. 6i). For the simultaneous game, this average strategy exhibits the characteristics of

Win-Stay Lose-Shift (as already reported by Brauchli et al36). Players are most likely to cooperate after

mutual cooperation and mutual defection; after all other outcomes, they tend to defect. For the alternating

game, the average strategy reflects some of the characteristics of Stochastic Firm-but-Fair. Here again,

players are most likely to cooperate if the opponent’s last move was to cooperate.

Overall, our results are in line with the main conclusions of the baseline model: Cooperation in

alternating games is slightly less robust, and it requires different kinds of strategies. At the same time,

the simulations also highlight the intriguing spatial patterns that can arise in structured populations.
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The effect of local mutations

Motivation. For our simulations so far, we assumed that when a mutation occurs, the player’s new

strategy can be arbitrarily different from the player’s present strategy. In that case we speak of ‘global

mutations’. The assumption of global mutations is fairly common in the evolutionary game theory lit-

erature12,28,38,39. However, there is also important work on the effects of local mutations40,41. When

mutations are local, they only lead to a slight modification of the players’ strategies. Which of the two

mutation schemes is more relevant depends on the type of evolution considered. Biological evolution

is perhaps better described by local mutations, whereas for cultural processes global mutations may be

more reasonable.

Compared to global mutations, local mutations can affect the dynamics in three ways:

1. It can introduce additional (local) equilibria. The corresponding strategies are robust with respect

to local mutants, although they can be invaded by strategies further away in the strategy space;

2. It affects how likely any given equilibrium is reached;

3. It affects the robustness of any given equilibrium: When mutations have a sufficiently short range,

any mutant strategy has approximately the same payoff as the resident strategy (since payoffs are

continuous in the players’ strategies). As a result, even a strategy that is evolutionarily stable

can be invaded by a strategy that is sufficiently close-by with an approximate probability of 1/N

(the neutral fixation probability)42. As a result, the concept of evolutionary stability becomes

overall less relevant to describe the stochastic evolutionary dynamics in finite populations with

local mutations.

To explore these effects in the context of alternating games, we have implemented additional simulations.

Model setup. We use the same basic framework that we used to describe the evolutionary dynamics of

the baseline model. However, this time, when a player with strategy p undergoes a mutation, the new

strategy is uniformly chosen among all memory-1 strategies p′ that satisfy

∣∣p′ij−pij∣∣ ≤ m, for all i, j ∈ {C,D}. (74)

We refer to the parameter m as the mutation range; it describes how far apart the mutant strategy can be

from the parent strategy. For m≥1, we recover the case of global mutations. For smaller m, mutations

are restricted to generate strategies in a local neighborhood of the parent strategy.

Evolutionary dynamics. In Supplementary Fig. 8a,b, we compare the results for global mutations with

the corresponding results for local mutations (usingm=0.05). We observe that for both the simultaneous

and the alternating game, overall cooperation rates under local mutations tend to be lower on average.
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However, the magnitude of the effect differs: While local mutations strongly reduce cooperation in the

simultaneous game, it has a much smaller negative effect on the alternating game.

To analyze this effect in more detail, we again compute an average over all self-cooperative strategies

used by the players (Supplementary Fig. 8c,d). The resulting average strategies resemble Win-Stay

Lose-Shift (in the simultaneous game) and Stochastic Firm-but-Fair (in the alternating game), largely

independent of whether mutations are local or global. However, local mutations have a substantial effect

on the robustness of these self-cooperative strategies. For local mutations, the number of mutants it takes

to invade a resident self-cooperative strategy is of the order of N (which is 100 in these simulations),

as expected. In contrast, under global mutations, resident strategies typically resist ∼ 6, 300 mutant

strategies in the simultaneous game, and ∼1, 600 mutant strategies in the alternating game.

In Supplementary Fig. 8e,f, we systematically explore the effect of different mutation ranges be-

tween m= 0.05 (local mutations) and m=0.95 (almost global mutations). The alternating game yields

slightly more cooperation than the simultaneous game when mutations are local. However, once the

mutation range exceeds m ≈ 0.4, it is the simultaneous game that is more conducive to cooperation.

Supplementary Note 4: Proofs of the analytical results

Proof of Proposition 1. Let v(p,q) be an invariant distribution of the game between strategies p and q.

Then v(p,q) is a solution of the equation v=vMA(p,q), with MA(p,q) being the transition matrix of

the game as defined by Eq. (5). More explicitly, v(p,q) solves the following system of linear equations,

vCC = vCC pCC qCC + vCD pCD qDC + vDC pDC qCC + vDD pDD qDC

vCD = vCC pCC (1−qCC) + vCD pCD (1−qDC) + vDC pDC (1−qCC) + vDD pDD (1−qDD)

vDC = vCC (1−pCC) qCD + vCD (1−pCD) qDD + vDC (1−pDC) qCD + vDD (1−pDD) qDD

vDD = vCC (1−pCC) (1−qCD) + vCD (1−pCD) (1−qDD) + vDC (1−pDC) (1−qCD) + vDD (1−pDD) (1−qDD).
(75)

By simplifying the right hand’s side, we can write Eq. (75) as

vCC = (vCC pCC + vDC pDC) qCC + (vCD pCD + vDD pDD) qDC

vCD = (vCC pCC + vDC pDC) (1−qCC) + (vCD pCD + vDD pDD) (1−qDC)

vDC =
(
vCC (1−pCC) + vDC (1−pDC)

)
qCD +

(
vCD (1−pCD) + vDD (1−pDD)

)
qDD

vDD =
(
vCC (1−pCC) + vDC (1−pDC)

)
(1−qCD) +

(
vCD (1−pCD) + vDD (1−pDD)

)
(1−qDD).

(76)

Now by using assumption (9)

(vCC+vDC) p̃C = vCC pCC + vDC pDC

(vCD+vDD) p̃D = vCD pCD + vDD pDD,
(77)
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and its equivalent formulation

(vCC+vDC) (1−p̃C) = vCC (1−pCC) + vDC (1−pDC)

(vCD+vDD) (1−p̃D) = vCD (1−pCD) + vDD (1−pDD),
(78)

we can write Eq. (76) as

vCC = (vCC+vDC) p̃C qCC + (vCD+vDD) p̃D qDC

vCD = (vCC+vDC) p̃C (1−qCC) + (vCD+vDD) p̃D (1−qDC)

vDC = (vCC+vDC) (1−p̃C) qCD + (vCD+vDD) (1−p̃D) qDD

vDD = (vCC+vDC) (1−p̃C) (1−qCD) + (vCD+vDD) (1−p̃D) (1−qDD).

(79)

This equation can be rewritten as v = vMA(p̃,q), where MA(p̃,q) is now the transition matrix of the

game between p̃=(p̃C , p̃D) and q. If v solves v=vMA(p,q), it thus also solves v=vMA(p̃,q).

Proof of Proposition 2. Consider an alternating game in which both players’ strategies are fixed and

player 2 adopts a memory-1 strategy q. Let va1,a2(t) denote the probability that the players choose the

actions (a1, a2) ∈ {CC,CD,DC,DD} at time t in the resulting game. By assumption, the following

limiting averages are well-defined,

vCC = lim
T→∞

1

T

T∑
t=1

vCC(t), vCD = lim
T→∞

1

T

T∑
t=1

vCD(t), vDC = lim
T→∞

1

T

T∑
t=1

vDC(t), vDD = lim
T→∞

1

T

T∑
t=1

vDD(t).

(80)

We write these four limits as a vector v = (vCC , vCD, vDC , vDD). Moreover, let pa1,a2(t) denote the

conditional probability that player 1 cooperates at time t+ 1, given the history of the game is such

that the players’ actions at time t are (a1, a2). Again, by assumption we can define a reactive strategy

p̃=(p̃C , p̃D) as an implicit solution of two equations

(vCC+vDC) p̃C = lim
T→∞

1

T

T∑
t=1

vCC(t) pCC(t) + vDC(t) pDC(t)

(vCD+vDD) p̃D = lim
T→∞

1

T

T∑
t=1

vCD(t) pCD(t) + vDD(t) pDD(t).

(81)

We need to show that the vector v satisfies the linear system v = vMA(p̃,q), where MA(p̃,q) is the

transition matrix defined by Eq. (5). We show this for the first equation of the system; all other equations

are verified analogously. By the definition of va1,a2(t) and pa1,a2(t), we can write vCC(t+1) as follows,

vCC(t+1) = vCC(t) pCC(t) qCC + vCD(t) pCD(t) qDC + vDC(t) pDC(t) qCC + vDD(t) pDD(t) qDC

(82)
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By summing up this equation for the first T time steps and collecting terms on the right hand side, we

obtain

T∑
t=1

vCC(t+1)=

(
T∑

t=1

vCC(t) pCC(t) + vDC(t) pDC(t)

)
qCC +

(
T∑

t=1

vCD(t) pCD(t) + vDD(t) pDD(t)

)
qDC

(83)

Dividing both sides by T , taking the limit T →∞, and replacing the limits by the respective expressions

in Eqs. (80) and (81), we obtain

vCC = (vCC+vDC) p̃C qCC + (vCD+vDD) p̃D qDC . (84)

This is exactly the first equation of the linear system v = vMA(p̃,q).

Proof of Lemma 1. The payoff equation (14) follows immediately from the formula in Eq. (7) when

using the strategies p and q as input. To show the monotonicity property in pC , we keep q and pD fixed

and consider the function pC 7→ fC(pC) := π(p,q). By Eq. (14), this function can be written as

fC(pC) =
a1 + a2 pC
a3 + a4 pC

, (85)

where a1, a2, a3, a4 are constants that are independent of pC . Calculating the derivative yields

∂fC
∂pC

=
a2a3 − a1a4

(a3 + a4 pC)2
. (86)

In particular, the sign of the derivative is independent of pC . That is, fC(pC) =π(p,q) is either strictly

increasing (if a2a3 >a1a4), strictly decreasing (if a2a3 <a1a4), or constant in pC (if a2a3 = a1a4). A

similar argument shows that also the map pD 7→ fD(pD) := π(p,q) is monotonic in pD.

Proof of Proposition 3. The proof is by iterated application of Lemma 1. Let q and p be arbitrary but

fixed. We iteratively define p0 = (p0
C , p

0
D) := (pC , pD),

p1 =

 (1, p0
D) if π

(
(1, p0

D),q
)
≥ π(p,q)

(0, p0
D) otherwise,

(87)

and

p2 =

 (p1
C , 1) if π

(
(p1

C , 1),q
)
≥ π(p,q)

(p1
C , 0) otherwise

(88)
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Because we only change one component in each step, it follows by the monotonicity property in Lemma 1
that π(p2,q) ≥ π(p1,q) ≥ π(p0,q). Moreover, p2 ∈ {0, 1}2 by construction. Therefore, defining

p′ :=p2 yields the desired result.

Proof of Lemma 2.

1. Suppose q is a generic Nash equilibrium and q̃=(q̃C , q̃D)∈ (0, 1)2 is its reactive marginalization

with respect to itself. In particular, q̃ is a generic best response to q, since q is a best response to

itself. It follows that the map q̃C 7→ π(q̃,q) needs to be constant (otherwise Lemma 1 implies

that it is either strictly increasing or decreasing, which both contradicts the best reply property).

As a consequence, both respective boundary strategies q̃′ := (0, q̃D) and q̃′′ := (1, q̃D) are also

generic best responses to q. With the same argument, one can now show that the maps q̃D 7→
π(q̃′,q) and q̃D 7→ π(q̃′′,q) are also constant. Therefore all respective boundary strategies –

ALLD, ATFT, TFT, ALLC – are generic best responses to q. In particular, all four boundary

strategies yield the same payoff against q. That is, we have shown Eq. (20). Because Eq. (20)

implies Eq. (21), we conclude that q is an equalizer.

2. Using Eqs. (6) and (10), we can compute the reactive marginalization q̃ of q with respect to itself

explicitly. This yields

q̃ = (q̃C , q̃D) =

(
qDC

1− qCC + qDC
,

qDD

1− qCD + qDD

)
(89)

By assumption, this reactive marginalization is either semi-stochastic or deterministic, and there-

fore either q̃C ∈{0, 1}, q̃D∈{0, 1}, or both. This gives rise to four possible cases,

q̃C ∈{0, 1} ⇔ q = (1, qCD, qDC , qDD) or q = (qCC , qCD, 0, qDD)

q̃D∈{0, 1} ⇔ q = (qCC , 1, qDC , qDD) or q = (qCC , qCD, qDC , 0).
(90)

The first and the last case, q = (1, qCD, qDC , qDD) and q = (qCC , qCD, qDC , 0) correspond to the

self-cooperating and self-defecting players, respectively. They give rise to a generic Nash equilib-

rium if and only if the respective conditions for being a partner, or for being a defector are satisfied,

as given by Eqs. (18) and (19). In the following, we discuss the remaining two cases. For those

we can assume without loss of generality that qCC<1 and qDD>0.

First, suppose that q = (qCC , qCD, 0, qDD). Then by Eq. (15), the payoff of q against itself is

π(q,q) =
qDD

1− qCD + 2qDD
(b−c). (91)
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If a player deviates to ALLD instead, its payoff according to Eq. (16) becomes

π(ALLD,q) =
qDD

1− qCD + qDD
· b. (92)

In particular, π(ALLD,q)>π(q,q).

Second, suppose q = (qCC , 1, qDC , qDD). Again we use Eq. (15) to compute the payoff of q

against itself, which yields

π(q,q) =
1− qCC + qDC

2(1− qCC) + qDC
(b−c). (93)

However, if a player deviates to ALLD, its payoff becomes π(ALLD,q) = b > π(q,q).

Proof of Proposition 4.

Both results follow from a straightforward application of our earlier results for the case without errors.

For (1), we note that

vε(p̃,q)
Eq. (26)

= v(p̃ε,qε)

Eq. (23)
= v

((vεCC(p,q) pεCC+vεDC(p,q) pεDC
vεCC(p,q)+vεDC(p,q) ,

vεCD(p,q) pεCD+vεDD(p,q) pεDD
vεCD(p,q)+vεDD(p,q)

)
, qε

)
Eq. (26)

= v
((vCC(pε,qε) pεCC+vDC(pε,qε) pεDC

vCC(pε,qε)+vDC(pε,qε) ,
vCD(pε,qε) pεCD+vDD(pε,qε) pεDD

vCD(pε,qε)+vDD(pε,qε)

)
, qε

)
Prop. 1

= v
(
pε,qε

)
Eq. (26)

= vε(p,q).

(94)

For (2), we note that by their definition in Eq. (29), p̃εC and p̃εD satisfy the conditions (11) in Proposi-
tion 2. Therefore we can conclude

vε(p̃,q)
Eq. (26)

= v(p̃ε,qε)
Proposition 2

= v. (95)
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Proof of Proposition 5.

Because the error transformation p 7→ pε = ϕε(p) is strictly monotonically increasing and defined on

each component separately, it follows from Lemma 1 that also the maps

pC → πε(p,q) = π
(
ϕε
(
(pC , pD)

)
, q
)

and pD → πε(p,q) = π
(
ϕε
(
(pC , pD)

)
,q
)

(96)

are either strictly monotonically increasing, decreasing, or constant. The result then follows with the

same argument as in the proof of Proposition 3, by replacing π(p,q) with πε(p,q).

Proof of Theorem 3.

(1)⇒ (2). Because q is a generic Nash equilibrium, πε(q,q)≥ πε(p,q) for all generic strategies p,

which includes all reactive strategies.

(2)⇒ (3). By Proposition 4, we can compute the payoff πε(q,q) of a memory-1 strategy q against

itself by computing the payoff of its reactive marginalization q̃ against itself, πε(q̃,q). To this

end, we use Eq. (27) to compute the entries of q̃=(q̃C , q̃D), yielding

q̃C =
εqCC + (1−ε)qDC

1−(1−2ε)(qCC−qDC)
,

q̃D =
εqCD + (1−ε)qDD

1−(1−2ε)(qCD−qDD)
.

(97)

Similar to Lemma 2, we distinguish two cases, depending on whether or not this reactive marginal-

ization is fully stochastic, that is whether or not q̃∈(0, 1)2.

(i) q̃ is fully stochastic. Because for reactive strategies p = (pC , pD) the maps pC→ πε(p,q)

and pD→πε(p,q) are either strictly monotonically increasing, decreasing, or constant (pre-

vious proof), it follows from q̃ ∈ (0, 1)2 and the assumption (33) that πε(p,q) is constant

for all reactive strategies p. That is, ϕε(q) needs to satisfy Eq. (21). By applying the back-

transformation (24), it follows that q needs to satisfy the conditions in Eq. (36).

(ii) q̃ is semi-stochastic or deterministic. In this case, either q̃C ∈ {0, 1} or q̃D ∈ {0, 1}. By

Eq. (97) this implies

q̃C ∈{0, 1} ⇔ q = (1, qCD, 1, qDD) or q = (0, qCD, 0, qDD)

q̃D∈{0, 1} ⇔ q = (qCC , 1, qDC , 1) or q = (qCC , 0, qDC , 0).
(98)

We discuss each of these four cases in turn:
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• q = (1, qCD, 1, qDD). In this case, we can use the payoff formulas (31) and (32) to

verify that πε(q,q)≥πε(TFT,q) if and only if

qDD ≤
(1−2ε) (b+εc qCD)− c

(1−2ε) (b+εc)
. (99)

On the other hand, an analogous computation shows that πε(q,q)≥πε(ALLC,q) if and

only if the inequality in Eq. (99) is reversed. Together these two requirements imply

the last condition in the characterization of partners (34). Finally, for strategies that

satisfy qCC = qDC = 1 and the last condition in (34), both additional requirements

πε(q,q)≥πε(ALLD,q) and πε(q,q)≥πε(ATFT,q) are met if and only if

qCD ≤ 1− c

(1−2ε)b
. (100)

Overall, we conclude that such a strategy q = (1, qCD, 1, qDD) is robust with respect to

deviations towards the four deterministic reactive strategies if and only if the additional

conditions in (34) hold. In particular, such strategies are generic Nash equilibria, be-

cause robustness against all deterministic reactive strategies implies robustness against

all generic strategies by Propositions 4 and 5.

• q = (0, qCD, 0, qDD). Using the payoff formulas (31) and (32) one can show that

πε(q,q) < πε(ALLD,q) unless qCD = qDD = 0, that is q = ALLD. We discuss the

case of q=ALLD further below.

• q = (qCC , 1, qDC , 1). It is easy to show that πε(q,q)<πε(ALLD,q) for all such q.

• q = (qCC , 0, qDC , 0). If q is ALLD, then it is a Nash equilibrium (because defection is

an equilibrium of the one-shot game). In the following let us thus assume that qCC > 0

or qDC>0. In this case we obtain πε(q,q)≥πε(TFT,q) if and only if

qCC ≤
ε(1−2ε)c qDC + c

(1−2ε)(b+εc)
. (101)

On the other hand, the requirement πε(q,q) ≥ πε(ALLD,q) is met if and only if the

inequality in (101) is reversed. Together these two requirements imply the last condition

in (35). Given this last condition and qDD = qCD = 0, it follows that πε(q,q) ≥
πε(ALLC,q) and πε(q,q)≥πε(ATFT,q) if and only if

qDC ≤
c

(1−2ε)b
. (102)

We conclude that for strategies q that satisfy all conditions in (35) there are no profitable
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deviations among the deterministic reactive strategies. Because of Propositions 4 and 5,

this implies that there are no profitable deviations among the generic strategies, and

hence q is a generic Nash equilibrium.

(3)⇒ (1) Follows immediately because partners and defectors are generic Nash equilibria by defini-

tion. Equalizers are generic Nash equilibria because any deviating player yields exactly the same

payoff against an equalizer as the equalizer strategy yields against itself.
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[35] Perc, M., Gómez-Gardeñes, J., Szolnoki, A., Florı́a, L. M. & Moreno, Y. Evolutionary dynamics

of group interactions on structured populations: A review. Journal of The Royal Society Interface

10, 20120997 (2013).

[36] Brauchli, K., Killingback, T. & Doebeli, M. Evolution of cooperation in spatially structured popu-

lations. Journal of Theoretical Biology 200, 405–417 (1999).

[37] Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science 211, 1390–1396 (1981).

[38] Hauert, C. & Schuster, H. G. Effects of increasing the number of players and memory size in

the iterated prisoner’s dilemma: a numerical approach. Proceedings of the Royal Society B 264,

513–519 (1997).

[39] Hilbe, C., Nowak, M. A. & Sigmund, K. The evolution of extortion in iterated prisoner’s dilemma

games. Proceedings of the National Academy of Sciences USA 110, 6913–6918 (2013).

[40] Imhof, L. A. & Nowak, M. A. Stochastic evolutionary dynamics of direct reciprocity. Proceedings

of the Royal Society B 277, 463–468 (2010).

[41] Stewart, A. J. & Plotkin, J. B. The evolvability of cooperation under local and non-local mutations.

Games 6, 231–250 (2015).

[42] Wild, G. & Traulsen, A. The different limits of weak selection and the evolutionary dynamics of

finite populations. Journal of Theoretical Biology 247, 382–390 (2007).

50


	Cooperation in alternating interactions with memory constraints
	Results
	Model description
	A recipe for identifying Nash equilibria for alternating games
	Equilibria in alternating games without errors
	Equilibria in alternating games with errors
	Evolutionary dynamics of alternating games
	Evolutionary results beyond the baseline scenario

	Discussion
	Methods
	Calculation of payoffs
	Evolutionary dynamics
	Parameters and specific procedures used for the figures

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information

	Supplementary Figures
	Supplementary Note 1: Baseline model
	Supplementary Note 2: Equilibrium analysis for alternating games
	Sufficiency of reactive strategies
	Best responses to memory-1 strategies
	Classification of memory-1 Nash equilibria
	Alternating games with implementation errors

	Supplementary Note 3: Extensions of the baseline model
	Finitely repeated games
	Irregular alternation patterns
	Memory-2 strategies
	Games in spatial populations
	The effect of local mutations

	Supplementary Note 4: Proofs of the analytical results
	Supplementary References

