Using Data and Clinical Decision Support to Improve Quality and Reduce Errors

Roberto A. Rocha, MD, PhD, FACMI
Clinical Informatics Director,
Partners eCare, Partners Healthcare System
Assistant Professor of Medicine
Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
Overview

• Background
 – Clinical Decision Support (CDS) value, benefits

• CDS modalities
 – Examples from Partners HealthCare

• Knowledge Management (KM)
 – KM program, challenges, opportunities
 – Assets and tools used at Partners HealthCare

• Conclusions
 – Successful program, CDS strategy, sharing
Healthcare Industry

• Very complex processes with high degree of fragmentation
• Mandatory evolution toward integrated and streamlined processes (value or outcomes-based)
• Growing adoption of information technology (interoperability)
• Clinical decisions supported by evidence – influenced by available local resources and preferences
• Reliance on decision practices guided by a constantly evolving body of knowledge
CDS can improve clinical practice

• Systematic review of 70 studies (RCTs), up to 2003
 – Evaluating the ability of CDS to improve clinical practice
 – Focus on 15 CDS features (derived from literature)

• CDS improved practice in 68% of trials
 – Key features (independent predictors)
 ▪ CDS as part of clinician workflow
 ▪ Recommendations rather than just assessments
 ▪ CDS at the time and location of decision making
 ▪ CDS triggered by computerized data analysis

Improvements require complex CDS

• Report assessed the evidence regarding benefits and costs of health information technology (HIT) systems
 – 256 studies: 156 decision support
• “HIT has the potential to enable a dramatic transformation in the delivery of health care, making it safer, more effective, and more efficient.”
 – “More research is needed ... Much of the existing decision support relies on simple rules, and it should be possible to provide substantially better assistance with the use of more-complex rules and models”

Decisions now require more knowledge

Background: summary

✓ CDS known to improve care
 – Better with more complex CDS
 – But has to follow the patient

✓ US EHR incentives require CDS use
 – Dependency on available structured clinical data
 – And aligned with quality measures

! Knowledge is constantly growing
 – Existing knowledge assets quickly obsolete
 – Must evolve toward individualized decisions
 – Must combine evidence + personal preferences
CLINICAL DECISION SUPPORT (CDS)
Modalities of CDS

- Reference knowledge **selection** and **retrieval**
 - e.g., infobuttons, crawlers (indexing)
- Information **aggregation** and **presentation**
 - e.g., summaries, reports, dashboards
- Data **entry assistance**
 - e.g., forcing functions, calculations, evidence-based templates for ordering and documentation
- **Event monitors**
 - e.g., alerts, reminders, alarms
- Care **workflow assistance**
 - e.g., protocols, care pathways, practice guidelines
- **Descriptive** or **predictive** analytics
 - e.g., diagnosis, prognosis, treatment planning, treatment outcomes
CDS: infobuttons

Information about “Depression”
CDS: alerts for medication ordering
CDS: interruptive alert with action

Clinician **must** cancel current order or discontinue pre-existing order
CDS: geriatric medication dosing

Geriatric Dosing - appropriate doses and frequencies for geriatric population: doses - 0.5 TAB, 1 TAB; frequencies - Q6H, 1 Tablet + 5mg Hydrocodone & 500mg Acetaminophen; Do not exceed 6 tablets/day (70mg of Acetaminophen). For constipation, often worsened by an opioid, add a stool softener and a stimulant.

Clinical Informatics
CDS: preventive care reminders
CDS: summary

- Multiple CDS options available
 - Different modalities from simple to complex
 - But knowledge is constantly changing
 - And local adaptations are frequently needed

- Workflow assistance is very attractive
 - Very difficult to implement pathways & protocols as CDS
 - Knowledge maintenance is very expensive
 - Commercial EHR systems do not support required features

- Needed standards are still evolving
 - Progress: terminologies, data models, and knowledge
 - Inability to implement at scale (no cost-sharing)
CLINICAL KNOWLEDGE MANAGEMENT (CKM)
Clinical Knowledge Management

- **Quantity** of knowledge (explosion)
 - Evolution towards stratified/personalized clinical practice
 - Complex decision making process demanding computerized support
- Knowledge content **maintainability** (long-term)
 - Content diversity and quantity makes traditional curation unrealistic
 - Rate of creation and revision is constantly increasing
- **Distributed** care delivery processes (fragmented)
 - Extensive knowledge is needed beyond organizational boundaries
 - Learning opportunities leading to optimal care and stewardship
- **Patient-centered** care and **shared decision making**
 - Consumers (patient) constantly seeking knowledge (empowerment)
 - Shared responsibility only possible with proper understanding
Implementation challenges

- **Data availability**
 - Data not coded, coded inconsistently, not enough detail (codes)

- Large number of **dependencies** (frequency of changes)
 - Data definitions, classifications, EHR configuration, new evidence

- **Rudimentary tools** (editing)
 - Incorrect logic, missing values, related rules, automated validation

- **Labor intensive testing**
 - Positive and negative tests, regression testing, automated testing

- **EHR system** or integrated CDS engine
 - Limited integration options, complex configuration, peculiar features

CKM Program

- **Systematic** and **sustainable** acquisition, adaptation (localization), and management of knowledge assets for different “modalities” of CDS
- Includes the **adaptation** of “reference” knowledge to reflect local and institutional requirements, resources, and priorities
- Follows a well-defined **lifecycle**, including specific stages for documentation, testing, and monitoring – supported by integrated set of tools and resources

CKM Program Components

Personnel

- Domain Experts
- Knowledge Engineers
- Knowledge Modelers
- Terminology Engineers

Framework

- Lifecycle Processes
- Governance Processes
- Software Platform

Assets

- Knowledge
- Information Models
- Concepts & Ontologies
Implementation of CDS modalities

<table>
<thead>
<tr>
<th>CDS modality</th>
<th>Types of Knowledge Assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Information selection and retrieval</td>
<td>Reference</td>
</tr>
<tr>
<td>2. Information aggregation and presentation</td>
<td>Actionable</td>
</tr>
<tr>
<td>3. Data entry assistance</td>
<td>Executable</td>
</tr>
<tr>
<td>4. Event monitors</td>
<td></td>
</tr>
<tr>
<td>5. Care workflow assistance</td>
<td></td>
</tr>
<tr>
<td>6. Descriptive or predictive modeling</td>
<td></td>
</tr>
</tbody>
</table>

- Complexity
- Cost
- Availability
- Maintainability

Clinical Informatics
Scope (assets) @ Partners

Dictionaries
- Terminologies
- Coding Systems
- Ontologies
- Classifications

Templates
- Documentation
- Orders
- Reports
- (Models)

Rules
- Alerts
- Reminders
- Workflows
- Protocols

Reference
- Manuals
- Books
- Guides
- (Evidence)

Infrastructure
Process: Collaboration, Lifecycle, Metadata, Namespaces
Technology: Editors, Browsers, Portals, Repositories, Software

Clinical Informatics
Inventory of Knowledge Assets
Managed Centrally at Partners (1/2)

<table>
<thead>
<tr>
<th>Knowledge Asset Collection</th>
<th>Collection Size¹</th>
<th>Asset Type</th>
<th>Asset Source²</th>
<th>Asset Editor³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemotherapy Prescribing Dictionary: includes investigational agents</td>
<td>2,800 concepts</td>
<td>Dictionary</td>
<td>Local</td>
<td>Local</td>
</tr>
<tr>
<td>Drug Classification Subsets</td>
<td>2,500 classes</td>
<td>Dictionary</td>
<td>Custom</td>
<td>Local</td>
</tr>
<tr>
<td>Immunization Dictionary: includes reference mappings</td>
<td>620 concepts</td>
<td>Dictionary</td>
<td>Local</td>
<td>Vendor</td>
</tr>
<tr>
<td>Master Drug Dictionary (MDD): includes non-commercially available medications</td>
<td>11,000 concepts</td>
<td>Dictionary</td>
<td>Local</td>
<td>Local</td>
</tr>
<tr>
<td>Medication Concept Mappings</td>
<td>15,700 mappings</td>
<td>Dictionary</td>
<td>Local</td>
<td>Local</td>
</tr>
<tr>
<td>Oral Investigational Chemotherapy Dictionary</td>
<td>600 concepts</td>
<td>Dictionary</td>
<td>Local</td>
<td>Local</td>
</tr>
<tr>
<td>Outpatient neonatal dosing dictionary</td>
<td>60 concepts</td>
<td>Dictionary</td>
<td>Local</td>
<td>Local</td>
</tr>
<tr>
<td>Problem List Classification Subsets</td>
<td>530 classes</td>
<td>Dictionary</td>
<td>Local</td>
<td>Local</td>
</tr>
<tr>
<td>Problem List Dictionary</td>
<td>5,000 concepts</td>
<td>Dictionary</td>
<td>Custom</td>
<td>Local</td>
</tr>
<tr>
<td>Partners KnowledgeLink (infobutton manager)</td>
<td>650 resource profiles</td>
<td>Reference</td>
<td>Local</td>
<td>Local</td>
</tr>
<tr>
<td>Partners Handbook: portal of electronic clinical reference resources</td>
<td>600 external and 900 internal links</td>
<td>Reference</td>
<td>Local</td>
<td>Local</td>
</tr>
<tr>
<td>Critical Laboratory Alerts</td>
<td>175 rules</td>
<td>Rule</td>
<td>Local</td>
<td>Vendor</td>
</tr>
<tr>
<td>Disease Management and Preventive Care Reminders</td>
<td>340 rules</td>
<td>Rule</td>
<td>Local</td>
<td>Local</td>
</tr>
<tr>
<td>Drug Dosing in Elderly</td>
<td>320 dosing rules</td>
<td>Rule</td>
<td>Local</td>
<td>Local</td>
</tr>
<tr>
<td>Drug Dosing in Renal Insufficiency</td>
<td>400 dosing rules</td>
<td>Rule</td>
<td>Local</td>
<td>Local</td>
</tr>
</tbody>
</table>

Inventory of Knowledge Assets Managed Centrally at Partners (2/2)

<table>
<thead>
<tr>
<th>Knowledge Asset Collection</th>
<th>Collection Size¹</th>
<th>Asset Type</th>
<th>Asset Source²</th>
<th>Asset Editor³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug-Disease Alerts</td>
<td>510 rules</td>
<td>Rule</td>
<td>Custom</td>
<td>Local</td>
</tr>
<tr>
<td>Drug-Drug Interaction Alerts</td>
<td>10,000 rules</td>
<td>Rule</td>
<td>Local</td>
<td>Local</td>
</tr>
<tr>
<td>Drug-Laboratory Alerts</td>
<td>440 rules</td>
<td>Rule</td>
<td>Custom</td>
<td>Local</td>
</tr>
<tr>
<td>Drug-Pregnancy Alerts</td>
<td>690 rules</td>
<td>Rule</td>
<td>Custom</td>
<td>Local</td>
</tr>
<tr>
<td>Drug-Utilization Alerts</td>
<td>15 rules</td>
<td>Rule</td>
<td>Local</td>
<td>Local</td>
</tr>
<tr>
<td>Duplicate Therapy Alerts</td>
<td>25 category rules</td>
<td>Rule</td>
<td>Custom</td>
<td>Local</td>
</tr>
<tr>
<td>Family History Reminders</td>
<td>25 algorithms</td>
<td>Rule</td>
<td>Local</td>
<td>N/A</td>
</tr>
<tr>
<td>Food-Drug Interaction Alerts</td>
<td>130 rules</td>
<td>Rule</td>
<td>Custom</td>
<td>Local</td>
</tr>
<tr>
<td>Health Monitoring</td>
<td>70 rules</td>
<td>Rule</td>
<td>Local</td>
<td>Local</td>
</tr>
<tr>
<td>Immunization Schedule Reminders</td>
<td>370 rules</td>
<td>Rule</td>
<td>Local</td>
<td>Vendor</td>
</tr>
<tr>
<td>Problem-list Reminders</td>
<td>80 rules</td>
<td>Rule</td>
<td>Local</td>
<td>Local</td>
</tr>
<tr>
<td>Relevant Laboratory Results for Order Entry</td>
<td>600 rules</td>
<td>Rule</td>
<td>Local</td>
<td>Local</td>
</tr>
<tr>
<td>Documentation Calculated Functions (inpatient)</td>
<td>500 functions</td>
<td>Template</td>
<td>Local</td>
<td>Vendor</td>
</tr>
<tr>
<td>Documentation Forms (inpatient)</td>
<td>500 templates and 11,800 data elements</td>
<td>Template</td>
<td>Local</td>
<td>Vendor</td>
</tr>
<tr>
<td>Documentation Flowsheets (outpatient)</td>
<td>5 templates</td>
<td>Template</td>
<td>Local</td>
<td>Local</td>
</tr>
</tbody>
</table>

¹Collection Size: not exact numbers given constantly changing nature of most collections, with assets periodically added and retired.
²Asset Source: “Local” represents assets not available in 3rd-party knowledge sources (i.e., proprietary Partners assets); “Custom” represents assets obtained from 3rd-party knowledge sources, but subsequently curated and modified by Partners for internal use.
³Asset Editor: “Local” represents an editor (authoring tool) developed internally by Partners; “Vendor” represents editors obtained from 3rd-party vendors, including generic XML-editing tools; “N/A” represents assets implemented as source code (no editor).
Basic CKM scenario: Portal

- Web-base portal (intranet/Internet)
- **Open access** to a complete inventory of knowledge assets created and/or used (multiple types)
- Asset *metadata*, including identification, provenance, lifecycle, designations (labels and names), and classifications
- Essential *documentation* (detailed specifications)
- Enables process *transparency* and effective *collaboration* (including reuse)
CKM Portal Overview
CONCLUSIONS
CDS has to follow the patient

- Clinical systems might have very similar CDS features, but are frequently not configured the same way
 - CDS triggered in one setting may not be confirmed or re-enacted in subsequent settings
 - Care transitions associated with safety incidents
- Without continuity and consistency across settings and institutions, interventions have decreased effectiveness for disseminating evidence and reducing unwarranted variability
Knowledge Exchange is vital

- Home
 - CDS?
 - Rehabilitation Phase
 - CDS?
 - Hospital Procedure
 - CDS?
 - Shared Repository?
 - Integrated KM Programs?
 - CDS?
 - Ambulatory Visit
 - CDS?
Successful CKM Program

• Enables health care institutions to effectively utilize knowledge-driven computer systems
 – Improve care safety and quality
 – Keep pace with frequent scientific advances
 – Embrace new care delivery models
 – Promote continuous learning

• Overcome knowledge engineering and implementation challenges
Strategic Goals @ Partners

• Enable all knowledge content to be **accessible**, **updatable**, and **maintained** with an audit trail

• Reduce the **cost** and increase **efficiency** of both design and implementation maintenance

• Enable **stakeholder** involvement in the design process to support effective adoption and use

• Ensure alignment with **quality**, **safety**, and **operating** business drivers (Risk Contracts, CQI, ACO, etc.)

• Avoid potential **liability** of making incorrect or incomplete recommendations due to lack of **coverage** or **update**
Long-term strategy relies on CDS

By 2020, ninety percent of clinical decisions will be supported by accurate, timely, and up-to-date clinical information, and will reflect the best available evidence and informed personal preference.

ONC & IOM: Emphasis now on the “Electronic infrastructure for continuous learning and quality-driven health and health care programs.”
Acknowledgements

Saverio Maviglia
Margarita Sordo
Beatriz Rocha
Eileen Yoshida
Charles Lagor
Priyaranjan (Raj) Tokachichu
Christopher Vitale
Dan Bogaty

Other members of the Clinical Informatics Team at Partners
Thank you!

Roberto A. Rocha, MD, PhD
rarocha@partners.org
http://scholar.harvard.edu/rarocha

This work by Roberto A. Rocha is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License