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Math 129 0.1 Preliminaries

0.1 Preliminaries
These notes were taken during the Spring semester of 2017, in Harvard’s Math 129, Number
Fields. The course was taught by Mark Kisin, and met Monday/Wednesday/Friday from 12
to 1 pm. Allow me to elucidate the process for taking these notes: I take notes by hand during
lecture, which I transfer to LATEX at night. It is an unfortunate consequence of this method
that these notes do not capture the unique lecturing style of the professor. Indeed, I take full
responsibility for any errors in exposition or mathematics, but all credit for genuinely clever
remarks, proofs, or exposition will be due to the professor (and not to the scribe). In an
appendix at the end of this document, you will find the collected homework problems (with
solutions). I make no promises regarding the correctness of these solutions; consider yourself
warned. Please send any and all corrections to reuben_stern@college.harvard.edu.
They will be most appreciated.

0.2 Administrative Stuff
Office hours for Professor Kisin will be Mondays, 1–2 pm, in Science Center 234. Homework
will be due on Wednesdays, and posted on the course website. There will be an in-class
midterm exam on 3/8; questions on the exam will be almost directly taken from homeworks.

Kisin: “I don’t believe in exam surprises.”

The textbook for the course is “Algebraic Theory of Numbers” by Pierre Samuel, and
a good reference is “Algebraic Number Theory” by Neukirch. In the class, we will be
discussing the structure of number fields, and their applications. This includes:

• Unique factorization

• Class groups, unit groups

• Local fields, adeles

• Applications to Diophantine equations mixed in, such as

1. Fermat’s Theorem: if p ≡ 1 mod 4, then p = a2 + b2 for some a, b ∈ Z.
2. Pell’s Equation: if d ∈ Z is squarefree, then find the solutions to a2−db2 = ±1.

Reuben Stern 5 Spring 2017
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1 January 23, 2017

1.1 Characteristic Polynomials
This was the first meeting of the class. We begin by introducing the most critical definition
in the course:

Definition 1.1. A number field is a field K ⊇ Q (therefore, char K = 0) such that K is
finite-dimensional as a Q-vector space.

Lemma 1.2. If K is a number field and α ∈ K, then there exists a monic polynomial
f ∈ Q[x] such that f(α) = 0.

Easy Proof. If d = dimQK, then the elements 1, α, α2, . . . , αd must be linearly dependent.
Therefore there exist a0, a1, . . . , ad not all zero such that a0 + a1α + a2α

2 + · · ·+ adα
d = 0.

Let i be the largest integer such that ai 6= 0; we then take

f(x) = a−1
i

(
a0 + a1x+ a2x

2 + · · ·+ adx
d
)
.

This is monic, and f(α) = 0, concluding the proof.

Proof. (“A more learned proof.”1) Suppose L is any field, V a finite-dimensional L-vector
space, and consider an L-linear map ϕ : V → V . Recall2 the characteristic polynomial
Pϕ(x) ∈ L[x] of ϕ is a (the) monic polynomial of degree dimL V , such that Pϕ(ϕ) = 0 (Cayley-
Hamilton Theorem). But what exactly do we mean by evaluating the polynomial at an
operator? If Pϕ(x) = xn+an−1x

n+· · ·+a0, then Pϕ(ϕ) = ϕn+an−1ϕ
n−1+· · ·+a0 ∈ EndL(V ).

The statement is then that Pϕ(ϕ) is the zero endomorphism.
Consider now the L[x]-module given by V ⊗L L[X]. If V ∼= Ln (with a choice of basis),

then
V ⊗L L[x] ∼= L[x]n (free module with the same basis.)

Look at the map x− ϕ : V ⊗ L[x]→ V ⊗ L[x]. The map x is defined by left-multiplication
by x, i.e. (v ⊗ f) 7→ v ⊗ (xf), and the map ϕ is more precisely ϕ⊗ 1L[x].

Kisin: “If you’re a real purist, you refrain from choosing a basis.”

We now define
Pϕ(x) := det(x− ϕ|V ⊗ L[x]),

which we can define more precisely as the unique P ∈ L[x] such that x− φ is multiplication
by P , when acting on ∧n(V ⊗ L[x]).

1Quote Mark Kisin, 2017.
2Kisin (paraphrased): This is a very pretentious word that mathematicians use.
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Math 129 1.2 The Ring of Integers

Remark 1.3. Everything we just did works just as well for a free, finitely-generated module
M over an arbitrary ring R: with ϕ : M →M , we can define Pϕ(x).

Back to the lemma: we consider the map α̃ : K → K given by x 7→ αx. Then take

f(x) = det(x− α̃|K) = Pα̃(x).

Cayley-Hamilton then tells us f(α̃) = 0, so we’re basically done. We have to be a little
bit more rigorous though: in general, f(α̃) (for arbitrary f) is the multiplication by f(α)
endomorphism3, so if f(α̃) = 0, then in particular f(α) · 1 = 0, so f(α) = 0.

1.2 The Ring of Integers
Now, we come to the second most important definition in the course:

Definition 1.4. If K is a number field, the ring of integers OK ⊆ K is the set of all
α ∈ K which are the root of a monic polynomial in Z[x]. It needs to be proved that OK

actually is a ring, but for now we’ll just take it on faith.

Lemma 1.5. If α ∈ K, the following are equivalent: i) α ∈ OK , and ii) if f0(x) ∈ Q[x]
is the minimal polynomial of α, then f0(x) ∈ Z[x].

Proof. Recall that f0(x) ∈ Q[x] is the monic polynomial of least degree such that f0(α) = 0.
Moreover, if f(x) ∈ Q[x] and f(α) = 0, then f0 divides f .

ii) ⇒ i) is obvious from the definition — if f0(x) is in Z[x], then there is a monic
polynomial in Z[x] which vanishes at α; just take f0(x).

i) ⇒ ii) Suppose f ∈ Z[x] and f(α) = 0. Then f = f0 · g, with g ∈ Q[x]. It is a
consequence of Gauss’ Lemma (which we will prove on the first homework, see Appendix
A) that if f ∈ Z[x] factors as f0 · g where f0, g ∈ Z[x], then both f0 and g are in Z[x] too.
With this fact, we are done.

Example 1.6. As a good (and standard) second example of a number field — after Q,
of course — let’s take K = Q[

√
2]. As an abstract vector space, this is the quotient

Q[x]/(x2 − 2). A basis for K is the set {1,
√

2}, so every α ∈ K can be written
α = a+ b

√
2, for a, b ∈ Q. What is the ring of integers OK? The minimal polynomial

for α = a+ b
√

2 is

f(x) = (x− (a+ b
√

2))(x− (a− b
√

2)) = x2 − (2a)x+ (a2 − 2b2).

Therefore α ∈ OK if and only if 2a, a2− 2b2 ∈ Z. Thus a ∈ 1
2Z, which implies 2b2 ∈ 1

4Z,
i.e., b2 ∈ 1

8Z. But if b
2 is a multiple of 1/8, then b must be a multiple of 1/2, so b2 ∈ 1

4Z.

3Exercise: check this!
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Math 129 1.2 The Ring of Integers

This implies a2 ∈ 1
2Z, which gives a ∈ Z; then we also get b ∈ Z. Thus

OK = Z[
√

2].

Note that this isn’t always the case! If we take K = Q[
√

5], we see that OK is strictly
larger than Z[

√
5].

Reuben Stern 8 Spring 2017
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2 January 25, 2017
We began the class with Kisin working through the example from last time again, and once
again presenting the example that for K = Q(

√
5),

Z[
√

5] ⊂ OK = Z
[

1 +
√

5
2

]
.

Now let’s work out this theory in more generality, i.e., for an arbitrary quadratic
extension.

2.1 Quadratic Extensions
Definition 2.1. A quadratic extension ofQ is a number fieldK/Q such that dimQK = 2.
A few properties are immediate from this definition: first, if α ∈ K and α 6∈ Q, then
Q(α) ⊆ K and Q ( Q(α). By a dimensional argument, it follows that Q(α) = K. Second,
if f(x) = det(x− α|K) = x2 + ax + b with a, b ∈ Q and f(α) = 0, then by the quadratic
formula, we get

K = Q(
√
d), d ∈ Q.

Multiplying d by the square of an integer, we may as well assume that d ∈ Z, and that d is
squarefree.

We move on now to computing OK . It is immediate that Z[
√
d] ⊆ OK . If we write

α = a+ b
√
d, a, b ∈ Q, when is α ∈ OK?

The characteristic polynomial of α is given by

f0(x) = (x− α)(x− α) = x2 − 2ax+ (a2 − db2).

It follows that α ∈ OK if and only if 2a, a2− b2d ∈ Z. Write a = A/2 for some A ∈ Z; then
4(a2 − b2d) = A2 − 4b2d ∈ 4Z. We have a few cases:

(i) If A is odd, then A2 ≡ 1 mod 4, which implies 4b2d is an integer ≡ 1 mod 4. This
implies that 4b2 = (2b)2 ∈ 1

d
Z. Because d is squarefree, we get 2b ∈ Z. But 4b2d ≡ 1

mod 4 means b = B/2, but b 6∈ Z. Also, d ≡ 1 mod 4.

(ii) If d ∼= 3 mod 4, then by contrapositive to (i), A is even. Thus a ∈ Z and b2d ∈ Z, so
b2 ∈ 1

d
Z and b ∈ Z. This means that OK = Z[

√
d].

(iii) If d ∼= 1 mod 4, and α 6∈ Z + Z ·
√
d, then α = a+ b

√
d = A

2 + B
2

√
d, both A and B

odd. This is equal to

1 +
√
d

2 + (A− 1)
2 + (B − 1)

2
√
d.

But we note that the latter two terms are in Z[
√
d], so OK = Z

[
1+
√
d

2

]
.
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Math 129 2.2 The Ring of Integers is a Ring

2.2 The Ring of Integers is a Ring
The ultimate goal of this section is to prove the lemma

Lemma 2.2. If K is any number field, OK ⊆ K is a subring.

Definition 2.3. Suppose A ⊆ R are commutative rings with unity. An element α ∈ R
is said to be integral over A if there exists a monic polynomial f(x) ∈ A[x] such that
f(α) = 0. The ring R is called integral over A if all α ∈ R are integral over A.

To prove the lemma, we will prove a stronger result:

Proposition 2.4. If A′ = {α ∈ R : α is integral over A}, then A′ is a subring of R
(called the integral closure).

We will assemble a few technical lemmas along the way to the proof of the proposition.

Lemma 2.5. Let A be a ring and M be a finitely generated A-module, and let α :
M →M be an A-linear map. Then there exists a monic polynomial f(x) ∈ A[x] such
that f(α) = 0.

Proof. Assume M is free. Then the theory of last time comes into play: we can take
f(x) = det(x− α|M), and apply Cayley-Hamilton. In general, a finitely-generated module
is the quotient of a free module, so we have a surjection An → M . Then lift α to a map
α′ : An → An such that the diagram

An M

An M

α′ α

commutes. We then choose some f(x) such that f(α′) = 0, which gives f(α) = 0.

Lemma 2.6. If A ⊆ R and α ∈ R, the following are equivalent:

(i) f(α) = 0 for some monic polynomial f(x) ∈ A[x].

(ii) A[α] ⊆ R is a finitely-generated A-module.

(iii) A[α] is contained in some finitely-generated A-module.

Reuben Stern 10 Spring 2017



Math 129 2.2 The Ring of Integers is a Ring

Proof. (i) ⇒ ii)) If α satisfies f(α) = 0, then the map A[x]/f(x) A[α] sending x 7→ α

is surjective, and A[x]/f(x) is already finitely generated.
(ii) ⇒ iii)) Obvious.
(iii) ⇒ i)) We use the previous lemma: if A[α] ⊆ M is finitely generated, apply the

lemma to the map α̃ given by m 7→ α ·m. Then there exists a monic f(x) ∈ A[x] such that
f(α̃) = 0, which implies (in the same way as last class) f(α) = 0.

Proof of Proposition. Recall the notation A′ = {α ∈ R : α is integral over A}. If α, β ∈ A′,
we want to show that α + β, α · β ∈ A′ as well. We will show something more general:
consider the ring A[α, β]. This is a finitely generated A[α]-module, because if {a1, . . . , an}
are A-module generators of A[β], they are also a set of A[α]-module generators of A[α, β].

Symmetrically, if {b1, . . . , bm} is a set of A-module generators for A[α], then they are
A[β]-module generators of A[α, β]. Thus, the set {ai, bj}i,j is a set of A-module generators
for A[α, β], and A[α, β] is a finitely-generated A-module. If γ ∈ A[α, β], A[γ] ⊆ A[α, β], so
the lemma gives us that γ is integral over A. In particular, A[α, β] is closed under sums
and products.

Reuben Stern 11 Spring 2017
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3 January 27, 2017
The ultimate goal of this lecture is to show that if K is a number field, OK is finitely
generated over Z.

3.1 More on Integrality
The proof techniques of last time give us the following corollary:

Corollary 3.1. If A ⊆ B ⊆ C are rings and subrings, with B integral over A and C
integral over B, then C is integral over A.

Proof. If α ∈ C, let f(x) ∈ B[x] be monic with f(α) = 0. If we write

f(x) = xn + an−1x
n−1 + · · ·+ a0,

then α is integral over B1 = A[a0, . . . , an−1]. It follows that B1[α] is finitely generated over
B1, and B1 is obtained by adjoining coefficients in B. We get that B1 is finitely generated
over A, so B1[α] is finitely generated over A. Thus α is integral over A.

In our quest to show that OK is finitely generated over Z, we will in fact show that
OK
∼= Zn, where n = [K : Q].

3.2 The Norm and Trace Functions
Definition 3.2. Suppose B ⊇ A are rings, and B is a finitely generated, free A-module
(that is, B ∼= An). If α ∈ B, we can look at the map α̃ : B → B, x 7→ α · x. We then define
the trace of α as

TrB/A(α) := tr(α̃|B) ∈ A,

and the norm of α as
NB/A := det(α̃|B) ∈ A.

Recall that tr(α̃|B) is −1 times the first coefficient of det(x− α̃|B).

Remark 3.3. If L/K is a finite field extension, then this definition applies. If furthermore
L/K is Galois, then

NL/K(α) =
∏

σ∈Gal(L/K)
σ(α) and

TrL/K(α) =
∑

σ∈Gal(L/K)
σ(α).

We will prove these later.
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Math 129 3.3 The Trace Pairing

Lemma 3.4. If α ∈ OK, then det(x− α̃|K) ∈ Z[x].

Proof. If K = Q[α], then this determinant is the minimal polynomial of α. To see this, we
see that there is a map

Q[x]/f0(x) Q(α)

which is surjective. But because f0(x) is minimal, the quotient is a field. Thus the Clarify
this part
of the
proof

Clarify
this part
of the
proofmap is injective as well. It follows that deg f0(x) = [Q(α) : Q] = deg(det(x − α̃|K)), so

f0(x) = det(x− α̃|K).
For the general case, α̃ : K → K restricts to α̃ : Q(α) → Q(α). We can identify

K ∼= Q(α)s, such that α̃ acts component-wise. The matrix of α̃ is block diagonal with all
blocks given by the matrix of α̃ : Q(α)→ Q(α).

This implies that det(x− α̃|K) = f0(x)[K:Q(α)] ∈ Z[x].

Kisin: “Sorry about the bases... usually if someone chooses a basis, they’ve taken
a wrong turn.”

This lemma implies that if α ∈ OK , then TrK/Q(α) ∈ Z.

3.3 The Trace Pairing
Definition 3.5. The trace pairing is the pairing of Q-vector spaces defined by

K ×K → Q, (x, y) 7→ 〈x, y〉 := TrK/Q(xy).

This is evidently bilinear, and gives a map

K HomQ(K,Q) = K∗

α (x 7→ TrK/Q(αx)) =: ϕα.

The map α 7→ ϕα is injective: indeed, if α 6= 0, it is immediate that ϕα(α−1) = TrK/Q(1) =
[K : Q] 6= 0. This crucially uses the fact that we’re in characteristic zero; we will see an
example at the end of lecture where, in characteristic p, we have a nonzero α where ϕα is
the zero map.

Definition 3.6. For any additive subgroup L ⊆ K, we define the dual subgroup L∨ of
L by

L∨ := {α ∈ K : TrK/Q(α · x) ∈ Z,∀x ∈ L}.
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If e1, . . . , en is a Q-basis for K, and L = Z〈e1, . . . , en〉, we define e∨i ∈ K as follows: the
trace pairing gives an isomorphism K

'−−→ K∗; let e∨i be such that e∨i (ej) = δij, where we
consider e∨i as its image under the isomorphism. This is obviously another Q-basis for K.

For any β ∈ K, write β = ∑
ai · e∨i . Then

〈β, ej〉 = aj.

Thus L∨ = Z〈e∨1 , . . . , e∨n〉.

Proposition 3.7. We have an isomorphism OK
∼= Zn, where n = [K : Q].

Proof. Take a Q-basis for K e1, . . . , en, where each ei ∈ OK . How do we know that this is
possible? If α ∈ K, write the minimial polynomial for α as f0(x) = xn+an−1x

n−1 + · · ·+a0,
with the ai ∈ Q. Note that if m ∈ Z, m · α has minimal polynomial

(mx)n +m · an−1(mx)n−1 + · · ·+mn · a0.

If we take m = lcm(a1, . . . , an), then mα ∈ OK , and things work.
Let L = Z〈e1, . . . , en〉 ⊆ OK . Recall that TrK/Q(OK) ⊆ Z, or equivalently

〈·, ·〉 : OK ×OK −−−→ Z.

This implies that OK ⊆ O∨K , so L ⊆ OV
K . By the inclusion reversal of the ∨ operation, we

have the inclusion O∨K ⊆ L∨. This finishes the proof, because OK is sandwiched between
two free abelian groups of rank n. Thus OK

∼= Zn.

Example 3.8. We look at some of our examples of quadratic extensions (or rather the
one general example), and show that they agree with this proposition. If K = Q(

√
d)

where d ∈ Z is squarefree, then

OK = Z[
√
d] ∼= Z2, d ≡ 3 mod 4

OK = Z
[

1 +
√
d

2

]
∼= Z2, d ≡ 1 mod 4

Remark 3.9. Let Fp be the field with p elements, p a prime. With the inclusion Fp[x] ⊆
Fp(x), we can introduce “p-th roots of x” and take Fp[x1/p] ⊆ Fp(x1/p). This is an example
of a “ring of integers” in characteristic p.

In this way, we can look at the trace pairing on Fp(x1/p):
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Example 3.10. (Trace pairing is zero.) The field extension Fp(x1/p) ⊇ Fp(x) is a degree
p extension with basis 1, x1/p, . . . , x(p−1)/p. It is clear that xi/p acts by xj/p 7→ x(i+j)/p.

Thus if i = 1, . . . , p − 1, this is a nontrivial cyclic permutation, so the matrix
representing it has zeros on the diagonal (zero trace). Because we are working in
characteristic p, tr(1) = p = 0. Thus the trace pairing itself is zero.
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4.1 The Discriminant
Recall from last time: if K is a number field and OK is its ring of integers, then OK

∼= Zn,
where n = [K : Q]. In general, Ok does not equal its dual module O∨K , unless K = Q. We
can then ask:

Question 4.1. What is |O∨K/OK |? This is called the discriminant of K, and it comes
up in various calculations.

Lemma 4.2. Let α1, . . . , αn be a Z-basis for OK. Then

det TrK/Q(αiαj) = [O∨K : OK ] =
∣∣∣∣∣O∨KOK

∣∣∣∣∣ ,
where the trace is taken element-wise in the matrix (αiαj).

Before we prove this lemma (which will take the entire lecture), let’s give an example.

Example 4.3. Let K be a quadratic extension, that is, K = Q(
√
d) for some squarefree

d ∈ Z. We have two cases to deal with: if d ≡ 3 (4), then OK = Z[
√
d]; and if d ≡ 1 (4),

then OK =
[

1+
√
d

2

]
. In the first case, we have a Z-basis for OK given by {1,

√
d}, so we

want to compute

det
(

TrK/Q
(

1
√
d√

d d

))
.

Remember that TrK/Q(α) = tr(α : K → K). Also, TrK/Q(
√
d) = 0, so

|O∨K/OK | = det
(

2 0
0 2d

)
= 4d

In the other case, we want to compute

det
TrK/Q

 1 1+
√
d

2
1+
√
d

2
1+2
√
d+d

2

 ,
which equals

det
(

2 1
1 1+d

2

)
= 1 + d− 1 = d.
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We now return to the proof of the lemma: Suppose α1, . . . , αn, β1, . . . , βn ∈ K (where
n = [K : Q]). Write

α =


α1
...

αn

 , β =


β1
...

βn

 .
Then TrK/Q(αiβj) = TrK/Q(α · βt). Now for a technical lemma:

Lemma 4.4. If M ∈Mn(Q), and α′ = M · α, then

det
(
TrK/Q(α′ · βt

)
= detM · det TrK/Q(α · βt).

Proof. We know det(TrK/Q(α′ · βt)) = det(TrK/Q(M · α · βt)). Because trace is Q-linear, we
get that this is equal to

det(M · TrK/Q(α · βt)) = det(M) · det(TrK/Q(α · βt)).

Corollary 4.5. Suppose α, β are Q-bases for K. Then up to sign, det(TrK/Q(α · βt))
depends only on ∑i Z · αi and

∑
j Z · βj.

Proof. Suppose α′ = (α′1, . . . , α′n)t is another basis with Z〈α′〉 = Z〈α〉. We have a matrixM
such that α′ = M ·α. We know thatM ∈ GLn(Z), andM−1 ∈ GLn(Z), soM ∈ SLn(Z).

Corollary 4.6. det(TrK/Q(αiαj)) depends only on ∑Z · αi.

Proof. Previous proof shows α 7→ α′ changes det Tr(−) by det(M)2 = (±1)2 = 1.

Lemma 4.7. With the same notation, let α = (α1, . . . , αn)t be a Q-basis K, α′ = M ·α
for some M ∈Mn(Z), det(M) 6= 0. Let

L =
∑

Z · αi, L′ =
∑

Z · α′i.

Then [L : L′] = ± det(M).

Proof. (first) Truth of the lemma depends only on L,L′, not on α and α′, as changing α
and α′ while keeping L and L′ fixed changes M by multiplication by GLn(Z) (which have
determinant ±1). For a more “enlightened” proof, let us record the following fact:

Reuben Stern 17 Spring 2017



Math 129 4.1 The Discriminant

Lemma 4.8. There exists a Z-basis e1, . . . , en of L such that L = ∑Zfiei, fi ∈ Z.

Proof. In Samuel. The idea is that L/L′ is a finitely-generated abelian group, and L/L′ =∏(Z/ni).

With this fact, we can take M =


f1

. . .

fn

, so det(M) = ∏
fi = |L/L′|.

(second) We have L′ ⊆ L by assumption. Write V = L⊗ R = R · α1 + · · ·+ R · αn =
R ·α′1 + · · ·+R ·α′n, so L′ ⊆ L ⊆ V . We’re going to discuss volumes. Take, for concreteness,
a volume form on V = L⊗ R. We have the composition

L/L′ V/L′ V/L,

which gives Vol(V/L′) = |L/L′|Vol(V/L). Remember thatM is by definition α′ = M ·α. As
a linear map V → V , M induces an isomorphism M : L '−→ L′, so we get an isomorphism

M : V/L '−−→ V/L′.

To the volume form, this tells us

Vol(V/L′) = | det(M)|Vol(V/L),

so [L : L′] = ± detM.

Proof of Lemma 4.2. Take α∨1 , . . . , α∨n the dual basis; write α = M ·α∨. Then det(TrK/Q(α ·
αt)) = det(TrK/Q(M · α∨ · αt))

= det(M) · det(TrK/Q(α∨ · αt)) = ±[O∨K : OK ].
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This lecture will be guided by the following proposition:

Proposition 5.1. Let K,L be linearly disjoint number fields; write DK = disc(K) and
DL = disc(L). Then

OK ·OL ⊆ OK·L ⊆
1

gcd(DK , DL)OK ·OL.

In particular, if gcd(DK , DL) = 1, then OK ·OL = OK·L.

5.1 Linear Disjointness
Let us first clarify what is meant by linear disjointness:

Definition 5.2. We say that two extensions K/Q and L/Q are linearly disjoint if
[K · L : Q] = [K : Q] · [L : Q], which is the same as saying the natural map

K ⊗Q L K · L,'

where dimQ(K ⊗Q L) = dimQK · dimQ L. Equivalently, K ⊗Q L is a field.

Example 5.3. Suppose that K and L are quadratic fields, and K 6= L. We have the
following field diagram:

K · L

K L

Q

2 2

4

2 2

From this, we see that K and L are linearly disjoint (4 = 2 · 2).

Example 5.4. The above allows us to compute the ring of integers of a biquadratic
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field, as the next lemma will make precise:

OQ(
√

5,
√

7) = Z
[

1 +
√

5
2 ,

√
7
]
.

Lemma 5.5. Suppose L ⊇ K are number fields. Then

OL ∩K = OK .

Proof. Simply note that an integral element in K is integral in L, and that any integral
element in L ∩K is integral in K.

Lemma 5.6. Let α ∈ OL, and let P0,K be the minimal polynomial of α over K. Then
P0,K ∈ OK [x].

Proof. (Kisin stares at board in silence.) Consider P0,Q, the minimum polynomial of α over
Q. This lives in Z[x]. Then P0,K divides P0,Q in K[x]. Now choose an extension L′ ⊇ L

such that P0,Q factors completely over L′ :

P0,Q = (x− α1) · · · (x− αn),

and αi ∈ OL′ for all i. Thus P0,K ∈ OL′ [x] ∩K[x] = OK [x].

Corollary 5.7. TrL/K(OL) ⊆ OK. In fact, if α ∈ OL, then Pα(x) ∈ OK [x].

Proof. Consider L as a K(α)-vector space. In the case K(α) = L, the previous lemma
handles it for us. Suppose then that we have an identification L ∼= K(α)n. Then the map
α̃ : L→ L, x 7→ αx, is given by a block diagonal matrix where all blocks are of the form
α̃ : K(α)→ K(α). Thus,

Pα(x) = P0,K(α)[L:K(α)].

Corollary 5.8. If f = gh are monic polynomials in OK [x], then g, h ∈ OK [x].

Proof. Choose K ′ ⊇ K such that f factors completely over K ′. Any zero of f is in OK′ ,
and so for g and h. Thus g, h ∈ OK′ [x] ∩K[x] = OK [x].
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5.2 Some Trace Stuff, Some Galois Stuff

Lemma 5.9. Let K be a fixed algebraic closure of K. If α ∈ L, then

TrL/K(α) =
∑

σ:L↪−→K

σ(α).

That is to say, taking the trace is the same as taking the sum of Galois conjugates.

Proof. Suppose L = K(α). The minimal polynomial P0,K(α) of alpha factorizes over K as

P0,K(α) = det(x− α̃|L) = (x− α1) · · · (x− αn), αi ∈ K.

Thus TrL/K(α) = α1 + α2 + · · ·+ αn. What are the embeddings L ↪−→ K? In the case that
L = K(α), we have L = K[x]/(P0,K), so

Definition 5.10. For any extension of number fields K ′/K and OK-submodule L ⊆ K ′,
we define

L∨k = {α ∈ K ′ : TrK′/K(α · β) ∈ OK ∀ β ∈ L}.

The claim, which we will prove next time, is that if K and L are linearly disjoint number
fields,

(OK ⊗OL)∨K = OK ⊗O∨L = OK ·O∨L.
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6.1 Finishing the Proposition of Last Time

Kisin: “We could just have class in my office at this point.”

Remark 6.1. If α1, . . . , αn is a Z-basis for OK , then

det Tr(αiαj) = ±[O∨K : OK ].

The point is that the determinant carries the sign, while the order of O∨K/OK doesn’t.

Recall the proposition from last time:

Proposition 6.2. If L and K are linearly disjoint number fields, then

OK·L ⊆
1

gcd(DK , DL)OK ·OL.

In particular, there is equality if DK and DL are coprime.

If L ⊆ K ⊆ K ′, and L is an OK submodule, recall the definition from last time:

L ∨K = {α ∈ K ′ : TrK′/K(α · β) ∈ OK ∀ β ∈ L }.

The claim, which we will prove, is the following:

Lemma 6.3. (OK ⊗OL)∨K = OK ⊗O∨L ⊆ L⊗K = L ·K.

Proof. Note that if α ∈ L, then detK(x− α|K·L) = detQ(x− α|L), since a Q-basis for L is
a K basis for K · L. This implies that TrK·L/K(α) = TrL/Q(α).

Choose e1, . . . , es a Z-basis for OK ; thus

OK ⊗OL =
⊕
i

eiOL.

So for any α ∈ K · L, we can write

α = e1α1 + · · ·+ esαs, αi ∈ OL.
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For any β ∈ L, K-linearity of the trace gives

TrK·L/K(α · β) =
∑
i

ei TrK · L/K(αi · β)

=
∑
i

ei TrL/Q(αi · β).

Suppose β ∈ OL. Then

TrK·L/K(α · β) ∈ OK ⇐⇒ TrL/Q(αi · β) ∈ Z,∀ i.

Recall that we are tasked with trying to understand when TrK·L/K(α · β) ∈ OK for all
β ∈ OK ⊗OL. This holds if and only if

TrK · L/K(α · β) ∈ OK ∀ β ∈ OL,

which is equivalent to saying

TrK·L/K(αi · β) ∈ Z⇐⇒ αi ∈ O∨L ∀ i
⇐⇒ α ∈ O∨L ⊗OK

6.2 Cyclotomic Extensions
Definition 6.4. A cyclotomic field is a number field K = Q(ζn), where ζn is a primitive
n-th root of unity.

Consider the case of ζp, where p is prime. This satisfies ζpp − 1 = 0. What is the degree
of this extension?

Let f(x) = xp−1
x−1 . It is clear that f(ζp) = 0, because ζp 6= 1.

Lemma 6.5. f(x) as defined is irreducible over Q.

To prove this, we will make use of the following sublemma:

Lemma 6.6. Suppose f(x) ∈ Z[x] is monic. If f(x) = xn + an−1x
n−1 + · · ·+ a0, where

p|ai, p2 6 |a0 for some prime p, then f(x) is irreducible.

Proof. Suppose f(x) = g(x)h(x), where g, h ∈ Q[x] are monic. Then by Gauss’s lemma,
g, h ∈ Z[x]. We now pass to the quotient, Z[x] 7→ Z/p[x] via b 7→ b. From this,

f(x) = xn = gh,
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so g(x) = xi and h(x) = xj for some i + j = n. Because p2 does not divide a0, h(0) and
g(0) are not both zero. Thus either i or j are zero.

Back to the Lemma. It can be shown easily that f(x) = xp−1 + xp−2 + · · ·+ 1. The trick
here is to make the substitution x 7→ x+ 1. It is clear that f(x) is irreducible if and only if
f(x+ 1) is. We have then

g(x) = f(x+ 1) = (x+ 1)p − 1
x

= xp−1 +
(

p

p− 1

)
xp−2 + · · ·+

(
p

1

)
.

Since
(
p
n

)
is divisible by p for all n, and

(
p
1

)
= p, the conditions of Eisenstein’s criterion

(Lemma 6.6) hold.

Corollary 6.7. [Q(ζp) : Q] = p− 1 and Gal(Q(ζp)/Q) ∼= (Z/p)×.

Proof. The first part follows directly from Q(ζp) ∼= Q[x]/f(x). For the second, consider
the map ζp 7→ ζ ip, where i = 1, 2, . . . , p − 1. This map gives rise to an automorphism
Q(ζp) −→ Q(ζp). We thus get a map

(Z/p)× ∼−−−−→ Gal(Q(ζp)/Q)

which can be seen immediately to be a homomorphism.

Next class, we will look at the following:

Proposition 6.8. OQ(ζp) = Z[ζp].

Question 6.9. Corresponding to the inclusion Q ⊆ Q(ζp), we have the field diagram

Q(ζp)

Q.

p−1

If p 6= 2, then p− 1 is even. Recall that there is an isomorphism (Z/p)× ∼= Z/(p− 1), so
Gal(Q(ζp)/Q) is cyclic of even order. There is thus a unique map

ϕ : Z/(p− 1) −→ Z/2,

with kernel 2Z/(p− 1) =: H. By Galois theory, we know that the fixed field Q(ζp)H is a
degree 2 (i.e., quadratic) extension. What is this extension?
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7.1 More on Cyclotomic Extensions
Recall from last time: let K = Q(ζp). We showed that Gal(K/Q) ∼= (Z/p)× ∼= Z/(p− 1).
As Kisin mentioned at the end of last class, we will prove the following proposition:

Proposition 7.1. OQ(ζp) = Z[ζp].

To begin the proof, let f(x) = xp−1 + xp−2 + · · ·+ 1. For some fixed algebraic closure K
of K, we can factor f(x) as

f(x) =
∏

σ:Q↪−→K

(X − σ(ζp)) =
p−1∏
i=1

(x− ζ ip).

Note that TrK/Q(ζp) = −1, and TrK/Q(ζ ip) = −1 for all i = 1, . . . , p− 1. This implies that

TrK/Q(1− ζ ip) = (p− 1) + 1 = p,

because TrK/Q(1) = p − 1. Using the expression of the norm as the product of Galois
conjugates, we also have

NK/Q(1− ζ ip) =
p−1∏
i=1

(1− ζ ip) = f(1) = p.

Lemma 7.2. OK · (1− ζp) ∩ Z = p · Z.

Proof. Note that p = f(1) ∈ OK · (1− ζp), so p · Z ⊆ OK · (1− ζp) ∩ Z. If the containment
is strict, then OK · (1− ζp) ∩ Z = Z, because there is no proper ideal of Z containing p · Z
other than the entire ring. Thus, 1− ζp ∈ O×K . By Galois conjugation, 1− ζ ip ∈ O×K for all
i = 1, . . . , p− 1 as well, so f(1) ∈ O×K , which implies p−1 ∈ O×K . But this is a contradiction,
as the minimum polynomial for p−1 in OK is x− p−1, so p−1 6∈ OK .

Corollary 7.3. If y ∈ OK, then TrK/Q(y · (1− ζp)) ∈ p · Z.

Proof.

TrK/Q(y · (1− ζp)) =
∑

σ:Q↪−→K

σ(y)(1− σ(ζp)) ∈ OK · (1− ζp) ∩ ζ = p · Z by lemma.
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Back to Proposition. Suppose x = a0 + a1ζp + · · · + ap−2ζ
p−2
p ∈ OK , ai ∈ Q4. Multiply x

by (1− ζp):

x(1− ζp) = a0(1− ζp) + a1(1− ζp)ζp + · · ·+ ap−2(1− ζp)ζp−2
p ,

and take the trace: since (1− ζp)ζp = ζp − ζ2
p (and in general, (1− ζ ip)ζp = ζp − ζ i+1

p ), those
terms go to zero under the trace, so

TrK/Q(x(1− ζp)) = p · a0,

and a0 ∈ Z by the lemma.
For the other coefficients, multiply by ζ−1

p :

ζ−1
p x = a1 + a2ζp + · · ·+ ap−2ζ

p−3
p + a0ζ

−1
p .

Since we know a0ζ
−1
p ∈ OK , we can subtract it off, and apply the argument again to see

a1 ∈ Z; by induction, we see that a0, . . . , ap−2 ∈ Z.

7.2 Quadratic Subfields of Cyclotomic Extensions
We return now to our question from last time: recall that by Galois theory, the fixed field
of the group of automorphisms corresponding to 2Z/(p− 1) is a quadratic subextension of
Q(ζp).

Question 7.4. What is this subfield really?

To answer this, we need two propositions. We state them now, and will give complete
proofs next time.

Proposition 7.5. Let L = Q(ζp). Then the discriminant disc(L) is

disc(L) = (−1)
(p−1)(p−2)

2 · pp−2

Proposition 7.6. If Q ⊆ K ⊆ L are number fields, then

disc(K) | disc(L).

Assuming the propositions, we may answer our question. Let K ⊆ L = Q(ζp) be
the quadratic subfield; we know K = Q(

√
d) for d a squarefree integer. We also know

disc(K) = d if d ≡ 1 (4), or 4d if d 6≡ 1 (4). By the proposition (and that d is squarefree),

d|pp−2 =⇒ d|p =⇒ d = ±p.
4Because {1, ζp, . . . , ζ

p−2
p } forms a Q-basis for OK
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So

d =
p p ≡ 1 (4)
−p p ≡ 3 (4)

.

But of course this hinges on the propositions.
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Recall the two propositions from last time, that we used in computing the quadratic subfield
of a cylotomic extension:

Proposition 8.1. If p is an odd prime,

disc(Q(ζp)) = (−1)
(p−1)(p−2)

2 pp−2

Proposition 8.2. If Q ⊆ K ⊆ L are number fields, then

dK |dL.

8.1 Discriminants of Subfields
Proof of Proposition 8.2. We claim that O∨K ⊆ O∨L. If α ∈ O∨K , then TrK/Q(α · β) ∈ Z for
all β ∈ OK . We must check that if β ∈ OL,

TrL/Q(α · β) ∈ Z.

By transitivity of the trace, TrL/Q = TrK/Q ◦TrL/K . Thus

TrL/Q(α · β) = TrK/Q(TrL/K(α · β))
= TrK/Q(α · TrL/K(β)).

Since TrL/K(β) ∈ OK by definition, we get TrK/Q(α · TrL/K(β)) ∈ Z because α ∈ O∨K .
By the inclusion K ↪−→ L, we get an inclusion O∨K ↪−→ O∨L, which (because OK ⊂ OL)

gives a map
O∨K/OK O∨L/OL.

Because OL ∩ K = OK , this map is an injection, exhibiting O∨K/OK as a subgroup of
O∨L/OL.

Aside 8.3. We saw the following diagram in class:

O∨K O∨L

O∨K/OK O∨L/OL
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By Lagrange’s theorem from group theory, we get that

|dK | =
∣∣∣∣∣O∨KOK

∣∣∣∣∣ divides
∣∣∣∣∣O∨LOL

∣∣∣∣∣ = |dL|.

8.2 Discriminant of Cyclotomic Extensions
Let’s fix some notation: let L/K be a finite extension of fields, and α = (α1, . . . , αn)t a
K-basis for L, expressed as a column vector. Also let

D(α) := det(TrL/K(α · αt)) ∈ K.

If M ∈Mn(K), let β = M · α. Then

D(β) = (detM)2D(α),

which we’ve proved before.

Lemma 8.4. Suppose charK = 0, and let K be a fixed algebraic closure of K. Let

σ1, . . . , σn : L ↪−−−→ K

be the n = [L : K] distinct embeddingsa L ↪−→ K. Then

D(α) = det(σk(αi))2.

aThese come from the fact that the extension L/K is separable.

Proof. The proof is a chain of computations:

D(α) = det(TrL/K(αi · αj))

= det
(∑
σk

σk(αi · αj)
)

= det
(∑
σk

σk(αi) · σk(αj)
)

= det
(
(σk(αi))k,i · (σk(αj))tk,j

)
= det((σk(αi))) · det((σk(αj))t)
= det((σk(αi)))2.

The fourth equality comes from factoring the sum into the product of two matrices (one
can work this out by calculation).
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Corollary 8.5. Suppose L = K(α), where α has minimum polynomial f(x) of degree
n. Then

D(1, α, α2, . . . , αn−1) = (−1)
n(n−1)

2 NL/K(f ′(α)).

Proof. By the Lemma, D(1, α, . . . , αn−1) = det(σk(αj))2. This is just equal to

det(αji )2,

where α1, . . . , αn ∈ K are the roots of f(x). So, we must compute

det


1 α1 α2

1 · · · αn−1
1

...

1 αn α2
n · · · αn−1

n


2

.

This is called a Vandermonde determinant, and there is a nice general form for com-
puting it:

det(αji )2 =
∏
i<j

(αi − αj)
2

= (−1)
n(n−1)

2
∏
i 6=j

(αi − αj).

If we fix i, we claim
= (−1)c ·

∏
j

f ′(αj). (8.1)

We know that f(x) = (x− α1) · · · (x− αn), so

f ′(x) =
∑
i

(x− α1) · · · ̂(x− αi) · · · (x− αn),

where the hat means to omit that factor from the product. Thus

f ′(αi) =
∏
i 6=j

(αi − αj).

So Eq. (8.1) is

= (−1)c ·
∏
k

f ′(σk(α))

= (−1)c ·
∏
k

σk(f ′(α))

= (−1)c ·NL/K(f ′(α)),
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where c = n(n−1)
2 , proving the proposition.

Finally, Proof of Proposition 8.1. If L = Q(ζp), K = Q, we know OL = Z[ζp], which has a
Z-basis 1, ζp, . . . , ζp−2

p . Recall that the cyclotomic polynomial f(x) is

f(x) = xp − 1
x− 1 .

By the Lemma,
dL = (−1)

(p−2)(p−1)
2 NL/Q(f ′(ζp)).

Writing
(x− 1)f(x) = xp − 1

and differentiating both sides, we see

f ′(ζp) =
pζp−1
p

ζp − 1 .

Thus
NL/Q(f ′(ζp)) = NL/Q

(
pζp−1
p

ζp − 1

)
.

Because the norm is multiplicative,

NL/Q(f ′(ζp)) = pp−1 NL/Q(ζp−1
p )

NL/Q(ζp − 1)

= pp−1

NL/Q(ζp − 1) = pp−2.
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Recall that last time, we found d such that Q(

√
d) ⊆ Q(ζp):

d =
p p ≡ 1(4)
−p p ≡ 3(4)

.

Today, we wish to find this in a more “organic” way, using a fair bit more theory.

9.1 The Legendre Symbol
Definition 9.1. Let us define the Legendre Symbol

(
−
p

)
by the composition

(
−
p

)
: Gal(Q(ζp)/Q) (Z/pZ)× {±1},'

where the last map is thought of as the canonical map Z/(p− 1)Z→ Z/2Z.

Our task now is to write expicitly
√
d ∈ Q(ζp). If g ∈ Gal(Q(ζp)/Q), we see that

g(
√
d) =


√
d g ∈ ker

(
−
p

)
−
√
d g 6∈ ker

(
−
p

) .
That is to say,

g(
√
d) =

(g
p

)√
d.

For notational concision, write G to refer to Gal(Q(ζp)/Q). Let us now define an element
h ∈ Q(ζp) by

h =
∑
σ∈G

(σ
p

)
· σ(ζp).

Note that if τ ∈ G,

τ(h) =
∑
σ∈G

(σ
p

)
τσ(ζp) =

(∑
σ∈G

(σ
p

)(τ
p

)
τσ(ζp)

)(τ
p

)
−1.

As the Legendre symbol is a homomorphism, and for fixed τ , στ runs over all elements of
G, this just gives

τ(h) = h
(τ
p

)
−1 = h

(τ
p

)
,

as the Legendre symbol of τ is its own inverse. This already implies that Q(h) ⊆ Q(ζp) is a
quadratic subfield.
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9.2 More on the Quadratic Subfield of a Cyclotomic Field
As a further calculation, we compute h2.

Kisin: “This is kind of a cool computation.”

Via the isomorphism G ∼= (Z/pZ)×, we have

h2 =
∑

a,b∈(Z/pZ)×

(
a
p

)(
b
p

)
ζap · ζbp.

We can change variables to rewrite this as

h2 =
∑

a,t∈(Z/pZ)×

(
a
p

)(
ta
p

)
ζap · ζtap

Because the Legendre symbol is a homomorphism, this is∑
a,t

(
a
p

)
2
(
t
p

)
ζa(1+t)
p =

∑
t

(
t
p

)∑
a

ζa(1+t)
p .

If t 6= −1 in (Z/pZ)×, then∑
a

ζa(1+t)
p =

∑
a

ζap = TrQ(ζp)/Q(ζp) = 1,

by a computation we have done before.
If t = −1, then ∑

a

ζa(1+t)
p = p− 1.

Note that ∑
t

(
t
p

)
= 0.

Thus
h2 =

(
−1
p

)
(p− 1)−

∑
t6=−1

(
t
p

)
=
(
−1
p

)
p.

So h2 =
(
−1
p

)
p, and h = √±p. Let us now show precisely when h = √+p and when h = √−p.

We know that
(
−1
p

)
= 1 if and only if −1 is a quadratic residue in (Z/pZ)× ∼= Z/(p− 1)Z.

This is true if and only if (−1) p−1
2 = 1 ∈ (Z/pZ)×. (Why? If γ ∈ (Z/pZ)× is a generator,

then (−1) = γi. Thus i is even if and only if (γi) p−1
2 = 1.) Because (−1) p−1

2 = 1 if and only
if p ≡ 1(4), this gives us precisely the same answer as before:

g2 =
p p ≡ 1(4)
−p p ≡ 3(4).
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9.3 Motivation for Dedekind Domains
We have been discussing number fields K and their rings of integers, OK ⊆ K. In one
particularly nice example, Z ⊆ Q, we have unique factorization into prime numbers, the
so-called “Fundamental Theorem of Arithmetic.”

Recall that in any domain D, f ∈ D is called irreducible if one cannot write f = f1 ·f2
for f1, f2 6∈ D×. In a Dedekind domain, we do not quite have unique factorization into
irreducibles:

Example 9.2. Consider the number field K = Q(
√
−5). Its ring of integers OK =

Z[
√
−5] is a Dedekind domain, but

6 = (1 +
√
−5)(1−

√
−5) = 2 · 3

are two factorizations of 6 into irreducibles.

In a Dedekind domain, we do have factorization of ideals into unique prime ideals.
Moreover, we have a group structure on ideals (with inverses).

Definition 9.3. As a stray definition, we say the class group of a number field is the
group ClK := {group of nonzero ideals of OK}/{principal ideals}. It is a theorem that this
group is finite for any number field.
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10.1 Dedekind Domains: Definitions and First Examples
Definition 10.1. A Dedekind domain is a [commutative unital] ring A such that

1. A is Noetherian

2. Any nonzero prime ideal p ⊆ A is maximal

3. A is a domain integrally closed in its field of fractions fracA.

Remark 10.2. Recall that a ring is Noetherian if any increasing sequence of ideals
stabilizes. Also recall that an ideal p is prime if for a, b ∈ A, ab ∈ p implies a ∈ p or b ∈ p.

Proposition 10.3. Let K be a number field. Then OK is a Dedekind domain.

Proof. (1) We know OK
∼= Zn, where n is the degree [K : Q] of the field extension.

Since Zn is a finitely-generated Z-module, and Z is Noetherian, Zn is Noetherian as
well. One way to see this is by invoking the Hilbert Basis Theorem, and writing Zn as
Z[x1, . . . , xn]/(x1 − 1, x2 − 1, . . . , xn − 1), noting that the quotient of a Noetherian ring is
Noetherian.

(3) We know that OK is a domain, and by the homework, OK is integrally closed in K.
Quick reminder as to how that proof works: if α ∈ K is integral over OK , then OK [α] is
integral over OK , which is integral over Z. Thus OK [α] is integral over Z, so α is in OK .

(2) This property is the strongest of the three, so it will be the most interesting to verify.
Let’s begin with a definition: an order B ⊆ K is a subring which is finitely generated as a
Z-module, such that B ⊗Z Q ∼= K, i.e., frac B = K.

Lemma 10.4. If B ⊆ K is an order and I ⊆ B is a nonzero ideal, then |B/I| is finite.

Proof. Let α ∈ I be nonzero. Then Pα(x) = detZ(x− α̃|B), so Pα(α) = 0. (Note: B is free
because it is a subring of a field, so there is no torsion.) Write

Pα(α) = αd + ad−1α
d−1 + · · ·+ a0,

where a0 = ±NK/Q(α). Therefore, NK/Q(α) ∈ I, which is an integer m ∈ Z, so I ⊇ m ·B.
Thus, B/mB surjects onto B/IB, and B/mB ∼= Zn/mZn, which has finite order.

Now suppose p ⊆ OK is a prime ideal. By the Lemma, OK/p is a finite domain.

Lemma 10.5. A finite domain C is a field.
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Proof. Let α ∈ C be nonzero. Observe that the map C α·−
↪−−−→ C is injective because C is a

domain. By the pigeon-hole principle, α̃ is surjective as well. In particular, there exists
some x ∈ C such that αx = 1.

This finishes our proof: OK/p is a field, so p is maximal.

10.2 Unique Factorization in Dedekind Domains
Let A be a Dedekind domain and K = fracA. If I, J ⊆ K are additive subgroups, we define

I · J = {additive subgroup generated by α · β, α ∈ I, β ∈ J}
I + J = {α + β : α ∈ I, β ∈ J}.

Remark 10.6. If I, J are A-submodules, then so are I ·J and I +J . If I, J ⊆ A are ideals,
then so are I · J and I + J .

Definition 10.7. A fractional ideal I ⊆ K is an A-submodule such that for some nonzero
d ∈ A, d · I ⊆ A. That is to say, if d′ ∈ I is nonzero, d′ = ad−1 for some a ∈ A. Note that
this is not the same thing as saying the preimage of I under the localization at d map is an
ideal.

Lemma 10.8. If I, J are fractional ideals, then so are I · J and I + J .

Proof. Choose d, d′ ∈ A nonzero such that dI ⊆ A and d′J ⊆ A. Then dd′(I · J) and
dd′(I + J) ⊆ A.

Remark 10.9. If I is an A-submodule, I · A = I.

Theorem 10.10. Let A be a Dedekind domain. Then

(i) The fractional ideals in K = fracA form a group under ideal multiplication, with
unit A. In particular, for every fractional ideal I ⊆ K, there is a fractional ideal
I−1 ⊆ K such that I · I−1 = A.

(ii) Every fractional ideal b ⊆ K can be written uniquely (up to ordering and multi-
plication by units) as

b =
∏

p prime
pn(p), n(p) ∈ Z,

where p−n means (p−1)n.
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The goal of this lecture is to exhibit some common problem-solving and computational
techniques for factoring ideals into irreducibles. While we will not state nor prove any
theorems, this is an important lecture.

11.1 Example: Factoring 6 in Two Ways
Recall that in Z[

√
−5], 6 = (1 +

√
−5)(1 −

√
−5) = 2 · 3 are two different factorizations

into irreducibles. As an example, let us check that 1 +
√
−5 is irreducible. Suppose

1 +
√
−5 = a · b, where a, b ∈ Z[

√
−5]. Apply the

11.2 Example: How can we factor 21?
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12.1 The Beginnings of Unique Factorization

Proposition 12.1. Let A be a Dedekind domain, and 0 6= m ⊆ A a nonzero maximal
ideal. Then m is invertible: there exists a fractional ideal m′ ⊆ K = fracA such that
m ·m′ = A.

Proof. Let m′ = {x ∈ K : xm ⊆ A}. This clearly contains A. If d 6= 0 ∈ m, then d ·m′ ⊆ A,
so m′ is a fractional ideal. Moreover,

m ⊆ m ·m′ ⊆ A,

so by maximality of m, either m ·m′ = A and we are done, or m ·m′ = m. Suppose m ·m′ = m.
Let x ∈ m′. Then

m ⊇ x ·m ⊇ x2 ·m ⊇ · · · ⊇ xi ·m ⊇ · · ·

Thus if d 6= 0 ∈ m, xn · d ∈ m ⊆ A for all n, i.e., xn ∈ d−1A for all n = 1, 2, . . . . As
A[x] ⊆ d−1A, which is Noetherian, A[x] is finitely generated. In particular, x is integral
over A. But a Dedekind domain is integrally closed in its field of fractions! So x ∈ A. Thus
m′ ⊆ A, and m′ = A. We now state two lemmas to help us conclude the proof; we will
prove them after.

Lemma 12.2. If A is a commutative ring with unity, and a1, . . . an ⊆ A are ideals,
and p ⊆ A is a prime ideal such that

a1 · · · an ⊆ p,

then ai ⊆ p for some i.

Lemma 12.3. Let A be a Noetherian domain, and a ⊆ A a nonzero ideal. Then a

contains a product of prime ideals.

Equipped with these lemmas, we may now finish the proof. We wish to find some b ∈ m′

such that b 6∈ A. Let a ∈ m be nonzero. By Lemma 12.3, A ·a contains a product of nonzero
prime ideals p1 · · · pn. Take n to be as small as possible. In particular, m ⊇ A · a ⊇ p1 · · · pn,
so by Lemma 12.2, m ⊇ pi for some i, say i = 1. Because we’re in a Dedekind domain and
all prime ideals are maximal, m ⊇ p1 ⇒ m = p1. Let b = p2 · · · pn (in the case that there
was only one factor to begin with, b = A). Then A · a 6⊇ b, by minimality of n.

Thus there exists some b ∈ b such that b 6∈ A · A. But m · b ⊆ m · b = p1 · b ⊆ A · a.
This implies m · (b · a−1) ⊆ A, so ba−1 ∈ m′; contradiction. Therefore m′ 6= A, and we are
done.
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Now we finish by proving the two lemmas used in the proof of the proposition.

Proof of Lemma 12.2. If ai 6⊆ p for all i, choose ai ∈ ai with ai 6∈ p. Then a1 · · · an 6∈ p.
But a1 · · · an ∈ a1 · · · an ⊆ p; contradiction.

Proof of Lemma 12.3. Let Φ be the set of ideals in A which do not contain a product of
primes. If Φ = ∅, then we are done, so suppose that Φ is nonempty. Then Φ contains a
maximal element, because A is Noetherian, call it b. Because b ∈ Φ, b is not prime, so
there exist x, y ∈ A not in b such that x · y ∈ b. Thus b + A · x ⊇ b and b + A · y ⊇ b, but
(b +A · x) · (b +A · y) ⊆ b. By maximality of b, neither b +A · x nor b +A · y are in Φ, so
(b + A · x) · (b + A · y) 6∈ Φ, and b 6∈ Φ, contradiction.
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Professor Kisin is away this week. His graduate student Koji Shimizu is lecturing in his
place.

13.1 Unique Factorization in Dedekind Domains
The purpose of today is to prove the main theorem that we’ve stated a few times already:

Theorem 13.1. Let A be a Dedekind domain with fraction field K.

1. Fractional ideals form a group under multiplication with unit A.

2. For each fractional ideal b ⊆ K, we have a unique decomposition of b into a
product of primes

b =
∏
p⊆A
prime

pn(p),

where n(p) ∈ Z is zero for all but finitely many p.

Remark 13.2. We proved last time that for p ⊆ A maximal, there exists some fractional
ideal p′ such that p · p′ = A. We thus define p−1 = p′, so it makes sense to have negative
exponents in Theorem 13.1.

Remark 13.3. The inverse p′ is unique. The usual argument to show uniqueness of inverses
holds here as well.

Proof of existence. Take a fractional ideal b ⊆ K. We will reduce to the case where b ⊆ A

is a proper ideal. By definition, there exists some nonzero d ∈ A such that d · b ⊆ A. Thus
we can write

b = (d · b)(d · A)−1,

where both d · b and d · A are proper ideals. We may thus assume that b ⊆ A is an ideal.
Define

Φ =
{
a ⊆ A : a is a nonzero ideal that does not

admit a prime decomposition

}
.

Because A is Noetherian, if Φ is nonempty, it has a maximal element a ∈ Φ. In particular,
we have a 6= A, because A has a prime decomposition. So there exists some maximal ideal
p ⊆ A such that

a ⊆ p.

Recall that if p′ is the inverse of p, then p′ ⊇ A. We have the following:

1. As a ⊆ p, ap′ ⊆ p · p′ = A.

2. As A ⊆ p′, we have a = aA ⊆ a · p′.
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Together, these imply a ⊆ ap′ ⊆ A.
Now, we claim that a $ ap′. To see this, suppose to the contrary that a = ap′. Take

any x ∈ p′. Then
a · x ⊆ a.

Repeating this process, we see that for all n ∈ N, axn ⊆ a ⊆ A. Take some nonzero d ∈ a.
Then d · xn ∈ A, so xn ∈ d−1A for all n ≥ 0. The fractional ideal d−1A is, in particular, a
finite A-module, so this gives that x is integral over A. Since A is integrally closed in K,
we must have x ∈ A. Thus A = p′, which is a contradiction.

As a is maximal in Φ, we must have a · p′ 6∈ Φ. Therefore a · p′ can be factored as

a · p′ =
∏

qn(q),

and
a = a · p′ · p = p ·

∏
qn(q).

This finishes the proof of existence.

Proof of uniqueness. Suppose that we have∏
pn(p) =

∏
pm(p).

Rewrite this as
pα1

1 · · · pαr
r = qβ1

1 · · · qβs
s

where the pi and qj are distinct prime ideals, and αi and βj are positive integers.
The case where r = s = 0 is obviously fine. Without loss of generality, assume r > 0.

We see
p1 ⊇ pα1

1 · · · pαr
r = qβ1

1 · · · qβs
s ,

so if s = 0 then p1 ⊇ A, which contradicts p1 being a prime ideal of A. So suppose s > 0.
Recall Lemma 2 from last class: if p ⊆ A is a prime ideal and a1, . . . , an ⊆ A are non-zero
ideals, then p ⊇ a1 · · · an implies p ⊇ ai for some i. Therefore, there exists some j such that

p1 ⊇ qj,

which contradicts the fact that the qj are maximal, and all the primes are distinct.

Corollary 13.4. Let I, J ⊆ K be fractional ideals of a Dedekind domain A. Write

I =
∏

pn(p), J =
∏

pm(p).

Then I ⊆ J if and only if n(p) ≥ m(p) for all p.
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Proof. In one direction, suppose n(p) ≥ m(p) for all p. Then n(p)−m(p) is non-negative
for all p, so

I =
∏

pn(p) =
∏

pm(p) ·
(∏

pn(p)−m(p)
)

⊆
∏

pm(p) = J.
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Professor Kisin is still away, so Koji is lecturing again.

14.1 Wrapping up from Last Time
Remember that last time we proved the main theorem of Dedekind domains, Theorem 13.1.

Lemma 14.1. Let p ∈ Z be a rational prime, and K be a number field. Suppose
OK = Z[α] = Z[x]/(f(x)). Let f(x) ∈ (Z/p)[x] be the reduction mod p of f(x), and
write

f(x) = f
e1
1 · · · f

es

s

where the f i are distinct and irreducible. Then

(p) =
∏

pei
i in OK ,

where pi = (p, fi(α)) for fi ∈ Z[x] a lift of f i.

Exercise 14.2. If OK = Z[ζp], then show using this argument that (p) = (ζp − 1)p−1.

Proof. Let I := ∏
pei
i ⊆ OK . This is an ideal because ei are positive. We will prove I = (p).

Consider the following diagram:

I OK OK/(p)

∏(p, fi(x))ei Z[x]/(f(x)) (Z/p)[x]/(f(x))

This tells us that I goes to 0 under the map OK → OK/(p), which means that I ⊆ (p). So

(p) =
∏

p
e′i
i

with 0 ≤ e′i ≤ ei by corollary from last time; suffice it to show that e′i = ei for all i.
If e′i < ei for some i, then

(p) =
∏

(p, fj(x))e′j 3 f e
′
1

1 · · · f e
′
s
s = g

and consider g. Then deg g < deg f , so g does not go to zero under the reduction
Z[x]/(f(x))→ (Z/p)[x]/(f). But this is a contradiction, because g ∈ (p). Thus ei = e′i for
all i, and thus (p) = I = ∏

pei
i .

14.2 Examples and Pictures of Dedekind Domains
The rest of today is to give some big picture ideas about how Dedekind domains come up.
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Notation 14.3. For a ring A, mSpecA is the set of maximal ideals of A.

Example 14.4. Examples of Dedekind domains:

1. Fields.

2. OK for K a number field (also the localization and completion5 of such).

Theorem 14.5. OK has a finite class group (recall that C`K is the group of
fractional ideals modulo principal fractional ideals).

Proof. Will be given next week.

3. If k is a field, then k[x] is a Dedekind domain (more strongly, it is a PID).

From this last example, we want to create more examples. Recall that OK = Z[y]/(f(y)).
Motivated by this, take f(x, y) ∈ k[x, y] = (k[x])(y), and consider A = k[x, y]/(f(x, y)).

Question 14.6. Which A are Dedekind domains?

1. f = y2 − x2

2. f = y2 − x3

3. f = y2 − (x3 + x).

Number 1 is not a domain, because y − x, y + x 6= 0 ∈ A, but (y − x)(y + x) = 0 in
A. It turns out that both of the others are domains. Consider number 2, and the element
z = y

x
∈ fracA \ A. But z2 = y2

x2 = x ∈ A, so z satisfies z2 − x = 0. Thus z is integral over
A, but not in A. It turns out that number 3 does give a Dedekind domain.

From now on, assume k = C, or some algebraically closed field (of any characteristic).
Let’s record a few facts:

Theorem 14.7. Hilbert’s Nullstellensatz. If k is algebraically closed, then

mSpec(k[x, y]/(f(x, y))) = {(x− a, y − b) : f(a, b) = 0}

Theorem 14.8. Consequence of Jacobian criterion. Suppose A = k[x, y]/(f(x, y)) is

5Completion is in the sense of 3-adic integers, for example
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an integral domain. Then A is a Dedekind domain if there is no (a, b) ∈ k2 such that
f(a, b) = 0
(∂xf)(a, b) = 0
(∂yf)(a, b) = 0

This essentially says that A is a Dedekind domain if f has no singularities.

Example 14.9. In our example 2, the equations f = y2 − x3 = 0, ∂xf = −3x2 = 0
and ∂yf = 2y = 0 has a solution (0, 0) ∈ k2; thus C[x, y]/(y2 − x3) is not a Dedekind
domain.

In our example 3, f = y2 − (x3 + x) = 0, ∂xf = −3x2 + 1 = 0, and ∂yf = 2y = 0
has no solution in C2. Thus

A = C[x, y]/(y2 − (x3 + x))

is a Dedekind domain.

For this ring A, we know that C`A is infinite (cf. Fröhlich-Taylor, Algebraic Number
Theory (VI.5)).

Brief Idea. We consider E = mSpecA ∪ {∞}. This is an elliptic curve over C, and we
write E/C. The curve E has the structure of an abelian group. We also have the following
two exact sequences:

0

E

0 Z C`E C`A 0

Z

0

Since E is an uncountable group, this implies that C`A is uncountable.

14.3 Scheme Theory
This is a modern way of studying algebraic geometry which combines the classical theory
and number theory. Let D be a Dedekind domain that is not a field. Then mSpecD looks
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like a smooth curve. Can we draw a similar picture for any ring A?

Notation 14.10. SpecA is the set of prime ideals of A.

Example 14.11. Spec(k), where k is a field, is {(0)}. SpecZ = {(0)} ∪ {(2), (3), . . . }.

Exercise 14.12. A ring homomorphism f : A→ B gives a map SpecB → SpecA. This
is the reason that we consider Spec and not just mSpec.

Let’s end with several pictures! Koji draws pictures of SpecQ[x] and SpecZ.
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15 February 27, 2017

15.1 The Geometry of Numbers
The ultimate goal of the next few lectures is to introduce the theory known as The Geometry
of Numbers, and use it to prove finiteness of the class group of the ring of integers of a
number field. To summarize, this is our aim:

Aim: If K is a number field, show that |C`K | <∞.

The idea is as follows: we look at all embeddings of K σi
↪−−→ C. By standard results

from field theory, there are [K : Q] such embeddings. To see this, the primitive element
theorem allows us to write

K ∼= Q[x]/f(x),

where f(x) ∈ Q[x] is a monic, irreducible polynomial. The embeddings σi correspond
precisely to the roots of f(x). We have real embeddings σ1, . . . , σr1 : K ↪−→ R, and
complex embeddings σr1+1, . . . , σr1+r2 : K ↪−→ C, as well as their complex conjugates
σr1+1, . . . , σr1+r2 : K ↪−→ C. Thus we have

r1 + 2r2 = [K : Q].

We can thus build a map

K
r1∏
i=1

R×
r1+r2∏
i=r1+1

C

K ⊗Q R

σ

∼

and get that the dashed map is an isomorphism. This is because we have a composition

K ⊗Q R R[x]/f(x)
∏
i

R[x]/fi(x),∼ ∼

where f = f1(x) · · · fs(x), and the fi(x) are distinct and irreducible. We can make this
happen because f is separable, i.e., has distinct roots. So∏

i

R[x]/fi(x) ∼=
∏
σi

i=1,...,r1

R×
∏
σi

i=r1+1,...,r1+r2

C.

as rings. That is to say, the diagram
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K ⊗Q R R[x]/f(x)
∏
i

R[x]/fi(x)

K
∏
σi

R×
∏
σi

C

∼ ∼

∼=
commutes. The following diagram may also be useful, where a ⊂ OK is an ideal.

OK ⊆ K K ⊗Q R
∏
σi

R×
∏
σi

C

a R[K:Q]
σ

∼
∼=⊆

(15.1)
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16 March 1, 2017

16.1 Lattices
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17 March 3, 2017

17.1 The Minkowski Theorem
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18 March 6, 2017

18.1 Geometry of Numbers Continued
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19 March 8, 2017

19.1 Finiteness of the Class Group
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20 March 10 2017

20.1 Examples of Class Groups

20.2 Algebraic Closure of the Complex Numbers
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21 March 22, 2017

21.1 Number Fields with Bounded Discriminant
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22 March 24, 2017

22.1 The Unit Theorem

22.2 Proof for Real Quadratic Fields
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23 March 27, 2017

23.1 The Unit Theorem, Continued
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24 March 29, 2017

24.1 Applications of the Unit Theorem

24.2 Pell’s Equation
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25 March 31, 2017

25.1 Factorization of Primes in Extensions

25.2 The Different
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26 April 3, 2017

26.1 Factorization Continued
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27 April 5, 2017

27.1 Ramification and Degree of an Extension
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28 April 7, 2017

28.1 Norm of the Different

28.2 Action of the Galois Group
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29 April 10, 2017

29.1 Finite Fields

29.2 Frobenius Elements
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30 April 12, 2017

30.1 More on the Galois Action

30.2 Decomposition Group and Inertia Group
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31 April 14, 2017

31.1 Example: Frobenius in Cyclotomic Extensions

31.2 Quadratic Reciprocity
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32 April 17, 2017

32.1 Quadratic Reciprocity Continued

32.2 Application to Primes of the Form x2 + ny2
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33 April 19, 2017

33.1 Valuations and Discrete Valuation Rings

33.2 Completions of Number Fields
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34 April 21, 2017

34.1 More on Completions

34.2 The Decomposition Group and p-norm
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35 April 24, 2017

35.1 Galois Groups of Completions
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36 April 26, 2017

36.1 Adeles and Ideles

36.2 The Idele Class Group and Compactness of C◦K
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A Homework Problems and Solutions

A.1 Problem Set 1
Problem A.1.1. Let L/K be an extension of number fields, and let a ∈ L. Show that
there exists a unique monic polynomial f ∈ K[x] such that for all g ∈ K[x], we have
g(a) = 0 if and only if g = f ·h for some h ∈ K[x]. The polynomial f is called the minimal
polynomial of a over K.

Solution. Consider the set Va = {f ∈ K[x] : f(a) = 0, f monic}. We know from lecture
that this set is nonempty; let fa(x) ∈ Va be a polynomial of least degree in Va. If g(a) = 0,
the division algorithm gives g = fa · h+ r, where h, r ∈ K[x], deg h < deg g, deg r < deg fa.
Therefore fa(a) · h(a) + r(a) = 0. Since f(a) = 0, this implies r(a) = 0. If r is a nonzero
polynomial, though, we can divide r by its leading coefficient to get a polynomial r′ ∈ K[x]
with degree strictly less than deg fa which vanishes on a, contradicting minimality of fa.
Thus r(x) = 0, and g = fa · h.

It follows as well that fa is the unique monic polynomial of least degree which vanishes
on a: if f ′(a) = 0 and deg fa = deg f ′, then f ′ = fa · h for some h ∈ K[x] with deg h =
deg f ′−deg fa = 0. We see, then, that h must be the identity, in order that f ′ is still monic.
Thus f ′ = fa.

Problem A.1.2. Let f and g be two monic polynomials with rational coefficients such
that f · g has integer coefficients. Prove that f and g have integer coefficients.

Solution. Note that we can find integers a, b ∈ Z such that af and bg ∈ Z[x], and further
that the coefficients of f are coprime, and the coefficients of g are coprime. Set f ′ = af

and g′ = bg. Let us state and prove a lemma:

Lemma A.1. If f, g ∈ Z[x] have coprime coefficients, then fg has coprime coefficients.

Proof. Let p ∈ Z be a prime; we show that there is some coefficient cn of fg such that
p 6 | cn. We can write

cn =
∑
i+j=n

aibj,

where the ai are the coefficients of f , and the bj are the coefficients of g. Let i be the least
integer such that ai 6= 0 and ai is not divisible by p, and the same with j for the bj. Then
n = i+ j is such that cn is not divisible by p, and we are done.

With this lemma in hand, write h = fg, and

h = 1
a
f ′

1
b
g′.

Then abh = f ′g′. Since f ′ and g′ have coprime coefficients, f ′g′ does by the lemma, from
which it follows that ab = ±1. Thus h = ±f ′g′. Because Z[x] is a UFD, we get f ′ = f and
g′ = g, and are done.
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Problem A.1.3. Review of the Cayley-Hamilton theorem: Let R be a ring, and
M a finitely generated free R-module. Let ϕ : M →M be an R-linear map, and Pϕ(x) the
characteristic polynomial of ϕ.

(a) If R is an algebraically closed field, show that Pϕ(ϕ) = 0 by writing ϕ as a matrix in
Jordan normal form.

(b) Let f : R → R′ be a map of rings, and let ϕ′ : M ⊗R R′ → M ⊗R R′ be the map
induced by ϕ. Show that if Pϕ(ϕ) = 0 then Pϕ′(ϕ′) = 0, and that the converse holds
if f is injective.

(c) Use the first two parts to show that Pϕ(ϕ) = 0 for any R and ϕ. (Hint: Write R as
a quotient of a polynomial ring over Z, S = Z[x1, x2, · · · ] and then embed S in an
algebraically closed field)

Problem A.1.4. By hand (that is, without using any theory from class), find the ring of
integers of Q(

√
17).

A.2 Problem Set 2
Problem A.2.1. List all the integers −50 < D < 50 which occur as the discriminant of a
quadratic field.

Solution. Let us first look at multiples of 4: ±{4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48}. Check
which of these, when divided by 4, are≡ 3 (4). From this, we see that {12, 28, 44,−4,−20,−36}
occur as the discriminant of a quadratic field.

Now, we look at all those integers that are ≡ 1 (4), and see that {4 · n + 1 : n =
−12, . . . , 12} occur as the discriminant of a quadratic extension.

Problem A.2.2. Show that if K is a number field and OK its ring of integers, then OK is
integrally closed in K.

Solution. Suppose x ∈ K were integral over OK . By transitivity of integrality, we have x is
integral over Z. But OK is precisely those elements of K integral over Z, so x ∈ OK .

Problem A.2.3. For p, q distinct odd primes, show that the ring of integers Q(ζp, ζq) is
Z[ζp, ζq]. (Hint: Show that the polynomial Φp(X) = Xp−1

X−1 is irreducible over Q(ζp) by
adapting the argument for Eisenstein’s criterion. To do this, show that the polynomial
Xq−1
X−1 has distinct roots mod p.)

Solution. LetK = Q(ζp) and L = Q(ζq) to simplify notation; note that dK = (−1)
(p−1)(p−2)

2 pp−2

and dL = (−1)
(q−1)(q−2)

2 qq−2 are coprime. It thus suffices to show that K and L are linearly
disjoint number fields, for then the equality

OK·L = OK ·OL
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holds.
Let Φq(x) be the cyclotomic polynomial

Φq(x) := xq − 1
x− 1 = xq−1 + xq−2 + · · ·+ x+ 1.

Recall the generalization of Gauss’s lemma used in class: if K is a number field and
f ∈ OK [x] is monic, then f is irreducible over K[x] if f is irreducible over OK [x]. In our
case, we are considering Φq(x) as a monic polynomial in OK(x) = Z[ζp].

Note that OL
∼= Z[x]/Φq(x), so we have

OL/pOL
∼= (Z/p)[x]/Φq(x),

where Φq(x) is the image of Φq(x) in (Z/p)[x]. If Φq(x) is separable, then the quotient
OL/pOL is a finite field. By taking the derivative, we see even more that xq− 1 is separable
(xq − 1 and qxq−1 share no common factors). Indeed, this is all true mod p.

We now argue as with Eisenstein’s criterion to show that Φp(x) is irreducible in Z[ζq].
In particular, we can pass to Z[ζp]/qZ[ζq] instead of Z/q because of the above, so the proof
works nearly verbatim. Thus Φp(x) is irreducible in Z[ζq], and we find that OL and OK are
linearly disjoint. This gives the result.

Problem A.2.4. Compute the ring of integers of Q(
√

23,
√

3). (Hint: A useful idea is to
take the traces down to the quadratic fields contained in Q(

√
23,
√

3), and use that the
trace of an algebraic integer is an algebraic integer.)

Solution. To simplify notation, let K = Q(
√

3,
√

23). It is obvious that Q(
√

23) and Q(
√

3)
are linearly disjoint. Furthermore, as Disc(Q(

√
23)) = 52 and Disc(Q(

√
3) = 12, we have

OK ⊆
1
4OQ(

√
3) ·OQ(

√
23).

Thus, any element of OK has the form

A+B
√

3 + C
√

23 +D
√

69
4 .

We consider the trace TrK/L(x) for L = Q(
√

3), Q(
√

23), and Q(
√

69). The respective rings
of integers are Z[

√
3], Z[

√
23], and Z

[
1
2(1 +

√
69)

]
. Because of the inclusion TrK/L(OK) ⊆

OL, we get the following restrictions:

A+B
√

3
2 ∈ Z[

√
3], so A,B ∈ 2Z

A+ C
√

23
2 ∈ Z[

√
23], so A,C ∈ 2Z

A+D
√

69
2 ∈ Z

[1
2(1 +

√
69)

]
, from which it follows that A+D ∈ 2Z.
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Note now that 1
2 ,

1
2

√
3, 1

2

√
23, and 1

2

√
69 are not in OK : their minimal polynomials are not

monic. On the other hand, 1
2(
√

23−
√

3) and 1
2(1 +

√
69) are; thus we see that

OK =
{1

2(A+B
√

3 + C
√

23 +D
√

69) | A+D,B + C ∈ 2Z
}
.

Equivalently, OK has a Z-basis
{

1, 1+
√

69
2 ,
√

23,
√

23−
√

3
2

}
.

A.3 Problem Set 3
Problem A.3.1. Let K = Q(

√
−13).

(a) Find the factorization of (7) and (11) into prime ideals in OK .

(b) Show that there are 3 different factorizations of 77 into irreducible elements in OK>
(Two factorizations ∏n

i=1 ai = ∏n
i=1 bi are the same if ai/bi ∈ O×K is a unit. In this

example, this means that ai/bi = ±1.)

Solution. (a) We consider the compositions

OK/7 ∼= Z[x]/(x2 + 13, 7) F7[x]/(x2 − 1) F7[x]/(x− 1)

F7[x]/(x+ 1).

'

As F7[x]/(x− 1) ∼= F7[x]/(x+ 1) ∼= F7, the preimages in OK of the ideals (x− 1) and
(x+1) are prime. These ideals are p1 = (7,

√
−13−1) and p2 = (7,

√
−13+1). I claim

that (7) = p1·p2. Indeed, p1·p2 is the ideal generated by {49, 7−7
√
−13, 7+7

√
−13, 14},

so it is clearly contained in (7). But also 49− 3 · 14 = 7, so (7) ⊆ p1 · p2.
Now begin again by considering the compositions

OK/11 ∼= Z[x]/(x2 + 13, 11) F11[x]/(x2 − 9) F11[x]/(x− 3)

F11[x]/(x+ 3).

'

As before, (x − 3) and (x + 3) are prime in F7[x]/(x2 − 9), so they pull back to
prime ideals in OK . Specifically, we have the prime ideals q1 = (11,

√
−13 + 3) and

q2 = (11,
√
−13− 3). We check that q1q2 = (11): the product of the two is the ideal

(121, 33−11
√
−13, 33+11

√
−13, 22), so it is clearly contained in (11). For the reverse

containment, we note 121− 5 · 22 = 11.

(b) First, we show that 77 = 7 · 11 works. Suppose 7 = a · b with a, b 6∈ O×K . Taking the
norm, we see 49 = N(a)N(b), and the hypothesis that a and b are non-units implies,
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say, that N(a) = 7 = x2 + 13y2 for some integer x, y. This certainly cannot hold if
y 6= 0, and 7 is not a square. So 7 is irreducible. Similarly, suppose 11 = a · b, where
a, b 6∈ O×K . It follows that 11 = N(a) = x2 + 13y2, which cannot hold for the same
reasoning.
Suppose that 77 = a · b, where a and b are non-units in OK . Then

N(a) ·N(b) = 772 = 72 · 112.

The non-unit condition on, say, ameans that our only choices forN(a) are 7, 11, 72, 112, 7·
11, 7 · 112, 72 · 11, and 72 · 112. The requirement that b not be a unit immediately rules
out the last possibility. We can also see that if N(a) = 7, we have x2 + 13y2 = 7 for
some x and y, which never holds. Similarly, N(a) cannot be 11. By symmetry, it
follows that N(a) 6= 7 · 112 or 72 · 11.
In the case where N(a) = 7 · 11, say, one wants a2

1 + 13a2
2 = 77. We have two options:

a2 = ±1, giving a1 = ±8, and a2 = ±2, giving a1 = ±5. Both of these give valid
factorizations:

(8 +
√
−13)(8−

√
−13) = 77,

(5 + 2
√
−13)(5− 2

√
−13) = 77.

All that is left to check is that these factors are irreducible. As these elements were
all chosen because they have norm 77, factoring them into non-unit irreducibles
would require choosing elements of norm 7 and 11 in OK ; this equates to solving
a2 + 13b2 = {7, 11} over the integers, which is impossible.
One may check that there are no more valid factorizations of 77 into elements of norm
49 and 121; there are only a handful of possibilities. Similarly, there are no more
possible factorizations into two elements of norm 77.

Problem A.3.2. Let K = Q(
√
−23).

(a) Show that not all ideals in OK are principal.

(b) Show that the class group of OK has an element of order 3.

Solution. (a) Consider the ideal p = (11, 1+
√
−23) ⊆ OK . Suppose it were principal, i.e.,

that p = (a+b
√
−23). In particular, we have 11 ∈ (a+b

√
−23), so 11 = (a+b

√
−23)c

for some non-unit c ∈ OK . If we take the norm, we see

121 = (a2 + 23b2) ·N(c),

and the non-unit condition on c implies that 11 = a2 + 23b2, which is impossible over
the integers. Thus p is not principal.
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(b) We wish to find a fractional ideal P that is not principal, but whose cube P3 is
principal (in fact, it turns out any non-principal ideals of OK have order 3). Take
for instance the ideal P = (4, 1 +

√
−23) ⊆ OK . This is not principal by a similar

argument to that used in part (a). We compute:

P2 = (16, 4 + 4
√
−23, 22− 2

√
−23)

= (16, 22− 2
√
−23).

This represents the same ideal class as (8, 11 −
√
−23) = (8, 5 +

√
−23). Suppose

that P2 were principal, i.e., there were some α ∈ P2 such that P2 = (α). Then
α|8, 5 +

√
−23, so in particular N(α)|N(8), N(5 +

√
−23. But N(8) = 64 and

N(5 +
√
−23) = 48, so N(α) must be 2, 4, 8, or 16. We know immediately that

N(α) cannot be 2 or 8, because a2 + 23b2 = 2, 8 has no solution in integers. If
N(α) = 4, then α = 2. But there is no β ∈ OK such that 2β = 5 +

√
−23. Similarly,

if N(α) = 16, then α = 4, and there is no β ∈ OK such that 4β = 5 +
√
−23. It

follows that P2 is not principal.
We now compute P3:

P3 = (4, 1 +
√
−23)(8, 5 +

√
−23)

= (32, 8 + 8
√
−23, 20 + 4

√
−23,−18 + 6

√
−23)

= (32, 20 + 4
√
−23,−38 + 2

√
−23)

= (2)

which is principal.

A.4 Problem Set 4
Problem A.4.1. Let K ⊂ L be number fields. Show that, for every ideal I of OK ,

I = (IOL) ∩OK .

(Hint: use the fact that I has an inverse.)

Solution. Let I ′ ⊆ K be the inverse for I. We show that ((IOL) ∩ OK) · I ′ = OK ;
then, by uniqueness of inverses, the wanted result follows. Recall the definition of I ′:
I ′ = {a ∈ K : aI ⊆ OK}. In particular, OK ⊆ I ′. We note that ((IOL) ∩ OK) · I ′ is
contained in the distributed intersection (IOL · I ′)∩ I ′OK : an element x ∈ ((IOL)∩OK) · I ′
can be written as a sum

x =
∑
i

αi(aibi)

where ai ∈ (IOL) ∩ OK , bi ∈ I ′, and αi ∈ OK . In particular, ai ∈ IOL and ai ∈ OK , so
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x ∈ (IOL · I ′) ∩ I ′OK . Now, IOL · I ′ = (I · I ′)OL = OK ·OL which is contained in OL, so

(IOL) · I ′ ∩ I ′OK ⊆ OL ∩ I ′ = OK

because it consists of all integral elements in K. Thus ((IOL) ∩OK) · I ′ ⊆ OK . But

(IOL) · I ′ = OK ·OL ⊇ OK ,

and I ′OK ⊇ OK , so we have the chain of inclusions

OK ⊆ ((IOL) ∩OK) · I ′ ⊆ OK

and equality thus holds. From this, we conclude that I ′ is the inverse of both I and
(IOL) ∩OK , so uniqueness of inverses gives

I = (IOL) ∩OK .

Problem A.4.2. Let K be a number field. Remember that the ideal class group C`K is
finite (you may assume this if we haven’t proven it in class yet).
(a) Let I be an ideal of OK . Find a finite extension L of K such that IOL is a principal

ideal.

(b) Find a finite extension L of K such that, for every ideal I of OK , the ideal IOL is
principal.

Solution. (a) Factor I into primes as

I = pr1
1 · · · prn

n ,

where the pi are prime ideals. By finiteness of the class group, we have some m ∈ N+ and
b ∈ OK such that

Im = (b)

is principal. Let L = K(b1/m), so that (b) = (b1/m)m in OL. Then

(p1 · · · pn)m = (b1/m)m,

so the main idea is that if two fractional ideals I and J are such that Im = Jm, then I = J .
Suppose (b1/m) has a factorization as qs1

1 · · · qsk
k . Then

pm·r1
1 · · · pm·rn

n = qm·s1
1 · · · qm·sk ,

so by uniqueness of factorization, we can re-order, say, the qi so that pi = qi for all i, n = k,
and ri = si. It is clear then that IOL = (b1/m), and we are done.

(b) Let us first note that the construction in part (a) works perfectly well for any
ideal J in the same ideal class as I. Suppose J = (a) · I, where a ∈ OK . Then JOL =
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(a) · IOL = (a) · (b1/m)OL = (a · b1/m), which is principal. Enumerate the ideal classes in
C`K as [I1], . . . , [In], with representatives I1, . . . , In. The above construction gives elements
b1, . . . , bn ∈ OK and positive integers m1, . . . ,mn such that

Imi
i = (bi).

Let L be the extension of K defined by

L = K(b1/m1
1 , . . . , b1/mn

n ).

It is clear by construction that any ideal a ⊆ OK—because it belongs to a unique ideal
class that is “made principal” in L—becomes principal in L, i.e., aOL is principal.
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