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Abstract

Blackwell dominance is a partial order over information structures that is based on the

uniform preference of all decision makers for one structure over another in all decision problems.

I restrict attention to investment decision problems with ruin-averse investors (Cabrales, Gossner

and Serrano, 2013), and compare substantive rejections of information transactions (uniform

over all utilities and prior beliefs). This yields the partial order of prior-independent investment

dominance, which strictly extends Blackwell’s order. Thus, many pairs of information structures

that are not ranked by the Blackwell criterion may still be ranked in investment problems

independently of the prior.

Understanding the demand for information is crucial for understanding many important economic

environments. Yet, comparing the desirability of different information structures in a sensible way

is an elusive undertaking. The reason is that in some settings certain pieces of information may be

vital for some agents, while in other settings, or for different agents, other pieces of information will

be more important.1 The implication is that it is not possible to rank all information structures

so that higher-ranked structures are preferred to lower-ranked ones by all agents at every decision-

making problem and for all prior beliefs. Some pairs of information structures may, however, be

compared in this manner. In his seminal paper, Blackwell (1953) showed that one information

structure is preferred to another by all agents in all settings if and only if the latter is a garbling of

the former, that is, if one is a noisy version of the other.2 But this order is partial and cannot be

used to compare many pairs of information structures.3

∗Harvard University, Department of Economics, Littauer Center, 1805 Cambridge Street, Cambridge, MA 02138,
rshorrer@gmail.com.

1The difficulty in generating a ranking that is independent of agents’ preferences is discussed in Willinger (1989),
which studies the relation between risk aversion and the value of information. Willinger (1989) discusses his choice
of using the expected value of information (EVI) or “asking price,” which was defined by LaValle (1968). The EVI
measures a certain decision maker’s willingness to pay for certain information, thereby “... the difficulty of defining
a controversial continuous variable representing the ‘amount of information’ can be avoided.”

2A simple proof is provided in Leshno and Spector (1992).
3Lehmann (1988), Persico (2000), Athey and Levin (2001), Jewitt (2007), and others have extended this partial

order by restricting the class of decision problems and agents under consideration.
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Cabrales, Gossner and Serrano (2013) use an approach of total rejections in the spirit of Hart

(2011) to make such comparisons.4 In a model à la Arrow (1972), they restrict attention to in-

vestment decision problems and define a relation that they term uniform investment dominance.

This turns out to be a complete order over all information structures, which extends the order sug-

gested by Blackwell (1953). Their order, however, depends on the (unique, fixed, common) prior

of the decision makers, and thus they get, rather, a continuum of orders, one for each prior. These

orders are indeed different from each other; there exists pairs of information structures that are

ranked differently depending on the prior selected. This means that prior-independent investment

dominance is a partial order.

This paper treats a question that was left unanswered in Cabrales, Gossner and Serrano (2013);

namely, is prior-independent investment dominance the same as Blackwell’s partial order, or does

it provide further insights for prior-free comparisons of information structures in investment set-

tings? This question is important since an analyst cannot always observe the priors of agents

in the market. My answer is that the latter alternative is correct: I prove that (many) pairs of

information structures that cannot be compared by Blackwell’s order can be compared by the par-

tial order of prior-independent investment dominance. I also provide a complete characterization

of these pairs of structures restricting attention to information structures with two states of the

world and two signals. Two such structures chosen uniformly at random are comparable by prior-

independent investment dominance with probability approximately .94, compared with probability

2/3 by Blackwell’s criterion.

1 Preliminaries

I use the model and notation of Cabrales, Gossner and Serrano (2013). I provide a brief review, as

a complete discussion can be found in their paper.5

I consider agents with a concave, twice continuously differentiable utility function for money,

who have some initial wealth, w, and face uncertainty about the state of nature. There are K ∈ N
states of nature,6 {1, ...,K}, over which the agents have the prior p ∈ ∆ (K), which is assumed to

have a full support.

I identify agents with utility functions, and denote the Arrow–Pratt coefficient of relative risk

aversion of agent u at wealth w by7

%u(w) := −wu
′′(w)

u′(w)
.

4In fact, they follow Hart’s (2011) utility uniform rejections, which lead in his setting to the index of riskiness
suggested in Foster and Hart (2009). In their 2014 paper they follow Hart’s (2011) wealth uniform rejections, which
lead in his setting to the index of riskiness suggested in Aumann and Serrano (2008). This second approach leads to
their index of appeal of information transactions.

5I present a simplified version of Cabrales, Gossner and Serrano (2013). Simplifications are for ease of exposition,
and have no effect on any of my results.

6With a slight abuse of notation, I also denote {1, ...,K} by K. The meaning of K should be clear from the
context.

7See Pratt (1964) and Arrow (1965, 1971).
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I restrict attention to agents with relative risk aversion that is increasing in their wealth (IRRA).

This means that %u(·) is non decreasing for all agents considered. Justifications for this assumption

include theoretical considerations (Arrow, 1971) and observed behavior in the field (Binswanger,

1981; Post et al., 2008). IRRA utility functions include constant absolute risk aversion (CARA)

utilities, as well as constant relative risk aversion (CRRA) utilities. I further focus on agents that

are ruin averse, namely, agents that satisfy lim
w→0+

u(w) = −∞. I denote by U∗ the class of these

utility functions.

The set of investment opportunities B∗ =

{
b ∈ RK

∣∣∣∣ ∑
k∈K

pkbk ≤ 0

}
consists of all no-arbitrage

assets. When an agent with initial wealth w chooses investment b ∈ B∗ and state k is realized, his

wealth becomes w + bk. Hence, B∗ includes in particular the option of inaction. Referring to the

members of B∗ as no-arbitrage investment opportunities attributes to the prior, p, an additional

interpretation as the price of an Arrow–Debreu security that pays 1 if the state k is realized and

nothing otherwise. Hence, p plays a dual role in this setting.

Agents may choose their investment freely, but bankruptcy (the possibility of negative wealth)

is not allowed. I say that an investment b is feasible at wealth w when w + bk ≥ 0 in every state

k ∈ K, and denote by Bw
F := {b ∈ B∗ | w + bk ≥ 0 ∀k ∈ K} the set of investment opportunities

that are feasible at wealth w. Before choosing a feasible investment, the agent has an opportunity

to engage in an information transaction (µ, α), where µ > 0 is the cost of the transactions, and

α is the information structure representing the information that it entails. To be more precise, α

is given by a finite set of signals Sα and probability distributions αk ∈ ∆ (Sα) for every k ∈ K.

When the state of nature is k, the probability that the signal s is observed equals αk(s). Thus,

the information structure may be represented by a stochastic matrix Mα, with K rows and |Sα|
columns, and the total probability of the signals is given by the vector pα := p ·Mα. For simplicity,

assume that pα(s) > 0 for all s, so that each signal is observed with positive probability. Further,

denote by qsk the probability that the agent assigns to state k conditional on observing the signal

s, using Bayes’ law. Note that although the notation does not indicate it, (qsk)
K
k=1 = qs ∈ ∆ (K)

depends on α and the prior p.

Agents choose the optimal feasible investment opportunity in B∗ given their belief and their

wealth. Therefore, the expected utility of an agent with utility u, initial wealth w, and belief q is8

V (u,w, q) = sup
b∈Bw

F

∑
k

qku (w + bk) .

In the case where the agent acquires no information, his belief is given by the prior p. Since the

agent is risk averse, in such a case his optimal choice is inaction. Hence,

V (u,w, p) = u(w).

8Throughout, I use the convention that (−∞) · 0 = 0.

3



Accordingly, an agent u with wealth w accepts an information transaction (µ, α) if∑
s

pα(s)V (u,w − µ, qs) > V (u,w, p) = u(w)

and rejects it otherwise.

The entropy reduction is defined by:

I(α, p) = H(p)−
∑
s

pα(s) ·H(qs),

where

H(q) = −
∑
k∈K

qk ln(qk),

and 0 ln 0 = 0 by continuity.9

Definition. For a fixed prior p, information structure α uniformly investment-dominates (or

investment-dominates, for short) information structure β whenever, for every wealth w and price

µ < w such that (µ, α) is rejected by all agents with utility u ∈ U∗ at wealth w, β is also rejected

by all those agents.

Theorem. [Cabrales, Gossner and Serrano] For a fixed prior p, information structure α investment-

dominates information structure β if and only if I(α, p) ≥ I(β, p).

Corollary. If α Blackwell-dominates β, then I(α, p) ≥ I(β, p) for all p.

Definition. An information structure α investment-dominates β independently of the prior (or

prior-independently investment-dominates), whenever α investment-dominates β for any prior p.

Theorem. [Cabrales, Gossner and Serrano] There exists no linear ordering that orders information

structures according to the ordering of investment dominance independently of the prior.

Example 1. Let K = {1, 2, 3} and let p1 = (.5− ε, .5− ε, 2ε) and p2 = (2ε, .5− ε, .5− ε). Consider

the information structures

α1 =

 1− ε ε

ε 1− ε
.5 .5

 , α2 =

 .5 .5

1− ε ε

ε 1− ε

 .
It is easy to verify that for ε > 0 sufficiently small I(α1, p1) > I(α2, p1), but I(α1, p2) < I(α2, p2).

This is intuitive since, given pi, αi contains (almost) all the information that an investor could hope

for, while α−i could be improved upon significantly.

9Recall that qs is not independent of the prior p, even though the dependence is not made explicit by the notation
I use.
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2 Results

While information structures cannot be linearly ordered according to investment dominance inde-

pendently of the prior, the corollary above suggests that this relation is not vacuous. There are

some cases where one information structure investment-dominates another for any prior, for exam-

ple, when the former Blackwell-dominates the latter. A natural question that is left unanswered in

Cabrales, Gossner and Serrano (2013) is whether these are the only cases. In other words, are prior-

independent investment dominance and Blackwell dominance the same? I answer this question in

the negative.

Theorem 1. There exist α and β such that α investment-dominates β independently of the prior,

but α does not dominate β according to Blackwell’s order.10

Proof. Follows from Example 2.

Example 2. Let K = {1, 2} and consider the information structures

α1 =

[
.3 .7

.7 .3

]
, α2 =

[
.3 .7

.1 .9

]
.

I claim that I(α1, p) ≥ I(α2, p) for all p. I identify p with p1, the probability of state 1 that lies

in [0, 1]. Fixing the two information structures, I define a function φα1,α2 : [0, 1] −→ R as follows:

φα1,α2 (·) := I(α2, ·)− I(α1, ·).

For p ∈ {0, 1}, I (·, p) ≡ 0, and hence φα1,α2 (0)=φα1,α2 (1) = 0. It follows from the properties of I

that φα1,α2 (·) is continuous and twice continuously differentiable. Furthermore,

φ
′′
α1,α2

(p) =
0.0252− 0.0192p

(−0.3− 0.4p)(0.7− 0.4p)(0.3(−1 + p)− 0.1p)(1 + 0.3(−1 + p)− 0.1p)
. (2.0.1)

This expression is always positive for p ∈ (0, 1), which implies that φα1,α2 (·) is a strictly convex

and continuous function with φα1,α2 (0) = φα1,α2 (1) = 0. But this means that φα1,α2 (p) < 0 for all

p ∈ (0, 1), hence I(α2, p) − I(α1, p) ≤ 0 for all p ∈ [0, 1], and hence α1 investment-dominates α2

independently of the prior.

It remains to show that α1 does not Blackwell-dominate α2. Let us look at the geometry of

Blackwell dominance more generally. Given a K × S information structure α, the set of all K × S
information structures dominated by α is defined as Dom(α) := {αM : M ∈ (∆(S))S}. Namely,

α multiplied by M , where M ranges over all S × S stochastic matrices. As a linear image of the

polytope (∆(S))S , Dom(α) is a polytope whose vertices are images of the vertices of (∆(S))S .

10Using Example 2, Shorrer (2015) shows that the same applies to the index of appeal of information transactions
(Cabrales, Gossner and Serrano, 2014).

5



Namely,

Dom(α) = conv

α

ei1
...

eiS

 : eijare vertices of ∆(S)

 .

The case of just two states (K = 2) and two signals (S = 2) is particularly simple. The set of all

2×2 information structures dominated by a given 2×2 information structure form a parallelogram:

Dom

([
x 1− x
y 1− y

])
= conv

{[
x 1− x
y 1− y

]
,

[
y 1− y
x 1− x

]
,

[
0 1

0 1

]
,

[
1 0

1 0

]}
.

From Figure 1, it is easily seen that the information structure α2 from the example is not Blackwell-

dominated by α1.

α1

[
1 0
1 0

]

α1

[
0 1
1 0

]

[
0 1
0 1

] [
1 0
0 1

]α2

Figure 1: The figure depicts the two-dimensional space of 2 × 2 in-
formation structures. These matrices could be written as[
x 1− x
y 1− y

]
, where both x and y are in [0, 1]. In the

figure, x is represented by the horizontal axis and y is
represented by the vertical axis. The shaded area are the
matrices that represent information structures dominated
by α1 in the Blackwell sense. The point α2 is outside the
shaded area.

The above counterexample extends to any number of states and signals. I now focus on the

case of 2 × 2 information structures (2 states of the world and 2 signals), and provide a complete

characterization of comparable pairs.
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Definition 1. Given two 2 × 2 information structures α and β, the function φα,β : [0, 1] −→ R is

defined as follows:

φα,β (·) := I(β, ·)− I(α, ·).

Theorem 2. For 2× 2 information structures α and β, α investment-dominates β independently

of the prior if and only if

φ′α,β
(
0+
)
≤ 0, and

φ′α,β
(
1−
)
≥ 0.

Furthermore, α and β are comparable using this partial order if and only if

φ′α,β
(
0+
)
φ′α,β

(
1−
)
≤ 0.

Proof. By definition, α investment-dominates β independently of the prior if and only if φα,β is

non-positive on the interval [0, 1]. My proof is a generalization of the investigation of the function

φα1,α2 in the proof of Theorem 1. The main step is to show that [0, 1] can be divided into two

intervals, [0, t] and [t, 1] (with t possibly equal to 0 or 1), such that in one of these intervals φα,β

is convex and in the other it is concave. In other words, φα,β is either convex, concave, or “S-

shaped”: convex on one side of t and concave on the other side. From this analysis and the fact

that φα,β(0) = φα,β(1) = 0, one readily concludes the first part of the theorem. The second part

follows from the first, since φα,β = −φβ,α.

I now turn to the proof that for every pair of 2×2 structures α and β, there exist t ∈ [0, 1] such

that φα,β is convex in one of the intervals [0, t] and [t, 1] and concave in the other.

Denote

α =

[
x 1− x
y 1− y

]
, β =

[
a 1− a
b 1− b

]
,

for some x, y, a, b ∈ [0, 1]. The function φα,β is continuously twice differentiable on [0, 1]. Assume

first that neither of the information structures is degenerate, that is, neither equals

[
1 0

1 0

]
or[

0 1

0 1

]
. Direct computation shows that

φ′′α,β (p) =
(x− y)2pβ(1)pβ(2)− (a− b)2pα(1)pα(2)

pα(1)pα(2)pβ(1)pβ(2)
. (2.0.2)

The denominator is positive on (0, 1), as a product of four positive factors. The numerator is an

affine function in p: it is the difference between two quadratic polynomials that have the same

quadratic term.11 This implies that the entire expression could change signs at most once. This

concludes the proof in the non-degenerate case.

11The numerator is equal to (x− y)2(b + (a− b)p)(1− b + (b− a)p)− (a− b)2(y + (x− y)p)(1− y + (y − x)p).
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If both α and β are degenerate, then φα,β ≡ 0; if only α is degenerate, then

φ′′α,β (p) =
−(a− b)2

pβ(1)pβ(2)
;

and if only β is degenerate, then

φ′′α,β (p) =
(x− y)2

pα(1)pα(2)
.

In all three of the degenerate cases φ′′α,β has the same sign throughout the interval (0, 1).

Remark. Using this theorem and the Monte Carlo method, I conclude that two 2 × 2 informa-

tion structures drawn uniformly at random are comparable with probability approximately 0.94,

compared with a 2/3 probability that they are comparable using Blackwell’s criterion.

The following theorem provides a sufficient condition that is much simpler to verify and illustrate

than the condition of Theorem 2.

Theorem 3. For a non degenerate information structure α =

[
x 1− x
y 1− y

]
and an information

structure β =

[
a 1− a
b 1− b

]
, α investment-dominates β independently of the prior if

(x− y)2a(1− a)− (a− b)2x(1− x) ≥ 0,

and

(x− y)2b(1− b)− (a− b)2y(1− y) ≥ 0.

Note that Theorem 1 follows from Theorem 3. The condition in Theorem 3 specifies an intersec-

tion of two ellipses, which is a strictly convex set; therefore any non extreme point on the relative

boundary of Dom(α) is an internal point of the set of information structures investment-dominated

by α independently of the prior.

Proof. It is sufficient to show that φα,β is convex in [0, 1], or, equivalently, φ′′α,β is non negative in

(0, 1). As seen in (2.0.2), since the denominator is always positive, it is sufficient to show that the

numerator is non negative. Namely,

L(p) = (x− y)2pβ(1)pβ(2)− (a− b)2pα(1)pα(2) ≥ 0 ∀p ∈ (0, 1).

Since L(p) is a linear function of p, one need only verify that the two end points, at p = 0, 1, are

non negative, which is exactly the condition of the theorem.

Remark. Using this sufficient condition, one can show that two 2× 2 information structures drawn

uniformly at random are comparable with probability approximately 0.85.
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3 Discussion

Several previous papers extend Blackwell’s partial order by restricting attention to a certain class

of decision-making problems (Lehmann, 1988; Persico, 2000; Athey and Levin, 2001; Jewitt, 2007).

Cabrales, Gossner and Serrano (2013) consider a different class of decision problems and, for a fixed

prior, derive a complete order that is represented by the expected decrease in entropy from the prior

to the posteriors. This paper shows that while the prior-free version of their order is incomplete, it

still suggests an interesting new approach for extending Blackwell’s order.
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