How Do School Accountability Reforms Affect Teachers? Evidence from New York City*

Rebecca Dizon-Ross

November 30, 2013

Abstract

A commonly-cited concern with holding schools accountable for student performance is that it could cause good teachers to leave low-performing schools. I present regression discontinuity estimates from New York City, which assigns schools grades based on student achievement, suggesting the opposite. At the bottom end of the grade distribution, lower accountability grades decrease teacher turnover, especially for highquality teachers, and increase joiner teacher quality. One potential explanation is that accountability induces performance improvements at lower-graded schools. In contrast, at the top of the grade distribution, where accountability pressures are lower, lower grades have no turnover effects, but decrease joiner quality.

[^0]
1 Introduction

Since the mid-1990s, school accountability systems have increasingly become a central focus of education reform efforts in the United States. Even before the No Child Left Behind act (NCLB) made accountability mandatory across the U.S. in 2001, many states and districts had already instituted some form of accountability.

Policymakers and observers have often worried that these systems, which attempt to hold schools accountable for student performance, would make it difficult for low-performing schools to attract and retain good teachers. Good teachers, the argument goes, may want to avoid the extra scrutiny and pressure that accountability brings to low-performing schools. Since high-quality teachers improve students' long-run educational attainment and earnings more than low-quality teachers (Kane et al., 2008; Chetty et al., 2011), this means that accountability systems could have lasting, negative implications for students at lowperforming schools. Indeed, some have suggested that poor accountability ratings could start low-performing schools down a negative quality spiral, where high-quality teachers leave, causing the best students to leave, causing more teachers to leave, etc..

The empirical evidence on this question is limited and inconclusive. Several quantitative (Clotfelter et al., 2004; Feng et al., 2010; Li, 2011) and qualitative (Ladd and Zelli, 2002) papers have suggested that accountability pressures increase teacher and principal turnover at low-performing relative to high-performing schools. Meanwhile, Boyd et al. (2008) find that, when New York introduced state-mandated, high-stakes testing, teacher turnover fell in the grades in which high-stakes exams are administered. ${ }^{1}$ The conflicting evidence, as well as methodological limitations of some of the existing work, suggest that further study is needed.

This paper exploits the introduction of an accountability system in the New York City Department of Education (hereafter: NYCDOE) to provide new evidence on this issue. In November, 2007, the NYCDOE launched a comprehensive accountability system which assigned schools letter grades based on school performance. The grades were based on continuous performance metrics, with determination of the actual grade based on strict thresholds. This allows the use of regression discontinuity analysis to estimate the effect of the reform, as previously shown by Rockoff and Turner (2010). While these authors focused on the one-year impacts of receiving a low grade on student performance (finding large positive improvements), the focus here is on the impacts on the teacher labor market.

Using value-added estimates as measures of teacher quality, I find evidence against the hypothesis that accountability makes it harder for low-performing school to attract and retain

[^1]good teachers. Specifically, using data from the first two years of NYCDOE's accountability system, I find that, at the bottom end of the school grade distribution (i.e., the C/D and D/F thresholds), where the accountability sanctions have more "bite," receipt of a lower school accountability grade early in the school year decreases teacher turnover at the end of the year by over three percentage points. This is a large effect, representing roughly 30% of baseline turnover. The decrease in turnover should directly benefit low-graded schools, as turnover has been shown to decrease student achievement (Ronfeldt et al., 2011).

I examine the sorting implications of accountability grades, and again find evidence that lower accountability grades help low-performing schools at the bottom end of the grade distribution. First, lower grades decrease turnover more among high-quality teachers: the turnover of low-quality teachers is in fact unaffected, whereas that of high-quality teachers falls by five percentage points. Second, lower grades increase the value-added and experience level of joiners.

I examine two main hypotheses to explain the effects: First, that receiving a lower grade attaches a negative stigma to the teachers at the school, reducing their desirability to potential employers (the stigma hypothesis); and second, that teachers actively choose to stay in schools that receive lower accountability grades (the teacher's choice hypothesis). One potential channel for the (somewhat counterintuitive) teacher's choice hypothesis is school improvement: research has shown that lower-graded schools respond to accountability by improving their performance (e.g., Chiang, 2009), even within the same year the grade was received in New York City (Rockoff and Turner, 2010). Teachers may prefer to teach in schools where achievement is improving, either because they value achievement per se or because they expect that it will lead to higher accountability grades in the future. Alternatively, induced by accountability pressures, school leaders at lower-graded schools may work harder to attract and retain high-quality teachers.

I argue that the teacher's choice hypothesis matches the data better than the stigma hypothesis. For example, the fact that lower-graded schools have higher quality joiners than higher-graded schools suggests that the lower-graded schools became more attractive to teachers, which is more consistent with the teacher's choice hypothesis. The turnover heterogeneity by quality may also support teacher's choice: If one believes that high-quality teachers value performance improvements more than low-quality teachers (e.g., because high quality represents a preference for high achievement), then teacher's choice would imply that high-quality teachers would be differentially likely to stay in low-graded schools, which is what we see here. In contrast, if one thinks that high-quality teachers are less subject to stigma than low-quality teachers (e.g., because they have more qualifications to differentiate themselves on the job market from a stigmatized school), then the stigma hypothesis would
have the opposite implication. Also suggestive that stigma is not driving the results are the facts that lower accountability grades decreased retirements and out-of-district departures.

Taken as a whole, the results suggest that the accountability system benefited lowperforming schools at the bottom end of the grade distribution through two labor market channels: decreased turnover and increased teacher quality. However, at the top end of the school grade distribution (the A / B and B / C thresholds), the results differ. Here, I find that grades do not affect teacher turnover or leaver quality, but that there is an asymmetric effect for joiners: lower-graded schools have lower quality joiners than higher-graded schools.

The difference in the results at the top and bottom ends of the grade distribution (i.e., the fact that accountability seems to benefit lower-rated schools at the C / D and D / F thresholds while hurting them at the the A / B and B / C thresholds) could reflect the fact that accountability pressures are higher at the C / D and D / F thresholds, and so only motivated school improvements there (Rockoff and Turner, 2010). ${ }^{2}$ To use these results to assess policymakers' concerns that accountability negatively impacts low-performing schools, one must choose which set of results to focus on. Since the concerns generally focus on the most disadvantaged schools, the effects from the bottom end (C/D and D/F) may be more relevant.

This paper overcomes the two primary challenges in evaluating how accountability affects teachers. The first challenge is identification: accountability reforms are often instituted simultaneously with many other reforms that also affect teachers, making it difficult to cleanly identify accountability's effects. As with all regression discontinuity designs, the analysis used in this paper focuses on schools right next to the grade thresholds, and thus holds fixed the effects of concurrent reforms, which should be similar within small windows. The second challenge is finding good data on teacher quality, and specifically, on teacher's contributions to student learning, or their "value-added." Having a good measure of teacher quality is critical for understanding the implications of accountability: high turnover could either reflect high-quality teachers leaving or low-quality teachers being pushed out. Value-added is widely regarded as unmatched as a measure of teacher quality. For example, value-added has important predictive power: High value-added improves students' long-run outcomes (Chetty et al., 2011). A long literature has shown that no other characteristics proxy well for value-added (see, e.g., Rivkin et al., 2005; Hanushek et al., 2010). Unfortunately, valueadded estimation has extensive data requirements, and so the earlier quantitative papers (Boyd et al. (2008) and Clotfelter et al. (2004)) could only use proxies.

Feng et al. (2010) is the one previous paper to use value-added data to examine this

[^2]question. However, the findings presented here stand in stark contrast with their findings. The authors estimate the causal effect of accountability grades on teacher turnover in Florida by exploiting an unexpected change to the school accountability grading system that exogenously "shocked" some schools' grades. They find that receipt of a lower accountability grade increases teacher turnover, with larger effects at the bottom of the grade distribution.

One potential way to resolve the findings in this paper with the causal estimates presented in Feng et al. (2010) is timing. The NYCDOE releases school grades at the beginning of the school year, long before most teachers make turnover decisions, whereas Florida releases grades at the end of the year. If teachers at low-graded schools do not anticipate that their schools will improve, then this could explain the discrepancy, and suggest that delivering grades earlier in the schoolyear provides an easy policy solution to help mitigate accountability's potential negative equity effects. ${ }^{3}$ This is, of course, only speculative, as there are many other differences between the two settings.

The findings also contrast with those of Clotfelter et al. (2004), who use a difference-in-differences approach to estimate the effect of the institution of accountability in North Carolina and find that accountability accelerated teacher turnover at low-performing schools. It is possible that their results are partially explained by other reforms instituted concurrently with accountability, ${ }^{4}$ or by institutional differences, such as the fact that North Carolina linked teacher-level incentives with school accountability ratings, whereas the NYCDOE system only used school- and principal-level incentives. The fact that Clotfelter et al. (2004) were unable to use value-added data (and so might be missing important heterogeneity) may also help to explain the qualitatively different findings.

The remainder of the paper proceeds as follows: Section 2 describes the institutional background. Section 3 provides a conceptual framework. Sections 4 and 5 describe the data and empirical strategy. Section 6 presents the main results, while section 7 discusses potential mechanisms for the results. Section 8 examines robustness and presents specification tests. In section 9, I conclude.

[^3]
2 Background

2.1 The NYCDOE Accountability System

I now review the key features of the NYCDOE accountability system, much of which was previously described in Rockoff and Turner (2010). The NYCDOE launched its current accountability system in November of 2007. Under the system, schools receive progress reports with letter grades meant to capture school performance relative to peer schools. The progress report also contains the school's NCLB status, and the score from a school's Quality Review, a 2-3 day qualitative evaluation. The NYCDOE links the letter grades with rewards and sanctions, and makes the reports publicly available in an effort to use the system to improve the performance of low-performing schools.

The letter grade is based on a numeric score. For elementary and middle schools (the focus of this study), the score reflects three measures: student progress, student performance, and school environment. Student progress represents 60% of the overall score and measures year-to-year changes in student scores on the New York State standardized tests in Mathematics and English Language Arts (ELA). Student performance (25% of a school's score) captures the level of standardized test scores. School environment (15% of a school's score) reflects attendance and parent, student, and teacher surveys results.

School scores are calculated as a weighted average of the school's "city horizon score" ($1 / 3$ weight), which compares the school to all others of the same school type (i.e., that serve the same grades), and its "peer horizon score" (2/3), which compares it to a peer group of up to 40 similar schools. To calculate the peer horizon score, the NYCDOE assigns each school a peer index based on student demographics (elementary and K-8 schools) or past test scores of current students (middle schools). They then sort schools by peer indices within school types to form peer groups, which consist of the 20 schools above and below a given school. The overall pre-additional-credit score, which ranges from 0 to 100 , is then calculated as the weighted average of the scores for each grading measure.

Schools can also earn additional credit if their "high-need" students make "exemplary gains" (i.e., improve their performance by at least one-half of a proficiency level in ELA or Math). The credit is added to the school's pre-additional-credit score to determine the final score.

Thresholds for letter grade assignment are determined based upon the distribution within school type of pre-additional-credit scores. For example, in the first year of the program, the NYCDOE set the threshold for receipt of an A, B, C, and D at the 85 th, 45th, 15th, and 5 th percentiles of pre-additional-credit scores, respectively. Grades are then determined by comparing each school's score to the thresholds.

The NYCDOE links the letter grades with rewards and sanctions. Quoting the guidelines, "schools that are given an overall grade of A receive financial rewards, unless they score poorly on the Quality Review. Schools that receive an overall grade of D or F are subject to school improvement measures and target setting and, if no progress is made over time, possible leadership change, restructuring, or closure. The same is true for schools receiving a C for three years in a row. Over time, school organizations receiving an overall grade of F are likely to be closed. Ultimately, schools are accountable for making progress and receiving an overall grade of A, B, or C" (NYCDOE website, 2010).

The financial rewards and sanctions associated with accountability grades are significant. In the first two years of the program, principals of schools that had a score among the top 20% of schools and that received a Well Developed or Proficient quality review rating were eligible for bonuses of $\$ 7,000$ to $\$ 25,000$. Schools receiving an A and a Well Developed quality review rating received roughly $\$ 33$ per student in extra funds, to be used at the principal's discretion. Finally, schools receiving an A or B grade and a Well Developed or Proficient quality review rating received $\$ 1,500$ to $\$ 3,000$ per student that transferred in from an F school or a school not in good standing under NCLB. Moreover, the threat of school closure was real: after receiving the first report cards in November 2007, the NYCDOE told five F schools in December that they would be closed immediately or phased out at the end of the school year.

2.2 The NYCDOE Teacher Transfer System

Since 2005, NYCDOE's staffing has been built around the principle of "mutual consent," in which teachers and principals must agree to all teacher placements. This means that the effects estimated in this paper are the effects on equilibrium matches within a market-based system, as opposed to, say, the effects on how administrators make transfer decisions.

3 Conceptual Framework

Accountability's effect on teachers will depend on how it affects both teachers' preferences over schools and schools' preferences over teachers. For ease of exposition, I focus here on teachers' preferences. Since I find that accountability pressures decrease turnover, suggesting that the changes are mainly to voluntary quits, this is likely to capture the relevant intuition. ${ }^{5}$

Consider the following stylized model describing how teacher i chooses in period t which school to work in, $s_{i t}$, to maximize her utility:

$$
\begin{equation*}
\max _{s_{i t} \in \mathbf{S}\left(a_{i}, g_{s_{i t-1}}\right)} U\left(g_{s_{i t}} \mid a_{i}\right)=\max _{s_{i t} \in \mathbf{S}\left(a_{i}, g_{s_{i t-1}}\right)} U\left(A\left(g_{s_{i t}}\right), P\left(g_{s_{i t}}\right) \mid a_{i}\right) \tag{1}
\end{equation*}
$$

[^4]I assume here that teacher i 's utility U from teaching at school $s_{i t}$ depends on the teacher's time-invariant quality a_{i} (proxied in the empirical work with teacher value-added) as well as on the school's end-of-year achievement, $A\left(g_{s_{i t}}\right)$, and the school's prestige, $P\left(g_{s_{i t}}\right)$, both of which depend on the grade received by the school coming into period $t, g_{s_{i t}}$. Utility is weakly increasing in both achievement and prestige; that is, $\frac{\partial U}{\partial A} \geq 0$ and $\frac{\partial U}{\partial P} \geq 0$. I do not include other school characteristics since, in the empirical analysis, I will be comparing schools on the threshold of grades that were thus ex ante identical.

I assume prestige is increasing in a school's grade $\frac{\partial P}{\partial g}>0$. However, end-of-year achievement is weakly decreasing in a school's grade $\left(\frac{\partial A}{\partial g} \leq 0\right)$: this assumption captures the fact that many papers have found that lower accountability grades can incentivize schools to improve their achievement (Carnoy and Loeb, 2002; Hanushek and Raymond, 2005; Chiang, 2009; Rockoff and Turner, 2010).

The teacher's choice set of schools to work in, \mathbf{S}, is assumed to depend on the teacher's ability, a_{i}, as well as on the grade received by the school at which teacher i was teaching in period $t-1, g_{s_{i t-1}}$. This captures the fact that teachers coming from schools that received high (low) accountability grades may be seen as more (less) desirable to hire. The choice set also includes the option of leaving the district.

Thus, in period t, teacher i will leave school $s_{i t-1}$ (the school that she was teaching at in period $t-1$) if she could get higher utility from teaching at a different school that is in her choice set, i.e., if the following condition is satisfied: ${ }^{6}$

$$
\begin{equation*}
\mathbf{1}\left(U\left(A\left(g_{s_{i t}}\right), P\left(g_{s_{i t}}\right) \mid a_{i}\right)<\max _{s_{i t} \in\left[\mathbf{S}\left(a_{i}, g_{s_{i t-1}}\right)-s_{i t-1}\right]} U\left(A\left(g_{s_{i t}}\right), P\left(g_{s_{i t}}\right) \mid a_{i}\right)\right)=1 \tag{2}
\end{equation*}
$$

where $\mathbf{1}$ is the indicator function.
Now, consider two schools: One, s^{H}, which received a high grade, g^{H}, coming into period t, and one, s^{L}, that received a low grade, g^{L}. Imagine that the schools have identical distributions of teacher ability a_{i} in the pre-period, $t-1$, which again matches the empirical analysis which compares schools that are ex ante identical but received different accountability grades. In that case, inspection of equation (2) yields the intuitive result that, if turnover decreases at the school which receives a lower accountability grade, it could reflect two mechanisms (which are not mutually exclusive):

1. $U\left(A\left(g^{L}\right), P\left(g^{L}\right) \mid a_{i}\right)>U\left(A\left(g^{H}\right), P\left(g^{H}\right) \mid a_{i}\right)$ (the Teacher's Choice Hypothesis):

Teachers prefer to teach in schools that received lower accountability grades.
2. $\mathbf{S}\left(a_{i}, g^{L}\right) \subset \mathbf{S}\left(a_{i}, g^{H}\right)$ (the Stigma Hypothesis):

[^5]The quality of a teacher's outside options decrease when the teacher's school receives a lower accountability grade.

Since prestige increases with accountability grades $\left(P\left(g^{H}\right)>P\left(g^{L}\right)\right)$ while performance decreases $\left(A\left(g^{H}\right) \leq A\left(g^{L}\right)\right)$, the teacher's choice hypothesis requires that, when comparing a teacher's utility at a lower-graded school to her utility at a higher-graded school, the increase due to higher performance outweighs the decrease due to lower prestige.

One way to try to distinguish between the stigma and teacher's choice hypotheses is to see if they have different implications for high-quality and low-quality teachers. Under the teacher's choice hypothesis, the relative turnover by teacher quality would depend on $\frac{\partial}{\partial a_{i}}\left(U\left(g^{L} \mid a_{i}\right)-U\left(g^{H} \mid a_{i}\right)\right)$, i.e., on how the gap in utility between teaching in low-graded relative to high-graded schools depends on teacher quality. If we assume that high-quality teachers place a larger value on student performance, that is, that $\frac{\partial^{2}}{\partial A \partial a} U>0$ (e.g., because high quality reflects a greater preference for high performance), turnover should fall more for high-quality teachers than low-quality teachers under this hypothesis. ${ }^{7}$

In contrast, under the stigma hypothesis, the relative turnover would depend on $\frac{\partial}{\partial a_{i}}\left(\max _{s_{i t} \in\left[\mathbf{S}\left(a_{i}, g^{H}\right)-s^{H}\right]} U\left(g_{s_{i t}} \mid a_{i}\right)-\max _{s_{i t} \in\left[\mathbf{S}\left(a_{i}, g^{L}\right)-s^{L}\right]} U\left(g_{s_{i t} \mid} \mid a_{i}\right)\right)$, that is, on whose choice set adjusts more in response to receiving a lower accountability grade. We might expect that the choice sets of low-quality teachers would shrink more than those of high-quality teachers, who may have better individual performance records to differentiate themselves on the job market. In this case, the stigma hypothesis would imply the opposite of the teacher's choice hypothesis. I discuss these implications further in Section 7.

Extensions to the Framework

Although the factor that made teachers choose lower-graded schools, A, was labeled above as student performance, A could instead represent any improvement that accountability pressures induce in lower-graded schools and that teachers value. For example, accountability pressures could increase collaboration between teachers as teachers work to improve. Or, school leaders at lower-graded schools could work harder to retain their teachers by improving their non-financial compensation, or by empowering their teachers. Teachers could even prefer the challenge of the harder grade. It is reasonable to expect that many of these changes would also be valued more by higher-quality teachers (e.g., school leaders likely work harder to retain their high-quality teachers than their low-quality teachers; anecdotally, accountability reforms can cause school leaders to differentially enfranchise their high valueadded teachers); if so, then the implications are the same as the implications of the teacher's choice hypothesis discussed above.

[^6]The empirical analysis also examines how accountability grades affect the quality of teachers joining a school. Generating predictions about this requires moving beyond the very simple framework above and making assumptions about the matching process and schools' preferences over teachers (i.e., on how the choice sets \mathbf{S} are determined). If we assume that true teacher ability is unobservable but that all schools observe a common noisy proxy for ability, ${ }^{8}$ then the teacher's choice hypothesis would imply that joiners to low-graded schools would be of higher quality than joiners to high-graded schools, whereas the stigma hypothesis would imply the opposite. ${ }^{9,10}$

These joiner predictions implicitly abstract from recruiting; however, accountability pressures could also incentivize low-graded schools to put more effort into recruiting high-quality teachers. As long as schools' recruiting efforts for teachers increase with the teacher's rank order, we can think of this as being a variant of the teacher's choice hypothesis. ${ }^{11}$

4 Data

I use data from several sources within the NYCDOE. The accountability data come from publicly available files downloaded from the NYCDOE website. The data contain each school's accountability score and breakdown, including all components used to calculate the score, as well as NCLB status, quality review rating, and school identifiers. The data are available for the 2007-08 through 2011-12 school years (where the school year given is the school year in which the accountability grade was released; report cards are released in fall of the school year and depend on performance results from the previous school year.)

The second data source is demographic and exam performance data at the student level, provided by the NYCDOE. Both datasets run from the 1998-99 until the 2008-09 school year.

[^7]The demographic data include gender, ethnicity, free-lunch status, and special-education status. The exam performance data files include student scores on Mathematics and ELA tests administered statewide in 4th and 8th grade, and administered citywide by the NYCDOE in the 3rd, 5th, 6th, and 7th grades.

The teacher data come from the NYCDOE payroll system and contain teacher experience and salary schedule information, as well as school and grade level identifiers, from the 19992000 through the 2009-2010 school years.

I study schools in the first two years that accountability grades were released: the 2007-08 and 2008-09 schoolyears. ${ }^{12}$ My sample includes all non-charter elementary, K-8, and middle schools that received accountability grades in the 2007-08 or 2008-09 school years. ${ }^{13}$ I exclude all school-year observations where the school closed in the following year (5 observations), and 6 school-year observations with missing data in the teacher files. To try to remove schools undergoing restructuring, I exclude school-year observations from my base sample that have decreases in staff size or enrollment in the top percentile, ${ }^{14}$ but also examine robustness to this exclusion. Descriptive statistics about the schools included in the sample are presented in Panel A of Table 1. The sample includes 1,005 unique schools and 1,965 school-year observations.

To estimate teacher value-added, I created a matched-panel of student and teacher data. ${ }^{15}$ I use the approach that has been experimentally validated in the economics of education literature (Kane and Staiger, 2008). Appendix A describes the estimation in detail. (Recent literature, e.g., Rothstein (2010), has highlighted the potential biases of the value-added approach; see the Appendix for discussion of why these biases should not be problematic in the RD framework used here.) One of the primary strengths of NYCDOE data is that the matched-panel data exists for eight years prior to the institution of accountability. This allows me to estimate value-added using data from the pre-accountability period only and thus not conflate teacher quality with responses to accountability. As a result, teacher valueadded is only available for teachers who taught in tested grades before 2008.

[^8]Panel B of Table 1 presents descriptive statistics from the sample of teachers teaching in sampled schools in the 2007-08 and 2008-09 school years. The two-year panel contains 61,133 unique teachers and 111,090 teacher-year observations. Roughly 27% of the teachers have math value-added data. ${ }^{16}$

Baseline teacher value-added increases slightly with the accountability grade received, with mean value-added at A schools roughly 0.1 standard deviations (of the teacher quality distribution) higher than mean value-added at F schools for both math and ELA. Both teacher experience and teacher education also increase with the accountability grade received.

Based on guidance from the NYCDOE, to calculate turnover, I define a teacher as having left a school if she leaves between May of one school year and November of the subsequent school year, since the (rare) midyear departures tend to reflect emergencies (e.g., sickness, birth) and would increase noise. I also examine robustness to this definition.

Panel A of Table 1 shows that there is 10.7% teacher turnover across the sample period, with turnover increasing across accountability grades from 9.5% at A schools to 14.5% at F schools. Eight percent of the turnover is teacher retirements, 32% is transfers made between teaching positions in the NYCDOE, and 60% reflects departures from NYCDOE. ${ }^{17}$

5 Empirical Strategy

The RD approach adopted in this paper is similar to much of the literature studying the effects of accountability grades (e.g., Rouse et al. (2007), Chiang (2009)), and most closely follows Rockoff and Turner (2010), who use a similar specification to estimate how the NYCDOE accountability reforms affected short-run achievement. I estimate equations of the following form:

$$
\begin{equation*}
Y_{j t}=\alpha+\beta_{g} I_{j, t-1}^{g}+\gamma h\left(S_{j, t-1}\right) * I_{j, t-1}^{t y p e}+\varepsilon_{j t} \tag{3}
\end{equation*}
$$

where j indexes teachers, t indexes time, g indexes accountability grades, $Y_{j t}$ is the outcome variable of interest (e.g., an indicator that the teacher left the school), $I_{j, t-1}^{g}$ is an indicator for the grade received by a school, $S_{j, t-1}$ is the school's accountability score, $h()$ represents a flexible control function, $I_{j, t-1}^{\text {type }}$ is an indicator for school type (because the grade thresholds are all specific for school types), and $\varepsilon_{j t}$ is a mean 0 error term. My base specification for $h()$ uses a locally linear control function and a rectangular kernel, using data within a small

[^9]bandwidth of the grade threshold only. All standard errors are clustered at the school level.
The identification assumption is that, conditional on the continuous metric underlying the grade, the grade itself is exogenous. Given the use of fixed grade thresholds and the fact that the underlying components of the score are all publicly verifiable and difficult to manipulate precisely (like test scores), this assumption is likely to hold in this context. ${ }^{18}$ Unlike in most RD settings, one could also be concerned about ex post "gaming" here: If administrators took accountability grades into account when selecting schools for closure, this would violate the identification assumption. However, since only one of the schools that was closed during the years of my analysis falls within a 10 point bandwidth of any grade threshold (the largest bandwidth used in the analysis), ex post selection is not driving the results.

As with all RD estimation, the treatment effect under estimation is local to schools adjacent to the grade thresholds, and does not capture any universal effects of accountability.

Appendix B discusses bandwidth selection for the RD analysis.

Density Evidence

The RD design depends crucially on the assumption that there is no manipulation of school scores near the cutoff. Figure 1 plots accountability scores on the X-axis and, on the Y-axis, the number of elementary schools in the 2007/2008 school year that received accountability scores within a 0.5 point bandwidth; the graphs for other schooltypes and years are in the Appendix. It is reassuring that there is not excess density to either side of any of the thresholds. ${ }^{19}$ I also perform the density test suggested in McCrary (2008) and do not find evidence of bunching. ${ }^{20}$

[^10]
6 Results

6.1 Base Turnover Results

I begin with graphical evidence. The left column of Figure 2 plots average residual turnover against accountability scores. Each graph shows a separate grade threshold. To create residual turnover, I regress an indicator for whether a teacher left a school on a vector of covariates. ${ }^{21}$ I then group schools according to their accountability scores relative to the grade threshold, and plot the average (residual) turnover at the end of the school year on the average accountability score received at the beginning of the year. Each dot represents 10 schools (it is difficult to see the patterns without some local averaging). For ease of interpretation, I also plot a locally linear regression line in the figures, fitted separately on either side of the grade threshold.

At the A / B and B / C thresholds, there is virtually no discontinuity in the data or regression line at the grade threshold. In contrast, at the C / D and D / F thresholds, there appears to be a small break in turnover at the grade threshold itself: lower-graded schools have locally lower turnover.

To test for the significance of these results, columns (1)-(3) of Table 2 present the regression results, calculated from estimation of equation (3) using an indicator for whether a teacher left the school at the end of the school year as the dependent variable. Each row contains the results from a separate regression. The first four rows use schools within a 6 point bandwidth of a single grading threshold (e.g., $A / B, B / C$), and control for a linear term in the accountability score, interacted with schooltype, accountability grade, and year. Because of the lower density of schools at the C / D and D / F thresholds, the last row of the table groups the schools from the C / D and D / F thresholds to increase power; because there is a marginal increase in the negative pressure placed on schools by the accountability system at both of those thresholds, it is reasonable to expect they might experience similar effects. ${ }^{22}$ All coefficients presented are the coefficient on the indicator that a school received the lower grade at their grade threshold. Column (1) does not control for any covariates. In columns (2) and (3), I add in vectors of school-level and teacher-level covariates. ${ }^{23}$ Reassuringly, the

[^11]estimates are relatively invariant to the addition of covariates, especially in the regressions with more observations (the $\mathrm{A} / \mathrm{B}, \mathrm{B} / \mathrm{C}$, and grouped $\mathrm{C} / \mathrm{D}-\mathrm{and}-\mathrm{D} / \mathrm{F}$ results).

Consistent with the graphical evidence, the regressions show that grades do not affect turnover at the A / B and B / C thresholds: none of the estimates are statistically distinguishable from zero, and all are small in magnitude (0.4 and 0.3 percentage points, respectively, in col.(3)). These are relatively precise zeros; the 95% confidence intervals for col. (3) rule out changes of 60% of the within-school standard deviation in turnover in the 8 years prior to accountability (3.6\%), or 25% of the cross-school standard deviation (7.9%).

In contrast, at the bottom end of the grade distribution, lower accountability grades decrease turnover. The grouped threshold result in col. (3) indicates that a lower grade is associated with 3.7 percentage points lower turnover, which is statistically significant at the 1% level. The coefficients for the thresholds estimated separately are similar in magnitude, with point estimates of -2.6 percentage points (significant at the 5% level) and -4.1 percentage points for the C / D and D / F thresholds, respectively. ${ }^{24}$

A 3.7 percentage point effect is substantial from an economic perspective: It is larger than the average turnover gap between D and A schools during my sample period, and is equal to almost 30% of the average school turnover for sample schools in the 8 years preceding accountability (13\%). Placing it in the context of the literature on teacher mobility, Hanushek et al. (2004) show that a 10% salary increase decreases teacher turnover for women from 0 to 1.2 percentage points (the vast majority of my sample are female). Thus, even their maximum estimates imply that receiving a lower grade at the C / D or D / F thresholds decreases turnover as much as a 30% increase in salaries would. ${ }^{25}$

This decrease in turnover should provide a direct benefit to low-graded schools, since turnover has been shown to decrease student achievement (Ronfeldt et al., 2011).

I examine the robustness of the turnover results in Section 8.1.

Turnover Placebo Test

The credibility of the RD design rests on the assumption that schools are as if randomly assigned at the grade thresholds. To examine the validity of this assumption, I also perform a placebo test, checking whether there are any baseline differences in teacher outcomes
accountability began. For the teacher covariates, I use controls that the literature has shown to influence teacher turnover, including fixed effects for teacher experience and age, teacher education level, and teacher gender.
${ }^{24}$ Note that the D/F threshold result has similar magnitude but becomes significant at the 5% level if we use a more parsimonious specification that constrains the effect of the running variable to be the same across school years.
${ }^{25}$ The literature has also linked student characteristics with teacher mobility, with Scafidi et al. (2007) showing that the percentage of students who are black is the strongest predictor of teacher turnover. Using their estimates, receiving a lower accountability grade decreases turnover as much as decreasing the percentage of black students in a school by one standard deviation.
between schools on either side of grade thresholds. The right column in Figure 2 presents these placebo results, plotting average residual turnover in a given year on the accountability score received by a school in the subsequent school year. A break in the regression line at the grade thresholds in the year before schools received grades would be concerning. Reassuringly, the regression line looks very flat at the A / B and B / C thresholds. There are small breaks at the C / D and D / F thresholds, but they are relatively small, and, at the C / D threshold, go the opposite direction of the actual RD results. Column (4) of Table 2 presents the placebo regression results: reassuringly, none of the placebo coefficients are statistically significantly different from 0 .

6.2 Heterogeneity in Turnover by Teacher Quality

The overall turnover results are surprising in the context of the earlier literature (Clotfelter et al., 2004; Feng et al., 2010). To fully understand the implications for low-performing schools, however, I now look at heterogeneity in turnover by teacher quality: if, say, lowperforming teachers are the ones whose turnover falls, then accountability could still make low-performing schools worse off.

I use mathematics value-added as my value-added measure since the literature has shown that teacher fixed effects in mathematics tend to have more predictive power over future student outcomes than ELA fixed effects (e.g., Jacob and Lefgren (2008), Jackson and Bruegmann (2009)). This probably reflects the fact that, while most students learn language skills from many sources (e.g., their parents, the television), the primary source of math knowledge for many students is their teachers (Gates Foundation, 2010). ${ }^{26}$

Table 3 presents results from estimating equation (3) separately by different subsamples. Columns (1) and (2) replicate the main findings from Table 2 for the full sample (for comparison) and then for the sample of teachers with math value-added data only. The results in the value-added sample are consistent with the full sample at the C / D threshold; the coefficient at the D/F threshold is actually small and positive, but with a large standard error due to the small sample size. ${ }^{27}$

Columns (3) and (4) of Table 3 present the quality results, showing the results separately for teachers with below-median and above-median math value-added. At the C/D and D/F

[^12]thresholds, turnover fell more among high-quality teachers at lower-graded schools, with differences of $0.9,7.9$, and 5.5 percentage points at the $\mathrm{C} / \mathrm{D}, \mathrm{D} / \mathrm{F}$, and grouped thresholds. At the grouped threshold, high value-added teachers entirely drive the negative turnover result, since the point estimate for below-median value-added teachers is actually near 0 (although not statistically significant), while the effect for above-median value-added teachers is 5.5 percentage points more negative and statistically significant at the 10% level. ${ }^{28,29}$

Thus, accountability may help low-graded schools at the bottom of the grade distribution by not just decreasing turnover, but differentially decreasing turnover of high-quality teachers. To assess the full effects on teacher quality, I now compare the quality of the teachers that joined the school to that of those who left.

6.3 Quality of Joiners Relative to Leavers

The joiner and leaver quality results are presented in Table 4 and Figures 3 and 4. The left columns of the figures plot the average teacher value-added of leavers (Fig. 3) and joiners (Fig. 4) against school accountability scores. Each dot represents 10 schools. Unfortunately, the density of leaving and new teachers with value-added data at the D / F threshold is too low for these analyses, and so I omit that threshold from the analyses. ${ }^{30}$ Table 4 presents the corresponding regressions, calculated by estimating equation (3) using teacher value-added as the dependent variable and including only the leavers or the joiners as the sample. The regressions use a 3 point bandwidth.

At the bottom end of the grade distribution, previously we saw that turnover decreased more for high-quality teachers, but that the average differences at the C / D threshold were

[^13]small. Consistent with that, in Figure 3, one can see a small jump upwards in valueadded among the leavers when crossing from the C to D thresholds, and Table 4 shows a negative coefficient estimate for D relative to C schools, but the magnitude is small and not statistically significant (Cols. (1) and (2)).

Turning to the joiners, Figure 4 shows that the joiners' value-added is higher on the D side of the threshold than the C side. Columns (3) and (4) of Table 4 confirm that accountability helped lower-performing schools attract higher-quality teachers: the joiners to D schools have, on average, over 1 std. dev. higher quality than those that join C schools, which is statistically significant at the 5% level and robust to the inclusion of covariates

I now turn to the top end of the grade distribution (A/B) and (B/C). Consistent with there being no turnover effects at these thresholds, Figure 3 shows that there is almost no jump in the value-added of leavers. However, the joiner results (Fig. 4) look different, especially at the B / C threshold: joiners to lower-graded schools have lower value-added. Table 4 verifies that there is no significant change in leaver value-added at the A / B and B / C grade thresholds (Cols. (1) and (2)), ${ }^{31}$ but that there is a large decrease in joiner quality at lower-graded schools. Joiners to B schools are of 1.0 standard deviations lower quality than joiners to A schools, with an even larger effect (1.6 std. dev.) at the B/C threshold (Cols. (3) and (4)). The estimates are significant at the 1% and 5% levels, respectively.

The joiner results at the A / B and B / C thresholds are surprising since there was no effect on leavers. I discuss potential explanations and mechanisms for this finding in Section 7.

Columns (5) and (6) show regressions where the dependent variable is the value-added of joiners relative to leavers. Consistent with the previous results, the coefficients are negative at the A / B and B / C thresholds, and positive at the C / D threshold.

Finally, in columns (7) and (8), I use the year-to-year change in school-average teacher math value-added as the dependent variable. As expected, the overall staff quality falls at the lower-graded school at the A / B and B / C thresholds, and rises at the C / D threshold. However, the magnitudes are small and not statistically significant. The magnitudes are small both because overall quality is a stock variable and the flows in a given year are relatively small, and because many joiners are relatively inexperienced teachers who do not have quality data from the pre-period and so do not affect school averages. If the quality patterns are similar in the sample without value-added data, the overall effects could be much larger than indicated by these estimates.

Together, the results imply that, at the bottom end of the grade distribution, lower accountability grades benefit schools by helping them attract and retain high-quality teachers,

[^14]whereas at the top end of the grade distribution, it harms them by decreasing joiner quality.

Quality placebo tests

The right columns of Figures 3 and 4 present placebo results, plotting the average teacher value-added for the leavers and joiners in a given year against the accountability score received by their school in the year after the teacher left or joined. It is reassuring that there are no large baseline differences. Columns (9) and (10) of Table 4 show the placebo regression results confirming that there are no baseline differences between the value-added of joiners and leavers at any of the grade thresholds.

The robustness of the joiner results is examined in Section 8.2. One caveat to the joiner results is that the value-added sample only represents a small fraction of new teachers (roughly 10%). As a result, one might be concerned that the effect, in part, reflects a compositional effect. ${ }^{32}$ So, I now look at teacher characteristics for which data are available for the full sample.

6.4 Joiner Results for Other Characteristics

Table 5 examines whether accountability grades affected other characteristics of joiner teachers. Columns (1) - (4) show results using experience as the dependent variable. There are no significant effects at the $\mathrm{A} / \mathrm{B}, \mathrm{B} / \mathrm{C}$, or C / D thresholds, but there is a large effect at the D / F threshold: Joiners to F schools are 45 percentage points more likely to have at least 2 years of experience, and 33 percentage points more likely to have at least 4 years of experience, than joiners to D schools. The effects are significant at the 5% and 1% levels, and robust to using different experience measures (e.g., at least 3 years, 5 years, etc.). ${ }^{33}$ Although experience cannot proxy for value-added, it is positively correlated, especially in the early years of teaching (Rivkin et al., 2005; Rockoff, 2004), thus suggesting that the value-added results at the C / D threshold may extend to the D / F threshold. The teacher education results presented in Columns (5) and (6) are somewhat different: lower-graded schools hire joiners with lower levels of education at the A / B and C / D thresholds, with no effects at the B / C and D / F thresholds. Since the correlation between education and having a master's degree is not statistically significant in the NYCDOE data and non-existent conditional on experience, I do not see these results as inconsistent with the value-added results. ${ }^{34}$

[^15]
Joiner Characteristics Placebo Test

Columns (7) through (9) of Table 5 present placebo regressions using joiner characteristics in the year before a school received a given accountability grade. Two of the coefficients for whether a teacher has at least 4 years experience are significant at the 10% level, but none at the 5% level. Since (1) it is only two of the fifteen coefficients presented; (2) the placebo results are not robust to the use of other measures (e.g., at least 5 years experience), and, (3) the results are not significant for the grades in which we saw results, I do not see these placebo results as cause for concern.

6.5 Summary of Results

At the bottom end of the grade distribution, accountability grades caused teacher turnover to fall at lower-graded schools, with larger decreases for high-quality teachers than low-quality teachers. They also improved the quality of joiners. These results thus provide a much more hopeful story for accountability than many policymakers have feared, implying that, through their labor market effects, accountability systems may actually benefit, not harm, the most disadvantaged schools. In contrast, at the top end of the grade distribution, accountability had no effect on turnover or the quality of leavers, but did decrease the quality of joiners.

In the next section, I examine which mechanisms could explain these findings.

7 Mechanisms

Returning to the framework presented in Section 3, there are two main (non-mutuallyexclusive) hypotheses that could explain the finding that receiving a lower accountability grade decreases turnover at the C / D and D / F thresholds:

1. Teacher's Choice Hypothesis: Teachers actively choose to stay in schools that have lower accountability grades.
2. Stigma Hypothesis: Lower accountability grades attach a negative stigma to the teachers at the school, thereby decreasing the quality of their outside options.

In the following sections, I provide further motivation for why the teacher's choice hypothesis might hold, evaluate how the evidence presented in Section 6 aligns with the different hypotheses, and then provide further tests of the hypotheses.

7.1 Motivating the Teacher's Choice Hypothesis

One potential reason why teachers might choose to stay in lower-graded schools is if lower accountability grades incentivize schools to improve their performance, and teachers like to teach in schools where performance is improving. Indeed, Rockoff and Turner (2010) show us
that, in the first year of accountability in the NYCDOE, performance improvements occurred at the D / F threshold even within the same year that the grade was assigned. Columns (1) through (4) of Table 6 replicate Rockoff and Turner (2010)'s results using both the first and second years of accountability data ${ }^{35}$ by presenting results from estimation of equation (3) where each observation is a school in a given year, the dependent variable is the school's average standardized English (columns 1 and 2) and math (columns 3 and 4) test scores, and the regressions are estimated with and without controls. Receipt of a lower grade caused F schools to have higher performance than D schools at the threshold. Recall that these improvements happened before teachers made turnover decisions (the official time period for turnover decisions is May through August), and so could influence turnover. Although we do not see the same test score increases at the C/D schools in Table 6 (the coefficient estimates are in fact negative but not significant at the 5% level), it is possible that similar cultural or instructional shifts happened at these schools but, because those schools faced lower accountability pressures, the changes were more minor and so did not cause short-run test score improvements (a theory consistent with the smaller turnover effect at the C/D threshold relative to the D / F).

As discussed in Section 3, there are many other ways besides performance improvements that accountability pressures could induce schools to become more attractive to teachers and thus drive the teacher's choice hypothesis (e.g., school leaders could improve teachers' nonfinancial compensation). I will not be able to separately identify these in the data. There are also other potential reasons besides these types of "improvement stories", but I see these as more plausible and so focus on them below. ${ }^{36}$

[^16]
7.2 Alignment of Previous Evidence with Hypotheses

I now summarize how the evidence presented in Section 6 aligns with the different hypotheses. The finding that turnover decreased at lower-graded schools at the bottom but not the top of the grade distribution could be easily explained by the teacher's choice hypothesis if the change in pressure applied by the accountability system as one crosses a grade threshold (and the resulting change in school performance) was larger at the bottom end. This seems plausible based on the institutional guidelines and the Table 6 results. In contrast, although certainly possible, it is not clear why one would expect ex ante that the change in stigma in moving across grade thresholds would be larger at the bottom end of the grade distribution than at the top end, as the stigma hypothesis would require.

The teacher's choice hypothesis is also consistent with the second finding - that turnover fell more among high-quality teachers than low-quality teachers at the bottom end of the grade distribution - since high-quality teachers may place higher value on school performance improvements than low-quality teachers, benefit more from the enfranchisement of high value-added teachers, and/or are the focus of principals' increased retention efforts. In contrast, if we believe that high-quality teachers can better differentiate themselves from a stigmatized school on the job market, the stigma hypothesis is less consistent with this finding.

Third, the teacher's choice hypothesis would imply that, at the grade thresholds where we saw turnover effects, joiners to lower-graded schools would be of higher quality, which is exactly what we see. This could either reflect the schools becoming more attractive or school leaders working harder to recruit. The stigma hypothesis would have implied the opposite.

Either theory is consistent with the fact that, at the top end of the grade distribution, where we saw no turnover effects, joiner quality is lower. Under the teacher's choice hypothesis, this would imply that the fall in prestige was more salient to individuals seeking jobs who may start their job search by looking up school grades- than incumbents - who know much more about a school than its accountability grade. (The teacher's choice hypothesis is not that lower grades do not come with stigma but rather that that stigma is not the primary factor causing a fall in turnover at lower-graded schools.)

Thus, I think the evidence presented so far is more aligned with the teacher's choice hypothesis, although the arguments are somewhat speculative. In the next section, I provide additional suggestive evidence supporting that hypothesis.

7.3 Additional Tests of the Hypotheses

Turnover: Destinations

The stigma and teacher's choice hypotheses have different implications for how the results will vary by teachers' destinations. Since external (non-NYCDOE) employers are unlikely to look up school accountability grades, stigma should primarily affect intra-district transfers, whereas the teacher's choice hypothesis could affect all types of turnover. Table 7 breaks down the turnover results by destination, with column (1) replicating the overall result from Table 2, and columns (2) through (4) showing the results separately for retirement, transfers between NYCDOE schools, or leaving the NYCDOE. ${ }^{37}$ The turnover result is driven almost entirely by fewer teachers leaving NYCDOE, which accounts for roughly 80% of the decrease in turnover at lower-graded schools. This is larger than the share of overall turnover driven by departures from the NYCDOE (60\%). In contrast, within-district transfers (column 3) represent a smaller percentage of the effect than of overall turnover. (Note that in neither case can we reject equality.) In addition, we see a statistically significant effect on retirements at the D / F threshold, which we would not expect to be affected by stigma. Thus, the table is more consistent with the teacher's choice hypothesis.

Relationship Between Performance and Turnover

The argument that performance improvements may underlie the teacher's choice hypothesis depends on the assumption that teachers prefer to teach in schools that have improved their performance in response to accountability. We can evaluate how plausible this assumption is by testing whether turnover falls at schools that improve their achievement. (Note that we do not want to look at RD estimates of the effects of grades: the hypothesis is not that the effect of school improvements differs by grade, but rather that grades cause school improvements which in turn cause lower turnover). Columns (1)-(3) of Table 8 present results from regressions of teacher turnover at the end of the school year on the school's average student achievement in the same year. Across the grade distribution, we see that turnover is lower when schools have higher achievement (conditional on prior achievement), providing suggestive evidence that performance improvements could be one mechanism through which lower accountability grades decrease turnover. ${ }^{38}$

[^17]A second test is to look at whether schools that improve attract higher-quality teachers. Columns (4)-(6) of Table 8 show regressions of joiner value-added on school achievement. At the bottom end of the grade distribution, the schools that improved more have higher joiner quality.

Note that this evidence does not help distinguish between the potential channels underlying the teacher's choice hypothesis (e.g., performance improvements vs. recruitment efforts) because they are likely highly correlated.

8 Robustness of the RD Results

8.1 Robustness of the Turnover Results

Table 9 shows that the turnover findings are not due to the particular RD specification used. Columns (1) through (8) present the results using linear specifications with bandwidths of 5 , 6,7 , and 10 points, and the results are very similar. Columns (9) through (12) show that the results are qualitatively similar if one uses a parametric regression function (either quadratic or cubic in the accountability score, estimated separately by grade using a bandwidth of 10 points), especially the $\mathrm{A} / \mathrm{B}, \mathrm{B} / \mathrm{C}$, and grouped $\mathrm{C} / \mathrm{D} \mathrm{D} / \mathrm{F}$ results. Columns (13) and (14) show robustness to controlling linearly for all of the components of the accountability score separately instead of the composite score. ${ }^{39}$

Given the noise in the graphs, one might be concerned that there are random breaks in the regression function. Per Lee and Lemieux (2010), I perform a specification test, testing for discontinuities at points other than the grade thresholds, and present p-values in Table 9. ${ }^{40}$ Reassuringly, the test statistic is never rejected for any of the locally linear specifications. It is rejected in a few quadratic and cubic specifications; since this test can also be used to evaluate the appropriate control function, this suggests that the linear specification is correct here.

Columns (1) and (2) of Appendix Table 1 demonstrate robustness to the sample selection criteria, showing that the results are qualitatively similar, if statistically weaker, when one includes outliers in the sample, while columns (3) and (4) show that the results are quantitatively similar when midyear transfers are included with end-of-year transfers.

Given the density and placebo tests presented earlier, I do not think that gaming is driving the results. However, looking at the results for 2007-08 and 2008-09 separately can
column (3) adds accountability score controls.
${ }^{39}$ This is the approach adopted by Rockoff and Turner (2010), but I do not do this in my base specifications since I use small bandwidths and so a more parsimonious specification is preferable.
${ }^{40}$ Specifically, I test for whether the discontinuities at all 1 point intervals from the grade threshold are all equal to zero. Results are robust to using different interval widths for the test. Note that this test can also be seen as a test for whether the regression function is well approximated by the linear function within the bandwidth.
also provide more insight: 2007-08 was the first year of the accountability system, and so it is especially unlikely that schools could have manipulated their scores around the cutoffs in that year. ${ }^{41}$ Columns (5)-(6) of the table show that, reassuringly, the results are qualitatively similar, but much noisier and less robust (as would be expected given the smaller sample sizes), when one estimates equation 3 separately for the 2007-08 and 2008-09 school years.

Appendix Table 2 also demonstrates that the observed turnover effects do not result mechanically from a change in staff size brought on by accountability grades. ${ }^{42}$

8.2 Robustness of the Joiner Quality Results

Table 10 examines the robustness of the joiner quality results. Columns (1) through (6) show that the estimates are relatively stable across different bandwidths. Columns (7) through (10) show the results using quadratic or cubic control terms. The B / C result is also robust to these specifications; the A / B and C / D results maintain their signs, but lose some of their magnitude and statistical significance. Columns (11) and (12) show that the qualitative findingsr are robust to using the components of the accountability score instead of the composite score. Columns (13) - (16) demonstrate robustness to the functional form used for value-added, as the results are qualitatively similar using an indicator for a teacher being above median value-added or Empirical Bayes estimates of value-added as the dependent variables.

I also perform the same specification test described in section 8.1 (Lee and Lemieux, 2010). The p-value for the test statistic is above 0.10 for all specifications.

9 Conclusion

In this paper, I present evidence that accountability pressures impact the teacher labor market. At the bottom end of the grade distribution (the C/D and D/F thresholds), accountability positively impacts lower-graded schools by decreasing turnover, especially among highquality teachers, and by increasing the quality of joiners. A plausible explanation is that

[^18]teachers actively choose to stay in the lower-graded schools, perhaps because their schools' academic performance have improved, or because their school leaders put more effort into attracting high-quality teachers. In contrast, at the top end of the grade distribution (the A / B and B / C thresholds), where the accountability pressures are relatively low, I find that receiving a lower accountability grade does not change the quantity or quality of the leavers, but does decrease the quality of the joiners. This could imply that the nominal accountability grade matters more to joiners than leavers because they have less other information about school quality, and that, all else equal, teachers prefer schools with higher nominal grades.

This paper presents a hopeful message for accountability by providing evidence against one of the major concerns with accountability systems: that they would harm disadvantaged schools through the teacher labor market. Since this finding stands in contrast to much of the earlier literature, especially Feng et al. (2010) and Clotfelter et al. (2004), one area for further research is to investigate the reasons for the differences, and in particular, the extent to which they reflect the specific context and design features of the accountability system (e.g., the timing of when grades are released, whether the incentives are targeted at the school or teacher levels). Better understanding of these features would enable policymakers to continue to design accountability systems that do not have negative equity effects.

References

Boyd, D., H. Lankford, S. Loeb, J. Rockoff, and J. Wyckoff (2008). The narrowing gap in New York City teacher qualifications and its implications for student achievement in high-poverty schools. Journal of Policy Analysis and Management 27(4), 793-818.

Boyd, D., H. Lankford, S. Loeb, and J. Wyckoff (2008). The impact of assessment and accountability on teacher recruitment and retention: Are there unintended consequences? Education Finance and Policy 1 (36).

Carnoy, M. and S. Loeb (2002). Does external accountability affect student outcomes? A cross-state analysis. Educational Evalation and Policy Analysis 24 (4), 305-331.

Chetty, R., J. Friedman, and J. Rockoff (2011). The long-term impacts of teachers: Teacher value-added and student outcomes in adulthood. Technical report, National Bureau of Economic Research.

Chiang, H. (2009). How accountability pressure on failing schools affects student achievement. Journal of Public Economics 93(9), 1045-1057.

Clotfelter, C., H. F. Ladd, J. L. Vigdor, and R. A. Diaz (2004). Do school accountability systems make it more difficult for low-performing schools to attract and retain high-quality teachers? Journal of Policy Analysis and Management 23(2), 251-271.

Feng, L., D. N. Figlio, and T. Sass (2010, June). School accountability and teacher mobility. National Bureau of Economic Research Working Paper No. 16070.

Gale, D. and L. S. Shapley (1962). College admissions and the stability of marriage. American Mathematical Monthly, 9-15.

Hanushek, E., J. Kain, and S. Rivkin (2004). Why public schools lose teachers. Journal of human resources 39(2), 326-354.

Hanushek, E., S. Rivkin, D. Figlio, and B. Jacob (2010). Generalizations about using valueadded measures of teacher quality. American Economic Review 100 (2), 267-271.

Hanushek, E. A. and M. E. Raymond (2005). Does school accountability lead to improved student performance? Journal of Policy Analysis and Management 24, 297-327.

Jackson, C. and E. Bruegmann (2009). Teaching students and teaching each other: The importance of peer learning for teachers. Technical report, National Bureau of Economic Research.

Jackson, C. K. (2009). Student demographics, teacher sorting, and teacher quality: Evidence from the end of school desegregation. Journal of Labor Economics 27(2), 213-256.

Jacob, B. and L. Lefgren (2008). Can principals identify effective teachers? Evidence on subjective performance evaluation in education. Journal of Labor Economics 26(1), 101136.

Kane, T. J., J. E. Rockoff, and D. Staiger (2008). What does certification tell us about teacher effectiveness? Evidence from New York City. Economics of Education Review 27, 615-631.

Kane, T. J. and D. O. Staiger (2008). Are teacher-level value-added estimates biased? An experimental validation of non-experimental estimates. Unpublished Manuscript, Harvard University.

Ladd, H. F. and A. Zelli (2002). School-based accountability in north carolina: The responses of school principals. Education Administration Quarterly 38, 494-529.

Lee, D. and T. Lemieux (2010, June). Regression discontinuity designs in economics. Journal of Economic Literature 48, 281-355.

Li, D. (2011). School accountability and principal mobility: How no child left behind affects the allocation of school leaders. Working Paper, MIT.

McCrary, J. (2008). Manipulation of the running variable in the regression discontinuity design: A density test. Journal of Econometrics 142(2), 698-714.

Rivkin, S., E. Hanushek, and J. Kain (2005). Teachers, schools, and academic achievement. Econometrica 73(2), 417-458.

Rockoff, J. (2004). The impact of individual teachers on student achievement: Evidence from panel data. American Economic Review, 247-252.

Rockoff, J. and L. J. Turner (2010). Short run impacts of accountability on school quality. American Economic Journal: Economic Policy.

Ronfeldt, M., H. Lankford, S. Loeb, and J. Wyckoff (2011). How teacher turnover harms student achievement. Technical report, National Bureau of Economic Research.

Rothstein, J. (2010, February). Teacher quality in educational production: Tracking, decay, and student achievement. Quarterly Journal of Economics 125(2), 175-215.

Rouse, C. E., J. Hannaway, D. Goldhaber, and D. N. Figlio (2007). Feeling the Florida heat? How low-performing schools respond to voucher and accountability pressure. National Bureau of Economic Research Working Paper No. 13681.

Scafidi, B., D. Sjoquist, and T. Stinebrickner (2007). Race, poverty, and teacher mobility. Economics of Education Review 26(2), 145-159.

Figure 1: Density of Schools Near the Accountability Grade Thresholds

The figure plots the number of elementary schools in 2008 with a given accountability score (specifically, the y-axis shows the number of schools within a 0.5 point bandwidth of the accountability score displayed on the X-axis). The red lines show the 4 grade thresholds (A/B, B/C, C/D, and D/F). Evidence of heaping directly adjacent to the grade thresholds line would be a violation of the regression discontinuity identification assumptions.

Figure 2: Residual Turnover, by Accountability Score

Notes. The left panel plots the actual turnover results, plotting average residual turnover in the summer after a school received an accountability grade on the school's accountability score relative to the grade threshold (so the grade threshold is always displayed at 0). Each dot represents 10 schools. The right panel has placebo turnover results: there, the y-axes show residual turnover in the year before a school received an accountability grade. Residual turnover is calculated by regressing an indicator for leaving a school on a vector of covariates (see table descriptions for list of covariates).

Figure 3: Average Math Value-Added of Leavers, by Accountability Score

Notes. The left panel plots the actual quality results. The x-axes show schools' accountability scores relative to the grade threshold (so the grade threshold is always displayed at 0). The yaxes show the average value-added of leavers (i.e., of the teachers who left their schools in the summer after their schools received the accountability score and grade). Each dot represents 10 schools. The right panel has the placebo results: there, the y-axes show the average value-added of the teachers who left their schools the year before their schools received the accountability score and grade.

Figure 4: Average Math Value-Added of Joiners, by Accountability Score

Notes. The left panel plots the actual quality results. The x-axes show schools' accountability scores relative to the grade threshold (so the grade threshold is always displayed at 0). The y-axes show the average value-added of joiners (i.e., of the teachers who joined schools in the summer after their schools received the accountability score and grade). Each dot represents 10 schools. The right panel has the placebo results: there, the y-axes show the average value-added of the teachers who joined their schools the year before their schools received the accountability score and grade.

Table 1. Descriptive Statistics by Accountability Grade

	Accountability Grade					
	A	B	C	D	F	All Schools
Panel A: Teacher Characteristics						
Teacher Math Value-Added	0.07	-0.03	-0.02	-0.13	-0.01	0.00
Teacher ELA Value-Added	0.07	-0.01	-0.07	-0.03	-0.02	0.00
\% Teachers with Master's Degree	45\%	44\%	43\%	39\%	40\%	44\%
Teacher Experience (years)	9.9	9.9	9.7	9.2	9.3	9.8
\% Teachers that are:						
Female	85\%	83\%	82\%	80\%	81\%	83\%
Black	15\%	20\%	23\%	29\%	29\%	20\%
Non-Hispanic White	65\%	62\%	59\%	51\%	55\%	61\%
Hispanic	14\%	14\%	14\%	16\%	12\%	14\%
Asian	5\%	5\%	4\%	4\%	3\%	5\%
Turnover	0.10	0.11	0.11	0.13	0.15	0.11
Retirement	0.01	0.01	0.01	0.01	0.01	0.01
Intra-district transfers	0.03	0.03	0.04	0.04	0.06	0.03
Exited NYCDOE teacher files	0.06	0.06	0.07	0.07	0.07	0.06
Sample Size: Teacher-Year Observations (Base Sample)						
All	32,733	45,784	23,847	6,611	2,115	111,090
With Math Value-Added Data only	8,697	12,234	6,323	1,829	502	29,585
Sample Size: Unique Teachers (Base Sample)						
All						61,133
With Math Value-Added Data only						15,625
Sample Size: Teacher-Year Observations (New Teacher Sample)						
All	2,378	3,325	1,828	579	203	8,272
With Math Value-Added Data only	209	271	151	40	22	690
Panel B: School Characteristics						
Enrollment	780	833	802	710	553	798
\% Students that are:						
Black	26\%	33\%	38\%	46\%	46\%	31\%
Non-Hispanic White	15\%	15\%	15\%	9\%	11\%	15\%
Hispanic	41\%	40\%	38\%	41\%	38\%	41\%
Asian	17\%	12\%	9\%	4\%	4\%	13\%
Free and Reduced Price Lunch Recipient	2\%	2\%	2\%	1\%	1\%	2\%
Components of Accountability Grades						
Environment Score		8.11	6.94	5.93	5.63	7.96
Performance Score	18.88	15.75	13.93	11.43	10.54	15.88
Progress Score	39.12	29.63	21.98	16.31	6.62	29.48
Additional Credit	4.31	2.36	1.19	0.67	0.32	2.77
Overall Score	72.08	55.87	44.05	34.35	23.11	56.1
Sample Size: Schools						
Number of school-year observations	599	781	410	126	49	1,965
Number of unique schools						1,005

Notes: Data comes from the 2007-08 and 2008-09 school years in the New York City Department of Education. The accountability grade is the school report card grade that was received by the school during fall of the school year.

Table 2. Regression Discontinuity Estimates of the Effect of School Accountability Grades on Teacher Turnover

	Dependent Variable $=1\{$ Teacher Left School $\}$			
	Current Year			Previous Year \qquad (4)
Grade Received By School:	(1)	(2)	(3)	
B relative to A	0.015	0.005	0.004	0.000
	[0.010]	[0.009]	[0.009]	[0.009]
N	30,031	30,029	30,029	29,787
C relative to B	0.002	0.003	0.003	0.014
	[0.010]	[0.008]	[0.008]	[0.009]
N	34,386	34,386	34,386	34,392
D relative to C	-0.009	-0.026	-0.026	0.020
	[0.015]	[0.012]**	[0.012]**	[0.014]
N	15,275	15,275	15,275	15,159
F relative to D	-0.078	-0.050	-0.041	0.014
	[0.026]***	[0.029]*	[0.028]	[0.034]
N	5,392	5,392	5,392	5,405
D relative to C and F relative to D (Grouped)	-0.027	-0.040	-0.037	0.011
	[0.015]*	[0.012]***	[0.012]***	[0.015]
N	17,932	17,932	17,932	17,810
Dependent Variable Mean	0.107	0.107	0.107	0.121
Control for score*year*schooltype*accountability grade?	\checkmark		\checkmark	\checkmark
School covariates?		\checkmark	\checkmark	\checkmark
Teacher covariates?			\checkmark	\checkmark

Notes. Table presents regression discontinuity estimates of the effect of school accountability grades on teacher turnover. In the current year regressions, the dependent variable is an indicator for whether a teacher stopped teaching at the school in the summer after the accountability grade was received; in the previous year (placebo) regression, the dependent variable is an indicator for whether a teacher stopped teaching at the school in the summer before the accountability grade was received. The sample is all teachers teaching in sample schools and each observation represents one teacher in a given year. Regressions use a bandwidth of 6 grade points. Standard errors are reported in brackets and clustered at the school level. School controls include controls for the average previous year's achievement; the percent of students that are black, hispanic, that receive free and reduced price lunch, and that are immigrants; fixed effects for school size; and five-year average school turnover prior to the institution of accountability. Teacher covariates include fixed effects for teacher experience and age, teacher education level, and teacher gender. Data comes from the 2008-09 and 2009-10 school years for the actual regressions and the 2007-08 and 2008-09 school years for the placebo regressions. All data from the New York City Department of Education. * Significant at 10\%; ** significant at 5%; ${ }^{* * *}$ significant at 1%.
Table 3. Heterogeneity in the Regression Discontinuity Turnover Estimates by Teacher Characteristics

Notes. Table presents regression discontinuity estimates of the effect of school accountability grades on teacher turnover, estimated separately for different subsamples to show the heterogeneity.

 Data comes from the 2008-09 and 2009-10 school years for the actual regressions and the 2007-08 and 2008-09 school years for the placebo regressions. All data from the New York City
Department of Education. * Significant at 10%; ** significant at 5%; ** significant at 1%.
Table 4. Regression Discontinuity Estimates of the Effect of School Accountability Grades on the Quality of Leavers and Joiners

		endent Va	iable = Math Valun	alue Added (VA)						
					Current Year				Previous y	(Placebo)
	VA of	vers	VA of J	oiners	VA of Joiners	- Leavers	Change in S	ool Ave. VA	VA of Leavers	VA of Joiners
Grade Received:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
B relative to A	$\begin{gathered} -0.225 \\ {[0.2275]} \end{gathered}$	$\begin{gathered} -0.146 \\ {[0.2199]} \end{gathered}$	$\begin{gathered} -0.744 \\ {[0.323]^{* *}} \end{gathered}$	$\begin{gathered} -0.998 \\ {[0.3769]^{* * *}} \end{gathered}$	$\begin{gathered} -0.550 \\ {[0.3235]^{*}} \end{gathered}$	$\begin{gathered} -0.765 \\ {[0.3808]^{* *}} \end{gathered}$	$\begin{gathered} -0.010 \\ {[0.0161]} \end{gathered}$	$\begin{gathered} -0.019 \\ {[0.0168]} \end{gathered}$	$\begin{gathered} -0.104 \\ {[0.2899]} \end{gathered}$	$\begin{gathered} 0.158 \\ {[0.6418]} \end{gathered}$
N	309	309	88	88	88	88	3,777	3,776	373	120
C relative to B	$\begin{gathered} 0.068 \\ {[0.1992]} \end{gathered}$	$\begin{gathered} 0.113 \\ {[0.2114]} \end{gathered}$	$\begin{gathered} -1.496 \\ {[0.6263]^{* *}} \end{gathered}$	$\begin{gathered} -1.625 \\ {[0.6963]^{* *}} \end{gathered}$	$\begin{gathered} -1.588 \\ {[0.6495]^{* *}} \end{gathered}$	$\begin{gathered} -1.733 \\ {[0.7050]^{* *}} \end{gathered}$	$\begin{gathered} -0.016 \\ {[0.019]} \end{gathered}$	$\begin{gathered} -0.019 \\ {[0.0185]} \end{gathered}$	$\begin{gathered} -0.120 \\ {[0.243]} \end{gathered}$	$\begin{gathered} 0.251 \\ {[0.3795]} \end{gathered}$
N	394	394	86	86	86	86	4,456	4,456	531	136
D relative to C	$\begin{gathered} 0.037 \\ {[0.3778]} \end{gathered}$	$\begin{gathered} -0.159 \\ {[0.3605]} \end{gathered}$	$\begin{gathered} 1.232 \\ {[0.4459]^{* * *}} \end{gathered}$	$\begin{gathered} 2.008 \\ {[0.9159]^{* *}} \end{gathered}$	$\begin{gathered} 1.053 \\ {[0.4607]^{* *}} \end{gathered}$	$\begin{gathered} 1.795 \\ {[0.9088]^{* *}} \end{gathered}$	$\begin{gathered} 0.021 \\ {[0.0334]} \end{gathered}$	$\begin{gathered} 0.042 \\ {[0.0374]} \end{gathered}$	$\begin{gathered} 0.058 \\ {[0.3035]} \end{gathered}$	$\begin{gathered} 0.059 \\ {[0.5071]} \end{gathered}$
N	208	208	56	56	56	56	2,119	2,119	268	78
Dependent Var. Mean	-0.055	-0.058	-0.058	-0.056	-0.056	0.016	0.016	0.003	-0.067	0.010
Eentrol for sOore*year*schooltype*a ccountability grade?	\checkmark									
School covariates?		\checkmark		\checkmark		\checkmark		\checkmark	\checkmark	\checkmark

Table 5. Regression Discontinuity Estimates of the Effect of School Accountability Grades on Joiner Experience and Education

Sample:Grade Received By School:Dependent Variable:	Joiners in current year (Actual Effects)						Joiners in previous year (Placebo)		
	At least 2 Years Experience		At least 4 Years Experience		High Education (Has a Masters)		At least 2 Yrs Exp	At least 4 Yrs Exp	High Education
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
B relative to A	-0.108	-0.114	-0.091	-0.104	-0.106	-0.108	-0.035	-0.075	-0.016
	[.0681]	[.0658]*	[.067]	[.0669]	[.0519]**	[.0514]**	[.0567]	[.0438]*	[.0385]
N	1,074	1,074	1,074	1,074	1,074	1,074	1,579	1,579	1,579
C relative to B	-0.009	-0.008	-0.034	-0.033	0.002	-0.004	-0.075	-0.028	-0.043
	[.0691]	[.0641]	[.0609]	[.0552]	[.0477]	[.0499]	[.0497]	[.0416]	[.0388]
N	1,268	1,268	1,268	1,268	1,268	1,268	1,846	1,846	1,846
D relative to C	-0.091	-0.072	-0.073	-0.090	-0.134	-0.128	-0.043	-0.112	0.009
	[.08]	[.0809]	[.0739]	[.0786]	[.0724]*	[.069]*	[.0686]	[.0603]*	[.0525]
N	675	675	675	675	675	675	1,027	1,027	1,027
Fevelative to D	0.462	0.447	0.355	0.330	0.201	-0.041	0.043	0.069	0.102
\checkmark	[.0843]***	[.144]***	[.088]***	[.1417]**	[.1039]*	[.1127]	[.1145]	[.0622]	[.0955]
N	235	235	235	235	235	235	451	451	451
D relative to C and F relative to D (Grouped)	0.015	0.044	0.009	0.031	-0.073	-0.058	-0.015	-0.020	0.025
	[.1]	[.1]	[.1]	[.1]	[.1]	[.1]	[.1]	[0]	[0]
N	892	892	892	892	892	892	1,442	1,442	1,442
Dependent Variable Mean									
Control for score* year*schooltype*accountabilit)	\checkmark								
School and Teacher covariates?		\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark

 the school year. * Significant at 10%; ** significant at 5%; ***significant at 1%.

Table 6. Regression Discontinuity Estimates of the Effects of School Accountability Grades on Student Achievement

Dependent Variable:	ELA Achievement		Math Achievement	
Grade Received By School:	(1)	(2)	(3)	(4)
B relative to A	-0.100	-0.029	-0.090	0.002
	[.0776]	[.0405]	[.0738]	[.0431]
N	530	529	530	529
C relative to B	-0.006	0.015	0.017	0.037
	[.0681]	[.0381]	[.073]	[.0422]
N	583	583	583	583
D relative to C	-0.131	-0.008	-0.051	0.049
	[.0777]*	[.0479]	[.0808]	[.0494]
N	283	283	283	283
F relative to D	0.416	0.179	0.352	0.120
	[.122]***	[.0889]**	[.1288]***	[.1046]
N	120	120	120	120
D relative to C and F relative to D (Grouped)	0.001	0.031	0.022	0.022
	[.0778]	[.0553]	[.0768]	[.0529]
N	344	344	344	344
Control for schooltype*accountability grade* score? School covariates?	\checkmark	\checkmark	\checkmark	\checkmark
		\checkmark		\checkmark

Notes. The table presents regression discontinuity estimates of the effect of school accountability grades on student achievement. Regressions use a bandwidth of 6 grade points. The sample is all schools receiving accountability grades during the 2008-2009 and 2009-2010 school years, and each observation represents a school*year average. Standard errors are reported in brackets and clustered at the school level. The dependent variable is the average school-level mathematics or ELA test scores (standardized by the mean and standard deviation across all students taking the test in that year and grade) in the same year that the school received the accountability grade. Regressions are weighted by the number of students at each school that took the test. School controls include controls for the average previous year's achievement; the percent of students that are black, hispanic, that receive free and reduced price lunch, and that are immigrants; fixed effects for school size; and five-year average school turnover prior to the institution of accountability. Data comes from the 2008-09 and 2009-10 school years in the New York City Department of Education, using the report card grade that was received by the school during fall of the school year. * Significant at 10%; ** significant at 5%; *** significant at 1%.

Table 7. Heterogeneity in the Regression Discontinuity Turnover Estimates by Teacher Destination

Dependent Variable:	1 Left \}	1 \{Retired\}	1 \{Transferred \}	1\{Left NYCDOE Classrooms\}
	(1)	(2)	(3)	(4)
B relative to A	0.004	0.001	-0.002	0.006
	[0.009]	[0.002]	[0.006]	[0.007]
N	30,029	30,083	30,029	30029
C relative to B	0.003	0.001	-0.001	0.002
	[0.008]	[0.002]	[0.006]	[0.006]
N	34,386	34,455	34,386	34,386
D relative to C	-0.026	0.003	-0.009	-0.020
	[0.012]**	[0.004]	[0.007]	[0.008]**
N	15,275	15,315	15,275	15,275
F relative to D I	-0.041	-0.015	-0.014	-0.012
I	[0.028]	[0.006]**	[0.018]	[0.018]
N I	5,392	5,403	5,392	5,392
D relative to C and F relative to D (Grouped)	-0.037	-0.003	-0.006	-0.028
	[0.012]***	[0.004]	[0.008]	[0.008]***
N	17,932	17,979	17,932	17,932
Baseline level in the data	0.107	0.008	0.034	0.065
What proportionate coefficient would be	-0.037	-0.003	-0.012	-0.022
Control for score*year*schooltype*accountabili	\checkmark	\checkmark	\checkmark	\checkmark
School covariates?	\checkmark	\checkmark	\checkmark	\checkmark
Teacher covariates?	\checkmark	\checkmark	\checkmark	\checkmark

Notes. Table presents regression discontinuity estimates of the effect of school accountability grades on teacher turnover. The dependent variable is an indicator for whether a teacher stopped teaching at the school in the summer after the accountability grade was received. The sample is all teachers teaching in sample schools during the 20082009 and 2009-2010 school years and each observation represents one teacher in a given year. Regressions use a bandwidth of 6 grade points. Standard errors are reported in brackets and clustered at the school level. School controls include controls for the average previous year's achievement; the percent of students that are black, hispanic, that receive free and reduced price lunch, and that are immigrants; fixed effects for school size; and fiveyear average school turnover prior to the institution of accountability. Teacher covariates include fixed effects for teacher experience and age, teacher education level, and teacher gender. Data comes from the 2008-09 and 200910 school years in the New York City Department of Education.

* Significant at 10%; ** significant at 5%; ${ }^{* * *}$ significant at 1%.

Table 8. Correlation Between Improvements in School Performance and Labor Market Outcomes

Dependent Variable	Turnover Results			Joiner Results		
	Teacher Left School	Teacher Left School	Teacher Left School	Math ValueAdded	Math ValueAdded	Math ValueAdded
Schools Near the: Sample	Incumbents (1)	Incumbents (2) \qquad	Incumbents \qquad (3)	Joiners (4)	Joiners (5)	Joiners (6)
A/B Threshold						
School achievement in year grade received	$\begin{gathered} -0.075 \\ {[0.015]^{* * *}} \end{gathered}$	$\begin{gathered} -0.111 \\ {[0.051]^{* *}} \end{gathered}$	$\begin{gathered} -0.116 \\ {[0.051]^{* *}} \end{gathered}$	$\begin{gathered} 0.5 \\ {[.47]} \end{gathered}$	$\begin{gathered} 0.8 \\ {[1.58]} \end{gathered}$	$\begin{gathered} 2.3 \\ {[1.69]} \end{gathered}$
N	30,031	30,029	30,029	88	88	88
B/C Threshold						
School achievement in year grade received	$\begin{gathered} -0.132 \\ {[0.015]^{* * *}} \end{gathered}$	$\begin{gathered} -0.215 \\ {[0.049]^{* * *}} \end{gathered}$	$\begin{gathered} -0.217 \\ {[0.049]^{* * *}} \end{gathered}$	$\begin{gathered} -0.5 \\ {[.59]} \end{gathered}$	$\begin{gathered} 4.0 \\ {[2.17]^{*}} \end{gathered}$	$\begin{gathered} 4.7 \\ {[2.73]^{*}} \end{gathered}$
N	34,386	34,386	34,386	86	86	86
C/D Threshold						
School achievement in year grade received	$\begin{gathered} -0.181 \\ {[0.025]^{* * *}} \end{gathered}$	$\begin{gathered} -0.084 \\ {[0.073]} \end{gathered}$	$\begin{gathered} -0.115 \\ {[0.075]} \end{gathered}$	$\begin{gathered} 2.3 \\ {[.73]^{* * *}} \end{gathered}$	$\begin{gathered} 4.7 \\ {[2.79]^{*}} \end{gathered}$	$\begin{gathered} 5.4 \\ {[2.73]^{* *}} \end{gathered}$
N	15,275	15,275	15,275	57	56	56
D/F Threshold						
School achievement in year grade received	$\begin{gathered} -0.199 \\ {[0.047]^{* * *}} \end{gathered}$	$\begin{gathered} -0.166 \\ {[0.143]} \end{gathered}$	$\begin{gathered} -0.342 \\ {[0.122]^{* * *}} \end{gathered}$	n/a	n/a	n/a
N	5,392	5,392	5,392			
C/D and D/F Thresholds (grouped)						
School achievement in year grade received	$\begin{gathered} -0.199 \\ {[0.023]^{* * *}} \end{gathered}$	$\begin{gathered} -0.082 \\ {[0.063]} \end{gathered}$	$\begin{gathered} -0.127 \\ {[0.064]^{* *}} \end{gathered}$	n/a	n/a	n/a
N	17,932	17,932	17,932			
School covariates?		\checkmark	\checkmark		\checkmark	\checkmark
Teacher covariates?		\checkmark	\checkmark			
Accountability score control?			\checkmark			\checkmark

Notes. Table presents estimates of the correlation between improvements in school achievement and labor market outcomes, specifically, turnover at the end of the year (cols 1-3) or the quality of joiners hired in the subsequent year (cols 4-6). Each row represents a separate regression using schools within a small bandwidth of a grade threshold (the bandwidth used is the same as the relevant bandwidth for the RD specifications -6 points for cols $1-3,3$ points for cols $4-6$). The coefficient presented is the coefficient for the average (between math and ela) school achievement of the school, measured in standard deviations of the student achievement distribution for the school year. For columns 1-3, the dependent variable is an indicator for whether a teacher stopped teaching at the school in the summer after the accountability grade was received; the sample is all teachers teaching in sample schools, and each observation represents one teacher in a given year. For columns 4-6, the dependent variable is a teacher's math value-added; the sample is all joiners to a school at the end of the year the school received a given accountability grade. Standard errors are reported in brackets and clustered at the school level. School controls include controls for the average previous year's achievement; the percent of students that are black, hispanic, that receive free and reduced price lunch, and that are immigrants; fixed effects for school size; and five-year average school turnover prior to the institution of accountability. Teacher covariates include fixed effects for teacher experience and age, teacher education level, and teacher gender. All data from the New York City Department of Education. * Significant at 10\%; ** significant at 5\%; *** significant at 1%.

Table 9. Robustness of the Regression Discontinuity Turnover Estimates
Panel A

Bandwidth:	Local Linear								
	5			6		7		10	
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
B relative to A		0.019	0.008	0.015	0.004	0.015	0.006	0.005	0.001
		[0.011]*	[0.010]	[0.010]	[0.009]	[0.010]	[0.009]	[0.008]	[0.007]
N		25,547	25,545	30,031	30,029	35,672	35,670	51,196	51,176
P-Value: Spec Test		0.34	0.82	0.34	0.82	0.34	0.82	0.34	0.82
C relative to B		0.002	0.004	0.002	0.003	0.007	0.006	0.008	0.004
		[0.011]	[0.009]	[0.010]	[0.008]	[0.009]	[0.007]	[0.008]	[0.006]
N		29,028	29,028	34,386	34,386	39,527	39,527	55,077	55,077
P-Value: Spec Test		0.22	0.29	0.22	0.29	0.22	0.29	0.22	0.29
D relative to C		-0.002	-0.022	-0.009	-0.026	0.003	-0.019	-0.008	-0.022
		[0.015]	[0.013]*	[0.015]	[0.012]**	[0.014]	[0.012]*	[0.013]	[0.010]**
N		13,507	13,507	15,275	15,275	17,799	17,799	25,895	25,895
P-Value: Spec Test		0.54	0.15	0.54	0.15	0.54	0.15	0.54	0.15
F relative to D	I	-0.059	-0.011	-0.078	-0.041	-0.069	-0.024	-0.061	-0.030
		[0.023]**	[0.026]	[0.026]***	[0.028]	[0.023]***	[0.026]	[0.022]***	[0.019]
$\stackrel{\oplus}{\square}$	\|	4,767	4,767	5,392	5,392	6,431	6,431	7,946	7,946
P-Value: Spec Test	I	0.91	0.34	0.91	0.34	0.91	0.34	0.91	0.34
D relative to C and F relative to D (Grouped)		-0.024	-0.031	-0.027	-0.037	-0.019	-0.030	-0.018	-0.028
		[0.015]	[0.013]**	[0.015]*	[0.012]***	[0.014]	[0.012]**	[0.013]	[0.011]**
N		16,314	16,314	17,932	17,932	19,924	19,924	27536	27536
P-Value: Spec Test		0.58	0.29	0.58	0.29	0.58	0.29	0.58	0.29
Control for score*schooltype*year*accountability grade?		\checkmark							
School and teacher covariates?			\checkmark		\checkmark		\checkmark		\checkmark
Control for schooltype*(components of score)? Control for score*schooltype*year?									

[^19]| Table 9. Robustness of the Regression Discontinuity Turnover Estimates |
| :--- |
| Panel B |

Panel B						
	Quadratic		Cubic		Detailed Score Control	
Bandwidth:	10		10		6	
	(9)	(10)	(11)	(12)	(13)	(14)
B relative to A	0.015	0.002	0.016	0.002	-0.005	-0.003
	[0.012]	[0.011]	[0.015]	[0.014]	[0.008]	[0.007]
N	51,196	51,176	51,196	51,176	30,031	30,029
P-Value: Spec Test	0.59	0.84	0.58	0.86	0.15	0.48
C relative to B	0.001	0.007	0.000	-0.005	-0.005	-0.002
	[0.011]	[0.009]	[0.015]	[0.012]	[0.009]	[0.008]
N	55,077	55,077	55,077	55,077	34,386	34,386
P-Value: Spec Test	0.06	0.46	0.06	0.28	0.57	0.41
D relative to C	0.003	-0.022	0.002	-0.025	-0.012	-0.026
	[0.018]	[0.015]	[0.023]	[0.020]	[0.012]	[0.011]**
N	25,895	25,895	25,895	25,895	15,275	15,275
P-Value: Spec Test	0.22	0.07	0.28	0.07	0.10	0.30
F relative to D	-0.026	-0.003	-0.037	-0.044	-0.028	-0.025
	[0.027]	[0.026]	[0.025]	[0.026]*	[0.022]	[0.022]
N N	7,946	7,946	7,946	7,946	5,392	5,392
P-Value: Spec Test	0.39	0.08	0.53	0.08	0.13	0.10
D relative to C and F relative to D (Grouped)	-0.018	-0.036	-0.023	-0.040	-0.012	-0.010
	[0.017]	[0.016]**	[0.021]	[0.019]**	[0.009]	[0.008]
N	27536	27536	27536	27536	17932	17932
P-Value: Spec Test	0.75	0.08	0.10	0.01	0.32	0.21
Control for score*schooltype*year*accountability grade?	\checkmark	\checkmark	\checkmark	\checkmark		
School covariates?		\checkmark		\checkmark		\checkmark
Control for schooltype*(components of score)? Control for score*schooltype*year?					\checkmark	\checkmark

Table 10. Robustness of the Regression Discontinuity Joiner Quality Estimates

Notes. Table presents regression discontinuity estimates. Each observation is a teacher in a given year, the dependent variable is the math value added of the teachers in the sample, and the sample is the joiners to a school at the end of the year the school received the accountability grade. The control function is linear for columns (1)-(6), (15), and (16), quadratic for columns (7) and (8), and cubic for columns (9) and (10). Columns (11) and (12) control linearly for the underlying components of the accountability score. Standard errors are reported in brackets and clustered at the school level. School controls include controls for the average previous year's achievement; the percent of students that are black, hispanic, that receive free and reduced price lunch, and that are immigrants, fixed effects for school size; and five-year average school turnover prior to the institution of accountability. Data 10 school years in the New York City Department of Education, with the report card grades used being the report card that was received by the school during fall of the school year. The specification test tests for discontinuities the regression function other than at the specified threshold (specifically, at all points that are a multiple of three points from the true threshold); the p-value represents the p-value from a joint test that there are no discontinuities at any other points. $*$ Sianificant at $10 \%: * *$ sianificant at $5 \%: * * *$ sianificant at 1%.
Table 10. Robustness of the Regression Discontinuity Joiner Quality Estimates

Panel B	Math Value Added				1 \{Above Median Math Value Added\}		EB Value Added	
	Cubic		Detailed Score Control		Local Linear		Local Linear	
Bandwidth:	10		3			3	3	
	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
B relative to A	-0.415	-0.622	-0.718	-0.410	-0.358	-0.356	-0.552	-0.520
	[0.349]	[0.4053]	[0.3335]**	[0.3904]	[0.2277]	[0.2366]	[0.1905]***	[0.2715]*
N	258	258	88	88	88	88	88	88
P-Value: Spec Test	0.74	0.64	0.96	0.97	0.59	0.51	0.95	0.96
C relative to B	-2.255	-2.656	-1.868	-1.417	-0.543	-0.412	-0.499	-0.470
	[0.8789]**	[0.8567]***	[0.6924]***	[0.8069]*	[0.2271]**	[0.3079]	[0.4825]	[0.5584]
N	266	266	86	86	86	86	86	86
P-Value: Spec Test	0.29	0.17	0.57	0.23	0.80	0.75	0.55	0.42
吐relative to C	0.367	0.052	0.859	1.355	1.055	1.348	1.063	1.689
	[0.6462]	[0.641]	[0.8675]	[0.9840]	[0.3076]***	[0.4948]***	[0.741]	[1.0326]
N	140	140	56	56	56	56	56	56
P-Value: Spec Test	0.74	0.83	0.95	0.95	0.34	0.19	0.11	0.11
Control for								
score*schooltype*year*								
School covariates?		\checkmark		\checkmark		\checkmark		\checkmark
Control for schooltype*(components of score)?			\checkmark	\checkmark				

Appendix Table 1. Other Robustness Checks for the Regression Discontinuity Turnover Estimates

Grade Received By School:	Dependent Variable: $\mathbf{1}$ \{Teacher Left School in Following Year\}							
	Sample includes outliers		Include mid-year transfers		2008 Only		2009 Only	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
B relative to A	0.015	0.004	0.016	0.004	0.034	0.019	0.002	-0.006
	[0.010]	[0.009]	[0.010]	[0.009]	[0.016]**	[0.014]	[0.013]	[0.012]
N	30,031	30,029	29,808	29,806	13,834	13,834	16197	16195
C relative to B	0.002	0.003	0.000	0.001	0.001	-0.001	0.002	0.004
	[0.010]	[0.008]	[0.010]	[0.008]	[0.013]	[0.010]	[0.015]	[0.014]
N	34,386	34,386	34,105	34,105	20,138	20,138	14248	14248
D relative to C	-0.018	-0.040	-0.004	-0.023	-0.019	-0.035	0.014	-0.003
	[0.016]	[0.014]***	[0.015]	[0.012]*	[0.018]	[0.013]***	[0.025]	[0.023]
N	15,610	15,610	15,123	15,123	10,466	10,466	4809	4809
F relative to D	-0.060	-0.007	-0.078	-0.041	-0.077	-0.024	-0.080	-0.033
	[0.046]	[0.043]	[0.026]***	[0.028]	[0.038]**	[0.039]	[0.024]***	[0.027]
N	5,810	5,810	5,327	5,327	3,909	3,909	1483	1483
$\stackrel{\square}{\square}$								
Drelative to C and F relative to D (Grouped)	-0.020	-0.033	-0.025	-0.036	-0.035	-0.037	-0.011	-0.038
	[0.018]	[0.015]**	[0.015]	[0.012]***	[0.018]*	[0.014]***	[0.023]	[0.023]
N	18,474	18,474	17,748	17,748	12,529	12,529	5403	5403
Control for schooltype*accountability grade* score?	\checkmark							
School covariates?		\checkmark		\checkmark		\checkmark		\checkmark
Teacher covariates?		\checkmark		\checkmark				

 10%; ** significant at 5%; ${ }^{* * *}$ significant at 1%.

Appendix Table 2. Effect of School Accountability Grades on School Size

Grade Received By School: ${ }^{\text {Dependent Variable: }}$	Percent Ch	Staff Size	Percent Change in Enrollment	
	(1)	(2)	(3)	(4)
B relative to A	-0.8	-0.8	-2.4	-2.1
	[1.3]	[1.3]	[2.5]	[2.4]
N	530	529	530	529
C relative to B	-0.7	-0.5	-3.7	-3.4
	[1.2]	[1.2]	[2.0]*	[2.0]*
N	583	583	582	582
D relative to C	0.7	0.0	3.9	3.5
	[2.0]	[1.9]	[2.7]	[2.7]
N	277	277	275	275
F relative to D	5.4	0.7	-7.5	-4.8
	[3.9]	[3.9]	[8.5]	[6.9]
N	114	114	111	111
D relative to C and F relative to D (Grouped)	1.8	0.6	-1.7	-2.7
	[2.0]	[1.9]	[3.2]	[3]
N	335	335	332	332
Control for schooltype*accountability grade* score?	\checkmark	\checkmark	\checkmark	\checkmark
School covariates?		\checkmark		\checkmark

Notes. The table presents regression discontinuity estimates of the effect of school accountability grades on school size. $\overline{\text { Regressions use a bandwidth of } 6 \text { grade points. Standard errors are reported in brackets and clustered at the school }}$ level. Each observation is a school in a given year. The dependent variable is the percent change in staff size (number of teachers) or enrolled students between the year that the school received the accountability grade and the following year (where 1.00 corresponds to 1 percentage point change). School controls include controls for the average previous year's achievement; the percent of students that are black, hispanic, that receive free and reduced price lunch, and that are immigrants; fixed effects for school size; and five-year average school turnover prior to the institution of accountability. Data comes from the 2008-09 and 2009-10 school years in the New York City Department of Education, using the report card grade that was received by the school during fall of the school year. * Significant at 10\%; ** significant at 5\%; $* * *$ significant at 1%.

Figure A.1: Density of Schools Near Grade Thresholds 2008 Elementary Schools

2009 Elementary Schools

For each year and school type, the figures plot the number of schools with a given accountability score (specifically, the y-axis shows the number of schools within a 0.5 point bandwidth of the accountability score displayed on the X -axis). The red lines show the 4 grade thresholds ($\mathrm{A} / \mathrm{B}, \mathrm{B} / \mathrm{C}, \mathrm{C} / \mathrm{D}$, and D / F). Evidence of heaping directly adjacent to the grade thresholds line would be a violation of the regression discontinuity identification assumptions

A Value-Added Estimation

To estimate teacher value-added, I follow an approach that has been experimentally validated in the economics of education literature (Kane and Staiger, 2008) and estimate the following regression using the matched student-teacher panel:

$$
\begin{equation*}
A_{i j g s t}=\alpha+\beta_{1} A_{i, j-1, g-1, s-1, t-1}+\beta_{2} \bar{A}_{-i, j-1, g-1, t-1}+\beta_{3} X_{i}+\tau_{j}+\tau_{t}+\tau_{g}+\tau_{s}+\eta_{j t}+\varepsilon_{i j g t} \tag{4}
\end{equation*}
$$

where $A_{i j g s t}$ is the achievement score (either mathematics or English Language Arts, standardized by year and grade) of student i in the classroom of teacher j in grade g and school s and year t; $A_{i, j-1, g-1, s-1, t-1}$ is the student's lagged achievement; $\bar{A}_{-i, j-1, g-1, t-1}$ represents the average previous-year achievement of student i 's classmates (to control for peer effects); X_{i} are student demographics (e.g., gender, ethnicity, eligibility for free-and-reduced-pricelunch); the τ terms represent fixed effects for teachers, the year, the grade, and the school respectively; and $\eta_{j t}$ and $\varepsilon_{i j g t}$ represent classroom-level and individual-level error terms, both mean zero and assumed to be independently and identically distributed over time. ${ }^{43}$ After estimation of equation (4), I standardize the τ_{j} terms and use this as my measure of teacher quality. I only estimate equation (4) using data from years before the institution of accountability in order to isolate teacher quality from teacher responses to accountability.

Since the identification of true teacher value-added depends on strong identification assumptions, e.g., that assignment of students to teachers is orthogonal to the student error term $\varepsilon_{i j g t}$ in equation (4), recent literature has highlighted the potential biases of value-added measures (e.g., Rothstein (2010)). However, given the RD framework, my identification requirements are less stringent than if I was, say, trying to evaluate teachers based on the estimates. The RD results would only be biased if, conditional on the accountability score, there were differences in the average school-level bias of the value-added estimates that was correlated with the grades. Since the value-added was calculated using pre-period data, this is unlikely. Of greater concern is the comprehensiveness of the value-added estimates: if there are aspects of teacher quality which are not summarized well in teacher value-added measures (which is likely), then my analysis will not incorporate these aspects.

Empirical Bayes Estimates

I also construct empirical Bayes (EB) estimates of teacher value-added to check robustness. Although the estimates obtained by estimating equation 4 are consistent (under identifying restrictions), they are not efficient. EB estimates are more efficient, providing the Best Linear Predictor of the random teacher effect in 4, which is also the posterior mean with

[^20]normally distributed errors.
I follow the approach outlined in Kane and Staiger (2008) and Jackson (2009). Consider the error term in equation $4, w_{i j g t} \equiv \tau_{j}+\eta_{j t}+\varepsilon_{i j g t}$. It is the sum of the teacher effect, assumed constant across years, a mean-zero year-specific classroom error, and a mean-zero year-specific student error. To construct EB estimate, I need to estimate the variance of each component. To do this, I first estimate equation 4 using OLS.For the teacher effect, I calculate the mean residual, by teacher, in each year, and use the covariance between these residuals in adjacent years as the estimate of the variance of the teacher effect, $\hat{\sigma_{\tau}^{2}}=$ $\operatorname{Cov}\left(\bar{w}_{j g t}, \bar{w}_{j g t-1}\right) .{ }^{44}$ For the variance of the student effect, I calculate the variance of the student residuals after the classroom mean residual has been removed: $\hat{\sigma_{\varepsilon}^{2}}=\operatorname{Var}\left(w_{i j g t}-\bar{w}_{j g t}\right)$. Finally, under the assumption that all three components of the error term are orthogonal to each other, I calculate the variance of the classroom term as the variance of the total error term minus the variance of the teacher and student components: $\hat{\sigma_{\eta}^{2}}=\operatorname{Var}\left(w_{i j g t}\right)-\hat{\sigma_{\tau}^{2}}-\hat{\sigma_{\varepsilon}^{2}}$.

Next, I compute a raw estimate of a teacher's effect as a weighted average of their classroom residuals $\left(\bar{w}_{j g t}\right)$, where each classroom is weighted by the inverse of its variance: $\hat{\tau}_{j}=\sum_{j=1}^{J_{j}} \bar{w}_{j g t} \frac{\left(\sigma_{\eta}^{2}+\sigma_{\varepsilon}^{2} / N_{j}\right)^{-1}}{\sum_{j=1}^{J_{j}}\left(\sigma_{\eta}^{2}+\sigma_{\varepsilon}^{2} / N_{j}\right)^{-1}}$, where N_{j} is the number of students in classroom j and J_{j} is the number of classrooms that teacher j teaches.

Finally, I weight this estimate by an estimate of the precision of the teacher's effect to form the empirical Bayes estimate: $\hat{\tau}_{j}{ }^{E B}=\hat{\tau}_{j} \frac{\sigma_{\tau}^{2}}{\sigma_{\tau}^{2}+\left[\sum_{j=1}^{J_{j}}\left(\sigma_{\eta}^{2}+\sigma_{\varepsilon}^{2} / N_{j}\right)^{-1}\right]^{-1}}$.

B Regression Discontinuity Bandwidth Selection

To select a bandwidth for the RD analysis, I follow the "leave one out" cross-validation procedure outlined in Lee and Lemieux (2010) in which I estimate locally linear models at different bandwidths while omitting one observation, calculate the cross-validation criterion as the average squared difference between the predicted and actual values for the omitted observations, and choose the bandwidth that minimizes the cross-validation criterion. Depending on the grade threshold and whether I used covariates, the optimal bandwidths according to this procedure ranged from 5-10 points when using the sample of all teachers and analyzing the turnover decision. Thus, I choose an intermediate (median) value as the standard bandwidth for these regressions, and present results examining robustness to the choice of bandwidth. When looking at the value-added outcomes and using as my samples either the joiners or the leavers, the optimal bandwidths ranged from 2-7, and I again use an intermediate value as my base bandwidth. For the graphs, I show a bandwidth two times wider than that used in the regressions to give a better sense of the regression function.

[^21]
[^0]: *I want to thank the New York City Department of Education for providing me with the data, and Dominique West and Marsha Modeste for answering all of my data questions. I am very grateful to Ran Abramitzky, Pascaline Dupas, Caroline Hoxby, and Seema Jayachandran for help and guidance, and to Elise Dizon-Ross, David Figlio, Anil Jain, Fabiana Silva, Jenny Ying, and numerous participants at the Stanford Applied Lunch for helpful comments. All errors are my own. I appreciate the generous support of the Shultz Graduate Student Fellowship in Economic Policy, the endowment in memory of B.F. Haley and E.S. Shaw, the Spencer Foundation, and the National Science Foundation.

[^1]: ${ }^{1}$ The tests were "high-stakes" because the school-level results were widely disseminated; in the past, tests were primarily used for student evaluation.

[^2]: ${ }^{2}$ Specifically, the explanation is that teachers prefer schools that (1) have improved their environment, performance, or the quality of their teaching positions in response to accountability pressures, and (2) have a higher nominal accountability grade. At the top end of the grade distribution, accountability does not bind, and so (1) plays no role while (2) dominates. At the bottom end of the grade distribution, low-performing schools do improve in response to accountability pressures, and so (1) dominates.

[^3]: ${ }^{3}$ If teachers in NYCDOE simply thought that "the worst was over" by the summer, i.e., that any negative effects of the accountability grade on their school had already transpired, that could also explain the discrepancies between the findings presented here and those of Feng et al. (2010), but would not explain my finding that turnover actually decreases at lower-graded schools.
 ${ }^{4}$ Concurrent reforms include streamlining the process of teacher dismissals and dramatically changing salary structures and tenure requirements. These types of reforms can affect high- and low-performing schools differently, thereby biasing difference-in-differences estimates: for example, the changes to the dismissal process could have increased turnover at low-performing schools if teachers thought dismissals were more likely in those schools.

[^4]: ${ }^{5}$ This simplification still allows schools to make active changes in response to accountability grades, it just does not allow them to fire teachers. There are institutional restrictions that make firing difficult.

[^5]: ${ }^{6}$ Note that this assumes that teachers are not fired. This assumption is based on the institutional context and the fact that the changes I see primarily seem to reflect changes to voluntary quits.

[^6]: ${ }^{7}$ Note that I am assuming that the high and low quality teachers value prestige equally, or that high-quality teachers value it more but not enough to outweigh their greater preference for performance improvements.

[^7]: ${ }^{8}$ Note that, if ability were perfectly observable, the stigma hypothesis should not play a role (unless schools see accountability grades as informative about a teacher's characteristics that they value separately from ability).
 ${ }^{9}$ Note that, to distinguish the two hypotheses, I am assuming a "strong form" of the stigma hypothesis in which teacher's choice plays no role, that is, in which either $A\left(g^{H}\right)=A\left(g^{L}\right)$ or $\frac{\partial}{\partial A} U=0$, but $P\left(g^{H}\right)>P\left(g^{L}\right)$ and $\frac{\partial}{\partial P} U>0$. For the teacher's choice hypothesis, I assume that $\frac{\partial}{\partial a_{i}}\left(U\left(g^{L} \mid a_{i}\right)-U\left(g^{H} \mid a_{i}\right)\right) \geq 0$, as I argued above may hold. I am assuming a Gale-Shapley-style matching process where the schools propose first (Gale and Shapley, 1962).
 ${ }^{10}$ Note that this assumes all schools have the same ranking for teachers; we can get similar predictions even if we allow accountability grades could change how schools rank teachers. For example, receipt of a lower accountability grade could cause schools to put more emphasis on quality a_{i} when they rank order teachers. As long as we assume that firing is costly enough that such changes do not cause low-graded schools to fire their incumbent low-quality teachers, then this should also have the same implications as the teacher's choice hypothesis above.
 ${ }^{11}$ That is, we can think of recruiting efforts as increasing the utility of the recruited teachers for the lower-graded school but leaving everyone else's utility unchanged. Since the recruited teachers would be the highest-ranked teachers, who would have on average higher quality, the implications would be the same as those discussed above for the teacher's choice hypothesis. I will not be able to distinguish this variant of the teacher's choice hypothesis in the data from the version described above.

[^8]: ${ }^{12}$ I do not use the data from later years of the accountability program for two main reasons: first, because changes were made to the program in the later years which made the thresholds less strict, including that outcomes began to depend not just on current grades but also on past performance; and, second, because data from those years are not included in the data files I was able to obtain from the NYCDOE.
 ${ }^{13}$ Charter schools did not receive accountability grades in 2007-08; in 2008-09, 40 charter schools received accountability grades, but are excluded because accountability may affect them differently and because I do not have other data for them.
 ${ }^{14}$ Restructuring is normally a response to long-run trends, not accountability, and so would increase the noise of my estimates (I do not have data on which schools are undergoing restructuring).
 ${ }^{15}$ For the 2004-2005 through 2006-2007 school years, I matched teachers with classrooms based on a file maintained by the NYCDOE with student-level math and ELA teacher linkage data that has been verified by the schools. Based on guidance from the NYCDOE, for school years previous to 2004-2005, I matched elementary school students to teachers based on their homeroom identifiers, and middle school students to teachers based on course section identifiers.

[^9]: ${ }^{16}$ Roughly 32% of them have either ELA or Math value-added. The reason that so many teachers do not have value-added data is that, in grades $\mathrm{K}-5$, only grades $4-5$ have usable value-added data (because only grades 3-5 are tested and one year of lagged test score is necessary for construction of value-added estimates), and in grades $6-8$, only one of a student's approximately 5 teachers will be the subject teacher for math or for ELA; thus roughly $1 / 3$ of teachers should be eligible to have ELA value-added data, and $1 / 3$ for math.
 ${ }^{17}$ I cannot follow these teachers in the data: they could take teaching positions in other districts, take other non-teaching positions, stop working, or take non-teaching roles within the NYCDOE.

[^10]: ${ }^{18}$ Since all of the score components and the formula for calculating the accountability score are publicly verifiable, the largest potential threat to identification is the fact that the accountability officials who chose the cutoffs were aware of the individual schools and their scores. Although this concern is mitigated by the fact that the accountability program used round-number percentile cutoffs for thresholds and so would have had to manipulate the thresholds by large amounts to accommodate individual schools, it could still be the case that accountability officials changed the score to accommodate certain schools that they felt should receive given grades. However, since there are multiple schools receiving any given score, I rely on the fact that, even in the scenario that accountability officials changed cutoffs to accommodate schools, that could only be for 1-2 schools, while the empirical results are driven by the many other schools at the threshold.
 ${ }^{19}$ The density does increase to the right of the D / F threshold, but this does not appear to be excess density but rather a result of the fact that the D / F threshold is drawn at the 5th percentile of the distribution, which is where normal distributions climb precipitously.
 ${ }^{20}$ I collapse the data to the 0.1 point level, use the "leave one out" procedure to calculate my bandwidth (2 points), and use either the count of schools or count of teachers as the dependent variables, to obtain coefficient estimates for the A-D thresholds of $1.2(.7), 1.2(1), .3(.6)$, and .6 (.6) using number of schools (standard errors in parentheses) and $69(54), 61(67), 23(46)$, and 43 (38) using numbers of teachers. None of those coefficients are significant at the 5% level; the coefficient for A using number of schools is significant at the 10% level, but is not robust to the number of teachers specification or to other bandwidths or quadratic or cubic specifications.

[^11]: ${ }^{21}$ The covariates used for creating the residuals are the same used in the regressions and are described in more detail below. Results using the raw outcome variable are very similar and available upon request.
 ${ }^{22}$ Specifically, I assign all D schools to the C / D or D / F thresholds based on whether they were above or below the median score for other D schools in the same year and of the same schooltype. I then estimate equation (3), controlling for a linear trend in accountability score for each schooltype-year combination, and including a dummy for whether a school received the lower grade at the grade threshold it was assigned to.
 ${ }^{23}$ School controls include: average student achievement from the previous year; the percent of students that are black, hispanic, that receive free and reduced price lunch, and that are immigrants; fixed effects for school size; and five-year average school turnover before the institution of the accountability system. For the placebo regressions, the five-year average school turnover control is five-year average from the year before

[^12]: ${ }^{26}$ The results using ELA value-added are statistically weaker and less robust, and available upon request. Note that roughly 70 percent of teachers with any value-added data have both math and ELA value-added.
 ${ }^{27}$ The difference in results at the D / F threshold does not seem to result from different baseline selection into the value-added sample on either side of the grade threshold; instead, it likely results from smaller sample size and statistical noise. There are no statistically significant differences in the propensity to have math value-added data on either side of the threshold. The regression discontinuity coefficient estimates [standard errors] from a regression with an indicator for whether a teacher has math value-added data as the dependent variable are 0.010 [0.013], -0.012 [0.011], 0.027 [0.018], and -0.012 [0.029] for the $\mathrm{A} / \mathrm{B}, \mathrm{B} / \mathrm{C}$, C/D, and D/F thresholds. None of these are statistically significant at the 10% level.

[^13]: ${ }^{28}$ Because the value-added quality data is not available for the majority of the sample, it is also instructive to look at heterogeneity based on other teacher characteristics. Unfortunately, it has been demonstrated repeatedly in the literature that no observable characteristics proxy well for value-added (Rivkin et al., 2005; Hanushek et al., 2010). However, years of experience is correlated with value-added, with the second year of teaching associated with the highest increase in quality and the gains to experience generally tapering after 4 years (e.g., Boyd et al., 2008; Kane et al., 2008). Columns (5) through (8) shows heterogeneity by whether a teacher has taught at least 2 years (cols (5) and (6)) and at least 4 years (cols (7) and (8)). Tests for equality of the coefficients show that the differences are never statistically significant and vary somewhat based on the measure of experience used, but, whenever there is a meaningful difference between the coefficients, we see that turnover fell more among the more experienced teachers. Column (6) shows similar results for teacher education (whether a teacher has a Master's degree). Thus, although we cannot draw firm conclusions, there is no evidence that the effects have an opposite sign in the broader sample without value-added data.
 ${ }^{29}$ Note that the grouped threshold result may differ from the average of the coefficients estimated at the C / D and D / F thresholds for two main reasons: first, the effects of the covariates are constrained to be the same across thresholds, and second, the coefficient on the running variable may differ since D schools which may have appeared in both C / D and D / F regressions are assigned to only one threshold for the grouped result.
 ${ }^{30}$ Note that this is not inconsistent with the analysis presented in the previous section of the heterogeneity in turnover based on teacher value-added; that analysis uses the teachers that stay as well as the teachers that leave and so is more robust and appropriate for understanding turnover heterogeneity based on quality. This specification ignores the information on the stayers and so does not perform as well with low school density, but is useful for comparing the new teachers with the leavers.

[^14]: ${ }^{31}$ The results look virtually identical if one uses the value-added of leavers relative to the average valueadded of stayers as the dependent variable: the coefficients (standard errors) from regressions with covariates are $-0.01(.21),-0.16(.18)$, and $-0.21(.4)$ at the $\mathrm{A} / \mathrm{B}, \mathrm{B} / \mathrm{C}$, and C / D thresholds, respectively

[^15]: ${ }^{32}$ For example, perhaps A schools and B schools have joiners of comparable quality, but some of the higher-quality B school joiners don't have value-added data while the corresponding A school joiners do.
 ${ }^{33}$ Results using years of experience are similar but have lower power, potentially because of the nonlinearity of effects in experience.
 ${ }^{34}$ The link between education and VA is generally tenuous, sometimes even negative (Rivkin et al., 2005).

[^16]: ${ }^{35}$ The second year of data was not yet available when they wrote their paper.
 ${ }^{36} \mathrm{~A}$ first alternative is school closures: When schools close in the NYCDOE, teachers are not fired. If they cannot find permanent positions, they are given work as substitute teachers. If teachers prefer substitute work, then they might stay at lower-graded schools hoping that the schools will be closed in the future. I do not view this hypothesis as very plausible because (1) all of the closing schools had already been announced before teachers made turnover decisions, and so they would have needed to be anticipating closure decisions a full year in the future, and (2) anecdotal evidence suggests that teachers actually dislike being substitutes. Moreover, if we think this explanation is less likely for low-quality teachers, this would not be consistent with the heterogeneity results I will present in Section 6.2. A second alternative explanation is smaller teaching loads: Since accountability allows students to transfer out of F schools, if teachers prefer smaller classes, they could have stayed in lower-graded schools. However, columns (3) and (4) of Appendix Table 2 present regressions where the dependent variable is the percent change in enrollment experienced by a given school after receiving an accountability grade. None of the coefficients at the C / D or D / F thresholds are significant at even the 10% level (the B/C threshold coefficient is significant at the 10% level, but would not explain the effect since we do not see decreases in turnover at the B / C threshold). The estimate at the grouped C/D and D / F thresholds shows that enrollment at lower-graded schools decreased by 2%; it seems unlikely that such a small drop could cause such a large decrease in turnover.

[^17]: ${ }^{37}$ Teachers who leave the NYCDOE could be changing professions, taking a short stint away from teaching, transferring to a different district, or taking non-teaching roles within the NYCDOE.
 ${ }^{38}$ Each row shows results for schools within a small bandwidth of different grade thresholds (the same bandwidth used in the RD specifications) in order to keep the sample comparable to the RD estimates. The results are quantitatively similar if the estimation is performed separately on either side of the grade threshold, e.g., including F schools only instead of both F and D schools near the D/F threshold, standard errors are just larger due to smaller sample size. Column (1) runs the regressions with no covariates; column (2) adds in school and teacher covariates- critically, including a control for previous-year achievement- and

[^18]: ${ }^{41}$ Readers can see Rockoff and Turner (2010) for a complete timeline of events, but it is unlikely that schools knew what their 2007 accountability grades would be in advance. In April 2007, the NYCDOE informed principals of the progress report methodology and gave principals pilot progress reports based on 2005 and 2006 results. These reports did not contain letter grades, only numeric scores, and the NYCDOE did not inform principals about how they would map the numeric scores to grades. The pilot reports also omitted other key information (e.g., peer groups, environmental scores) that would ultimately affect the schools score. In addition, anecdotal newspaper evidence (presented in Rockoff and Turner (2010)) indicates that some principals were surprised to receive low grades.
 ${ }^{42}$ Specifically, columns (1) and (2) of Appendix Table 2 present regressions of equation (3) where the dependent variable is the percent change in the number of teachers experienced by a given school after receiving an accountability grade (each observation is a school-year). All of the coefficients are very small in magnitude, none of them are statistically significant, and some have a positive sign, which means the mechanical effect of changing staff size on turnover would go the opposite direction from the turnover effects I observe.

[^19]: Notes. Table presents regression discontinuity estimates of the effect of school accountability grades on teacher turnover. The dependent variable is an indicator for during the 2008-2009 and 2009-2010 school years and each observation represents one teacher in a given year. The control function is linear for columns (1)-(8), quadratic for columns (9) and (10), and cubic for columns (11) and (12). Columns (13) and (14) control linearly for the underlying components of the accountability score. School controls include controls for the average previous year's achievement; the percent of students that are black, hispanic, that receive free and reduced price lunch, and that are immigrants; fixed effects for school size; and five-year average school turnover prior to the institution of accountability. Teacher covariates and New York City Department of Education. The specification test tests for discontinuities in the regression function other than at the specified threshold (specifically,
 at all points that are a multiple of three points from the true threshold); the p-value represents the p-value from a joint test that there are no discontinuities at any other points. * Significant at 10%; ** significant at 5%; *** significant at 1%.

[^20]: ${ }^{43}$ Note that, despite the use of school fixed effects, I should be able to compare teacher fixed effects across different schools because there are many movers in the data. Moreover, for the RD analysis, schools on the border should have similar school fixed effects and so comparison of the fixed effects of teachers at the different schools will identify the effect of interest.

[^21]: ${ }^{44}$ This is slightly different from the procedure used by Kane and Staiger (2008) and Jackson (2009), who use the covariance between adjacent classroom-level residuals instead of teacher-level residuals since they both use elementary data only in which the majority of teachers only teach one classroom.

