MICRORNAS AND TYPE I INTERFERON ARE CRITICAL IMMUNE MODULATORS IN LYME ARTHRITIS

by

Robert Bruce Lochhead, Jr.

A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Microbiology and Immunology

Department of Pathology

The University of Utah

August 2014
STATEMENT OF DISSERTATION APPROVAL

The following faculty members served as the supervisory committee chair and members for the dissertation of Robert B. Lochhead, Jr.

Dates at right indicate the members’ approval of the dissertation.

Janis J. Weis, Chair 5/7/2014 Date Approved

Brenda Bass, Member 5/7/2014 Date Approved

Robert Fujinami, Member 5/7/2014 Date Approved

Matthew Mulvey, Member 5/7/2014 Date Approved

Ryan O’Connell, Member 5/7/2014 Date Approved

Dean Tantin, Member 5/7/2014 Date Approved

The dissertation has also been approved by Peter E. Jensen, Chair of the Department/School/College of Pathology, and by David B. Kieda, Dean of The Graduate School.
ABSTRACT

Lyme arthritis is the result of dysregulated immune response to infection by Borrelia burgdorferi, a tick-borne spirochete. Several immune modulators have been shown to be important to host defense and Lyme arthritis susceptibility, including toll-like receptor signaling, NF-κB activation, and various cytokines and chemokines, including type I IFN. Here we show that type I IFN and microRNAs play critical roles in modulating Lyme arthritis development.

C3H mice exhibit an early, preclinical upregulation of type I IFN-responsive genes, which is associated with increased arthritis severity. Using C3H IFNAR−/− knockout mice, we showed that C3H mice lacking type I IFN signaling have a partial reduction in arthritis severity. Radiation chimeras showed that IFN signaling in both radiation sensitive and radiation resistant cells within the joint are required for maximal arthritis. Ex vivo cell sorting of cells isolated from joint tissue also showed that hematopoietic cells were the only cell types capable of initiating a type I IFN response after stimulation with B. burgdorferi, but both hematopoietic and resident cells were involved in amplification of the type I IFN response. Endothelial cells and fibroblasts were also major producers of IFN-responsive genes and inflammatory cytokines.

MicroRNAs have been shown to be important immune regulators, and have been associated with several inflammatory diseases, including rheumatoid arthritis and lupus. Here we show that several microRNAs were differentially expressed in B6, C3H, and B6
IL10−/− mice infected with *B. burgdorferi*. MicroRNA-146a, a repressor of TLR signaling and NF-κB activation, was upregulated in all three strains, suggesting it plays an important role in the immune response to infection. B6 miR-146a−/− mice infected with *B. burgdorferi* developed more severe arthritis, had elevated myeloid infiltration, upregulation of inflammatory cytokines, and had fewer numbers of bacteria in joint tissue at 4 weeks postinfection, indicating that miR-146a-mediated regulation of NF-κB activation modulated immune response and arthritis development. Similar patterns of dysregulation were observed in B6 miR-146a−/− macrophages, which produced excessive cytokines, exhibited increased phagocytosis, and had elevated protein levels of TRAF6. Together, these data show that miR-146a is a critical regulator of NF-κB activation and arthritis development during infection with *B. burgdorferi*.
To Colleen, my rock
TABLE OF CONTENTS

ABSTRACT ... iii

LIST OF FIGURES ... viii

LIST OF TABLES .. x

ACKNOWLEDGEMENTS ... xi

CHAPTERS

1. INTRODUCTION .. 1

 Lyme Borreliosis .. 2
 Biology of *Borrelia burgdorferi* ... 3
 Host Defense ... 5
 Lyme Arthritis ... 6
 Mouse Models of Lyme Disease ... 7
 Toll-like Receptors in Lyme Arthritis ... 9
 Type I Interferon in Lyme Arthritis ... 10
 NF-κB Activation in Lyme Arthritis .. 11
 MicroRNAs in TLR Signaling and Autoimmunity .. 12
 Preview of Thesis Research ... 14
 References ... 15

2. ENDOTHELIAL CELLS AND FIBROBLASTS AMPLIFY THE ARTHRITOGENIC TYPE I IFN RESPONSE IN MURINE LYME DISEASE AND ARE MAJOR SOURCES OF CHEMOKINES IN *BORRELIA BURGDORFERI*-INFECTED JOINT TISSUE .. 27

 Abstract ... 28
 Introduction .. 28
 Materials and Methods .. 29
 Results ... 30
 Discussion .. 37
 References ... 40

3. MICRORNA-146a PROVIDES FEEDBACK REGULATION OF LYME ARTHRITIS BUT NOT CARDITIS, DURING INFECTION WITH
LIST OF FIGURES

Figure

2.1 IFNAR1 gene ablation results in reduced Lyme arthritis severity in C3H mice ... 31

2.2 IFNγ provides partial compensation for type I IFN in infected joint tissue and in bone marrow macrophages from C3H IFNAR1−/− mice .. 32

2.3 Radiation chimeras between C3H and IFNAR1−/− mice reveal contribution of both resident cells and cells of hematopoietic origin to proarthritic IFN response ... 33

2.4 Potential contribution of hematopoietic and nonhematopoietic cells to the initial IFN response to B. burgdorferi in joints of C3H mice .. 33

2.5 Infiltration and expansion of myeloid cells, endothelial cells, and fibroblasts in the joint tissue of B. burgdorferi-infected C3H mice .. 34

2.6 Ex vivo identification of endothelial cells and fibroblasts as major contributors to the IFN response of infected C3H joints 35

2.7 Characteristics of endothelial cells and fibroblasts recovered from joints of C3H mice at day 7 postinfection display markers of activation .. 36

2.8 Endothelial cells and fibroblasts display activation markers at day 7 of infection ... 36

2.9 Proposed mechanism of injury in joint tissue of C3H mice infected with B. burgdorferi ... 39

3.1 PCR validation of miRNA microarray results ... 84

3.2 B6 miR-146a−/− mice develop more severe arthritis at 4 weeks postinfection independent of bacterial burden ... 86
3.3 B6 and B6 miR-146a−/− mice have similar B. burgdorferi burden and similar levels of inflammation in heart tissue, distinct from C3H mice... 88

3.4 B6 miR-146a−/− mice exhibit hyperactive expression of a subset of NF-κB target cytokines and chemokines at 4 weeks postinfection... 90

3.5 Effect of miR-146a in isolated joint cell populations early in infection... 92

3.6 Myeloid cell recruitment is increased in infected joints of B6 miR-146a−/− mice... 94

3.7 Bone marrow-derived macrophages from B6 miR-146a−/− mice are hyperresponsive to B. burgdorferi and have elevated levels of TRAF6... 96

3.8 B6 miR-146a−/− peritoneal macrophages exhibit increased phagocytic activity... 98

3.9 Model of miR-146a function as a suppressor of arthritis during persistent B. burgdorferi infection... 100

3.S1 Lymphocyte infiltration into joints of B. burgdorferi-infected mice is similar between WT and miR-146a−/− mice............. 102

3.S2 Confocal images of B6 miR-146a−/− peritoneal macrophages incubated with GFP-B. burgdorferi... 104

A.1 Generation of B6 IL10−/− and miR-155−/− double knockout mouse.. 133

A.2 Effect of miR-155 on arthritis, host defense, and IFNγ response following a 4-week infection with B. burgdorferi......................... 135

A.3 Antibody response to B. burgdorferi is negatively regulated by IL-10 and positively regulated by miR-155 at 4 weeks postinfection, and miR-155 is required for IgG1 isotype switching... 137

A.4 Macrophage B. burgdorferi-induced cytokine production and IFNγ profile are negatively regulated by IL-10 and positively regulated by miR-155... 139
A.5 B cells from draining lymph nodes are major producers of IFNγ when stimulated with *B. burgdorferi*, which is independent of IL-10 and miR-155. ... 141

B.1 B6 IL10−/− mice contain greater numbers of B and T cells in draining lymph nodes than wild-type B6 mice after infection with *B. burgdorferi* for 4 weeks. .. 144

B.2 Effect of antibiotic treatment on arthritis severity, IFNγ profile, and T cell activation in B6 IL10−/− mice. ... 146

C.1 B6 miR-146a−/− mice have increased K/BxN serum-induced arthritis. ... 149
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Effect of IFN-α administration on arthritis development in B. burgdorferi-infected B6 mice</td>
</tr>
<tr>
<td>2.2</td>
<td>Endothelial cells and fibroblasts are major contributors of IFN-inducible transcripts in joints of B. burgdorferi-infected C3H mice</td>
</tr>
<tr>
<td>2.3</td>
<td>Endothelial cells and fibroblasts are major contributors of IFN-inducible transcripts in joints of B. burgdorferi-infected C3H mice</td>
</tr>
<tr>
<td>3.1</td>
<td>MicroRNAs most highly changed in expression, based on microarray, in joints of different mouse strains</td>
</tr>
<tr>
<td>3.2</td>
<td>Histopathology scores of arthritis severity for B6 and B6 miR-146a<sup>−/−</sup> mice</td>
</tr>
<tr>
<td>3.3</td>
<td>mRNA expression of induced cytokines in BMDMS from B6 and B6 miR-146a<sup>−/−</sup> mice after 6 and 24 hours stimulation with B. burgdorferi</td>
</tr>
<tr>
<td>3.3.1</td>
<td>MicroRNAs with greater than 2-fold change in expression in joints of mouse strains, based on Agilent miRNA microarray analysis</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

Many individuals contributed to this thesis, and this work would not have been possible without their help. First and foremost, I would like to thank Dr. Janis Weis, my mentor, who is a paragon of scientific mentorship. Her passion for the research, keen intellect, wise counsel, undying patience, and dedication to her role as mentor have been central to my success these four years. I am grateful for her guidance and friendship, and hope to emulate her in my future career as a mentor.

I would also like to thank the members of my thesis advisory committee, Drs. Brenda Bass, Robert Fujinami, Matthew Mulvey, Ryan O’Connell, and Dean Tantin, for their guidance, suggestions, and encouragement during my graduate career. Ryan O’Connell, in particular, was key to my success. Not only did he provide essential advice and guidance, he also took me under his wing and treated me almost as if I were one of his own graduate students, and inspired me to continue to pursue a career in academic research. John Weis and his lab members were like a second thesis committee, and helped me polish my talks and were great people to bounce ideas off of during lab meetings.

The current and former members of the Weis lab were instrumental in my research. My bay fellow and companion KC Bramwell has been an example of determination and fortitude, and was a calming force in my sometimes-hectic world. Lynn Sonderegger taught me everything I know about immunology, IL-10, flow cytometry, and Led
Zeppelin. Ying Ma, the “secret weapon” of the Weis lab, had her hands on every phase of this research. I wish to particularly acknowledge her assistance on the dozens of mouse infection experiments and the K/BxN arthritis experiment. Lab technicians and undergraduate students made life so much easier in the lab. Jake Thompson, in particular, was of great assistance with the IL-10 mouse work, and came in every day for 3 weeks to give mice antibiotics. One of the most rewarding parts of my graduate career was mentoring other students, including undergraduate Hector Zumeta; visiting scholar Lu Dalla Rosa, who did much of the DKO and IL-10 work; and rotation students Marah Hoel, Sarah Saffran, Jackie Paquette, and Sarah Whiteside, who helped with various aspects of my microRNA work. I’d also like to acknowledge former work done by Mark Wooten, Devin Bolz, Jennifer Miller, Hillary Crandall, Lynn Sonderegger, and others, which provided a scientific foundation upon which my research was built; and Jackie Paquette and Sarah Whiteside, to whom I now pass the torch.

I would like to thank the Microbial Biology graduate program, Dr. Sandy Parkinson, and members of the Dale lab, during the first years of my graduate career; and the Microbial Pathogenesis Training Grant for financial support during the last years of my graduate career.

Finally, I’d like to thank my two daughters, Meri and Lily, and my beloved wife, Colleen, for their love and support.
CHAPTER 1

INTRODUCTION
Lyme Borreliosis

Lyme borreliosis, or Lyme disease, is an inflammatory disorder caused by infection of tick-borne spirochetes belonging to the genus *Borrelia* [1]. In Europe, most cases are caused by infection with *Borrelia garinii* and *Borrelia afzelii*, while *Borrelia burgdorferi* is the principal cause of Lyme borreliosis in North America [2]. The first documented case of infection with *B. burgdorferi* was in a 5,300 year-old ice mummy discovered in the Italian Alps [3]. Today, Lyme borreliosis is endemic to temperate regions in the northern hemisphere containing infected *Ixodes* ticks, the arthropod vector of *Borrelia spp.*, which in the United States includes the Pacific north-west, upper mid-west and the Atlantic seaboard from Maine to Virginia [4,5].

Lyme borreliosis is the most common vector-borne disease in the United States, with an estimated 300,000 cases per year [6]. Lyme disease was first identified because of an unusually high incidence of juvenile idiopathic arthritis that occurred in Lyme, Connecticut [7]. It was later discovered by Burgdorfer et al., that this disease was in fact caused by a spirochete infection transmitted through the deer tick *Ixodes scapularis* [1]. Since its identification, the geographic endemic area and number of cases has steadily increased [4]. This is believed to be due to a number of factors, including reforestation [8] and expansion of deer and host populations [9], part of which may be contributed to climate change [10].

Lyme disease in humans occurs in three stages [2]. The first, early localized disease, occurs days or weeks following exposure to the pathogen and is often characterized by a bulls-eye rash, or erythema migrans, that spreads from the site of a tick bite. The second stage, early-disseminated disease, occurs weeks to months after
infection when spirochetes spread from the transmission site to distal sites of infection. Symptoms include neuropathy, facial palsy, episodes of acute arthritis, and carditis. Although rare, Lyme carditis has been implied as the cause of several deaths [11]. The third stage, late-disseminated disease, occurs months to years after infection, and may result in persistent or recurrent Lyme arthritis, as well as neurologic Lyme disease.

Lyme disease is usually resolved with effective antibiotic treatment, although symptoms may persist for months or years following successful treatment [12]. Persistence of symptoms following successful treatment remains enigmatic and several hypotheses have been proposed to explain this phenomenon. One is that bacterial antigens remain, even after antibiotic treatment [13]. Another is that the immune response to infection is unable to fully resolve after treatment [12]. A third is that low numbers of spirochetes persist, even after antibiotic treatment [14,15]. This posttreatment Lyme disease syndrome, sometimes called “chronic Lyme disease,” remains controversial both within the medical community and within the public at large [16,17]. Long-term antibiotic treatment of chronic Lyme disease syndrome patients continues to be administered by some medical professionals, despite NIH studies showing no therapeutic benefit over placebo controls [18].

Biology of *Borrelia burgdorferi*

Borrelia burgdorferi is an obligate anaerobe and, like other spirochetes, is characterized by their unique spiral morphology and planar wave motility, due to the flagella being within the periplasm [19]. *B. burgdorferi* is also unique in its genomic architecture. Its genome consists of an AT-rich 1 Mbp linear chromosome and at least 17 linear and circular plasmids [20-22]. This genome architecture is one of the most
complex of all bacteria, and may play an important role in diversification of vector and host specificity [23], as well as virulence [24]. This genome lacks many genes essential for metabolism of fatty acids, amino acids, and nucleotides, nutrients which are acquired from their host [25]. Interestingly, *B. burgdorferi* is one of only a few organisms that does not require iron, an adaptation believed to be in response to the unavailability of accessible iron within their hosts and evasion of innate defense mechanisms [26].

The reproductive cycle of *B. burgdorferi* involves transmission between their two hosts, ticks and small vertebrates such as mice and birds [27]. Larval and nymphal ticks become infected as they take a blood meal from an infected small vertebrate [5], and infected ticks remain infectious during molting [28]. Reservoir hosts include *Paromyscus* spp. mice, birds, and squirrels, which remain infectious until the next cycle of tick feeding [5]. White-tailed deer are also infected by feeding adult ticks, but are not part of the transmission cycle. Nevertheless, deer are important hosts for tick ecology, and expansion of deer populations in endemic regions is linked to the spread of Lyme disease [8].

Transmission from ticks to mammals occurs via tick salivary glands during a blood meal [29]. Replicating, nonmotile spirochetes remain in the mid-gut of ticks until the tick takes a blood meal. *B. burgdorferi* then become motile and move into salivary glands, enabling transmission to a new host [30]. As spirochetes move from tick to mammal host, a temperature-sensitive transcriptional change in genes encoding for surface proteins, among others, is required for successful transmission and continuation of the enzootic cycle [31,32]. Humans are incidental hosts, and are infected by both nymphal and adult ticks [33]. In addition to humans, domesticated animals, such as dogs and horses, are also
susceptible to infection and disease [34].

B. burgdorferi is not transmitted vertically from mother to egg; therefore it must persist within their hosts for many months until the next transmission cycle begins [35]. *Borrelia* contain many genes encoding for a large number of surface lipoproteins and adhesins, many of which are required for transmission and evasion of host immune response [36]. Furthermore, these bacteria are capable of varying antigenic regions of surface proteins through homologous recombination [37], inactivating complement [38], and downregulating target antigens [39], thus evading the host response.

Host Defense

While *B. burgdorferi* are able to persistently infect immunocompetent mice for at least a year [40], innate and adaptive immune responses are required for proper control of infection and spirochtemia [41,42]. Early in infection, numerous cells of the innate immune system are involved in host response, including endothelial cells [43], neutrophils [44], macrophages [45], and NK cells [46]. Toll-like receptors (TLRs) recognize and respond to pathogen-associated molecular patterns (PAMPs), and are critical for host defense, and mice lacking key TLR proteins have 10-100-fold higher bacterial numbers in joint, skin, and heart tissue [47-50]. The role of Toll-like receptors in Lyme arthritis is discussed in more detail below. Nod-like receptors are also involved in recognition of *B. burgdorferi*, although their roles in host defense are less clear [51,52].

B cell response to infection is critical in management of infections, and both T-cell-dependent and T-cell-independent antibody production are important in host defense [41,53]. Nevertheless, bacterial-mediated modulation of the B cell response is believed to
Impair antibody production and kinetics, highlighted by a lack of germinal center formation, which may be important for persistence [54]. Interestingly, *B. burgdorferi* can be detected inside lymph nodes, causing lymphadenopathy associated with Lyme borreliosis [55]. How the presence of bacteria within lymph nodes affects antibody production and host response is unknown, although the strong B-cell mitogenic activity of *B. burgdorferi* likely plays a role [56].

Lyme Arthritis

Lyme arthritis is one of the most common manifestations of Lyme disease, and has been reported in as many as 60% of untreated individuals [57]. Lyme arthritis is characterized by edema, synovial hyperplasia, neutrophil infiltration, and swelling, and arthritis severity varies among individuals, from chronic persistent arthritis to episodic acute arthritis to mild joint pain [57]. Arthritis is self-limiting, and is usually resolved upon successful antibiotic treatment [58]. In approximately 10% of cases, however, symptoms fail to fully resolve [58], which can develop into autoimmunity [59].

Manifestations of disease vary greatly amongst individuals both in terms of symptoms and severity, suggesting host genetic factors play a role in disease severity. Rheumatoid arthritis-associated HLA alleles (DRB1*0401, *0101, and *0404) have been linked to susceptibility to treatment-refractory Lyme arthritis [60] and production of anti-endothelial cell growth factor (ECGF) autoantibodies [59]. Variations in abundance and activity of regulatory T cells have also been associated with disease severity [61]. A recently identified polymorphism in Toll-like receptor 1 has been linked with excessive cytokine and chemokine production, although the functional relevance of this polymorphism is unknown [62].
Differences in pathogenicity and arthritis severity have also been linked to certain clinical isolates [63]. These isolates can either be disseminating (RST1) or non-disseminating (RST2 and RST3) strains [64]. One group of isolates, in particular (RST1, OspC type A), has been linked with more severe arthritis [24]. Furthermore, individuals infected with this strain were more likely to develop treatment-refractory arthritis, and exhibited a pronounced Th1 response in synovial tissue [65]. There is evidence to suggest that HLA haplotype influences bacterial strain-specific susceptibility [66], although it is unknown how this influences infectivity and disease severity.

Mouse Models of Lyme Disease

Since mice are natural hosts for *B. burgdorferi*, the mouse model is an excellent system to study disease pathogenesis. While wild strains of mice are asymptomatic upon infection, inbred mouse strains exhibit a spectrum of disease severity for a given spirochete burden, implicating genetic factors involving host response to infection playing an important role in pathogenesis [67,68]. For example, C57BL/6 mice develop mild arthritis and show little evidence of carditis, whereas C3H mice develop severe arthritis, despite having similar bacterial numbers in joint tissue; and have higher numbers of spirochetes in heart tissue and are susceptible to Lyme carditis [67].

Lyme arthritis in mice develops 2-4 weeks following infection with *B. burgdorferi*, and is characterized by edema, inflammatory lesions in joint tissue, remodeling of bone and cartilage tissue, inflammatory cell infiltration, and synovial hyperplasia [69]. These symptoms are also observed in human patients, who exhibit a wide range of disease severity, suggesting that murine Lyme arthritis faithfully recapitulates elements of human Lyme disease [12]. Several mouse strains are also susceptible to Lyme carditis in a strain-
specific manner [70], but unlike humans and nonhuman primates, do not develop erythema migrans or neuroborreliosis [71].

Because the mouse model is genetically tractable, several genetic approaches have been used to study Lyme arthritis in mice. Forward genetics has been utilized to identify arthritis-susceptibility genomic loci in the murine model of Lyme arthritis [72]. Congenic mouse lines containing arthritis-associated quantitative trait genetic loci were developed which led to the discovery of a novel arthritis susceptibility gene, Gusb [73], involved in lysosomal degradation of complex carbohydrates. Interestingly, this Gusb polymorphism also influenced arthritis severity in the K/BxN serum transfer model of rheumatoid arthritis, suggesting that host factors influencing Lyme arthritis severity may also influence other inflammatory diseases.

Reverse genetic approaches have also been used to identify immune genes that impact disease severity, such as interleukin-10 [74,75] and Cxcl1 [76], as well as host defense, such as toll-like receptor 2 (TLR2) [48] and myeloid differentiation factor 88 (MyD88) [47]. Other knockout studies have examined the role of dozens of immune genes and their role in a variety of immunological processes [77]. This approach has also been utilized to identify cell types that are involved in exacerbation of disease severity, such as neutrophils [78], and cell types that are not required for arthritis development, such as T and B cells [79].

A third genetic approach has been used recently taking advantage of genetic screen tools. This enables simultaneously examining a very large number of genes in an unbiased manner. This approach was used to identify a previously unrecognized preclinical interferon profile associated with arthritis susceptibility [80]. Subsequent
experiments showed that dysregulation of type I interferon exacerbated disease severity [81]. The role of type I interferon in Lyme arthritis is discussed further below and is the subject of Chapter 2. A genetic screen approach was also used to identify microRNAs associated with Lyme arthritis severity, and is the subject of Chapter 3.

Toll-like Receptors in Lyme Arthritis

Toll-like receptors recognize and respond to a number of pathogen molecular products, such as lipopolysaccharide, nucleic acid, and lipoproteins [82]. Recognition of *B. burgdorferi* lipoproteins by TLR2 is an important mechanism of host response to infection [49,83,84], and is a key element of the innate immune response [42]. TLRs signaling is divided into two pathways; the first dependent on the adaptor protein MyD88 which leads to NF-κB and MAP kinase activation, and the second TRIF-dependent, leading to upregulation of type I interferon [82]. Signaling through TLRs leads to transcriptional upregulation or downregulation of thousands of genes through activation of several transcription factor families, including IRF3/IRF7, which upregulate type I interferon [85], and NF-κB family of transcription factors, which regulate many cellular functions, including inflammation, host defense, leukocyte function, and hematopoiesis [86].

The importance of TLR signaling in clinical Lyme arthritis was validated in a recent patient study, which identified a polymorphism in TLR1 associated with a heightened Th1 response and increased Lyme arthritis severity [62]. TLR1/TLR2 heterodimers have been shown to be important in *B. burgdorferi* recognition [87] and host immune response [88]. It is unknown what effect this polymorphism has on TLR signaling, but two hypotheses are that either it amplifies the immune response, leading to
elevated inflammation and arthritis, or it impairs host defense, resulting in greater numbers of bacteria and increased arthritis severity.

Type I Interferon in Lyme Arthritis

Type I interferons (IFNs) are a family of proinflammatory cytokines important for host defense through activation of an antimicrobial state in a cell-intrinsic and cell-extrinsic manner, and is critical in protection against viral pathogens [89]. Dysregulation of type I IFNs are also associated with increased disease severity. In certain bacterial infections, induction of type I IFN can lead to impaired host defense, in part through suppression of pathways important for bactericidal function, including IFN-γ signaling [90]. In addition, type I IFN-based therapy is associated with development of autoimmunity [91]. A hallmark feature of systemic lupus erythematosus (SLE) is constitutive type I IFN production by plasmacytoid dendritic cells, leading to immune activation and autoantibody production [92].

As mentioned earlier, the role of type I IFN in Lyme arthritis development was first identified through microarray expression analysis [80]. Subsequent research by Miller et al. showed that abrogation of this IFN signature at 1 week postinfection led to a partial decrease in Lyme arthritis severity at 4 weeks postinfection [81]. TLRs, especially those that recognize nucleic acids, are important activators of type I IFN [82], and *B. burgdorferi* RNA has been shown to initiate a type I IFN response [93]. TLR2, traditionally associated with MyD88-dependent signaling, is also able to activate type I IFN upon *B. burgdorferi* stimulation in a TRIF-dependent manner [94]. In addition to TLRs, NOD2, an intracellular pattern recognition receptor, is also capable of inducing a type I IFN signature in response to *B. burgdorferi* [95]. Further elucidation into joint cell
types associated with induction and amplification of the arthritogenic type I IFN response is the subject of Chapter 2.

NF-κB Activation in Lyme Arthritis

Infection with *B. burgdorferi* leads to TLR-mediated NF-κB activation [43], and has been shown to play a critical role in host defense during *B. burgdorferi* infection, since mice lacking CD14, TLR2, or the adapter protein MyD88 are unable to control infection [48,96,97]. Not surprisingly, these mice also develop severe arthritis, probably due to the very high bacterial burden in joint tissue.

While NF-κB activation is essential in controlling infection, downregulation and return to homeostasis is also important in order to prevent persistent inflammation, tissue damage, and autoimmunity [98]. Failure to downregulate NF-κB-activated cytokines can lead to increased Lyme arthritis severity and development of treatment-refractory arthritis [62,99]. This failure to down-modulate NF-κB is also observed in synovial cells and peripheral blood mononuclear cells from patients with other inflammatory disorders, such as rheumatoid arthritis and lupus [100]. While evidence suggests that proper regulation of TLR/NF-κB signaling is important in limiting Lyme arthritis development in both mice and humans, decoupling its role in host defense from arthritis development has remained difficult.

Many CXC chemokines are regulated by NF-κB, and influence inflammation and host defense through recruitment of neutrophils (CXCL1, CXCL2), T cells (CXCL9, CXCL10), and B cells (CXCL12, CXCL13) [101]. Neutrophil chemokines, particularly CXCL1, are important for arthritis development [76]. CXCL1 is tightly regulated at the transcriptional and posttranscriptional level [102]; TLR, IL-1, or TNFα stimulation
results in Cxcl1 upregulation, which is dependent on two NF-κB binding sites [103], and is further regulated by the presence of multiple 3’ UTR AU-rich elements [104].

In addition to arthritis, TLR signaling also plays an important role in neuroborreliosis in humans and nonhuman primates [105]. In humans, elevated levels of IL-6 and CXCL13 in serum and cerebral spinal fluid correlate with active neuroborreliosis [106], and elevated levels of IL-6 and IL-1β are speculated to be associated with neuropsychiatric symptoms observed in some patients [107]. Furthermore, failure to upregulate TNFα in nervous tissue early in infection is correlated with development of chronic Lyme neuroborreliosis, suggesting that this cytokine is important for early elimination of bacteria [108]. Although mice do not develop neuroborreliosis, studying the role of TLR/NF-κB signaling in murine Lyme arthritis may shed light on mechanisms of other clinical manifestations of Lyme disease. Because of the central role of TLR signaling in host defense and disease pathogenesis, understanding TLR regulation is critical in elucidating mechanisms of arthritis and inflammation.

MicroRNAs in TLR Signaling and Autoimmunity

MicroRNAs are small, noncoding regulators of translation [109]. Since their discovery, microRNAs have been shown to play important roles in many biological processes, including immune response and inflammation and autoimmunity [110,111]. MicroRNAs act as translational inhibitors by recognizing and binding to 3’ UTR of target mRNAs [112]. Over 1,000 microRNAs have been identified in humans and mice, and many microRNAs are capable of targeting many different genes [109]. Because of this, it is believed that as many protein-coding genes are regulated by microRNAs [113,114].

A number of microRNAs are upregulated by TLR/NF-κB activation, including the
anti-inflammatory microRNA miR-146a and the proinflammatory microRNA miR-155 [115]. These microRNAs are important in providing feedback regulation of NF-κB signaling, and are required for maintaining immune homeostasis [115]. Because NF-κB is a key node in many cellular responses, these microRNAs have been shown to modulate a number of inflammatory responses [116].

Several microRNAs are differentially expressed in rheumatoid arthritis (RA) synovial tissue, including miR-146a and miR-155 [117,118]. Overexpression of miR-146a in RA patients is highly correlated with elevated levels of the arthritogenic cytokine TNFα and disease severity [119,120], although it is not known whether this is a marker of sustained inflammation or points to functional inability of miR-146a to modulate the inflammatory response. In support of the latter, a polymorphism in the 3’-UTR of IRAK1, a target of miR-146a [121], was identified to be positively associated with RA susceptibility. In a mouse study, addition of exogenous miR-146a was able to partially reduce pathology in the mouse collagen induced arthritis model [122]. Mouse studies have also shown that absence of miR-155 was able to reduce arthritis severity in both collagen-induced arthritis and K/BxN serum transfer arthritis, two models for RA [123]. Similarly, microRNA-182 was shown to be an important regulator of T cell clonal expansion in the ovalbumin-induced model of RA [124].

MicroRNAs miR-146a and miR-155 have also been associated with systemic lupus erythematosus (SLE) [125,126]. Unlike in RA, there appears to be an inverse relationship between miR-146a expression and the type I IFN signature, a marker for increased disease severity [127]. Furthermore, polymorphisms within the promoter region of miR-146a are associated with susceptibility to SLE [128,129]. In mice, several microRNAs,
including miR-155, share similar expression patterns in different lupus models [130].

MicroRNAs are also required for regulation of other inflammatory and autoimmune diseases [131]. For example, miR-155 expression is an important component of experimental autoimmune encephalitis (EAE), a mouse model for multiple sclerosis [132], through miR-155-dependent regulation of Th17 cell activation [133]. Conversely, microRNA-124 is a suppressor of EAE severity through its function in macrophages [134]. In the NOD mouse model of type 1 diabetes, miR-21, another TLR-induced microRNA, is an important modulator of pancreatic beta cell death through suppression of the proapoptotic gene Pdcd4 [135].

The studies and findings, both in humans and in mouse models, strongly support the notion that microRNAs are important regulators of inflammation and autoimmunity. However, no studies have been done examining the role of microRNAs in regulating Lyme arthritis. Chapter 3 of this dissertation examines microRNA expression in Lyme arthritis and discusses how miR-146a modulates arthritis severity.

Preview of Thesis Research

The focus of this dissertation is examining the roles of type I interferon and microRNAs in modulating Lyme arthritis severity. Chapter 2 builds on previous studies by Crandall et al. and Miller et al., showing the importance of type I interferon in arthritis development in the C3H mouse model of Lyme disease [80,81]. This study focuses on cellular sources of arthritogenic type I interferon response, as well as cell types involved in initiation of this response.

Chapter 3 contains the results of a study researching the role of microRNAs in Lyme arthritis development. This study focuses on one microRNA, miR-146a, and its
critical role as a suppressor of inflammation and arthritis. MicroRNA-146a was identified in a microRNA microarray screen as being highly induced during infection with *B. burgdorferi*.

Included in Appendix A are data from another microRNA identified in the microarray, miR-155. This microRNA was uniquely upregulated in the B6 IL10^{−/−} mouse model of Lyme arthritis, and its upregulation is consistent with a previous report showing that IL-10 is a negative regulator of miR-155 [136]. Also included (Appendix B) are results on the role of IL-10 in regulating persistent Lyme arthritis development and T cell activation, an extension of previous work performed by Sonderegger et al. [75]. Appendix C includes results showing that miR-146a also influences the K/BxN serum transfer model of rheumatoid arthritis.

References

CHAPTER 2

ENDOTHELIAL CELLS AND FIBROBLASTS AMPLIFY THE ARTHRITOGeneric TYPE I IFN RESPONSE IN MURINE LYME DISEASE AND ARE MAJOR SOURCES OF CHEMOKINES IN BORRELIA BURGDORFERI-INFECTED JOINT TISSUE

Endothelial Cells and Fibroblasts Amplify the Arthritogenic Type I IFN Response in Murine Lyme Disease and Are Major Sources of Chemokines in *Borrelia burgdorferi*-Infected Joint Tissue

Robert B. Lochhead,*1 F. Lynn Sonderegger,*1 Ying Ma,*1 James E. Brewster,*
Doug Cornwall,* Heather Maylor-Hagen,* Jennifer C. Miller,*2 James F. Zachary,†
John H. Weis,* and Janis J. Weis*

Localized elevation in type I IFN has been uniquely linked to the severe Lyme arthritis that develops in C3H mice infected with the spirochete *Borrelia burgdorferi*. In this study, the dynamic interactions that result in generation of these responses were further examined in C3H mice carrying the type I IFN receptor gene ablation, which effectively blocks all autocrine/paracrine signaling crucial to induction of downstream effectors. Reciprocal radiation chimeras between C3H and IFNAR1−/− mice implicated both radiation-sensitive and radiation-resistant cells of the joint tissue in the proarthritogenic induction of type I IFN. Ex vivo analysis of cells from the naïve joint revealed CD45+ cells residing in the tissue to be uniquely capable of initiating the type I IFN response to *B. burgdorferi*. Type I IFN responses were analyzed in real time by lineage sorting of cells from infected joint tissue. This demonstrated that myeloid cells, endothelial cells, and fibroblasts were responsible for propagating the robust IFN response, which peaked at day 7 postinfection and rapidly resolved. Endothelial cells and fibroblasts were the dominant sources of IFN signature transcripts in the joint tissue. Fibroblasts were also the major early source of chemokines associated with polymorphonuclear leukocyte and monocyte/macrophage infiltration, thus providing a focal point for arthritis development. These findings suggest joint-localized interactions among related and unrelated stromal, endothelial, and myeloid cell lineages that may be broadly applicable to understanding the pathogeneses of diseases associated with type I IFN signature, including systemic lupus erythematosus and some rheumatoid arthritides. The *Journal of Immunology*, 2012, 189: 2488–2501.

Lyne disease in humans is caused by infection with the tick-borne spirochete *Borrelia burgdorferi* and results in clinical arthritis in up to 30% of infected individuals (1, 2). Lyme arthritis has been extensively studied in the C3H mouse, which replicates many of the features of acute human disease, including edema, synovial hyperplasia, inflammatory cell infiltration, and reactive/reactive changes associated with joint tissue (3). A range of arthritis severity has been observed in humans and in different inbred strains of mice, as initially reported by Steere and Barthold et al. (2, 4). Additionally, numerous studies in mice have suggested that characteristics of the *B. burgdorferi*-induced inflammatory cascade determine the severity of arthritis that develops (5, 6). For example, ablation of the anti-inflammatory gene IL-10−/− results in greater severity of Lyme arthritis in both B6 and C3H mice (7, 8).

Previous global gene expression analysis in the joint tissue of C3H mice revealed an early inflammatory response at 1 wk of infection, weeks prior to the development of arthritic lesions (9). This early transcriptional event was characterized by robust but transient induction of IFN-responsive transcripts, and was absent from the mildly arthritic B6 mice. Innate immune production of type I IFNs (IFN-α,β) was suspected, as type II IFN (IFN-γ) is not required for Lyme arthritis development in C3H mice (10). Additionally, the peak of IFN-inducible transcript induction was prior to infiltration of lymphocytes into joint tissue likely to be required for IFN-γ production (11, 12). The involvement of type I IFN in Lyme arthritis was subsequently confirmed through the systemic administration of a type I IFN receptor (IFNAR1)-blocking mAb that was capable of disrupting signaling by all type I IFNs. This treatment suppressed the spike in IFN-inducible transcripts in the joint tissue at 1 wk of infection and the subsequent development of arthritis at 4 wk postinfection (13). In contrast, blocking IFN-γ suppressed expression of many of the overlapping IFN-inducible transcripts, but did not result in reduced arthritis severity.

The unique contribution of type I IFN to the development of severe Lyme arthritis in C3H mice implies specialized targets for this IFN in the infected joint tissue that cannot be compensated with IFN-γ. The potential importance of this finding is underscored by the pathological role of type I IFNs in systemic lupus erythematosus (SLE) and in the injurious side effects associated with IFN-αβ-based therapies for multiple sclerosis and hepatitis C.
infection (14–16). Even more relevant to Lyme arthritis pathogenesis are recent studies implicating type I IFN in a subgroup of rheumatoid arthritis (RA) patients who fail to respond to therapeutic TNF blockade (17–19). Thus, studies with Lyme arthritis may broadly improve our understanding of immune-mediated inflammatory diseases by providing insight for patient groups currently not well served by existing therapies.

To further our understanding of the contribution of type I IFN signaling in the development of Lyme arthritis, the IFN receptor I gene ablation (IFNAR1−/−) was crossed onto the C3H background (C3H IFNAR1−/−). Arthritis severity was reduced in the absence of IFNAR1. The development of radiation chimeras between C3H and IFNAR1−/− mice allowed assessment of contributions of both myeloid lineage and parenchymal cells to the proarthritis IFN response; both developmental lineages were involved. Ex vivo recovery of sorted cells from the joint tissue revealed dynamic contributions of various cell lineages to the arthritis-promoting IFN response. Resident myeloid cells of the joint tissue were identified as the initiators of type I IFN production upon encounter with B. burgdorferi, whereas endothelial cells and joint fibroblasts expressing adhesion/activation markers were found to amplify the response and served as the major source of disease-promoting chemokines. The development of severe arthritis was determined to be orchestrated by a cascade of events initiated by interaction of B. burgdorferi with myeloid, stromal, and endothelial cells at 1 wk postinfection.

Materials and Methods

Mice, bacterial cultures and infections, and assessment of arthritis severity

C3H/HeN mice were obtained from Charles River Breeding Laboratories or from National Cancer Institute, and C57BL/6 mice were from National Cancer Institute. The IFNAR1 gene ablation from the C57BL/6 mouse (20) (provided by M.-K. Kaja, University of Washington, Seattle, WA) was crossed six generations onto the C3H background. Filial mating was performed to generate C3H/HeN IFNAR1−/−. All mice were housed in the University of Utah Animal Research Center (Salt Lake City, UT) following all institutional guidelines for the care and use of mice in biomedical research. Mice were infected with 2 × 10^9 bacteria of the clonal B. burgdorferi strain N40 by intradermal injection into the skin of the back (3). Infected and control C57BL/6 mice received 5 × 10^7 U universal type I IFN (PBL) on day 1 and 10^7 U every other day for 28 d by i.p. injection, or received an equivalent volume of PBS (21). Ankles measurements were obtained using a metric caliper before and at 4 wk of infection. Rear ankle joints were prepared for assessment of histopathology by removal of skin and fixation of the tissue in 10% neutral buffered formalin, as described (8). Decalcified joints were embedded in paraffin, sectioned at 3 μm, and stained with H&E. Each slide was scored from 1 to 5 for various aspects of arthritis, and 0 representing no lesion. Ankle measurements and arthritis severity (including tendon sheath thickening (e.g., synovocyte and fibroblast hyperplasia), and reactive/ reparative responses (e.g., perisonal hyperplasia and new bone formation and remodeling), with 5 representing the most severe lesion, and 0 representing no lesion. Ankle measurements and arthritic lesions were assessed in coded samples. Infection was confirmed in mice euthanized prior to 14 d postinfection by culturing bladder tissue in Eppendorf tubes containing acid citrate dextrose, and leukocyte populations were analyzed, as described (23).

Flow cytometry

All flow cytometry data were analyzed using BD CellQuest Pro software. Sorting experiments were performed using a BD FACSaria II. All other FACS data were collected on a BD FACS Canto II flow cytometer or BD LSRII flow cytometer. The 7-aminoactinomycin D (eBioscience) or DAPI (Invitrogen) was used in all experiments, and cells were examined at 100× as doublet cells. All Abs used for flow cytometry were purchased from either BioLegend or eBioscience. Unconjugated F(ab’2) blocking Ab (clone 93; BioLegend) was included in all Ab-labeling experiments. Position of gates for sorting and analysis was based on analysis of appropriate isotype controls. Fluorochrome-conjugated Abs and isotype controls used in these studies were as follows: FITC-conjugated anti-CD11b (M1/70) and anti-CD5 (RA3-6B2); PE/Cy5.5-conjugated anti-Ly6c (HK1.4) and anti-CD31 (390); PE-conjugated anti-CD54 (VN1/17.4); anti-CD31 (390), anti-IFNAR1 (MAR1-583), and anti-CD29 (HMP-1); PE/Cy7-conjugated anti-CD11b (M1/70), anti-CD90.2 (30-H12), and anti-CD45.2 (104); -phosphorylcytosine-conjugated anti-F4/80 (BMS), anti-TCR β (H57-597), anti-CD29 (HMP-1), anti-CD45 (39-591), and anti-CD106 (429); Alexa Fluor 700-conjugated anti-Ly6G6C (RB6-8C5) and anti-CD45.2 (104); Pacific Blue-conjugated anti-TCR β (H57-597) and anti-B220 (RA3-6B2); and biotin-conjugated anti-PE (PE001) and PE-conjugated streptavidin.

Injection of mAbs

The following Abs were used in vivo for cytokine neutralization: anti-IFN-γ (XMG1.2), anti-TNF-α (XT3.11), and rat IgG1 (HPRN) isotype control, and were aggregate, endotoxin free, and sterile (Bio X Cell). Groups of five to six mice received 1 mg indicated Ab i.p. prior to infection, followed by 0.5 mg of the same Ab every 4–5 d thereafter, all by i.p. injection (11, 13).

Isolation of RNA and quantitative RT-PCR

For all experiments examining gene expression in joint tissue, mice were killed, and the skin was removed from the tibiotarsal joints. Joint tissues were excised, frozen immediately in dry ice/ethanol, and stored at −80°C. Total RNA from joint tissue and cultured cells was performed using TRIzol reagent (Invitrogen) (24). RNA from FACS-sorted cell populations was purified with the RNaseasy kit (Qiagen). RNA recovered from tissue and cells was reverse transcribed, and transcripts were quantified using a Roche LC-480 according to our previously described protocols (24). Primer sequences used in this study were as follows: Ccl2 forward (5′-CCCAAGTAGATGCTGGAGACG-3′), reverse (5′-GGTGGGTTGGGAAGGAAGTATCGG-3′); Ccl3 forward (5′-GGCTCTTTGCCGCTGGTGCTCTAGT-3′), reverse (5′-CATGCTCTTGTTACACCTCTGCC-3′); Ccl5 forward (5′-ATGGCTGGTAGTACTACCTC-3′), reverse (5′-CTCTAGGACACCAAG3′); Ccl9 forward (5′-CCCATTGCGCCCAAGCAG-3′), reverse (5′-AGCTCAGTATTGCTTGGCTTT-3′); Ifn1 forward (5′-GACGATGCTTGGATTGAGGCC-3′), reverse (5′-TCTCTTCTTCCATTCGCCAG-3′); Icam1 (CD54) forward (5′-AGGCGCTGACTGTC-3′), reverse (5′-ATCCGAAAGCAGAAACAGG-3′); Pecam1 (CD31) forward (5′-CTCTCCACATCATCAAGCACACTC-3′), reverse (5′-TTGTGTCGCTTGCACCCTTGG-3′); Ppargc1 (CD45) forward (5′-GAGGTTCCACCAAGATTGCCAG-3′), reverse (5′-CTGTCTTGTTCTCCTTACATGC-3′); Th2 (CD90) forward (5′-GGAGTGAGGGGCGGACTTCTTT-3′), reverse (5′-TTCTGIAACCGAGCTGATATG-3′); Vcam1 (CD106) forward (5′-CCGCATTGCCGACTATGG-3′), reverse (5′-GTCATTGCCGAGCAACAC-3′); Primer sequences for β-actin, Lyp, Igk, Igmu, Stat1, Stat3, Ccl2 (9), Cc2 (13), B220, H2K (25), Tofs, and hif-1α (26) can be found in the indicated citations.

Isolation of DNA and quantification of joint spirochetes

For quantification of joint spirochetes at 4 wk postinfection, total DNA was isolated from joint tissue, as described. PCR quantification of spirochetes was performed by amplification of the B. burgdorferi recA gene and normalized to the mouse Nidogen gene using a Roche LC-480 (27).

Generation of reciprocal radiation chimeras

The diminished severity of Lyme arthritis in mice 10 wk and older required the development of a protocol allowing rapid reconstitution of irradiated mice with high numbers of hematopoietic cells (11). C3H and C3H IFNAR1−/− mice 5 wk of age were lethally irradiated with 2 doses of 255 cGy 3 h apart using a GE Inovolt Titan. Twenty-four hours following irradiation, splenocytes were harvested from C3H or C3H IFNAR1−/− donor mice, and 2 × 10^7 splenocytes in a 200 μl volume were injected i.v.
into each irradiated recipient. Chimerism was determined at 6 wk postirradiation by flow cytometry assessment of mAb anti-IFNAR1 expression by blood leukocytes (28). Staining required sequential treatment with PE-conjugated anti-IFNAR1, biotin-conjugated anti-PE, and PE-conjugated streptavidin, which allowed sufficient fluorescence intensity to readily distinguish wild-type from IFNAR1−/− cells. Peripheral B cells and monocytes were found to be >90% donor derived, whereas T cells were ~60% donor derived. Total blood leukocyte counts were comparable to those from nonirradiated control mice 7 wk posttransplantation. Mice were infected at 3 wk postirradiation and transplantation, 7–8 wk of age and, therefore, allowing Lyme arthritis to be assessed.

Cell culture

Bone marrow-derived macrophages (BMDM) were isolated from the femurs and tibias of mice, as previously described (29). Macrophage cultures were plated in 12-well dishes at a density of 6 × 10⁵/mL in media containing the serum replacement Nutridoma (Roche) and stimulated with live *B. burgdorferi* cN40 (7.4 × 10⁵/mL), 10 U/mL IFN-γ (Sigma-Aldrich), or PBS. Macrophage cultures were stimulated at 37 C, 5% CO₂, and harvested either at 6 h for RNA extraction or at 24 h for assessment of type I IFN in supernatants by bioassay.

Magnetic separation of leukocytes and stromal cells from naive joint tissue

Single-cell suspensions of joint tissue were labeled with biotinylated anti-CD45.2 (BioLegend), followed by labeling with streptavidin magnetic beads (Miltenyi Biotec). Labeled cells were loaded onto MS columns (Miltenyi Biotech), and magnetic separation was performed according to the manufacturer’s instructions, with sequential application to a second column. Relative purity of the CD45.2+ and CD45.2− populations was determined by flow cytometry using allophycocyanin-conjugated anti-CD45 (clone 30-F11), which recognizes an epitope distinct from the Ab used in magnetic bead sorting (anti-CD45.2, clone 104). Unfractionated and fractionated populations were incubated in 2% FBS containing RPMI 1640 in the presence or absence of *B. burgdorferi*, 100 U mouse IFN-β (PBL), or both for 6 h. Conditions found to maintain cell viability and permit IFN-inducible responses to be detected. Samples were collected in TRIzol for RNA recovery (24).

Type I IFN bioassay

Bioactive type I IFN was detected in culture supernatants from BMDM incubated for 24 h with *B. burgdorferi* in the presence or absence of IFN-γ (eBioscience) by bioassay with B16-Blue IFN-αβ cells (InvivoGen), following manufacturer’s directions. Standard curve was generated with mouse rIFN-β (PBL).

Data and statistical analyses

All graphical data represent the mean ± SEM. Statistical analysis was performed using Prism 5.0c software. Multiple-sample data sets were analyzed by one-way ANOVA with appropriate post hoc test for pairwise comparisons (Figs. 2–6, Tables II, III). Two-sample data sets were analyzed by Student t test (Figs. 1, 8, Table I). Categorical data for histopathology was assessed by the Mann-Whitney U test (Figs. 1, 3, Table I). Statistical significance (p < 0.05) is indicated by *.

Results

Lyme arthritis severity can be modulated by augmentation or ablation of type I IFN signaling

We previously demonstrated that administration of a blocking mAb to the type I IFN receptor resulted in a significant diminution of arthritis severity in *B. burgdorferi*-infected C3H mice, implicating the type I IFN autocrine/paracrine pathway in arthritis development (13). As this pathway is not upregulated in the joint tissue of arthritis-resistant B6 mice, we tested the effect of supplementation of *B. burgdorferi*-infected B6 mice with type I IFN throughout *B. burgdorferi* infection. Treatment of B6 mice with daily injections of IFN-α for 4 wk following infection resulted in significantly greater ankle swelling than observed in the control group, receiving daily injections of PBS (Table I). Histopathologically assessed lesion scores suggested a trend toward increased arthritis in the group receiving IFN-α; however, this did not achieve statistical significance. Importantly, the increase in ankle swelling in treated B6 mice (Table I) did not reach the degree of severe arthritis seen in the genetically susceptible C3H mice (Fig. 1). This finding may further indicate the presence of IFN regulatory mechanisms inherent to the B6, but not the C3H genetic background.

As the previous assessment of type I IFN in Lyme arthritis was performed in vivo using a mAb to prevent signaling through the cognate receptor, a more rigorous approach was used by crossing the IFNAR1 gene disruption onto the susceptible C3H genetic background. Marker-assisted protocols were employed for rapid and complete crossing and to ensure that none of the quantitative trait loci associated with Lyme arthritis severity were lost from the recipient C3H mouse (30). Infection of C3H IFNAR1−/− mice with *B. burgdorferi* revealed a significant reduction in arthritis severity relative to wild-type C3H mice, as demonstrated by the traits of ankle swelling, overall lesion score, and neutrophil infiltration (Fig. 1), with less robust differences in tendon sheath thickness and reactive/reactive abnormalities also observed (data not shown). These results mirror the significant but incomplete reduction in arthritis severity previously reported in C3H mice treated with IFNAR receptor-blocking Ab prior to infection, thus indicating that the observed partial reduction in arthritis was not reflective of incomplete neutralization by the Ab (13). Three lines of experimental evidence now support the unique involvement of type I IFN in arthritis development in C3H mice, as follows: 1) arthritis can be partially suppressed with receptor-blocking mAb; 2) arthritis is similarly reduced by genetic ablation of the IFN signaling pathway; and 3) ankle swelling can be partially restored in B6 mice by administration of exogenous IFN-α. A modest increase in *B. burgdorferi* levels in joint tissue of IFNAR1−/− mice was observed, and demonstrated that the decreased arthritis seen in the mutant mice was not secondary to reduced numbers of spirochetes in the tissue (Fig. 1).

Effect of type I IFN receptor ablation on B. burgdorferi-induced IFN profile in joint tissue and in macrophage cultures

The contribution of type I IFN signaling to the previously reported robust upregulation of IFN-responsive transcripts was assessed in C3H IFNAR1−/− mice at 1 wk of *B. burgdorferi* infection. Interestingly, several of the IFN-inducible transcripts previously found to be reduced but not eliminated by receptor-blocking mAb also displayed residual induction in the joint tissue of *B. burg-

Table I. Effect of IFN-α administration on arthritis development in *B. burgdorferi*-infected B6 mice

<table>
<thead>
<tr>
<th>Infection Status</th>
<th>IFN Treatment</th>
<th>Change in Ankle Measurement</th>
<th>Overall Lesion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mock infected</td>
<td>PBS</td>
<td>0.01 ± 0.01*</td>
<td>0 ± 0</td>
</tr>
<tr>
<td>B. burgdorferi</td>
<td></td>
<td></td>
<td>1.0 ± 0.71</td>
</tr>
<tr>
<td>Mock infected</td>
<td>IFN-α</td>
<td>0 ± 0</td>
<td>0 ± 0</td>
</tr>
<tr>
<td>B. burgdorferi</td>
<td></td>
<td>0.25 ± 0.15</td>
<td>1.6 ± 0.55</td>
</tr>
</tbody>
</table>

Assessed at 4 wk of infection.

*Values represent mean ± SD.

*Statistical significance between PBS- and IFN-α-treated group, p < 0.05.
FIGURE 1. IFNAR1 gene ablation results in reduced Lyme arthritis severity in C3H mice. C3H or C3H IFNAR1−/− mice were infected with B. burgdorferi by intradermal injection, and arthritis was assessed at 4 wk, as described in Materials and Methods. Arthritis traits included the following: change in ankle joint measurement, PMN infiltration, and overall lesion severity. B. burgdorferi number in joint tissue was determined by quantitative PCR and normalized to the single copy mouse gene Nidogen. Statistical significance was determined by Student t test for ankle swelling and bacterial number in joint tissue, whereas the Mann–Whitney U test was used for PMN infiltration and overall lesion. All categories were assessed at 4 wk, as described in Methods.

IFN-γ partially compensates for type I IFN signaling ablation in the BMDM response to B. burgdorferi, but does not substitute for type I IFN in arthritis development

The B. burgdorferi-induced upregulation of IFN-inducible transcripts in BMDM was previously shown to be dependent on IFN receptor-mediated autocrine/paracrine signaling in B6 mice (13). BMDM were prepared from C3H and C3H IFNAR1−/− mice, and the presence of the receptor was again shown to be necessary for upregulation of IFN-inducible transcripts in response to B. burgdorferi, shown for Cxcl10, Oas12, Igtp, and Ghp2 (Fig. 2A). Importantly, C3H IFNAR1−/− BMDM were able to respond to B. burgdorferi by other sensing/signaling pathways, as indicated by upregulation of Ifnγ transcripts at concentrations similar to C3H BMDM (Fig. 2C).

The mAb results in Fig. 2A suggested that IFN-γ might compensate for type I IFN signaling in induction of the IFN transcriptional response to B. burgdorferi. To model the potential of IFN-γ to compensate for type I IFN within the joint, exogenous IFN-γ was added to BMDM cultures of C3H and C3H IFNAR1−/− macrophages stimulated with B. burgdorferi (Fig. 2B). Treatment with rIFN-γ alone resulted in the induction of most transcripts in both wild-type and IFNAR1−/− macrophages, but with a range of expression, shown for Cxcl10, Oas12, Igtp, and Ghp2. Costimulation with IFN-γ and B. burgdorferi resulted in expression of IFN-inducible transcripts in both C3H and C3H IFNAR1−/− macrophages, shown for Cxcl10, Igtp, and Ghp2 in Fig. 2B. However, expression of Oas12, a transcript linked to early type I IFN responses, was not upregulated in C3H IFNAR1−/− macrophages costimulated with IFN-γ and B. burgdorferi. The reduced expression of Igtp and Ghp2 when stimulated simultaneously with IFN-γ and B. burgdorferi may reflect a rapid response to dual stimuli that was missed by the 6-h time point (Fig. 2B).

Interestingly, transcriptional induction of IFN-β was observed at low concentrations in response to B. burgdorferi in both wild-type and IFNAR1−/− macrophages and was further upregulated by the addition of IFN-γ (Fig. 2C). The induction of IFN-β transcripts in C3H IFNAR1−/− macrophages defines this early production (6 h) as independent of positive feedback through type I IFN receptors. To ensure that these transcripts reflected the translation and release of type I IFN protein (IFN-α and IFN-β), macrophage supernatants collected at 24 h were subjected to bioassay for type I IFN using the B16-Blue cell line (InvivoGen) (Fig. 2C). Type I IFN secretion was detected in C3H BMDM stimulated with B. burgdorferi, whereas IFN-γ alone did not have this effect. Treatment with IFN-γ enhanced production of type I IFN protein in response to B. burgdorferi, in macrophages from both C3H and C3H IFNAR1−/− mice. Of note, bioassay results were confirmed to be specific for type I IFN as these findings were not influenced by the addition of neutralizing Ab to IFN-γ (data not shown).

The observation that the residual IFN profile seen in infected C3H IFNAR1−/− was suppressed by anti–IFN-γ neutralizing mAb (Fig. 2A) clearly implicates IFN-γ in the localized response to B. burgdorferi in the joint of C3H IFNAR1−/− mice, and suggests it could contribute to the residual arthritis seen in these mice. To test this hypothesis, groups of five infected C3H IFNAR1−/− mice were administered IFN-γ neutralizing mAb or isotype control mAb by i.p. injection every 5 d for 4 wk. IFN-γ neutralization did not cause further reduction in the severity of arthritis in C3H IFNAR1−/− mice: average ankle swelling for five mice treated with anti–IFN-γ measured 0.80 ± 0.23 mm, whereas mice treated with anti–IFN-γ measured 0.803 ± 0.17 mm. This finding indicates that the IFN-γ-dependent induction of transcripts in the joint tissue of infected IFNAR1−/− mice at 1 wk postinfection does not contribute to the residual arthritis seen at 4 wk postinfection, consistent with our previous published results employing blocking mAbs in C3H mice (13). Therefore, the residual arthritis seen in B. burgdorferi-infected C3H IFNAR1−/− mice develops independently of either type I or type II IFN.

The Journal of Immunology 2491

FIGURE 1.
Relative contribution of radiation-sensitive and resistant cells to the type I IFN-dependent development of Lyme arthritis

The results of Fig. 2 suggest that a mixture of cell lineages in the joint tissue may determine both the magnitude and breadth of the IFN response to *B. burgdorferi* and the severity of subsequent arthritis in C3H mice. To address the relative contribution of resident cells of the joint, such as endothelial cells and fibroblasts, and infiltrating hematopoietic cells to the type I IFN-dependent development of arthritis, we developed reciprocal radiation chimeras between C3H and C3H IFNAR1^{−/−} mice, using rapid reconstitution protocol to allow *B. burgdorferi* infection of mice, 8 wk of age. The efficiency of reconstitution of hematopoietic cells in the chimeras was determined by staining for IFNAR1 (28), described in Materials and Methods. Reconstitution of irradiated C3H mice with syngeneic splenocytes (C3H–C3H) resulted in severe arthritis following infection by *B. burgdorferi*, whereas infection of irradiated C3H IFNAR1^{−/−} mice reconstituted with syngeneic splenocytes (IFNAR1^{−/−}–C3H IFNAR1^{−/−}) displayed less severe arthritis (Fig. 3), and similar to nonirradiated mice in Fig. 1. Reconstitution of C3H mice with splenocytes from IFNAR1^{−/−} mice or reconstitution of IFNAR1^{−/−} mice with C3H splenocytes resulted in arthritis of intermediate severity following infection, shown for joint measurement and overall lesion score (Fig. 3). Control of *B. burgdorferi* was not significantly different in the treated animals, demonstrating that reconstitution was adequate for host defense (Fig. 3). That arthritis severity in the chimeras was intermediate compared with that observed for wild-type or IFNAR1^{−/−} mice implies that both radiation-resistant cells of the joint and radiation-sensitive hematopoietic cells contribute to the IFN receptor-dependent autocrine/paracrine effect that drives the severe arthritis of C3H mice.

Ex vivo identification of cell lineages in the joint tissue of naive mice capable of initiating and responding to the type I IFN response

The radiation chimera experiment of Fig. 3 implicated both hematopoietic and resident cells of the joint in the type I IFN-

FIGURE 2. IFN-γ provides partial compensation for type I IFN in infected joint tissue and in bone marrow macrophage cultures from C3H IFNAR1^{−/−} mice. (A) RT-PCR analysis of transcripts in joint tissue at 7 d postinfection (*Borrelia*) or mock infection of C3H IFNAR1^{−/−} mice (media) treated with anti-TNF-α, anti-IFN-γ, or isotype control IgG1, as described in Materials and Methods (n = 5). The following transcripts were analyzed and normalized to β-actin: Cxcl10, Oas2, Igp, and Gbp2. (B) Effect of exogenous IFN-γ on transcriptional induction of IFN profile in BMDM from C3H and C3H IFNAR1^{−/−} mice incubated with *B. burgdorferi*, IFN-γ, *B. burgdorferi* plus IFN-γ, or media alone for 6 h. RT-PCR analysis of IFN profile transcripts (Cxcl10, Oas2, Igp, and Gbp2), normalized to β-actin. (C) *B. burgdorferi*-induced secretion of bioactive type I IFN protein in culture supernatants of C3H and C3H IFNAR1^{−/−} BMDM, collected at 24 h. Supernatants were applied to type I IFN reporter cell line for IFN bioassay, as described in Materials and Methods. Transcription analysis of Ifnβ at 6 h from same experiment is shown for comparison, and Tnfα transcripts are included as viability and responsiveness control. Data are representative of two independent experiments. Statistical significance among groups (transcript analysis) or between experimental and control groups (IFN bioassay) is shown (*p < 0.05).
myeloid cells, such as macrophages, are uniquely endowed with the ability to internalize and sense *B. burgdorferi* pathogen-associated molecular patterns, which lead to the initiation of the IFN-responsive transcriptional profile (36–38). To identify the relative ability of hematopoietic cells and nonhematopoietic cells of the joint to initiate the IFN profile, single-cell suspensions were recovered from the joints of naive C3H mice following gentle digestion, and fractionated into CD45⁺ and CD45⁻ populations by magnetic bead separation. Approximately 20% of the cells in the unfractonated group were CD45⁺, and this increased to 75–80% following CD45 enrichment, as determined by flow cytometry (Fig. 4A). Cells from the three populations were cultured for 6 h in the presence of *B. burgdorferi*, IFN-β, or *B. burgdorferi* plus IFN-β. The expression of the NF-κB-dependent transcript *Tyki* served as a control for viability, as its production has been previously characterized in both myeloid and endothelial cells treated with *B. burgdorferi* (22, 39). By this measure, both CD45⁺ and CD45⁻ fractions were viable and capable of responding to *B. burgdorferi* (Fig. 4B). Cell viability was further confirmed by the response to IFN-β alone, as both CD45⁺ and CD45⁻ fractions upregulated the early IFN-inducible transcripts *Cxcl10* and *Tyki* following this treatment (Fig. 4C, 4D) (40). This also points to the potential involvement of both fractions in the amplification stage of the IFN response. In contrast, only the CD45⁺ cells were capable of upregulating *Cxcl10* and *Tyki* in response to *B. burgdorferi* alone (Fig. 4C, 4D), indicating novel contribution of CD45⁺ cells in triggering the IFN-inducible profile. As we previously demonstrated that the IFN profile at 1 wk postinfection is also observed in infected C3H scid mice (13), these results strongly implicate a myeloid lineage cell as initiator of the IFN response resulting in activation of large numbers of resident cells that amplify the response.

Assessment of changes in cellular composition and activation in *B. burgdorferi*-infected joint tissue

The unique ability of CD45⁺ cells to initiate the IFN profile in vivo, and the ready induction of this response in BMDM cultures, suggested that infiltrating myeloid cells might be the driving force behind the IFN response to *B. burgdorferi* in vivo.

Ly6C⁺-expressing inflammatory monocytes have recently been implicated in both the beneficial type I IFN response to viral infection and in its pathological production in chronic disease such as SLE (41, 42). Therefore, the composition and infiltration of Ly6C⁺ myeloid-lineage cells to the joint tissue of C3H mice were dependent development of Lyme arthritis. BMDM and other myeloid cells have been identified as sources of IFN when incubated with *B. burgdorferi* (Fig. 2B) (13, 34–36). Although it is likely that the complex milieu of the joint tissue facilitates cooperation among a variety of cell types, it is also possible that

FIGURE 3. Radiation chimeras between C3H and IFNAR1⁻/⁻ mice reveal contribution of both resident and cells of hematopoietic origin to proarthritic IFN response. Reciprocal radiation chimeras between C3H and C3H IFNAR1⁻/⁻ mice were generated, as described in Materials and Methods. Mice were infected with *B. burgdorferi* 3 wk following reconstitution, and arthritis severity was assessed at 4 wk postinfection, shown for change in ankle measurement and overall lesion score. Direction of transplantation from donor to recipient is indicated on the figure. Results are pooled from two separate experiments, with n=10 mice in each infected mouse group. *B. burgdorferi* numbers at 4 wk postinfection were similar in all mice. Uninfected chimeras did not display ankle abnormalities or *B. burgdorferi* DNA in tissues. Statistical significance among groups (*p < 0.05) is indicated.

FIGURE 4. Potential contribution of hematopoietic and nonhematopoietic cells to the initial IFN response to *B. burgdorferi* in joints of C3H mice. Enrichment of leukocytes in the CD45⁺ fraction was confirmed by flow cytometry (A) with significant change from unfractionated indicated (*p < 0.05). RT-PCR of transcripts for *Tyki* (B), *Cxcl10* (C), and *Tyki* (D) identified populations responsive to *B. burgdorferi*, IFN-β, and combined treatment, and were normalized to β-actin. Only CD45⁺ cells displayed significant upregulation of the IFN-inducible transcripts *Cxcl10* and *Tyki* in response to *B. burgdorferi* alone, as indicated. Results are representative of three separate experiments, with n=3. Statistical significance between experimental and control groups (*p < 0.05) is indicated.
determined by flow cytometry assessment of populations released from the joint tissue over time: PMN leukocytes were defined as GR1^high^Ly6C^dim^CD11b^high^CD45^+, macrophages were GR1^-Ly6C^-F4/80^-CD11b^high^CD45^+, and inflammatory monocytes were GR1^dim^Ly6C^high^CD11b^high^CD45^+. Increases in all three myeloid lineage populations were seen at days 11 and 14 postinfection relative to uninfected mice, with macrophages and PMNs dominating the inflammatory cell infiltrate (Fig. 5A). The increases in these lineages at day 11 postinfection were similar between C3H and C3H IFNAR1^-/-^ mice, indicating the recruitment or expansion of these cells was not dependent on type I IFN signaling. Importantly, the Ly6C^+^ population showing the greatest increase following infection in both C3H and C3H IFNAR1^-/-^ mice was the inflammatory monocyte; however, this increase was not observed until day 11 of infection and was still elevated at day 14. Of note, there was no increase in any of the myeloid cell populations at day 7 postinfection, the time point previously and in this study associated with the peak of the IFN response (Fig. 5A). This striking result indicated that the induction of the IFN profile was not dependent on recruitment of myeloid cells from the blood or other tissues; rather, it suggested that the initiator of the IFN response might be a myeloid cell endogenous to the joint tissue. This could include macrophages naturally present within the joint space or synoviocytes of the macrophage lineage.

That Ly6C^+^ myeloid lineage cells contribute to the ultimate development of arthritis is clearly suggested by the dramatic increase in these populations by day 11 postinfection. These cells may also be important in host defense, as their presence at 14 d coincides with our previous identification of upregulation of transcripts associated with host defense at this time point. In support of this concept, there was a marked shift in the ratio of PMN to macrophage presence at day 14 postinfection of wild-type mice that did not occur in the absence of IFN signaling (Fig. 5A), consistent with published findings in other experimental models of the role of type I IFN in maturation of the myeloid cells in localized tissues. It is interesting to speculate on the possible contribution of this difference to the development of more severe arthritis in C3H mice than in C3H IFNAR1^-/-^ mice.

Changes in cellularity of resident cells of the joint tissue were also found, as shown for the increase in both endothelial cells and fibroblasts in joints of infected mice (Fig. 5B). Endothelial cell (CD45^-CD31^+) and fibroblast (CD45^-CD31^-CD90^-CD29^+) numbers were increased by days 11 and 14 postinfection in joints from both C3H and C3H IFNAR1^-/-^ mice (Fig. 5B). Increases in these populations were similar in the two mouse strains, indicating lack of dependence on type I IFN. The percentages of endothelial cells and joint fibroblasts that displayed activation markers (VCAM1^+^ICAM1^high^) were increased by day 11 postinfection, and continued to be elevated through day 14. The similarity in activation marker expression by endothelial cells and joint fibroblasts from C3H and C3H IFNAR1^-/-^ mice indicated that this event was also not dependent on type I signaling (Fig. 5B).

FIGURE 5. Infiltration and expansion of myeloid cells, endothelial cells, and fibroblasts in the joint tissue of B. burgdorferi-infected C3H mice. (A) Single-cell suspensions were analyzed for the presence of PMNs (GR1^+^Ly6C^+^CD11b^-CD45^+^), inflammatory monocytes (Ly6C^+^GR1^-CD11b^-CD45^-), and macrophages (GR1^+^Ly6C^-CD45^+^-F4/80^-CD11b^-CD45^-) by flow cytometry at days 0 (media), 7, 11, and 14 postinfection with B. burgdorferi. Mean ± SEM are indicated, with n = 3. (B) Single-cell suspensions were analyzed for fibroblasts (CD45^-CD31^-CD90^-CD29^+) or endothelial cells (CD45^-CD31^+) by flow cytometry at days 0 (media), 7, 11, and 14 of infection. Activated cells were identified as VCAM1^+^ICAM1^high^. Statistically significant differences were found at 11 and 14 d of infection relative to uninfected mice, for both the C3H and IFNAR1^-/-^ mice, but differences were not found between the two mouse genotypes at any time point (*p < 0.05) indicated. These results are representative of two separate experiments, n = 3.
However, the potential participation of these cells in the amplification of the IFN response and participation in other proinflammatory cascades in C3H mice is clearly supported by the expression of classic activation markers. Thus, the complex environment of the infected joint tissue provides opportunity for activation of multiple cell types that contribute to the IFN-dependent and IFN-independent events associated with the development of Lyme arthritis.

Ex vivo analysis of IFN-responsive cells sorted from the joint tissue of B. burgdorferi-infected mice

The presence of activated endothelial cells and fibroblasts in the joint tissue of infected C3H mice suggested that they could be early participants in the response to *B. burgdorferi*, in addition to resident myeloid lineage cells (Figs. 4, 5). To quantitatively analyze the IFN response within the infected joint tissue, single-cell suspensions were prepared by enzymatic digestion, stained with lineage markers, separated by FACS, and RNA recovered for transcript analysis at 0, 7, 11, and 14 d postinfection. The following cell types were identified for cell sorting: myeloid cells were CD45.2^+CD11b^+; lymphoid cells were CD45.2^+CD11b^- (B220^+ or TCRβ^+); endothelial cells were CD45^-CD31^+ with many of these also expressing high levels of Ly6C; and a final group was comprised of a heterogeneous mixture of stromal cell types, such as fibroblasts, chondrocytes, and smooth muscle cells that were CD45^-CD31^- . A subset of this group was CD90^+CD29^+, indicative of joint fibroblasts, including synovial fibroblasts, and some of which were also Ly6C^+ (data not shown). Pilot studies confirmed that the earliest time to reproducibly capture the IFN profile in cells sorted from the infected joint was day 7 of infection, which coincides with the earliest time point at which *B. burgdorferi* 16S rRNA can be reliably detected in this tissue (data not shown). IFN-inducible transcripts peaked at 7 d postinfection, in both the unfractonated and each of the sorted populations of joint cells, shown for *Iigp*, *Igpg*, *Gbp2*, and *Oasl2* (Fig. 6). IFN-induced transcript levels receded dramatically by day 11 postinfection, similar to uninfected levels. In addition to the expected contribution of myeloid cells and lesser contribution of lymphoid cells, endothelial and fibroblast-enriched fractions displayed robust upregulation of the IFN-inducible transcripts. Although the importance of synovial fibroblasts in the pathogenesis of RA is well appreciated (43), the dominating role of endothelial cells and fibroblasts in the tissue response to *B. burgdorferi* infection has not been previously demonstrated. The precise and synchronized timing of the IFN response in all cell lineages further indicates carefully orchestrated expression patterns in the joint tissue.

The results of Fig. 6 implicated both endothelial cells and joint fibroblasts in the early response to *B. burgdorferi* in the joint tissue. An interesting observation from the transcript analysis in Fig. 6 is the finding that both *Igpg* and *Gbp2* were constitutively expressed in endothelial cells at higher concentrations than found in myeloid or fibroblast-enriched cells. This suggested the possibility that endothelial cells of the joint tissue were poised to respond to blood-borne pathogens or inflammatory mediators. Therefore, activation states of endothelial cells and synovial fibroblasts were further dissected with more specific staining reagents, and the FACS separation was repeated for joint tissue from uninfected and day 7 infected C3H mice. Leukocytes were identified as CD45^+, endothelial cells were identified as CD31^+CD45^- , and in this protocol joint fibroblasts were isolated using the markers CD45^- and CD31^- to remove hematopoietic and endothelial cells, followed by enrichment for fibroblasts, including synovial fibroblasts, using CD90^+CD29^- (Fig. 7A) (44). The fidelity of the sorting protocol was confirmed by lineage-specific transcript analysis and revealed enrichment of CD45 transcripts only in leukocytes, CD31 enrichment in endothelial cells, CD90 (Thy1) enrichment in fibroblasts and leukocytes, and enrichment of fibronectin in joint fibroblasts and other cell types, which were not defined in our analysis, but include epithelial cells, chondrocytes, and smooth muscle cells (Fig. 7B). Transcripts from *Mmp3* were also only identified in the joint fibroblast and other fractions (data not shown), further evidence that this represents a functionally discrete subset in the joint tissue. Similar confirmation of sorting fidelity was obtained for the lineage-sorted fractions used in Fig. 6 (data not shown). The activation status of endothelial cells and fibroblasts in the joint at the critical day 7 time point was studied following FACS recovery of cells stained for VCAM1, ICAM1, and PECAM1. Endothelial cells demonstrated increased staining intensity and transcriptional upregulation for all three activation markers at day 7 postinfection.

FIGURE 6. Ex vivo identification of endothelial cells and fibroblasts as major contributors to the IFN response of infected C3H joints. FACS analysis of cells released from joint tissue of C3H mice infected for 0 (media), 7, 11, and 14 d. Single-cell suspensions of joint tissue were prepared for lineage staining, and FACS was used to collect and quantify lineages. RT-PCR analysis of sorted lineages at each time point (n = 3). Myeloid cells (CD45^-CD11b^+), lymphoid cells (CD45^-CD11b^- , TCRβ^+), or B220^+), endothelial cells (CD45^-CD31^+), and fibroblast-enriched cells (CD45^-CD31^-) were sorted simultaneously. Expression of IFN-inducible transcripts, *Gbp2*, *Igpg*, *Cc39*, and *Oasl2*, was normalized to β-actin. Statistical significance between experimental and control groups (*p < 0.05) is indicated.
whereas joint fibroblasts showed increased expression of Vcam1 and Icam1 (and do not express Pecam1) (Fig. 8A, 8B). These data indicate that cellular activation precedes proliferation of endothelial cells and fibroblasts shown earlier (Fig. 5B), and demonstrate strong correlation between transcript induction and protein expression at day 7 postinfection. Interestingly, these VCAM1+ICAM1+ fibroblasts were also Ly6C+ (data not shown), and may constitute fibroblast-like synoviocytes implicated in RA (43, 44).

Transcriptional analyses of the highly enriched endothelial and fibroblast fractions from the joint further supported their contribution to the IFN profile at day 7 (Table II). Endothelial cells and fibroblasts were found to be major contributors of the classic IFN-inducible transcripts Gbp2, Iigp, and Oasl2, as well as the IFN transcriptional activator Stat1. The contribution of endothelial cells and fibroblasts to the B. burgdorferi-induced IFN response is striking, and previously unrecognized, although human endothelial cell cultures were previously shown to respond to B. burg-
B. burgdorferi through a classic NF-κB-dependent signaling cascade (45). Further analyses of the transcriptional response to B. burgdorferi revealed both joint fibroblasts and endothelial cells to be the dominant sources of chemokines (Table III), with joint fibroblasts supplying the PMN and monocyte-recruiting Cxcl1, Cxcl2, Ccl2, and Ccl8, and endothelial cells serving as the primary source of the CXCR3-interacting chemokines Cxcl9 and Cxcl10, important in recruiting NK and T cells. This coincides with an increase in the expression of the classic activation markers VCAM1, ICAM1, and PECAM1 by fibroblasts and endothelial cells (Fig. 8), which would further contribute to the recruitment of inflammatory cells. Also of note is the production of Cxcl1 and Cxcl10 by endothelial cells, important stimulants for neutrophils and activated neutrophils, respectively. The unique contribution of leukocytes to Cxcl13 recruitment of B lymphocytes may be important in the resolution of infection and disease. It is particularly interesting in light of the strong association of CXCL13 with tissue-specific infection by B. burgdorferi in humans (46, 47).

Integration of our ex vivo analysis of the early responses of the infected joint tissue with characteristics of the arthritic lesions at 28 d postinfection has allowed development of a dynamic model for B. burgdorferi-induced arthritis development in C3H mice (Fig. 9). Two phases of arthritis development are shown in this model, with the first phase incorporating the initiation of type I IFN production and the upregulation of other proinflammatory molecules, and the second phase depicting the progression to the arthritic lesion. The involvement of myeloid cells, endothelial cells, and fibroblasts is depicted, with upregulation of chemokines by fibroblasts and synoviocytes providing the key stimulus for arthritis development.

Discussion

Previously, we noted a transient and early induction of type I IFN signature transcriptional response in the joint tissue of B. burgdorferi-infected C3H mice and determined this to be a predictor of the severity of Lyme arthritis in this mouse strain (9). Subsequently, we discovered that blocking the early type I IFN signaling disrupted the efficacy of ongoing antibacterial treatments. It is generally accepted that B. burgdorferi can enter tissues following hematogenous spread, and that it is the response of the host to bacteria in the tissue that initiates an inflammatory response (5, 49). Therefore, a more precise ex vivo analysis of cells from the joint tissue was employed to assess the cellular dynamics of the response to B. burgdorferi invasion. Consistent with the radiation chimera experiment, both hematopoietic cells and fibroblasts and endothelial cells of the joint contributed to the robust IFN profile in infected joint tissue (Figs. 4, 6, Tables II, III). Evaluation of cells recovered from the naive joint revealed a much more limited ability to generate an IFN response to B. burgdorferi: only CD45-1 cells had this capability. However, both CD45-1 and CD45-2 cells responded to exogenous IFN-β by amplifying the production of IFN-inducible transcripts, indicating their potential contribution to the arthritis-associated response. Both CD45-1 and CD45-2 cells of the naive joint upregulated Tnfα in response to B. burgdorferi in vitro, simulating the potential contribution of IFN-independent signaling pathways during infection.

The ability of human and murine macrophages, monocytes, and dendritic cells to initiate a type I IFN response when stimulated with B. burgdorferi in vitro has been clearly documented; how-

Table II. Endothelial cells and fibroblasts are major contributors of IFN-inducible transcripts in joints of B. burgdorferi-infected C3H mice

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Treatment</th>
<th>Gbps</th>
<th>lyp</th>
<th>Oasl2</th>
<th>Stat1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukocyte*</td>
<td>Media</td>
<td>2 ± 0.65</td>
<td>ND</td>
<td>3 ± 0.8</td>
<td>10 ± 2.9</td>
</tr>
<tr>
<td></td>
<td>Infected</td>
<td>29 ± 3.3</td>
<td>13 ± 3.7</td>
<td>19 ± 5.6</td>
<td>21 ± 4.2</td>
</tr>
<tr>
<td>Endothelial</td>
<td>Media</td>
<td>36 ± 9.0</td>
<td>116 ± 30.1</td>
<td>3 ± 1.7</td>
<td>13 ± 5.7</td>
</tr>
<tr>
<td></td>
<td>Infected</td>
<td>447 ± 22.3</td>
<td>514 ± 62.9</td>
<td>44 ± 7.1</td>
<td>160 ± 12.7</td>
</tr>
<tr>
<td>Fibroblast</td>
<td>Media</td>
<td>21 ± 2.9</td>
<td>11 ± 1.9</td>
<td>3 ± 1.5</td>
<td>6 ± 1.7</td>
</tr>
<tr>
<td></td>
<td>Infected</td>
<td>273 ± 39.9</td>
<td>185 ± 20.6</td>
<td>38 ± 11.1</td>
<td>71 ± 23.8</td>
</tr>
<tr>
<td>Other</td>
<td>Media</td>
<td>7 ± 1.3</td>
<td>2 ± 0.9</td>
<td>2 ± 1.0</td>
<td>12 ± 2.4</td>
</tr>
<tr>
<td></td>
<td>Infected</td>
<td>112 ± 19.6</td>
<td>53 ± 15.9</td>
<td>14 ± 4.7</td>
<td>71 ± 15.5</td>
</tr>
<tr>
<td>Unsorted</td>
<td>Media</td>
<td>28 ± 1.5</td>
<td>82 ± 6.2</td>
<td>4 ± 0.5</td>
<td>10 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>Infected</td>
<td>134 ± 15.2</td>
<td>149 ± 20.7</td>
<td>30 ± 1.6</td>
<td>53 ± 7.8</td>
</tr>
</tbody>
</table>

*RNA prepared from lineage-sorted joint cells at day 7 of infection.

*Mean ± SE for samples from four mice, normalized to β-actin.

*Bolded numbers indicate greater induction compared with mice treated with media alone, p < 0.05.
ever, to our knowledge, this is the first study to directly assess the potential of cells of the joint tissue to mount this response. Our results are most consistent with a resident mononuclear cell initiating the IFN profile following phagocytosis of *B. burgdorferi* and processing *Borrelia* ligands capable of activating cellular sensors. Numerous laboratories studying the IFN response to *B. burgdorferi* have identified MyD88-dependent sensors, particularly TLR7/8, and MyD88-independent, IFN regulatory factor-3-dependent sensors capable of inducing type I IFN in cultures of mouse and human mononuclear cells (34–37, 50, 51). *B. burgdorferi* ligands implicated in this response include RNA, lipoproteins, and secreted bacterial components (25, 34, 36, 52). Interestingly, the Ly6C+ inflammatory monocytes, whose recruitment has been seen in C3H IFNAR1−/− mice as well as the ability of CD45+ cells from the joint tissue to upregulate transcripts for TNF-α in response to *B. burgdorferi*. The development of severe Lyme arthritis is clearly influenced by multiple pathways activated simultaneously, with the full-blown lesion observed in C3H mice reflecting the combined effects. Fundamental to our model is the requisite involvement of joint-localized bacteria in every stage of lesion development.

Our findings suggest a model by which *B. burgdorferi* exits the vascular endothelium and enters the joint tissue, potentially encountering several types of cells (Fig. 9) (57, 58). Endothelial cells may be the first to encounter *B. burgdorferi* as it exits the blood, and human endothelial cells are known to engage TLR-MyD88-dependent signaling in response to *B. burgdorferi* (45). Fibroblasts are also abundant components of connective tissue of the joint, and the interaction of *B. burgdorferi* with synovial fibroblasts, fibrocytes, and extracellular matrix components of connective tissue has been well established (59, 60). Myeloid cells residing in the joint, possibly including macrophage-like synoviocytes and tissue macrophages, appear to trigger the type I IFN response (Fig. 9). This response most likely requires phagocytosis of *B. burgdorferi* and liberation of bacterial components that result in IFN production. Once type I IFN production is initiated, numerous cell types of the joint, particularly endothelial cells and synovial fibroblasts, engage the type I IFN receptor and join the IFN signaling cascade and sets the stage for the development of severe Lyme arthritis development and resolution. The relative contribution of fibroblasts occupying the joint space versus synoviocytes comprising the membranous synovial sheath could not be determined in this study. These findings indicate that activation of endothelial cells and fibroblasts in the joint sets the stage for subsequent recruitment of arthritis-defining inflammatory cells, as shown in phase 1 of Fig. 9. The importance of additional inflammatory pathways in the sustained recruitment resulting in arthritis development is suggested by the residual Lyme arthritis seen in C3H IFNAR1−/− mice as well as the ability of CD45+ cells from the joint tissue to upregulate transcripts for TNF-α in response to *B. burgdorferi*. The development of severe Lyme arthritis is clearly influenced by multiple pathways activated simultaneously, with the full-blown lesion observed in C3H mice reflecting the combined effects. Fundamental to our model is the requisite involvement of joint-localized bacteria in every stage of lesion development.

Table III. Endothelial cells and fibroblasts upregulate various chemokine transcripts in joints of *B. burgdorferi*-infected C3H mice

<table>
<thead>
<tr>
<th>Chemokines</th>
<th>T, NK Cells</th>
<th>Neutrophils</th>
<th>B Cells</th>
<th>Monocytes, Dendritic Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Type</td>
<td>Cu9</td>
<td>Cu10</td>
<td>Cu11</td>
<td>Cu12</td>
</tr>
<tr>
<td>Leukocyte</td>
<td>Media</td>
<td>0.7 ± 0.4</td>
<td>4 ± 2.4</td>
<td>3 ± 0.8</td>
</tr>
<tr>
<td></td>
<td>Infected</td>
<td>5 ± 2.4</td>
<td>13 ± 4.9</td>
<td>9 ± 4.0</td>
</tr>
<tr>
<td>Endothelial</td>
<td>Media</td>
<td>7 ± 2.9</td>
<td>9 ± 8.6</td>
<td>6.5 ± 3.1</td>
</tr>
<tr>
<td></td>
<td>Infected</td>
<td>156 ± 11.2</td>
<td>124 ± 21.4</td>
<td>25 ± 3.6</td>
</tr>
<tr>
<td>Fibroblast</td>
<td>Media</td>
<td>0.5 ± 0.5</td>
<td>3 ± 1.6</td>
<td>61 ± 3.2</td>
</tr>
<tr>
<td></td>
<td>Infected</td>
<td>87 ± 33.0</td>
<td>119 ± 15.9</td>
<td>233 ± 30.6</td>
</tr>
<tr>
<td>Other</td>
<td>Media</td>
<td>ND</td>
<td>2 ± 1.9</td>
<td>13 ± 3.3</td>
</tr>
<tr>
<td></td>
<td>Infected</td>
<td>16 ± 8.5</td>
<td>44 ± 7.7</td>
<td>36 ± 5.9</td>
</tr>
<tr>
<td>Unsorted</td>
<td>Media</td>
<td>4 ± 0.5</td>
<td>7 ± 0.4</td>
<td>23 ± 1.1</td>
</tr>
<tr>
<td></td>
<td>Infected</td>
<td>42 ± 7.8</td>
<td>42 ± 4.2</td>
<td>31 ± 1.9</td>
</tr>
</tbody>
</table>

* RNA prepared from lineage-sorted joint cells at day 7 of infection.
* Mean ± SE for samples from four mice, normalized to β-actin.
* Bolded numbers indicate greater induction compared with mice treated with media alone, p < 0.05.
A subgroup of RA patients that fail to respond to targeted TNF-α blockade further suggests our findings may be broadly applicable to newly recognized patient groups (18, 19, 62). We propose the IFN-dependent Lyme arthritis in C3H mice to be a model to study the complex interactions that result in tissue-specific and systemic activation of pathological concentrations of type I IFN. We further propose that the similarities with RA, particularly the involvement of synovial fibroblasts in the amplification of the inflammatory response and recruitment of inflammatory cells, are highly relevant to disease development, and that understanding the dynamics of initiating and amplifying populations in pathological responses may have broad implications for inflammatory joint diseases.

FIGURE 9. Proposed mechanism of injury in joint tissue of C3H mice infected with *B. burgdorferi*. Phase 1: Initiation of the localized inflammatory response. (A) Spirochetes migrate to joint tissue, triggering activation of endothelial cells and fibroblasts and upregulation of adhesion molecules. (B) Resident myeloid lineage cells, such as macrophages, phagocytose *B. burgdorferi*, triggering production of IFN-β (C). (D) IFN-β signal is amplified in an autocrine/paracrine fashion, involving a large number of cell types, including endothelial cells and fibroblasts. (E) Synoviocytes and endothelial cells produce a variety of chemokines, leading to a chemotactic gradient. Increased adhesion molecule expression potentiates leukocyte migration into tendon sheath and joint capsule. Phase 2: Progression to the joint lesion characteristic of Lyme arthritis (14–28 d). (F) Increased expression of cell adhesion molecules on vascular endothelial cells promotes attachment and extravasation of leukocytes into the extracellular matrix, and myeloid hyperplasia. (G) Fibroblast hyperplasia and increased vascularization develop within the tendon sheath, as well as (H) synoviocyte hyperplasia. IFN-β response is muted by this time point; thus, sustained inflammation most likely reflects effects of classic proinflammatory pathways activated by persisting *B. burgdorferi*. (Figure courtesy of James F. Zachary, University of Illinois-Urbana.)
14. Pestka, S. 2007. The interferons: 50 years after their discovery, there is much for assistance with statistical analysis. Disclosures for helpful discussion during the course of this study, the Flow Cytometry Core Facility for expert guidance, and Greg Stoddard in Biosistatics Core for assistance with statistical analysis.

CHAPTER 3

MICRORNA-146a PROVIDES FEEDBACK REGULATION OF LYME ARTHRITIS
BUT NOT CARDITIS, DURING INFECTION WITH BORRELIA BURGDORFERI
Abstract

MicroRNAs have been shown to be important regulators of inflammatory and immune responses and are implicated in several immune disorders, including systemic lupus erythematosus and rheumatoid arthritis, but their role in Lyme borreliosis remains unknown. We performed a microarray screen for expression of miRNAs in joint tissue from three mouse strains infected with *Borrelia burgdorferi*. This screen identified upregulation of miR-146a, a key negative regulator of NF-κB signaling, in all three strains, suggesting it plays an important role in the *in vivo* response to *B. burgdorferi*. Infection of B6 miR-146a−/− mice with *B. burgdorferi* revealed a critical nonredundant role of miR-146a in modulating Lyme arthritis without compromising host immune response or heart inflammation. The impact of miR-146a was specifically localized to the joint, and did not impact lesion development or inflammation in the heart. Furthermore, B6 miR-146a−/− mice had elevated levels of NF-κB-regulated products in joint tissue and serum late in infection. Flow cytometry analysis of various lineages isolated from infected joint tissue of mice showed that myeloid cell infiltration was significantly greater in B6 miR-146a−/− mice, compared to B6, during *B. burgdorferi* infection. Using bone marrow-derived macrophages, we found that TRAF6, a known target of miR-146a involved in NF-κB activation, was dysregulated in resting and *B. burgdorferi*-stimulated B6 miR-146a−/− macrophages, and corresponded to elevated IL-1β, IL-6, and CXCL1 production. This dysregulated protein production was observed in macrophages treated with IL-10 prior to *B. burgdorferi* stimulation. Peritoneal macrophages from B6 miR-146a−/− mice also showed enhanced phagocytosis of *B. burgdorferi*. Together, these data
show that miR-146a-mediated regulation of TRAF6 and NF-κB, and downstream targets such as IL-1β, IL-6, and CXCL1, are critical for modulation of Lyme arthritis during chronic infection with *B. burgdorferi*.

Author Summary

Lyme Disease is caused by infection with the bacteria *Borrelia burgdorferi*, is transmitted through infected deer ticks (*Ixodes scapularis*), and often leads to arthritis that can persist, even after antibiotic treatment. Here, we have identified a microRNA that is critical in modulating Lyme arthritis, but not carditis. This microRNA, miR-146a, is a negative regulator of NF-κB signaling, known to be important in host defense against pathogens, and long suspected to play a role in Lyme arthritis development. Mice lacking miR-146a develop more severe arthritis and show signs of hyperactive NF-κB activation during the persistent phase of infection. Heart manifestations of disease were not altered. Furthermore, this severe arthritis is independent of host defense, since these mice are better able to clear invading bacteria in joints, and bacterial numbers are similar in heart and ear tissue. We identified TRAF6 as an important target of miR-146a-mediated NF-κB regulation of pro-inflammatory cytokines IL-6 and IL-1β, as well as chemokines CXCL1 and CXCL2. Our data demonstrate the importance of maintaining appropriate regulation of amplitude and resolution of NF-κB activation during *Borrelia burgdorferi* infection, and provide a novel model for elucidating the role of NF-κB in Lyme arthritis development, independent of effect on host defense.
Introduction

Lyme Disease is caused by infection with *Borrelia burgdorferi*, a tick-borne spirochete [1], and is the most common vector-borne disease in the United States with an estimated 300,000 cases per year [2]. Often, infection leads to acute arthritis in humans. Clinical manifestations of Lyme arthritis include inflammatory cell infiltration, edema, synovial hyperplasia, and remodeling of bone and connective tissue [3,4]. In some cases, infection can induce autoimmunity, despite treatment with antibiotics [5]. The reason why arthritis fails to resolve remains poorly understood, but is believed to be the result of dysregulation of host immune response to infection [6].

Several inbred mouse strains exhibit varying degrees of disease severity similar to human patients [7,8]. Whereas the C57BL/6 (B6) mouse strain develops mild arthritis, C3H and various knockout strains, such as B6 IL10−/− mice, develop moderate to severe arthritis [7,9]. Furthermore, the intensity of the inflammatory response for a given spirochete burden varies greatly among strains, implicating host immune response as driving arthritis development [9,10]. Our laboratory and others have used the mouse model system to elucidate key regulators of host immune response to infection.

Since its discovery, nuclear factor-kappa B (NF-κB) has been identified as a key regulator in many cellular functions, including inflammation and cancer [11]. *B. burgdorferi* lipoproteins are extremely potent activators of Toll-like receptor 2 (TLR2)-mediated NF-κB activation and cytokine production, and are important for host defense [12-16]. Mice lacking TLR2 or the adapter protein myeloid differentiation primary response gene (88) (MyD88) exhibit a failure to control infection [14,17-21]. Although
these knockout studies clearly demonstrate an important role of NF-κB in host defense, elucidating its role in inflammation and Lyme arthritis has remained elusive.

While NF-κB activation is critical in response to infection, downregulation is equally important to avoid excess inflammation, tissue damage, and autoimmunity [22]. MicroRNAs (miRNAs) have recently been identified as being important regulators of NF-κB [23] and autoimmunity [24]. These small regulatory RNAs are posttranscriptional regulators of gene expression [25], and one miRNA, miR-146a, has been shown to be a modulator of innate immune response to Toll-like receptor (TLR) ligands [26]. Targets of miR-146a include TNF receptor associated factor 6 (TRAF6) and IL-1 receptor associated kinase 1 (IRAK1), adaptor molecules downstream of the MyD88-dependent TLR and cytokine signaling pathways [27]. Importantly, miR-146a itself is upregulated by IL-1β and TLRs, including TLR2, and thus acts as a negative feedback regulator of NF-κB signaling, which is required for immune homeostasis in vivo [27-31].

Aberrant microRNA expression, particularly miR-146a, has been associated with a variety of inflammatory disorders [32]. In systemic lupus erythematosus, a functional variant in the miR-146a promoter is associated with disease risk [33], and abnormally low miR-146a expression has been associated with more severe symptoms [34]. In contrast, rheumatoid arthritis synovial fibroblasts express abnormally high levels of miR-146a [35,36], while osteoarthritis chondrocytes express variable levels miR-146a, correlating with disease severity [37,38].

Despite correlative evidence linking aberrant miRNA expression to diseases such as lupus, RA, and OA, determining whether miRNAs play an active role in pathogenesis has yet to be elucidated, and to our knowledge, no studies have examined the role of
miRNAs in Lyme arthritis. For these reasons, we sought to determine whether changes in miRNA expression contributed to host defense and Lyme arthritis development during *B. burgdorferi* infection.

Results

miR-146a is highly upregulated in B6, C3H, and B6 IL10⁻/⁻ mice during infection

MicroRNA dysregulation has been associated with a number of inflammatory disorders, and we hypothesized that these may play an important role in response to *B. burgdorferi* infection and Lyme arthritis development. We therefore performed a genome-wide screen of changes in miRNA expression in joints of B6, C3H, and B6 IL-10⁻/⁻ mice infected with *B. burgdorferi* at one and two weeks postinfection using an Agilent mouse microRNA microarray (Table 3.1, Table 3.S1). MicroRNAs differentially regulated included many that have been identified previously as important regulators of immune function. Interestingly, each infection model had a unique miRNA expression “signature,” and we found that only a few dozen miRNAs showed changes in expression during infection. Most of these changes were in C3H mice, and may be due to both differences in inflammatory response and intrinsic differences in miRNA function between strains. At two weeks postinfection, two miRNAs, miR-21 and miR-146a, both induced by NF-κB and associated with TLR signaling, were the most highly upregulated in all three strains (Table 3.1), and were confirmed using qRT-PCR (Figure 3.1). Furthermore, these miRNAs maintained high expression, even at 4 weeks postinfection. Interestingly, miR-155 was significantly upregulated in B6 IL10⁻/⁻ mice, but not in B6 or C3H mice. This microRNA is a proinflammatory NF-κB-induced miRNA associated
with T cell-dependent inflammation and autoimmunity [39-41], and expression is suppressed by IL-10 [42].

Of these, miR-146a was of particular interest, given recent reports showing a link between miR-146a and susceptibility to a variety of inflammatory disorders. Targets of miR-146a, IRAK1 and TRAF6 [27], are involved in TLR2/NF-κB activation, which is an important pathway in controlling *B. burgdorferi* infection [13,14,17-21]. Also, the observation that miR-146a was upregulated in all three strains suggested that this miRNA likely plays a general role in regulating the immune response to *B. burgdorferi*. For these reasons, our focus turned to studying miR-146a. A B6 miR-146a^{−/−} knockout mouse was recently generated [28], which provided a powerful tool to evaluate the role of miR-146a in mildly arthritic B6 mice. While miR-146a was also upregulated in arthritis-susceptible C3H mice, we suspected that other genetic factors play a dominant role in arthritis development, including excessive Type I IFN production [43,44] and accumulation of undigested glycosaminoglycans in joint tissue [45]. These effects may limit the ability of miR-146a to modulate arthritis development in the C3H mouse model. It is tempting to speculate, however, that lack of miR-146a in the arthritis-susceptible C3H mouse would lead to even more severe arthritis, as has been reported in the C3H IL-10^{−/−} mouse model [46].

Impact of miR-146a on Lyme arthritis, carditis, and host defense

Since miR-146a is an important negative regulator of NF-κB activation, we hypothesized that a B6 mouse deficient in miR-146a would develop more severe arthritis during infection with *B. burgdorferi* compared to WT controls. To avoid age-related pathologies associated with B6 miR-146a^{−/−} mice [30], we used 6-8 week-old mice, which
is also the age of optimal arthritis in other mouse strains. Arthritis was assessed in \textit{B. burgdorferi}-infected B6 and B6 miR-146a\(^{-/-}\) mice. At 4 weeks postinfection, B6 miR-146a\(^{-/-}\) mice developed significantly more severe arthritis. Several markers of arthritis were elevated in B6 miR-146a\(^{-/-}\) mice, including ankle swelling (Figure 3.2A), number and severity of lesions observed, polymorphonuclear (PMN) cell infiltrate, reactive/reparative score (periosteal hyperplasia and new bone formation and remodeling), and tendon sheath thickness (Table 3.2). Cranial tibial tendon is enlarged in Figure 3.2B. Control (BSK-injected) mice showed no significant arthritis in either strain, and no significant difference between strains was seen in mononuclear cell infiltrate into inflammatory processes. Importantly, B6 miR-146a\(^{-/-}\) mice did not display overwhelming numbers of bacteria; rather, they tended to have somewhat fewer bacteria in infected joints and similar burden in infected heart and ear tissue, as measured by \textit{B. burgdorferi}-specific 16S rRNA normalized to \(\beta\)-actin in joints and heart, and \textit{recA} normalized to mouse \textit{nidogen} in ear tissue (Figure 3.2C). This difference in bacterial load in joint tissue was likely not due to differences in antibody response since \textit{B. burgdorferi}-specific IgM and IgG levels were similar between the two strains at 2 weeks and 4 weeks postinfection, respectively (Figure 3.2D). While this does not rule out the possibility that different borrelial proteins could be opsonic targets in the two strains, these data support the notion that increased arthritis observed in B6 miR-146a\(^{-/-}\) mice was likely due to a defect in regulation of host immune function rather than compromised host defense. In fact, the decrease in 16S rRNA in B6 miR-146a\(^{-/-}\) mouse joints indicated that arthritis development was independent of bacterial density. This increased arthritis severity with accompanying decreases in bacterial burden is also observed in the B6 IL10\(^{-/-}\) mouse.
model of arthritis [9, 47, 48], and is believed to be due primarily to enhanced innate immune responses [49].

In addition to joints, the heart is another target of *B. burgdorferi* infection in mice. We therefore looked for evidence of miR-146a modulating inflammation in heart tissue. Mice are susceptible to Lyme carditis in an MHC-independent manner, and exhibit variation in disease severity, with C3H mice harboring a greater number of bacteria and developing more severe carditis and B6 mice being resistant and harboring fewer bacteria [7, 50, 51]. Lyme carditis is also observed in humans, and although rare, can be fatal [52].

To assess the role of miR-146a in modulating heart inflammation, B6, B6 miR-146a−/−, and C3H mice were infected with *B. burgdorferi* for 3 weeks and hearts were removed and assessed for bacterial numbers and changes in transcripts of inflammatory genes. As was seen at 4 weeks postinfection (Figure 3.2C), bacterial burden, as measured by qRT-PCR analysis of *B. burgdorferi* 16S rRNA, was similar between B6 and B6 miR-146a−/− mice, and both trended lower than what was seen in heart tissue from C3H mice (Figure 3.3A). Lesions in the heart were also scored for carditis in B6, B6 miR-146a−/−, and C3H mice at 3 weeks postinfection. Overall lesion scores were similar in B6 and B6 miR-146a−/− mice, and both trended lower than lesion severity in C3H mice (Figure 3.3B).

Lesions in hearts at 3 weeks postinfection were characterized by acute to subacute vasculitis/perivasculitis (see Figure 3.3C) of the 1) microvasculature (capillaries) at the base of the heart (in heart muscle) where the aorta and pulmonary arteries arise, 2) microvasculature (capillaries) within connective tissues supporting these arteries, and 3) microvasculature (capillaries) of the vasa vasorum of the aorta and pulmonary arteries. These lesions affected the vascular system, rather than being primary lesions of the heart.
muscle (myocarditis). The character and pattern of distribution of these lesions suggested that inflammation of the microvasculature is the result of some type of localized target cell (i.e., endothelium) or target substance (i.e., bacteria) specificity for this location consistent with *Borrelia* adhesin-host ligand binding within the vascular endothelium [53,54]. Vascular turbulence or oxygen concentration could also be involved.

Lyme carditis is associated with macrophage infiltration [50], and invariant NKT cells have been shown to play a protective role in B6 mice [55]. We therefore used PCR analysis of macrophage (CD11b and F4/80) and NKT cell (CD4 and Vα14) markers to assess changes in cellularity in infected heart tissue (Figure 3.3D), as performed previously [56,57]. Significant upregulation of macrophage markers *CD11b* and *F4/80* was observed in all three strains, as expected based on previous research [50]. The magnitude of upregulation was not different between B6 and miR-146a deficient mice, indicating no role of miR-146a feedback on inflammation in this tissue. Interestingly, while *CD11b* and *F4/80* transcripts were also significantly upregulated in C3H mice, the degree of upregulation was somewhat less than upregulation observed in B6 and B6 miR-146a^{−/−} mice at 3 weeks postinfection. Because these data are from whole heart tissue, they reflect cumulative changes in myeloid cell numbers from the entire heart, including changes in resident cardiac macrophages [58], which may dilute out lesion-specific changes identified by histopathology.

CD4 transcript levels were not significantly different between strains, but while both B6 and B6 miR-146a^{−/−} mice contained similar levels of *Vα14* that trended higher at 3 weeks, C3H mice had very low levels of this transcript in both uninfected and infected heart tissue. This is consistent with significant variation of NKT cell numbers between
different mouse strains [57]. PCR analysis was also used to determine changes in expression of various inflammatory cytokines and chemokines in heart tissue (Figure 3.3D). As previously reported, C3H mice had elevated levels of IFNγ transcripts in infected heart tissue [59], which was significantly higher than IFNγ mRNA in B6 and B6 miR-146a−/− hearts. This trend was also observed for IL6 transcripts, although there was significant variation in expression within C3H mice. No differences among B6, B6 miR-146a−/−, and C3H mice were observed for transcripts of IL1β, TNFα, Cxcl1, Cxcl2, Ccl2, IL10, or IL12 (data not shown). Together, these data suggest that the nature of host defense, macrophage and NKT cell proliferation and infiltration, as well as cytokine and chemokine expression, is very similar in infected B6 and B6 miR-146a−/− heart tissue, but is quite distinct from observations in carditis-susceptible C3H mice. Fundamental differences between strains have been reported previously in Lyme carditis studies comparing the effect of Stat1 [60] and Ccr2 [51] deficiencies on carditis-susceptible and carditis-resistant mouse strains. Together, these data show that while strain-specific variables influence differences in carditis susceptibility between B6 and C3H mice, miR-146a has no impact on carditis severity in B6 mice.

B6 miR-146a−/− mice exhibit hyperactive expression of NF-κB target cytokines and chemokines at 4 weeks postinfection

Because miR-146a is known to negatively regulate NF-κB activation, we compared transcripts of genes upregulated by NF-κB in infected joint tissue from B6 and B6 miR-146a−/− mice at 2 and 4 weeks postinfection. We observed that a number of NF-κB inducible genes were significantly elevated at 4 weeks postinfection (but not at 2 weeks), by qRT-PCR, in B6 miR-146a−/− joints, compared to WT, including cytokines IL-
1β and IL-6, as well as neutrophil chemokines Cxcl1 and Cxcl2 (Figure 3.4A). CXCL1 has been shown to be required for full arthritis development in C3H mice [61,62], and increased expression of this gene in B6 miR-146a−/− mice could be directly contributing to arthritis development through recruitment of neutrophils. This is supported by the increase in PMN infiltrate seen at 4 weeks by histopathology, shown in Table 3.2.

Elevated IL-1β transcript level is also particularly interesting, since the IL-1 receptor (IL-1R) uses the same adaptors as TLR2/1 for signal transduction, is strongly upregulated by myeloid cells during phagocytosis of B. burgdorferi [63], and is dependent on IRAK1 and TRAF6, two miR-146a targets [27]. Furthermore, IL-1β stimulates miR-146a upregulation in vitro [27], suggesting that this miRNA negatively regulates IL-1β signaling. It is important to note that uninfected B6 miR-146a−/− mice did not exhibit any abnormalities in expression of these genes, indicating that this hyperactivity is due to a failure to downregulate the NF-κB response after infection, rather than general NF-κB hyperactivity, as is observed in aging B6 miR-146a−/− mice [30].

Only a distinct subset of inflammatory cytokines and chemokines (IL-1β, IL-6, Cxcl1, Cxcl2) appeared to be dysregulated in B6 miR-146a−/− joints. Transcript levels of other Lyme arthritis-associated genes (IFNγ, Cxcl10, TNFα) were very similar between the two strains (Figure 3.4A), and showed a peak in expression at 2 weeks postinfection, followed by resolution at 4 weeks. This is in contrast to arthritis-susceptible B6 IL10−/− mice, where previously published data show that in addition to upregulation in IL-1β, IL-6, Cxcl1, Cxcl2, IFNγ, and Cxcl10 are upregulated 16-fold and 141-fold at 2 weeks, and 22-fold and 189-fold at 4 weeks, respectively [47]. These data together indicate that the
B6 miR-146a⁻/⁻ mouse is distinct from the B6 IL10⁻/⁻ model, which is associated with a dramatic IFNγ signature in joints and elevation of IFNγ in serum at 4 weeks p.i. [47,48].

In order to determine whether there was systemic dysregulation of NF-κB-inducible cytokines, serum was collected from B. burgdorferi-infected mice at 4 weeks postinfection and cytokine levels were measured by enzyme-linked immunosorbent assay (Figure 3.4B). B6 miR-146a⁻/⁻ mice contained higher levels of IL-6 at 4 weeks postinfection, compared to wild-type, consistent with observations in joint tissue. TNFα and IL-12 serum levels were very similar between strains, and although levels of IFNγ varied widely in B6 miR-146a⁻/⁻ mice, they were not significantly greater than B6 levels.

Effect of miR-146a in cell populations isolated from joints early in infection

To identify the effect of miR-146a in various joint cell populations during the early phase of infection *ex vivo*, we digested joints with purified collagenase to release cells into a single-cell solution in order to identify and isolate cell fractions based on lineage markers, including CD45 for leukocytes, CD11b for myeloid cells, CD31 for endothelial cells, and CD29 for fibroblast-enriched cells (Figure 3.5A). This method has been used in C3H mice to identify cellular sources of genes associated with the arthritogenic Type I IFN response early in infection, and is a sensitive assay to observe cell type-specific effects *ex vivo* that might be missed using whole joint tissue [43]. Using this method, we were able to determine the effect of miR-146a on specific cell types early in infection (Figure 3.5B). Levels of *IL-1β*, while trending higher in myeloid cells isolated from B6 miR-146a⁻/⁻ mice, were not significantly different between the two strains. In B6 mice, three genes, *Cxcl2* and the IFN-inducible gene *Oasl2* (in myeloid
cells) and Cxcl1 (in fibroblasts), tended to peak in expression at Day 7 postinfection. In contrast, transcripts were somewhat higher in uninfected B6 miR-146a\(^{-/-}\) cell fractions vs. WT, and remained elevated throughout infection. This suggests that B6 miR-146a\(^{-/-}\) mice may be poised to initiate a hyperactive immune response. There was no difference in lymphoid IFN\(\gamma\) expression between strains, which peaked at Day 14 postinfection, as was seen in whole joint tissue (Figure 3.4A). It is important to note that, unlike published observations in C3H mice [43], B6 miR-146a\(^{-/-}\) mice did not exhibit a robust induction of IFN-responsive genes, such as Oasl2, in fibroblasts or endothelial cells at Day 7 postinfection (data not shown). Overall, these data, combined with data from Figure 3.4, suggest that a number of NF-\(\kappa\)B-inducible genes in B6 miR-146a\(^{-/-}\) mouse joints are poised for hyper-activation prior to infection, and peak at 4 weeks postinfection, indicating that miR-146a acts to resolve the inflammatory response late in infection, rather than limiting the amplitude of inflammation during early stages of infection.

Myeloid cell recruitment is increased in infected joints of B6 miR-146a\(^{-/-}\) mice

During cell sorting, we observed differences in cellular infiltrate, particularly in the myeloid cell lineages, in joints during infection. Therefore, a more rigorous analysis of myeloid cells recruited to the joint by flow cytometry was performed at various times during infection. Using joint cell isolation methods described in Figure 3.5, myeloid cells were characterized from infected joints at 2 and 4 weeks postinfection using fluorescently labeled antibodies against CD11b, F4/80, Ly6C, Gr1, and CD206. CD11b\(^{+}\) myeloid cell populations clustered roughly into three populations, F4/80\(^{+}\) Ly6C\(^{lo}\) macrophages, Gr1\(^{hi}\) Ly6C\(^{int}\) PMNs, and Gr1\(^{int}\) Ly6C\(^{hi}\) monocytes (Figure 3.6A&B). Furthermore, F4/80\(^{+}\)
Ly6C^lo macrophages expressed variable levels of CD206 (MRC1, Mannose Receptor C type 1), a marker of alternatively activated (M2-like) macrophages [64]. There was little difference between strains in mean fluorescence intensity (MFI) of MRC1 and Gr1 in each myeloid subpopulation, suggesting that they were phenotypically similar populations. However, while the number of these three myeloid populations in B6 mouse joints changed only modestly in B6 mice, myeloid cell numbers in B6 miR-146a^-/- joints were significantly elevated at both 2 and 4 weeks postinfection (Figure 3.6C). An increased trend in PMN infiltration in B6 miR-146a^-/- mice is also consistent with histopathology data shown in Table 3.2, despite the propensity of PMNs to lyse during enzymatic digestion of joint tissue, resulting in some sample to sample variation. Interestingly, there was little difference between strains in infiltrating lymphoid cells at 2 or 4 weeks postinfection (Figure 3.S1). These data, as well as the observation of similar B. burgdorferi-specific antibody levels (Figure 3.2D), suggest that arthritis and host defense phenotypes observed in B6 miR-146a^-/- mice shown in Figure 3.2 and Table 3.2 are driven primarily by myeloid cells.

Bone marrow-derived macrophages from B6 miR-146a^-/- mice are hyper-responsive to B. burgdorferi and have elevated protein levels of TRAF6

The data from Figure 3.6 implicated myeloid cells as contributors of arthritis development in B6 miR-146a^-/- mice. We therefore turned to bone marrow-derived macrophages (BMDMs) to elucidate the molecular mechanism of miR-146a regulation of NF-κB during B. burgdorferi infection. BMDMs were cultured from bone marrow extracted from B6 or B6 miR-146a^-/- mice and treated with B. burgdorferi for 6 and 24
hours. We then measured transcripts of *IL1β*, *IL6*, and *TNFα* (Table 3.3). Transcripts of *IL1β* were approximately 4-fold higher in B6 miR-146a^{−/−} BMDMs, vs. WT, at both 6 and 24 hours, and *IL6* levels were 7.5-fold higher at 6 hours and 2.5-fold higher at 24 hours poststimulation. Interestingly, *TNFα* transcripts were only 20-30 percent higher in B6 miR-146a^{−/−} BMDMs, compared to WT. Transcripts for all three cytokines were very low in uninfected cells, and were similar between the two strains (data not shown). This suggests that miR-146a effect on *IL1β* and *IL6* regulation is greater than its effect on *TNFα* expression.

We also measured levels of several NF-κB inducible cytokines by ELISA in cell supernatant from both B6 and B6 miR-146a^{−/−} BMDMs at 24 hours poststimulation, including TNFα, IL-1β, IL-6 and IL-12, CXCL1, and IL-10 (Figure 3.7A). After 24 hours of treatment with *B. burgdorferi*, three cytokines, IL-1β, IL-6, and IL-12, and the neutrophil chemokine CXCL1, were more abundant in B6 miR-146a^{−/−} cell supernatant than in B6 cell supernatant, consistent with hyperactive NF-κB activation and transcript analysis (Table 3.3). Interestingly, TNFα, an early-response NF-κB cytokine, did not share this trend, which may be due to the relatively late time point used for this analysis [65]. Production of IL-10 was robust in both strains, although somewhat greater in miR-146a-deficient BMDMs.

Previous work from our laboratory showed that many macrophages are IL-10 producers in joints of B6 mice [48]. Also, macrophages produce high levels of IL-10 when treated with *B. burgdorferi in vitro*, which is important in regulating bacterial persistence [49] and immune response [46,66-68]. Data from Figure 3.6B also showed that many macrophages in joints of infected B6 and B6 miR-146a^{−/−} mice express the
alternatively activated macrophage marker MRC1. While it is difficult to accurately determine the range of macrophage phenotypes present in joints, we used BMDMs pretreated with IL-10 as an in vitro model to study miR-146a effects on IL-10-stimulated macrophages. BMDMs were treated with 1ng/ml IL-10 for 4 hours prior to 24-hour B. burgdorferi stimulation. Surprisingly, while pretreatment with IL-10 led to an approximately 80 percent reduction in IL-6 production in B6 BMDMs, IL-10-mediated suppression of IL-6 in B6 miR-146a/− BMDMs was drastically reduced, with only ~20 percent decrease in IL-6 production after IL-10 pretreatment, indicating that IL-10 was unable to effectively suppress IL-6 expression in the absence of miR-146a. These data are consistent with in vivo data showing consistently elevated IL-6 protein in serum from 4 week-infected B6 miR-146a/− mice in Figure 3.4. However, IL-10 pretreatment did lead to significantly reduced IL-12 and TNFα production in both strains, as well as high production of IL-10, after B. burgdorferi treatment, consistent with an anti-inflammatory M2-like phenotype. Both IL-1β and CXCL1 remained higher in B6 miR-146a/− BMDMs compared to B6 BMDMs, although IL-1β levels were unaffected, and CXCL1 levels were modestly reduced by IL-10 pretreatment. Importantly, levels of IL-12, TNFα, and IL-10 were very similar between the two strains, suggesting there was no miR-146a-mediated defect in M2 polarization in response to IL-10 pretreatment. This is consistent with in vivo observations, where TNFα, IL-12, and IFNγ serum protein levels were not significantly elevated in B6 miR-146a/− mice at 4 weeks postinfection, relative to B6 mice (Figure 3.4B).

MicroRNAs, including miR-146a, have distinct mRNA targets, depending on cell type [69]. It was therefore important to determine the mRNA target most affected at the
protein level by the presence or absence of miR-146a in BMDMs. Immunoblot analysis was performed on protein extracts from B6 and B6 miR-146a−/− BMDMs treated for 24 hours with *B. burgdorferi* to measure protein levels of three targets of miR-146a, TRAF6, IRAK1, and STAT1 (Figure 3.7B). TRAF6 protein expression was elevated over 2-fold in both resting and stimulated B6 miR-146a−/− BMDMs compared to B6, while protein levels of IRAK1 were similar between strains. STAT1 protein was also higher in resting B6 miR-146a−/− BMDMs compared to B6, but this difference between strains was not observed after 24 hours stimulation. Transcript analysis of *Traf6, Irak1* and *Stat1* also show this trend (Figure 3.7C). It is interesting that in the case of TRAF6, the difference observed at the protein level was greater than that seen at the transcript level, where transcripts were typically only 30-50 percent greater in B6 miR-146a−/− BMDMs vs. B6 BMDMs, suggesting that miR-146a effect on translational inhibition is more pronounced than its effect on mRNA stability. This is consistent with a growing body of evidence suggesting that microRNA-mediated translational repression is dependent on inhibition of translation initiation, rather than mRNA degradation [70,71]. The difference between protein and transcript levels of these three genes (Figure 3.7B, C) strongly suggests that posttranscriptional regulatory mechanisms including, but not limited to, microRNA-mediated repression, play an important role in determining cellular protein levels. STAT1 is known to be regulated by a large number of posttranslational modifications that affect function [72]. Both STAT1 and IRAK1 protein levels have been shown to be tightly regulated through ubiquitin E3 ligase-directed degradation [73,74]. In the case of IRAK1 and STAT1, these data suggest that miR-146a-independent regulatory mechanisms seem to be dominant compared to miR-146a-mediated regulation. Taken together, TRAF6
protein levels appear to be the most sensitive to the presence or absence of miR-146a in myeloid cells, and imply miR-146a-mediated translational repression of TRAF6 is required to properly regulate production of NF-κB-induced cytokines in response to B. burgdorferi. The lack of difference in STAT1 protein level is also consistent with a failure to observe significant differences between B6 and B6 miR-146a−/− mice in the IFN response (Figures 3.4&3.5).

Macrophages lacking miR-146a have increased phagocytic activity

One possible explanation for reduced numbers of B. burgdorferi in joints of infected B6 miR-146a−/− mice is that macrophages lacking miR-146a are more highly phagocytic. In order to measure phagocytic activity, peritoneal macrophages were collected from B6 and B6 mir-146a−/− mice and stimulated with GFP-labeled B. burgdorferi for 1 or 2 hours at 10:1 MOI. Phagocytosis of GFP-B. burgdorferi was measured by flow cytometry (Figure 3.8A&B). At both 1 and 2 hours poststimulation, peritoneal macrophages lacking miR-146a had significantly higher numbers of GFP+ cells, as well as a higher MFI for GFP in GFP+ macrophages. These data suggest that there are more B6 miR-146a−/− peritoneal macrophages associated with higher numbers of bacteria than WT cells.

Flow cytometry was unable to distinguish localization of the cell-associated bacteria. To determine whether GFP-B. burgdorferi were intracellular or adhering to the cell surface, confocal microscopy was used to visualize the bacteria associated with peritoneal macrophages. Peritoneal macrophages were stimulated with GFP-B. burgdorferi at 100:1 MOI for 1 hour and stained for the lysosomal protein LAMP1 (red), the macrophage-specific surface protein F4/80 (blue), and nuclei were stained with DAPI
Bacteria were visible adhering to cell surface (white triangle), inside macrophage pseudopodia (white arrow) and inside cells associated with LAMP1 (white chevron). While bacteria adhering to the cell surface and inside pseudopodia had a spirochetal shape, bacteria associated with lysosomes were amorphous, and formed bright GFP puncta, indicative of bacterial degradation. These bright GFP puncta were predominant throughout the entire sample, as represented in the image in Figure 3.8C for B6 mice, and in Figure 3.S2 for B6 miR-146a−/− mice. This indicates that phagocytosis occurs very rapidly as previously reported [65], and the flow cytometry analysis infers that miR-146a modulates the level of phagocytic activity. Although the mechanism is unknown, similar transcript levels were seen for TLR2, CD14, as well as the scavenger receptor MARCO (data not shown), which have been recently implicated in B. burgdorferi uptake [75-78]. Previous reports showing phagocytosis influencing cytokine production in human mononuclear cells [78], and B6 MyD88−/− BMDMs being defective in bacterial internalization [79], are consistent with B6 miR-146a−/− BMDMs having elevated cytokine production and enhanced phagocytic activity (Figure 3.7, Table 3.3, Figure 3.8). While more research is necessary to elucidate this mechanism, these data suggest that B6 miR-146a−/− macrophages have enhanced phagocytosis, and may help explain why joint tissue from B6 miR-146a−/− mice contains fewer numbers of spirochetes (Figure 3.2C).

Discussion

These data have allowed us to generate a model (Figure 3.9) where miR-146a is upregulated during B. burgdorferi infection, and acts as a nonredundant suppressor of inflammation and arthritis (Figures 3.1&3.2). Interestingly, lack of miR-146a had no
effect on heart inflammation and carditis (Figure 3.3), indicating fundamental differences between arthritis and carditis development. Differences in carditis severity between B6 and C3H mice are believed to be closely associated with differences in bacterial dissemination and clearance between the two strains [80]. This is consistent with the positive correlation between bacterial numbers and heart lesion severity in B6, B6 miR-146a−/−, and C3H mice (Figure 3.3A-B), and with previous reports showing no correlation between quantitative trait loci associated with arthritis severity and bacterial numbers in heart tissue [81,82]. Importantly, differential contribution of NF-κB regulation was not predicted from studies with mice deficient in TLR2 and MyD88, as both hearts and joint tissues displayed increased presence of B. burgdorferi [18,19,83].

Numerous studies have revealed different mechanisms of pathogenesis in carditis development and differing contributions of innate and adaptive responses in bacterial clearance and resolution of carditis and arthritis. For example, although antibody response plays an essential role in resolution of arthritis, a greater role for CD4+ T cells and iNKT cells as sources of IFNγ are reported in protection and resolution of Lyme carditis [55,60,84-86]. Other gene knockout and cytokine blocking studies have shown tissue-specific effects of IL-10 [46] and chemokines [51,62] on arthritis and carditis severity. These results suggest future microRNA studies on carditis should focus on those miRs known to influence the balance of CD4+ T cells [87] and iNKT cell function, such as miR-150 and miR-181a/b [88-90].

Myeloid cells respond to a variety of Borrelia stimuli through TLRs that lead to activation of NF-κB and upregulation of hundreds of genes involved in controlling infection and initiating the adaptive response. miR-146a is also upregulated, and is an
important check on the amplitude and duration of the NF-κB response. In the absence of this microRNA, this response is dysregulated, leading to increased transcription of certain NF-κB-inducible cytokines and chemokines in infected joint tissue, primarily late in infection (Figures 3.4&3.5). Myeloid cells exhibit excessive proliferation and infiltration into joint tissue of B6 miR-146a^{−/−} mice, have increased phagocytic activity, and produce excess cytokines such as IL-1β, IL-6, and CXCL1, leading to inflammation of synovial tissue and arthritis development (Figures 3.6-3.8). Regulation of the inflammatory response via a miR-146a-mediated negative feedback loop is critical for resolution of the NF-κB response during the persistent phase of infection, and mice lacking this miRNA are poised to develop arthritis upon infection with B. burgdorferi.

NF-κB activation in response to B. burgdorferi infection is a double-edged sword. On one hand, NF-κB activation is critical in mounting an effective immune response to control infection; on the other hand, dysregulated activation leads to inflammation and arthritis. Because of the dual nature of NF-κB in inflammation and host defense, decoupling these two roles has been difficult. Knockout models using B6 TLR2^{−/−} or MyD88^{−/−} mice have shown the important role of NF-κB in host defense, but because these mice have such a severe innate defect in bacterial defense, elucidating the role of NF-κB in arthritis using these models has remained difficult. The B6 miR-146a^{−/−} mouse model of Lyme arthritis is unique in that it effectively decouples these two roles, leaving the bactericidal function intact while increasing the amplitude of proinflammatory NF-κB activation. This has allowed us to identify its role in arthritis development, independent of its role in host defense, and suggests that miR-146a could be a valuable therapeutic target for control of inflammation without compromising ability to clear an infection.
MicroRNAs are a unique class of regulatory molecules. Unlike transcription factors, they do not act as on/off switches; rather they function as “fine tuners” of gene expression [26]. We have taken advantage of this property to decouple the roles of NF-κB in host defense and inflammation. Young B6 miR-146a−/− mice are phenotypically similar to wild-type B6 mice, and it is only upon chronic exposure to inflammatory stimuli that immunological defects are seen [29]. Consistent with this, endotoxin tolerance is highly dependent upon miR-146a expression in THP-1 cells [91]. Using Lyme arthritis as a model, we have shown that mice lacking this key miRNA fail to adequately maintain immune homeostasis, and develop inflammatory arthritis during a chronic bacterial infection (Figure 3.2, Table 3.2).

This model is also distinct from other mouse models of Lyme arthritis. For example, C3H mice exhibit a robust Type I IFN expression profile early in infection, which contributes to arthritis, and is absent in the mildly arthritic B6 mouse [43,44,47]. This IFN response was also absent miR-146a−/− mice, similar to B6. Furthermore, B6 IL10−/− mice, a model for Th1-mediated arthritis, have a very pronounced IFNγ signature beginning at 14 days postinfection that persists for several weeks [48]. This pattern was also not observed in the arthritic B6 miR-146a−/− mice (Figures 3.4&3.5, Figure 3.S1). Additionally, while B6 miR-146a−/− and B6 IL10−/− mice both exhibit increased bacterial clearance, likely due to an enhanced myeloid response to phagocytosis of bacteria [63], only B6 IL10−/− mice show enhanced antibody response [49]. It was somewhat surprising that B6 miR-146a−/− mice did not exhibit a strong T-cell-mediated phenotype, based on parameters tested, since other studies have shown an important role of miR-146a in regulating Th1 responses [31,92]. It is possible that the elevated myeloid response could
eventually lead to a dysregulated T-cell response in some cases. Indeed, several B6 miR-146a^{−/−} mice did have elevated serum IFNγ at 4 weeks postinfection, although this was the exception rather than the rule, and average levels did not achieve statistical significance compared to wild-type mice (Figure 3.4C). It may also be possible that robust production of IL-10 seen in B6 miR-146a^{−/−} mice is sufficient to suppress any T-cell dysregulation due to lack of miR-146a. Nevertheless, the results of this study show that arthritis is influenced principally by hyperactive myeloid cell activation.

The role of miR-146a in regulating NF-κB activation was consistent with the observed defect in downregulation of NF-κB-dependent cytokines and chemokines IL-1β, IL-6, Cxcl1, and Cxcl2, in B6 miR-146a^{−/−} mice at 4 weeks postinfection (Figure 3.4). Dysregulation of Cxcl1 in these mice was particularly interesting because previous studies have shown that C3H mice lacking CXCL1 have reduced neutrophil infiltration and arthritis [61,62]. This neutrophil chemokine is tightly regulated both at the transcriptional and posttranscriptional level by both TLR-dependent and cytokine-dependent mechanisms [93]. Data from Figure 3.7 suggest that excess cytokine production by B6 miR-146a^{−/−} macrophages may lead to enhanced CXCL1 production by resident cells in vivo. Therefore, miR-146a, expressed primarily in leukocytes [29], likely has cell-extrinsic effects on nonhematopoietic cell function and arthritis development. Recently, IL-6 has been shown to be an important downstream target of miR-146a in regulating hematopoiesis and myeloproliferation [29]. This is consistent with increased IL-6 production shown in Figure 3.4 and Figure 3.7, and corresponding increase in myeloid cell infiltration into joint tissue (Figure 3.6). Thus, miR-146a-mediated
regulation of several cytokines and chemokines likely has a combined effect on inflammatory responses.

Increased phagocytic activity, as well as elevated IL-1β production (Figures 3.7&3.8), point to a previously unrecognized role of miR-146a in phagocytosis and caspase-1 activation. While this role remains to be elucidated, previous research has shown that B. burgdorferi induces caspase-1-dependent IL-1β production, and caspase-1 is important for inflammatory cell influx into joint tissue [94]. Additionally, phagocytosis of live B. burgdorferi is a potent activator of IL-1β in human PBMCs [95].

Targets of miR-146a have been studied in many cell types, and it is becoming increasingly evident that the modulatory effect of miR-146a is dependent on cell type and physiological condition. For example, STAT1 appears to be an important miR-146a target in regulatory T-cells [92], and IRAK1 and TRAF6 both appear to be important miR-146a targets in splenocytes [31] and in human monocytes [30]. This study highlights the particular role of miR-146a targeting TRAF6 in myeloid cells (Figure 3.7), indicating that miR-146a function is, to a certain degree, cell type-specific. Importantly, several observations in the B6 miR-146a−/− mouse model are recapitulated in Lyme disease patients. Joint fluid and synovial tissue from antibiotic-refractory Lyme arthritis patients contain higher levels of IL-6 and IL-1β, as well as Th1 cytokines and chemokines, compared with patients whose arthritis is resolved after antibiotic treatment, and IL-1β remains elevated in these treatment-refractory patients long after antibiotic therapy [96,97]. Thus, the B6 miR-146a−/− model of Lyme arthritis could be a useful tool in further understanding how regulation of NF-κB is related to Lyme disease pathogenesis.
Materials and Methods

Ethics statement

Mice were housed in the University of Utah Comparative Medicine Center (Salt Lake City, UT), following strict adherence to the guidelines according to the National Institutes of Health for the care and use of laboratory animals, as described in the Guide for the Care and Use of Laboratory Animals, 8th Edition. Protocols conducted in this study were approved and carried out in accordance to the University of Utah Institutional Animal Care and Use Committee (Protocol Number 12-01005). Mouse experiments were performed under isofluorane anesthesia, and every effort was made to minimize suffering.

Mice, bacterial cultures and infections, and assessment of arthritis severity

C3H, C57BL/6, and B6.129P2-IL-10tmICgn/J (B6 IL-10−/−) mice were obtained from Jackson Laboratories. B6 miR-146a−/− KO mice on a pure C57BL/6 background were generated as described [28]. Mice were infected with 2×10⁴ bacteria of B. burgdorferi strain N40 (provided by S. Barthold, University of California, Davis, CA) by intradermal injection into the skin of the back. Infection was confirmed in mice sacrificed before 14 d of infection by culturing bladder tissue in BSK II media containing 6 percent rabbit serum (Sigma-Aldrich), phosphamycin, and rifampicin. ELISA quantification of B. burgdorferi-specific IgM and IgG concentrations was used to confirm infection in mice sacrificed at and after 14 d of infection as described [17]. Ankle measurements were obtained using a metric caliper. Rear ankle joints were prepared for assessment of histopathology by removal of the skin and fixation of tissue in 10 percent neutral buffered
formalin. Decalcified joints were embedded in paraffin, sectioned at 3 µm, and stained with H&E. Each slide was scored from 0 to 5 for various aspects of disease, including polymorphonuclear leukocyte (PMN) and mononuclear cell (lymphocytes, monocytes, macrophages) infiltration into inflammatory processes, tendon sheath thickening (hypertrophy and hyperplasia of surface cells and/or underlying dense sheets of cells resembling immature fibroblasts, synoviocytes, and/or granulation tissue), reactive/reparative responses (periosteal hyperplasia and new bone formation and remodeling), and overall lesion (composite score based on all lesions observed in 6-8 sections per joint), with 5 representing the most severe lesion, and 0 representing no lesion. Ankle measurements and arthritic lesions were assessed in coded samples.

Hearts of B6, B6 miR-146a$^{-/-}$, and C3H mice were assessed for carditis by histopathologic evaluation at 3 weeks postinfection. Hearts were fixed in 10 percent neutral buffered formalin, embedded in paraffin, sectioned at 3 µm, and stained with H&E. Lesion scoring was performed in a blinded fashion based on a composite of 11 sections per sample, with a score of 5 representing the maximum lesion and 0 representing no lesion.

miRNA microarray

Microarray analysis was performed with the assistance of the University of Utah Microarray and Bioinformatics core facilities. Whole joint RNA was purified from mouse joints (3-4 mice per sample group) using miRNeasy kit (Qiagen). RNA quality was determined using a Bioanalyzer 2100 and RNA 6000 Nano Chip (Agilent Technologies). Agilent Mouse miRNA microarray v2 (8x15k) was hybridized with Cyanine-3 labeled miRNA (using 100 ng total RNA) using the Agilent one-color GE hybridization and
wash kit. Slides were scanned in a G2505C Microarray Scanner at 2 um resolution (Agilent Technologies). TIF files generated from the scanned microarray image were analyzed in the Agilent Feature Extraction Software (v.10.5), which was used to calculate feature intensities, background measurements, and statistical analyses. Data sets for each biological sample were then filtered and log(2) transformed using an in-house java script, and were uploaded into Geospiza GeneSifter Analysis Edition (Perkin Elmer). Pair-wise analysis between groups was performed using a quality cutoff for both groups of 1, normalizing to median values, with a cutoff value of 2-fold change compared to uninfected controls.

Isolation of DNA from ear tissue and quantification of B. burgdorferi

DNA was prepared from ear tissues frozen at the time of sacrifice. Tissue was incubated in 50 mM NaOH for 1 hour at 93°C and neutralized with 1M Tris (pH 8). Quantification of *B. burgdorferi recA* normalized to the mouse *nidogen* was performed using a Roche LC-480 using previously published primers [18].

Preparation of single-cell suspensions from mouse tissue

Single-cell suspensions were prepared as previously described [43]. Skin was removed from rear ankle joints and digested for 1 hour at 37°C in RPMI 1640 containing 0.2 mg/ml purified enzyme blend for tissue dissociation (Roche) and 100 µg/ml DNase I (Sigma-Aldrich), following partial removal of tissue from bone using 20-gauge syringe needles. Single cell suspension was filtered through a 100 µm cell strainer and red blood cells were lysed using ammonium-chloride-potassium (ACK) lysing buffer.
Isolation of RNA and quantitative RT-PCR

For all experiments examining expression in heart and joint tissue, RNA was purified from the heart or tibiotarsal joints with the skin removed. Tissue was immediately immersed in RNA stabilization solution (Qiagen) and stored at -80°C. Total RNA was recovered from homogenized tissue using the miRNeasy kit (Qiagen). For FACS-sorted cell populations, sorted cells were collected directly in flow tubes containing 0.5 ml RNA stabilization solution (Qiagen) and RNA was recovered using the miRNeasy kit (Qiagen). RNA from BMDMs was recovered using guanidium thiocyanate-phenol-chloroform extraction reagent (Invitrogen). RNA recovered from tissue and cells was reverse transcribed, and transcripts were quantified using a Roche LC-480 according to our previously described protocols [47]. For mature miRNA quantification, cDNA was synthesized using the mercury Locked Nucleic Acid Universal RT microRNA PCR, Polyadenylation and cDNA synthesis kit (Exiqon), and miR-146a, 5S rRNA Locked Nucleic Acid primer sets were used (Exiqon) to quantify miRNA using a Roche LC-480. Other primer sequences used in this study were as follows: *Itgam* (CD11b) FWD (5’-CCTTCATCAACACAAACCAGAGTGG-3’) REV (5’-CGAGGTGCTCCTAAAACCAAGC-3’), *Irak1* FWD (5’-TGTGCCGCTTCTACAAAGTG-3’) REV (5’-TGTGAACGAGGTCAGCTACG-3’), *Traf6* FWD (5’-AAGCCTGCATCATCAAATCC-3’) REV (5’-CTGGCACTTCTGGAAAGGAC-3’). Primer sequences for *B. burgdorferi* 16S rRNA, β-actin, *Il1β*, *Stat1*, *Tnfa*, *Oasl2* [47], *Va14*, *F4/80* [48] *Il10*, *Ifng*, *Cxcl10*, *Il6* [44] *Cxcl1*, *Cxcl2*, *Pecam1* (CD29), and *Ptprc* (CD45) [43] can be found in indicated citations.
Flow cytometry

All flow cytometry data were analyzed using FlowJo (v.5) software. Sorting experiments were performed using a BD FACS Aria II. All other FACS data were collected on a BD LSRII flow cytometer. 7-aminoactinomycin D (eBioscience) or DAPI (Invitrogen) was used in all experiments, and dead cells and cell doublets were excluded from analyses. All Abs used for flow cytometry were purchased from either BioLegend or eBioscience. Unconjugated Fc blocking Ab (clone 93; BioLegend) was included in all Ab-labeling experiments. Position of gates for sorting and analysis was based on analysis of appropriate isotype controls. Fluorochrome-conjugated Abs and isotype controls used in this study were as follows: APC/Cy7-conjugated anti-CD11b (M1/70) and anti-CD45.2 (104); FITC-conjugated anti-CD8a (53-6.7), anti-CD11b (M1/70), and anti-Gr-1 (RB6-8C5); PerCP/Cy5.5-conjugated anti-Ly6C (HK1.4), anti-CD4 (RM4-4), and anti-CD31 (390); PE-conjugated anti-F4/80 (BM8), anti-LAMP-1 (1D4B), and anti-NK1.1 (PK136); PE/Cy-7–conjugated anti-CD4 (GK1.5) and anti-TCR β (H57-597); APC-conjugated anti-CD206 (MMR) and anti-F4/80 (BM8); and Brilliant Violet 605-conjugated anti-B220 (RA3-6B2). Confirmation of cell sorting efficiency was performed using qRT-PCR of surface markers used.

Bone marrow-derived macrophage stimulation

Bone marrow-derived macrophages (BMDMs) were isolated from the femurs and tibias of mice, as previously described [98]. Macrophage cultures were plated in 12-well plates at a density of 6×10^5/ml in media containing the serum replacement Nutridoma (Roche) and stimulated with live *B. burgdorferi* cN40 (7.5×10^6/ml). Priming of macrophages was performed by preincubating cells with 1 ng/ml mouse recombinant IL-
10 for 4 hours prior to addition of *B. burgdorferi*. After 24 hours, cell supernatants were collected and analyzed by enzyme-linked immunosorbent assay (ELISA). For expression analysis, RNA was collected from cells at 6 hours and 24 hours poststimulation, and mRNA quantification was performed by qRT-PCR using methods described above.

ELISA analysis of mouse serum and cell supernatant

Blood from mice was obtained by submandibular puncture at the time of euthanasia. Blood was allowed to clot, centrifuged, and serum was collected and stored at -20°C prior to analysis. Cell supernatant was used immediately or stored at -20°C prior to analysis. Cytokine concentration in serum samples and cell supernatant was detected by sandwich ELISA using capture and biotinylated antibodies against mouse IL-1β (clones B122 and Poly5158, Biolegend), IL-6 (clones MP5-20F3 and MP5-32C11, BD Biosciences), IL-10 (clones JESS-2A5 and SXC-1, BD Biosciences), IL-12 (clones C15.6 and C17.8, BD Biosciences), IFNγ (clones R46A2 and XMG1.2, BD Biosciences), TNFα (clones G281-2626 and MP6-XT3, BD Biosciences), and CXCL1 (clone 48415 and Cat BAF453, R&D Systems).

Immunoblot analysis

Cells were washed and lysed at 4°C with NP-40 lysis buffer (0.5 percent NP-40) for 1 hour followed by boiling for 5 minutes in SDS sample buffer. Protein concentration was measured using a BCA protein assay (Thermo Scientific). Proteins were separated by polyacrylamide gel electrophoresis (PAGE) and transferred overnight at 4°C onto an Immobilon-P membrane (Millipore). Membrane was blocked with 5% milk in TBST and stained with the following antibodies: rabbit anti-TRAF6 (clone H-274, Santa Cruz),
rabbit anti-IRAK1 (clone D51G7, Cell Signaling), rabbit anti-STAT1 (Cell Signaling #H9172S), and rabbit anti-β-actin (clone 13E5, Cell Signaling) as a loading control. Horseradish peroxidase-conjugated goat anti-rabbit IgG (BioRad) was used as a secondary antibody prior to incubation with enhanced chemoluminescent substrate (Thermo Scientific). Membrane was exposed to autoradiography film (GeneMate) and developed using a medical film processor (SRX-701, Konica Minolta).

Phagocytosis Assay

Mice received an intraperitoneal (IP) injection of 3 ml of 3 percent thioglycollate 4 days prior to harvesting of peritoneal macrophages. Macrophages were removed from sacrificed mice by IP injection of 5 ml ice-cold PBS. Red blood cells were lysed using ACK lysis buffer. 5x10^5 cells were adhered to a 12-well plate in RPMI+10 percent FBS for 4 hours, after which cells were washed and unadhered cells removed. 5x10^6 *B. burgdorferi* strain N40 constitutively expressing GFP under the flaB promoter [99] (a gift from Dr. Jay Carroll) were added to cells in RPMI.B (75 percent RPMI+10 percent FBS+25 percent BSKII), as described [100], plates were centrifuged at 500g for 5 minutes and incubated for 1 or 2 hours, after which cells were washed gently 3x in warm PBS and gently removed from the plate using a cell scraper. Cells were washed 2x with ice-cold PBS and supernatant discarded following centrifugation. Washed cells were then resuspended in flow buffer and analyzed by flow cytometry using a BD LSRII flow cytometer. As a negative control, untreated cells and cells incubated with unlabeled *B. burgdorferi* N40 were used.
Confocal microscopy

Peritoneal macrophages were harvested as described above and allowed to adhere to the surface of etched microscope cover slides for 4 hours. Cells were incubated with GFP-\textit{B. burgdorferi} for 1 hour at a 100:1 MOI as described above, followed by 4x washes with warm PBS, fixed in 4 percent paraformaldehyde, and incubated with antibody blocking solution (3 percent BSA 0.05 percent milk 0.2 percent Tween20 in PBS) for 1 hour at RT. Cells were then stained with PE-conjugated LAMP-1, APC-conjugated F4/80, and DAPI for 1 hour in antibody solution (1 percent BSA 0.02 percent Tween20 in PBS), washed and mounted onto a glass slide using fluorescent mounting reagent (Calbiochem EMD Millipore). Confocal imaging was performed on a FV1000 inverted confocal microscope (Olympus) using FV10-ASW software (Olympus). Images were taken using a 60x oil lens with a 1024x1024 2x zoom, and captured at a plane dissecting the middle of cell nuclei. All imaging was performed at the University of Utah Cell Imaging Core Facility, with the assistance of Dr. Christopher Rodesh.

Data and statistical analysis

Microarray data statistical analysis was performed using the Agilent Feature Extraction Software (v.10.5) and Geospiza GeneSifter Analysis Edition (Perkin Elmer), as described. Raw and adjusted p values were derived by Welch’s t test with Benjamini and Hochberg correction, using a raw p value cutoff of p < 0.05 signifying statistical significance. All other graphical data represent the mean ± SEM. Statistical analysis was performed using Prism 5.0c software. Multiple-sample data sets were analyzed by one-way ANOVA with Dunnet’s or Tukey’s post hoc test for pair-wise comparisons, as
appropriate and indicated in figure legends. Two-sample data sets were analyzed by Student t test. Categorical data for histopathology were assessed by Mann-Whitney U test. Statistical significance indicated in figure legends.

References

82. Roper RJ, Weis JJ, McCracken BA, Green CB, Ma Y, et al. (2001) Genetic control of susceptibility to experimental Lyme arthritis is polygenic and exhibits consistent
linkage to multiple loci on chromosome 5 in four independent mouse crosses. Genes Immun 2: 388-397.

Figure 3.1. PCR validation of miRNA microarray results. qRT-PCR analysis of miR-146a, miR-21, and miR-155 expression normalized to 5S rRNA from *B. burgdorferi*-infected joints of B6, C3H, and IL-10−/− mice at 1, 2, or 4 weeks postinfection (n=3-4). Shown is fold change in expression compared to uninfected controls ± SEM. * indicates statistically significant increase in expression vs. uninfected controls by ANOVA followed by Dunnett’s post-hoc test, α=0.05.
Figure 3.2. B6 miR-146a−/− mice develop more severe arthritis at 4 weeks postinfection independent of bacterial burden. Arthritis severity was determined for B. burgdorferi-infected B6 or B6 miR-146a−/− mice at 4 weeks postinfection. (A) Blinded measurements of rear ankles of mice were taken before infection and at 4 weeks postinfection, and change in ankle measurement is shown. (B) Representative images of H&E-stained tibiotarsal joints from BSK-injected (control) and 4 week-infected B6 and B6 miR-146a−/− mice used for histopathology scoring (see Table 3.2). Cranial tibial tendons of infected joints are enlarged to show detail of tendon sheath thickening and PMN infiltrate. (C) Bacterial burden was determined by quantifying B. burgdorferi-specific 16S rRNA normalized to 1000 β-actin for joint and heart tissue, and recA, normalized to 1000 nidogen for ear tissue. Pooled from two independent infection experiments (n≥9 mice per experiment) for joints, and from one experiment for heart and ear tissue (n=5 mice). Statistical significance was determined by Student t test (*p<0.01). (D) Antibody concentrations were estimated in serum collected from B. burgdorferi-infected B6 and B6 miR-146a−/− mice as described in materials and methods. IgM was measured at 2 weeks postinfection (n=4) and IgG was measured at 4 weeks postinfection (n=9-10). Data are representative of 2 independent experiments (n.s.: no significant difference between strains).
Figure 3.3. B6 and B6 miR-146a^{−/−} mice have similar *B. burgdorferi* burden and similar levels of inflammation in heart tissue, distinct from C3H mice. Mice were infected with *B. burgdorferi* for 3 weeks, after which hearts were collected for analysis of bacterial burden and inflammation. (A) Bacterial presence was quantified with *B. burgdorferi*-specific 16S rRNA, normalized to 1000 β-actin by qRT-PCR. (B) Carditis was blindly assessed using histopathologic evaluation to score lesion severity in heart tissue from B6, B6 miR-146a^{−/−}, and C3H mice infected with *B. burgdorferi* for 3 weeks. (C) H&E-stained sections of infected B6, B6 miR-146a^{−/−}, and C3H hearts (10x magnification top row, 40x magnification bottom row), with the intraventricular septum (ivs), coronary artery (ca), pulmonary artery (pa), and aorta (a) labeled as indicated. The inflammatory response in these lesions was a mixture of neutrophils and mononuclear inflammatory cells such as lymphocytes and macrophages. (D) Transcripts for *CD11b*, *F4/80*, *CD4* and *Va14*, *IFNγ* and *IL6* were measured by qRT-PCR, normalized to β-actin. 4 mice were used for each strain, and statistically significant difference between groups by ANOVA followed by Tukey’s post-hoc test are indicated (*p<0.05). For lesion scoring, Mann-Whitney *U* test was used to determine whether there were statistical significant differences between groups, with p value indicated (n=4 mice per strain).
Figure 3.4. B6 miR-146a−/− mice exhibit hyperactive expression of a subset of NF-κB target cytokines and chemokines at 4 weeks postinfection. (A) RNA was isolated from B. burgdorferi-infected rear ankle joints at 2 and 4 weeks postinfection and transcript levels of IL6, IL1β, Cxcl1, Cxcl2, IFNγ, Cxcl10, and TNFα were measured by qRT-PCR, normalized to β-actin. (B) Serum from B. burgdorferi-infected mice was collected by cheek bleed at 4 weeks postinfection, and IL-6, TNFα, IL-12, and IFN-γ protein concentration was measured by ELISA. Statistically significant differences between groups by ANOVA followed by Tukey’s post-hoc test are indicated (*p<0.05, n≥9 mice per group).
Figure 3.5. Effect of miR-146a in isolated joint cell populations early in infection.

(A) FACS analysis of cells released from joint tissue of B6 mice uninfected or infected with *B. burgdorferi* for 7 or 14 days. Single-cell suspensions of tissue were prepared as described in materials and methods, and cells were stained according to myeloid (CD45+ CD11b+), lymphoid (CD45+ CD11b-), endothelial (CD45- CD31+), or fibroblast-enriched (CD45- CD31- CD29+) lineages, following gating to exclude debris, dead cells, and cell doublets. (B) Cells sorted into various lineages depicted in (A) were analyzed for transcript levels of *Cxcl2, IL1β*, and *Oasl2* in myeloid cells, *Cxcl1* in fibroblast-enriched cells, and *IFNγ* in lymphoid cells, normalized to *β-actin*. Data are representative of two independent experiments (n=4 mice for each group).
Figure 3.6. Myeloid cell recruitment is increased in infected joints of B6 miR-146a−/− mice. (A) Representative flow cytometry analysis of CD11b+ cells released from joint tissue of B6 or B6 miR-146a−/− mice infected with *B. burgdorferi* for 2 or 4 weeks, following gating to exclude debris, dead cells, and cell doublets. Numbers indicate gate percentages. (B) Representative histogram showing MRC1 (Mannose Receptor, C type 1, CD206) and Gr1 fluorescent intensity in macrophages (Mϕ), polymorphonuclear cells (PMNs), and monocyte gates, as shown in (A). Gray shaded area indicates B6 mice and the black line indicates B6 miR-146a−/− mice. Bar graph on right shows average mean fluorescence intensity of macrophages, PMNs, and monocytes isolated from 14 day-infected B6 or miR-146a−/− mouse joints (n=4). (C) Total numbers of myeloid cell populations in joints of uninfected or *B. burgdorferi*-infected mice at 2 and 4 weeks postinfection from B6 or B6 miR-146a−/− mice. Cell populations were identified by flow cytometric analysis with macrophages defined as CD11b+ F4/80+ Ly6Clo, polymorphonuclear cells (PMNs) as CD11b+ Gr1hi Ly6Cint, and monocytes as CD11b+ Gr1int Ly6Chi. Statistically significant differences between groups by ANOVA followed by Tukey’s post-hoc test are indicated (*p<0.05). For selected values not reaching statistical significance cutoff, p values are listed. Representative of 2 independent experiments (n=4 for each group).
Figure 3.7. Bone marrow-derived Macrophages from B6 miR-146a⁻/⁻ mice are hyper-responsive to *B. burgdorferi* and have elevated levels of TRAF6. (A) Analysis of cytokine secretion of *B. burgdorferi*-treated BMDMs. Bone marrow-derived macrophages (BMDMs) from B6 (black) or B6 miR-146a⁻/⁻ (white) mice were pretreated for 4 hours in the presence or absence of recombinant mouse IL-10. Following pretreatment, cells were stimulated with *B. burgdorferi* for 24 hours. Cell supernatant was collected and secretion of IL-6, IL-1β, CXCL1, IL-12, TNFα, and IL-10 was measured by ELISA. (B) Immunoblot analysis of TRAF6, IRAK1, and STAT1 in *B. burgdorferi*-treated BMDMs from B6 (WT) or B6 miR-146a⁻/⁻ (KO) mice. BMDMs were stimulated with media alone or *B. burgdorferi* for 24 hours and cells were lysed using NP-40. Quantification was determined based on band intensity, normalized to β-actin, with B6 (WT) value set to 1. (C) *Traf6, Irak1*, and *Stat1* mRNA levels were quantified using qRT-PCR, normalized to β-actin. Significant differences between groups by ANOVA followed by Tukey’s post-hoc test are indicated (*p<0.05). Representative of at least 2 independent experiments (n=3-4 for each group).
Figure 3.8. B6 miR-146a−/− peritoneal macrophages exhibit increased phagocytic activity. (A) Representative plots of peritoneal macrophages isolated from B6 or B6 miR-146a−/− mice and incubated with GFP-\textit{B. burgdorferi} for 1 or 2 hours at 10:1 MOI. Box indicates GFP+ fraction, and number in top-right corner is percent GFP+. Control is using cells only. (B) Mean percent GFP+ and GFP mean fluorescence intensity for flow analysis shown in (A). Representative of two independent experiments (n=3 for each experiment). Significant differences between groups by ANOVA followed by Tukey’s post-hoc test are indicated (*p<0.05). (C) Confocal images of B6 peritoneal macrophages incubated with GFP-\textit{B. burgdorferi} for 1 hour at 100:1 MOI. Panels are (from top-left) cell nuclei (gray, DAPI), GFP-\textit{B. burgdorferi} (green), lysosomes (red, LAMP-1), cell membrane (blue, F4/80), bright-field, and overlaid images. White bar indicates scale. White arrow shows a bacterium associated with a macrophage pseudopod, chevron indicates bright GFP puncta associated with intracellular lysosomes, and triangle indicates a cell surface-associated bacterium. Representative of two biological replicates. Similar images of B6 miR-146a−/− macrophages can be found in supplemental data.
Figure 3.9. Model of miR-146a function as a suppressor of arthritis during persistent *B. burgdorferi* infection. Regulatory role of miR-146a in myeloid cells present in joint tissue as a negative regulator of Toll-like receptor (TLR) signaling through suppression of adaptor proteins, particularly TRAF6.
Figure 3.S1. Lymphocyte infiltration into joints of *B. burgdorferi*-infected mice is similar between WT and miR-146a^{−/−} mice. Flow cytometry analysis of lymphoid cells released from joint tissue of B6 or B6 miR-146a^{−/−} mice infected with *B. burgdorferi* for 2 or 4 weeks, following gating to exclude debris, dead cells, and cell doublets. Cell lineages defined as follows: T cells (CD45+ TCRβ+), B cells (CD45+ B220+), and NK cells (CD45+ NK1.1+). No significance was observed between any groups by ANOVA followed by Tukey’s post-hoc test (*p<0.05*).
Figure 3.S2. Confocal images of B6 miR-146a−/− peritoneal macrophages incubated with GFP-B. burgdorferi. Panels are (from top-left) cell nuclei (gray, DAPI), GFP-B. burgdorferi (green), lysosomes (red, LAMP-1), cell membrane (blue, F4/80), bright-field, and overlay fields. White bar indicates scale.
Table 3.1. MicroRNAs most highly changed in expression, based on microarray, in joints of different mouse strains.

<table>
<thead>
<tr>
<th>miRNA</th>
<th>Fold Δ</th>
<th>miRNA</th>
<th>Fold Δ</th>
<th>miRNA</th>
<th>Fold Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-146a</td>
<td>5.67</td>
<td>miR-146a</td>
<td>10.8</td>
<td>miR-21</td>
<td>6.08</td>
</tr>
<tr>
<td>miR-21</td>
<td>3.92</td>
<td>miR-21</td>
<td>8.12</td>
<td>miR-146a</td>
<td>5.34</td>
</tr>
<tr>
<td>miR-706</td>
<td>3.47</td>
<td>miR-142-3p</td>
<td>6.54</td>
<td>miR-155</td>
<td>5.12</td>
</tr>
<tr>
<td>miR-29b</td>
<td>2.31</td>
<td>miR-142-5p</td>
<td>4.99</td>
<td>miR-193b</td>
<td>-3.04</td>
</tr>
<tr>
<td>miR-715</td>
<td>2.24</td>
<td>miR-34a</td>
<td>4.4</td>
<td>miR-150</td>
<td>-2.56</td>
</tr>
<tr>
<td>miR-340-5p</td>
<td>2.21</td>
<td>miR-18a</td>
<td>3.35</td>
<td>miR-145</td>
<td>-2.43</td>
</tr>
<tr>
<td>miR-34a</td>
<td>2.16</td>
<td>miR-19b</td>
<td>3.08</td>
<td>miR-181a</td>
<td>-2.37</td>
</tr>
<tr>
<td>miR-689</td>
<td>2.12</td>
<td>miR-145</td>
<td>-3.07</td>
<td>miR-181b</td>
<td>-2.29</td>
</tr>
</tbody>
</table>

List of 8 most highly differentially expressed miRNAs in *B. burgdorferi*-infected joints of B6, C3H, and B6 IL-10−/− mice at 2 weeks postinfection, based on Agilent mouse miRNA microarray. Shown is fold-change in expression compared to uninfected controls. Significance was determined using Welch's *t*-test with Benjamini and Hochberg correction (p<0.05, n=3-4 mice per group).
Table 3.2. Histopathology scores of arthritis severity for B6 and B6 miR-146a$^{-/-}$ mice.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Overall Lesion</th>
<th>PMN Infiltrate</th>
<th>Mononuclear Infiltrate</th>
<th>Sheath Thickness</th>
<th>Reactive-Reparative</th>
<th>Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>B6</td>
<td>1.53 (.21)</td>
<td>1.05 (.25)</td>
<td>0.58 (.14)</td>
<td>1.42 (.22)</td>
<td>0.26 (.15)</td>
<td>4.84 (.79)</td>
</tr>
<tr>
<td>miR-146a$^{-/-}$</td>
<td>2.84 (.26)</td>
<td>2.21 (.26)</td>
<td>0.37 (.11)</td>
<td>2.74 (.26)</td>
<td>1.58 (.25)</td>
<td>9.74 (.97)</td>
</tr>
</tbody>
</table>

Histopathology scores of rear ankle joints of B6 and B6 miR-146a$^{-/-}$ mice infected with B. burgdorferi for 4 weeks. Scores of 0-5, with 5 being most severe, were assigned to each sample. Total score is the sum of scores from each category. Values shown are the mean (±SE), and bold numbers indicate statistically significant difference between strains using Mann-Whitney U test (p<0.01), pooled from two independent infection experiments (n=9-10 each).
Table 3.3. mRNA expression of induced cytokines in BMDMs from B6 and B6 miR-146a^{−/−} mice after 6 and 24 hours stimulation with *B. burgdorferi*.

<table>
<thead>
<tr>
<th>Strain</th>
<th>IL1β</th>
<th>IL6</th>
<th>TNFα</th>
<th>IL1β</th>
<th>IL6</th>
<th>TNFα</th>
</tr>
</thead>
<tbody>
<tr>
<td>B6</td>
<td>56.2±2.5</td>
<td>0.008±0.002</td>
<td>127.3±6.6</td>
<td>109.7±12.7</td>
<td>1.07±0.46</td>
<td>6.42±0.58</td>
</tr>
<tr>
<td>miR-146a<sup>−/−</sup></td>
<td>236±8.7</td>
<td>0.06±0.007</td>
<td>168.2±14.7</td>
<td>446.8±14.0</td>
<td>2.67±0.35</td>
<td>7.91±0.37</td>
</tr>
</tbody>
</table>

Fold Δ | 4.2 | 7.5 | 1.3 | 4.1 | 2.5 | 1.2 |

Induced transcript levels of *IL1β*, *IL6*, and *TNFα* (normalized to 1000 β-actin) in B6 and B6 miR-146a^{−/−} BMDMs stimulated with *B. burgdorferi* for 6 or 24 hours. Data shown are mean±SE, as well as fold-difference (Fold Δ) of expression in miR-146a^{−/−} vs. B6. Transcript levels of uninfected cells were very low and similar between strains (not shown). Representative of 3 independent experiments (n≥3 for each experiment).
Table 3.S1. MicroRNAs with greater than 2-fold change in expression in joints of mouse strains, based on Agilent miRNA microarray analysis.

<table>
<thead>
<tr>
<th>Gene Identifier</th>
<th>Ratio</th>
<th>Direction</th>
<th>p-value</th>
<th>adj. p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmu-miR-139-3p</td>
<td>2.74</td>
<td>Down</td>
<td>0.0136889</td>
<td>0.0211556</td>
</tr>
<tr>
<td>mmu-miR-466g</td>
<td>2.58</td>
<td>Down</td>
<td>0.0036082</td>
<td>0.0068155</td>
</tr>
<tr>
<td>mmu-miR-466f-3p</td>
<td>2.49</td>
<td>Down</td>
<td>0.0011125</td>
<td>0.0063042</td>
</tr>
<tr>
<td>mmu-miR-202-3p</td>
<td>2.29</td>
<td>Down</td>
<td>0.0031243</td>
<td>0.0066392</td>
</tr>
<tr>
<td>mmu-miR-466i</td>
<td>2.28</td>
<td>Down</td>
<td>0.0018722</td>
<td>0.0064726</td>
</tr>
<tr>
<td>mmu-miR-689</td>
<td>2.27</td>
<td>Up</td>
<td>5.069E-04</td>
<td>0.0043087</td>
</tr>
<tr>
<td>mmu-miR-21</td>
<td>2.14</td>
<td>Up</td>
<td>6.63E-05</td>
<td>0.0011274</td>
</tr>
<tr>
<td>mmu-miR-18a</td>
<td>2.04</td>
<td>Up</td>
<td>0.0026652</td>
<td>0.0064726</td>
</tr>
<tr>
<td>mmu-miR-467f</td>
<td>2.04</td>
<td>Down</td>
<td>0.0020589</td>
<td>0.0064726</td>
</tr>
<tr>
<td>mmu-miR-494</td>
<td>2.03</td>
<td>Up</td>
<td>0.0026516</td>
<td>0.0064726</td>
</tr>
<tr>
<td>mmu-miR-29b</td>
<td>2.01</td>
<td>Up</td>
<td>0.0075675</td>
<td>0.0128647</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gene Identifier</th>
<th>Ratio</th>
<th>Direction</th>
<th>p-value</th>
<th>adj. p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmu-miR-146a</td>
<td>5.67</td>
<td>Up</td>
<td>1.765E-04</td>
<td>0.0065313</td>
</tr>
<tr>
<td>mmu-miR-21</td>
<td>3.92</td>
<td>Up</td>
<td>0.0054998</td>
<td>0.0422948</td>
</tr>
<tr>
<td>mmu-miR-706</td>
<td>3.47</td>
<td>Up</td>
<td>0.0068586</td>
<td>0.0422948</td>
</tr>
<tr>
<td>mmu-miR-29b</td>
<td>2.31</td>
<td>Up</td>
<td>0.0314381</td>
<td>0.1292457</td>
</tr>
<tr>
<td>mmu-miR-715</td>
<td>2.24</td>
<td>Up</td>
<td>0.0027000</td>
<td>0.0369090</td>
</tr>
<tr>
<td>mmu-miR-340-5p</td>
<td>2.21</td>
<td>Up</td>
<td>0.0247291</td>
<td>0.1143724</td>
</tr>
<tr>
<td>mmu-miR-34a</td>
<td>2.16</td>
<td>Up</td>
<td>0.0065130</td>
<td>0.0422948</td>
</tr>
<tr>
<td>mmu-miR-689</td>
<td>2.12</td>
<td>Up</td>
<td>0.0239135</td>
<td>0.1143724</td>
</tr>
<tr>
<td>mghv-miR-M1-2</td>
<td>2.01</td>
<td>Up</td>
<td>0.0029926</td>
<td>0.0369090</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gene Identifier</th>
<th>Ratio</th>
<th>Direction</th>
<th>p-value</th>
<th>adj. p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmu-miR-144</td>
<td>10.72</td>
<td>Up</td>
<td>0.0059985</td>
<td>0.0118504</td>
</tr>
<tr>
<td>Gene Identifier</td>
<td>Ratio</td>
<td>Direction</td>
<td>p-value</td>
<td>adj. p-value</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>-----------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>mmu-miR-466f-3p</td>
<td>7.74</td>
<td>Down</td>
<td>0.0208671</td>
<td>0.0225365</td>
</tr>
<tr>
<td>mmu-miR-136</td>
<td>6.63</td>
<td>Up</td>
<td>0.0015580</td>
<td>0.0071312</td>
</tr>
<tr>
<td>mmu-miR-720</td>
<td>6.13</td>
<td>Up</td>
<td>0.0036499</td>
<td>0.0109498</td>
</tr>
<tr>
<td>mmu-miR-466i</td>
<td>6.1</td>
<td>Down</td>
<td>0.0074614</td>
<td>0.0118504</td>
</tr>
<tr>
<td>mmu-miR-142-3p</td>
<td>5.92</td>
<td>Up</td>
<td>0.0072559</td>
<td>0.0118504</td>
</tr>
<tr>
<td>mmu-miR-142-5p</td>
<td>5.01</td>
<td>Up</td>
<td>0.0030635</td>
<td>0.0103393</td>
</tr>
<tr>
<td>mmu-miR-301a</td>
<td>4.96</td>
<td>Up</td>
<td>0.0116770</td>
<td>0.0153280</td>
</tr>
<tr>
<td>mmu-miR-467f</td>
<td>4.71</td>
<td>Down</td>
<td>0.0090167</td>
<td>0.0135251</td>
</tr>
<tr>
<td>mmu-miR-1187</td>
<td>3.57</td>
<td>Down</td>
<td>0.0013349</td>
<td>0.0071312</td>
</tr>
<tr>
<td>mmu-miR-574-5p</td>
<td>3.31</td>
<td>Down</td>
<td>3.785E-04</td>
<td>0.0051109</td>
</tr>
<tr>
<td>mmu-miR-19b</td>
<td>2.96</td>
<td>Up</td>
<td>0.0129689</td>
<td>0.0153280</td>
</tr>
<tr>
<td>mmu-miR-376a</td>
<td>2.88</td>
<td>Up</td>
<td>2.651E-04</td>
<td>0.0051109</td>
</tr>
<tr>
<td>mmu-miR-101a</td>
<td>2.88</td>
<td>Up</td>
<td>0.0121775</td>
<td>0.0153280</td>
</tr>
<tr>
<td>mmu-miR-574-3p</td>
<td>2.61</td>
<td>Down</td>
<td>0.0388088</td>
<td>0.0388083</td>
</tr>
<tr>
<td>mmu-miR-29a*</td>
<td>2.6</td>
<td>Up</td>
<td>0.0068457</td>
<td>0.0118504</td>
</tr>
<tr>
<td>mmu-miR-18a</td>
<td>2.55</td>
<td>Up</td>
<td>0.0050183</td>
<td>0.0112913</td>
</tr>
<tr>
<td>mmu-miR-338-3p</td>
<td>2.43</td>
<td>Up</td>
<td>6.400E-04</td>
<td>0.0057607</td>
</tr>
<tr>
<td>mmu-miR-21</td>
<td>2.33</td>
<td>Up</td>
<td>0.0040851</td>
<td>0.0110298</td>
</tr>
<tr>
<td>mmu-miR-145</td>
<td>2.26</td>
<td>Down</td>
<td>0.0074154</td>
<td>0.0118504</td>
</tr>
<tr>
<td>mmu-miR-669f</td>
<td>2.21</td>
<td>Down</td>
<td>0.0044967</td>
<td>0.0110375</td>
</tr>
<tr>
<td>mmu-miR-340-5p</td>
<td>2.21</td>
<td>Up</td>
<td>0.0095250</td>
<td>0.0135355</td>
</tr>
<tr>
<td>mmu-miR-434-5p</td>
<td>2.19</td>
<td>Up</td>
<td>0.0361220</td>
<td>0.0375114</td>
</tr>
<tr>
<td>mmu-miR-101b</td>
<td>2.09</td>
<td>Up</td>
<td>0.0130571</td>
<td>0.0153280</td>
</tr>
<tr>
<td>mmu-miR-30e</td>
<td>2.06</td>
<td>Up</td>
<td>0.0188380</td>
<td>0.0211928</td>
</tr>
<tr>
<td>mmu-miR-7a</td>
<td>2.04</td>
<td>Up</td>
<td>0.0028723</td>
<td>0.0103393</td>
</tr>
</tbody>
</table>

Group 1: C3H control
Group 2: C3H week 2
Statistics: Welch's t-test
Correction: Benjamini and Hochberg
Table 3.S1. Continued

<table>
<thead>
<tr>
<th>Gene Identifier</th>
<th>Ratio</th>
<th>Direction</th>
<th>p-value</th>
<th>adj. p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmu-miR-145</td>
<td>3.07</td>
<td>Down</td>
<td>0.006830074</td>
<td>1.36E-02</td>
</tr>
<tr>
<td>mmu-miR-342-3p</td>
<td>3.01</td>
<td>Up</td>
<td>0.018902847</td>
<td>2.55E-02</td>
</tr>
<tr>
<td>mmu-miR-7a</td>
<td>2.92</td>
<td>Up</td>
<td>0.004152087</td>
<td>1.25E-02</td>
</tr>
<tr>
<td>mmu-miR-466g</td>
<td>2.84</td>
<td>Down</td>
<td>0.013821859</td>
<td>1.96E-02</td>
</tr>
<tr>
<td>mmu-miR-466f-3p</td>
<td>2.78</td>
<td>Down</td>
<td>0.003301523</td>
<td>1.11E-02</td>
</tr>
<tr>
<td>mmu-miR-340-5p</td>
<td>2.73</td>
<td>Up</td>
<td>0.010107969</td>
<td>1.61E-02</td>
</tr>
<tr>
<td>mmu-miR-130b</td>
<td>2.65</td>
<td>Up</td>
<td>0.001815616</td>
<td>7.00E-03</td>
</tr>
<tr>
<td>mmu-miR-362-5p</td>
<td>2.51</td>
<td>Up</td>
<td>6.84423E-04</td>
<td>5.64E-03</td>
</tr>
<tr>
<td>mmu-miR-466i</td>
<td>2.36</td>
<td>Down</td>
<td>0.007286134</td>
<td>1.36E-02</td>
</tr>
<tr>
<td>mmu-miR-17*</td>
<td>2.28</td>
<td>Up</td>
<td>0.00761823</td>
<td>1.36E-02</td>
</tr>
<tr>
<td>mmu-miR-29b</td>
<td>2.27</td>
<td>Up</td>
<td>0.027154031</td>
<td>3.49E-02</td>
</tr>
<tr>
<td>mmu-miR-146b</td>
<td>2.18</td>
<td>Up</td>
<td>0.001483454</td>
<td>6.76E-03</td>
</tr>
<tr>
<td>mmu-miR-574-3p</td>
<td>2.11</td>
<td>Down</td>
<td>0.00846157</td>
<td>1.36E-02</td>
</tr>
<tr>
<td>mmu-miR-467f</td>
<td>2.07</td>
<td>Down</td>
<td>0.007130363</td>
<td>1.36E-02</td>
</tr>
</tbody>
</table>

Group 1: IL10 ko control
Group 2: IL10 ko week 1
Statistics: Welch's t-test
Correction: Benjamini and Hochberg

<table>
<thead>
<tr>
<th>Gene Identifier</th>
<th>Ratio</th>
<th>Direction</th>
<th>p-value</th>
<th>adj. p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmu-miR-133a</td>
<td>2.19</td>
<td>Up</td>
<td>0.011191776</td>
<td>0.01939199</td>
</tr>
<tr>
<td>mmu-miR-133b</td>
<td>2.14</td>
<td>Up</td>
<td>0.012927996</td>
<td>0.01939199</td>
</tr>
<tr>
<td>mmu-miR-146a</td>
<td>2.05</td>
<td>Up</td>
<td>0.041399321</td>
<td>0.04139932</td>
</tr>
</tbody>
</table>

Group 1: IL10 ko control
Group 2: IL10 ko week 2
Statistics: Welch's t-test
Correction: Benjamini and Hochberg

<table>
<thead>
<tr>
<th>Gene Identifier</th>
<th>Ratio</th>
<th>Direction</th>
<th>p-value</th>
<th>adj. p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmu-miR-21</td>
<td>6.08</td>
<td>Up</td>
<td>5.98E-06</td>
<td>1.19505E-04</td>
</tr>
<tr>
<td>mmu-miR-146a</td>
<td>5.34</td>
<td>Up</td>
<td>3.85517E-04</td>
<td>0.003344354</td>
</tr>
<tr>
<td>mmu-miR-155</td>
<td>5.12</td>
<td>Up</td>
<td>5.01653E-04</td>
<td>0.003344354</td>
</tr>
<tr>
<td>mmu-miR-193b</td>
<td>3.04</td>
<td>Down</td>
<td>0.006862146</td>
<td>0.015113973</td>
</tr>
<tr>
<td>mmu-miR-150</td>
<td>2.56</td>
<td>Down</td>
<td>0.001735425</td>
<td>0.008677123</td>
</tr>
<tr>
<td>mmu-miR-145</td>
<td>2.43</td>
<td>Down</td>
<td>0.007556986</td>
<td>0.015113973</td>
</tr>
<tr>
<td>mmu-miR-181a</td>
<td>2.37</td>
<td>Down</td>
<td>0.005549417</td>
<td>0.015113973</td>
</tr>
<tr>
<td>mmu-miR-181b</td>
<td>2.29</td>
<td>Down</td>
<td>0.011713074</td>
<td>0.018020113</td>
</tr>
<tr>
<td>mmu-let-7b</td>
<td>2.17</td>
<td>Down</td>
<td>0.016701305</td>
<td>0.020876632</td>
</tr>
<tr>
<td>mmu-miR-151-5p</td>
<td>2.16</td>
<td>Down</td>
<td>0.011158357</td>
<td>0.018020113</td>
</tr>
<tr>
<td>Gene</td>
<td>Fold Change</td>
<td>Direction</td>
<td>p-value</td>
<td>Adjusted p-value</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>mmu-let-7c</td>
<td>2.15</td>
<td>Down</td>
<td>0.018191511</td>
<td>0.021401778</td>
</tr>
<tr>
<td>mmu-miR-195</td>
<td>2.14</td>
<td>Down</td>
<td>0.015536991</td>
<td>0.020876632</td>
</tr>
<tr>
<td>mmu-miR-196b</td>
<td>2.14</td>
<td>Down</td>
<td>0.01946987</td>
<td>0.021633189</td>
</tr>
<tr>
<td>mmu-miR-199b*</td>
<td>2.09</td>
<td>Down</td>
<td>0.026609241</td>
<td>0.026609241</td>
</tr>
<tr>
<td>mmu-miR-497</td>
<td>2.08</td>
<td>Down</td>
<td>0.016139593</td>
<td>0.020876632</td>
</tr>
<tr>
<td>mmu-miR-365</td>
<td>2.07</td>
<td>Down</td>
<td>0.022465838</td>
<td>0.023648251</td>
</tr>
<tr>
<td>mmu-miR-23b</td>
<td>2.07</td>
<td>Down</td>
<td>0.006067438</td>
<td>0.015113973</td>
</tr>
<tr>
<td>mmu-miR-142-3p</td>
<td>2.07</td>
<td>Up</td>
<td>0.008642346</td>
<td>0.015713356</td>
</tr>
<tr>
<td>mmu-miR-7a</td>
<td>2.07</td>
<td>Up</td>
<td>0.006185229</td>
<td>0.015113973</td>
</tr>
<tr>
<td>mmu-miR-342-3p</td>
<td>2.01</td>
<td>Up</td>
<td>0.002969385</td>
<td>0.011877542</td>
</tr>
</tbody>
</table>

All microRNAs with greater than 2-fold change in expression in *B. burgdorferi*-infected joints of B6, C3H, and B6 IL-10⁻/⁻ mice at 1 and 2 weeks postinfection, compared to uninfected controls, based on Agilent mouse miRNA microarray. Shown is gene name, fold-change, direction of fold-change, p-value and adjusted p-value. Significance was determined using Welch's *t*-test with Benjamini and Hochberg correction (p<0.05, n=3-4 mice per group).
CHAPTER 4

DISCUSSION
Overview

The immune system is a network of various cell types, tissues, and organs, working in concert to detect and eliminate pathogens. Upon infection, rapid and robust innate immune activation is required to limit pathogen spread. While this is important in host defense, pathogen-mediated inflammation also leads to tissue damage. It is therefore also essential for the immune response to be tightly regulated in terms of both amplitude and duration, and to fully resolve following pathogen clearance. Failure to properly regulate an immune response to infection can lead to inflammatory disease and autoimmunity. Lyme arthritis is an excellent example of an inflammatory disease caused by infection of an arthritogenic pathogen, *Borrelia burgdorferi* [1]. Infection can trigger a wide range of disease severity, from mild joint pain and acute arthritis, to severe prolonged treatment-refractory arthritis [2]. This chronic inflammation in some cases primes the immune system to develop autoimmune arthritis [3,4]. Thus, this disease can be used as a model for elucidating the link between pathogen-induced inflammation and development of autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and type 1 diabetes [5-8].

The mouse model of Lyme arthritis is a powerful tool in elucidating the molecular and genetic mechanisms of pathological inflammation. Mice are natural hosts for the pathogen [9], disease pathology in mice is similar in many ways to human disease [10], and many immunological tools are available in the mouse model system, allowing for very sophisticated study of this disease [11]. Lyme disease research has yielded many important discoveries about inflammation, immune function, and host-pathogen interactions [12]. Building upon these previous discoveries, this thesis identifies novel
aspects of regulatory mechanisms involved in host immune response and arthritis development.

Cellular Sources of Type I Interferon in Lyme Arthritis

A robust type I IFN response early in infection with *B. burgdorferi* was initially identified in joints of arthritis-susceptible C3H mice by microarray analysis [13]. This led to the hypothesis that dysregulation of type I IFN early in infection contributes to increased Lyme arthritis later in infection. This hypothesis was tested by Miller et al. [14] using a neutralizing antibody targeting the type I interferon receptor (IFNAR), and confirmed using a knockout C3H IFNAR^{-/-} mouse, shown in Chapter 2. These two experiments supported this hypothesis, directly linking preclinical dysregulation of type I interferon to severe arthritis later in infection.

Arthritic joint tissue is a complex array of many cell types, including immune cells such as macrophages, neutrophils, B cells, and T cells; as well as resident cells, including endothelial cells, fibroblasts, and chondrocytes. Many cell types are capable of producing and responding to type I IFN [15]. It was therefore important to identify the relevant cell types contributing to the pathological upregulation of the interferon expression profile. Because of the complex nature of joint tissue, identifying the relevant cell types ex vivo required development of novel methods of analysis. A system of isolating joint cells followed by cell sorting allowed for ex vivo analysis of various cell lineages. This method was utilized to show that (1) while both resident and hematopoietic cells from naïve mouse joints were capable of responding to *B. burgdorferi* stimulation, only hematopoietic cells were able to initiate a type I IFN response; and (2) endothelial cells and fibroblasts were primary contributors of the type I IFN response in infected mouse
joints. This highlights the importance of studying complex biological systems within the context of their cellular environment, and emphasizes the critical role of resident cells in immune function and disease pathogenesis. The clinical relevance of this finding is supported by a recent patient study suggesting that excessive endothelial cell activation and proliferation through production of ECGF can contribute to autoimmunity in many Lyme arthritis patients [4].

It has been known for over 35 years that lupus patients produce very high levels of type I IFN [16], which is produced by plasmacytoid dendritic cells responding to self nucleic acids through TLRs and other pathogen recognition receptors [17]. Furthermore, there are cases where individuals undergoing interferon treatment for hepatitis C have developed clinical systemic lupus erythematosus [18,19]. The strong connection between lupus and type I IFN has resulted in testing of potential anti-interferon pharmaceuticals as a therapeutic [20].

It has also recently been reported that children predisposed to type 1 diabetes exhibit a preclinical type I IFN signature prior to disease onset, but this signature is absent in patients with active disease [21]. Furthermore, this signature is likely the result of a heritable hyperactive type I IFN response to viral infection [22,23]. This is strikingly similar to our observations in C3H mice, which have a robust and transient preclinical type I IFN signature early in infection with *B. burgdorferi* [13], and contributes to disease severity, as shown in Chapter 2 and by Miller et al. [14]. Thus, elucidating the molecular mechanisms of the arthritogenic type I IFN response in the C3H mouse model of Lyme arthritis may provide critical insight into not only Lyme arthritis development, but lupus and type 1 diabetes as well.
MicroRNA-146a Is an Immune Modulator in Lyme Arthritis

Since their discovery, microRNAs have been shown to be important regulators of many cellular processes, including immune response to infection, inflammation, and autoimmunity [24]. Several microRNAs, including miR-146a and miR-155, have been shown to be upregulated through TLR-mediated NF-κB activation, and act as negative and positive regulators of inflammation, respectively [25,26]. These and other microRNAs are also associated with inflammatory and autoimmune diseases [27], suggesting that microRNAs play a role in disease pathogenesis. Because of this, it was reasonable to predict that microRNAs also played a role in regulating the immune response to *B. burgdorferi*.

As discussed in Chapter 3, expression analysis of microRNAs differentially expressed in joints of infected C3H, B6, and B6 IL10−/− mice revealed that a number of microRNAs were upregulated and downregulated in joints at 1 and 2 weeks postinfection. Of the over 600 microRNAs examined, only several dozen showed significant changes in expression during infection. Each mouse strain contained a unique set of microRNAs differentially expressed, as well as a small number of microRNAs whose expression profile was similar between two or more strains. Among those shared by all three strains was miR-146a, previously identified as an important negative regulator of NF-κB activation [28]. This microRNA was highly upregulated in all three strains, suggesting that it plays an important immune-modulatory role in response to *B. burgdorferi* infection.

MicroRNA-146a functions as an negative feedback regulator of NF-κB activation by suppressing translation of IRAK1 and TRAF6, proteins involved in TLR signaling.
TLR-mediated activation of the innate immune response is critical in controlling \emph{B. burgdorferi} infection [29], so it was not surprising to find that this important regulator was upregulated. It was unknown, however, whether this observation had functional relevance in the context of Lyme arthritis. Fortunately, a B6 miR-146a\(^{-/-}\) mouse was available [30], so it was possible to ask whether arthritis-resistant mice lacking this negative NF-\kappa B regulator would develop more severe arthritis, and if there would be an effect on host defense.

Upon infection, B6 mice lacking miR-146a develop more severe arthritis than wild-type B6 mice, and exhibit a hyperactive NF-\kappa B response. Furthermore, these mice had modestly fewer numbers of bacteria in their joints, had similar \emph{B. burgdorferi} numbers in heart and skin tissue, and had similar carditis compared to wild-type mice. This finding was significant for two reasons: first, it demonstrated that microRNA-mediated regulation was required for suppression of joint inflammation; second, this finding showed for the first time that hyperactive TLR/NF-\kappa B activation led to increased arthritis severity. While this had long been suspected, it was difficult to show definitively, since mice lacking TLR2 or the adapter protein MyD88 have a severe host defense defect, contain extremely high numbers of bacteria in joints and other tissue, and still develop severe arthritis, despite having a defective pro-inflammatory TLR/MyD88/NF-\kappa B signaling pathway [29,31]. In contrast, the B6 miR-146a\(^{-/-}\) mouse had only a modest effect on host defense and increased the amplitude of this signaling pathway, thereby acting as a “fine tuner” of NF-\kappa B activation [32]. The observation that these mice still develop severe arthritis shows that the amplitude of this signaling pathway is directly linked to pathological inflammation.
Another important finding in these studies was that B6 miR-146a-/- macrophages responded to *B. burgdorferi* stimulation in distinct ways. For example, peritoneal macrophages from B6 miR-146a-/- mice were more highly phagocytic than wild-type B6 peritoneal macrophages. This finding shows that miR-146a is involved in regulation of phagocytic activity, although the precise molecular mechanism remains unknown.

Additionally, bone marrow-derived macrophages were refractory to treatment with the anti-inflammatory cytokine IL-10, and still produced high levels, compared to wild-type macrophages, of pro-inflammatory cytokines and chemokines after *B. burgdorferi* stimulation. This was likely due to significantly elevated protein levels of TRAF6, a protein important in TLR/NF-κB activation.

Roles of miR-155 and IL-10 in Host Response to *B. burgdorferi*

In addition to miR-146a, miR-155 was also identified in the microRNA microarray. Unlike miR-146a, however, this pro-inflammatory microRNA was exclusively upregulated in arthritic B6 IL10-/- mouse joints (Chapter 3). This finding suggests that IL-10 suppresses miR-155 expression in mouse joints, which was shown to occur in macrophages by McCoy et al. [33]. IL-10 is a key anti-inflammatory cytokine and is critical in limiting a wide range of inflammatory responses through downregulation of Th1 cytokines, inhibition of NF-κB activity, and suppression of M1 macrophage activity [34]. IL-10 is also an important regulator of Lyme arthritis severity in mice and humans [35,36]. In contrast to IL-10, miR-155 is a pro-inflammatory microRNA that targets several immune genes, including the transcription factor PU.1 and two negative regulators, SHIP1 and SOCS1, suppressors of AKT and IFN signaling, respectively [37]. Furthermore, miR-155 regulates myeloid cell, T-cell, and B-cell function [26,38-40], and
is critical in regulating hematopoiesis and autoimmunity [41,42]. Importantly, elevated miR-155 expression is associated with inflammatory diseases such as lupus [43] and rheumatoid arthritis [44].

There was reason to think that IL-10-mediated regulation of miR-155 was functionally relevant, since others have shown several opposing immune phenotypes in mice lacking either IL-10 or miR-155. For example, compared to wild-type B6 mice, B6 IL10−/− mice exhibit increased Lyme arthritis [45], have an arthritogenic IFNγ signature [35], develop severe lymphadenopathy and produce high levels of B. burgdorferi-specific antibodies [46], and have a dysregulated innate immune response, which contributes to increased arthritis severity and elevated bacterial clearance [46,47]. Also, administration of exogenous IL-10 limited collagen-induced arthritis progression in mice [48] (but not Lyme arthritis [49]). Conversely, B6 miR-155−/− mice have impaired B cell response and IgG class switching [39,40,50], reduced IFNγ production by T cells [42], and are protected from autoimmune arthritis [51]. However, no studies had been done to determine to what degree the immunosuppressive activity of IL-10 was due to its downregulation of the proinflammatory microRNA miR-155.

To test whether this IL-10-mediated miR-155 suppression affects host response to B. burgdorferi and Lyme arthritis development, a B6 IL10−/− miR-155−/− double knockout (DKO) mouse was generated (Appendix A). Using this mouse in the context of Lyme borreliosis, it was found that many, but not all, immune modulatory effects of IL-10 are dependent upon IL-10-mediated suppression of miR-155.

Upon infection, B6 IL10−/− miR-155−/− DKO mice had lower levels of B. burgdorferi-specific IgG than either B6 IL10−/− or wild-type B6 mice, and nearly
undetectable levels of the IgG1 isotype, consistent with previous observations in the B6 miR-155\(^{−/−}\) mouse [39], suggesting that miR-155 is absolutely required for IgG1 production. Interestingly, while IL-10 deficiency resulted in elevated IgG2C isotype levels over wild-type, lack of miR-155 resulted in levels of IgG2C similar to wild-type, and DKO mice had IgG2C levels similar to both B6 and B6 miR-155\(^{−/−}\) mice. These data show that miR-155 is not required for IgG2C class switching (in contrast to IgG1), and that IL-10-mediated regulation of miR-155 regulates IgG2C production.

This difference in IgG production and class switching, however, had no influence on arthritis severity or host defense. This is consistent with previous data showing IgG1 isotype production does not influence Lyme arthritis [52]. Whereas B6 and B6 miR-155\(^{−/−}\) mice developed mild Lyme arthritis and had moderate numbers of spirochetes in joint tissue, B6 IL-10\(^{−/−}\) and DKO mice developed severe arthritis while harboring very low numbers of bacteria. These data show that immune suppressor functions of IL-10 independent of miR-155 regulation were overwhelmingly responsible for increased arthritis severity and enhanced host defense. This was also seen for serum levels of IL-12, a cytokine involved in macrophage activation of T cells, which was significantly elevated in both strains lacking IL-10, but was not elevated in the two IL-10-sufficient strains.

Similarly, the IFN\(γ\) profile was upregulated in both B6 IL10\(^{−/−}\) and DKO mouse joint tissue, but not in B6 or B6 miR-155\(^{−/−}\) mice. This was due in part to the complex cellular environment of the joint, since the IFN profile of macrophages stimulated with \(B. burgdorferi\) was largely dependent upon the presence of miR-155, and the enhanced upregulation of interferon-inducible genes such as \(Cxcl9\) and \(Cxcl10\) seen in IL10\(^{−/−}\) macrophages returned to near wild-type levels in DKO macrophages. Also consistent
with a cell environment-dependent miR-155 effect on IFNγ, serum levels of IFNγ were somewhat reduced in the DKO mouse, compared to the B6 IL10−/− mouse, suggesting a role of miR-155 in systemic, but not localized IFN production. This also points to joint-localized IFNγ production, rather than systemic IFN levels, as being the arthritogenic IFN source. Overall, these data show that there are distinct and opposing roles of miR-155 and IL-10 in regulation of the innate and adaptive immune response to *B. burgdorferi* infection.

MicroRNAs in the Clinical Setting

These and other studies have clearly shown that microRNAs play a critical role in modulating numerous signaling pathways, and that defects in microRNA function often leads to disease [37]. Naturally, one may speculate that microRNA-based therapeutics may be an attractive new class of drugs. While there is some promise for use of miRNA-targeted therapy for HCV patients [53], large barriers exist for miRNA-based treatment, particularly in regards to microRNA delivery. Some progress has been made in the use of exosomes and macromolecules for cell- and tissue-specific microRNA delivery, and efforts are underway to develop novel methods of using both miRNA antagonists and miRNA mimics in a clinical setting [54-60].

Of more immediate clinical interest is the potential of microRNAs as a diagnostic tool [61]. Many microRNAs are secreted into the bloodstream, allowing for microRNA screening to be performed during routine blood testing, and abnormally high or low levels of certain microRNAs may be a molecular biomarker of dysregulated pathways [61]. In the case of Lyme arthritis, the microarray screen discussed in Chapter 3 showed that arthritis-susceptible C3H and B6 IL10−/− mice have very distinct microRNA
expression profiles, likely reflecting the different mechanisms of arthritis development between these two models. Many inflammatory diseases, including Lyme arthritis, are complex multifactorial disorders, and microRNA expression as a diagnostic tool could be used to quickly identify dysregulated pathways, leading to more personalized treatment.

Murine Lyme Arthritis as a Model for Inflammatory and Autoimmune Diseases

Chronic inflammation and dysregulation of TLR signaling can lead to severe inflammatory diseases such as systemic lupus erythematosus [62], rheumatoid arthritis [63-65], type 1 diabetes [66], and multiple sclerosis [67]. Autoimmune arthritis can also be driven by pathogenic gut microbiota [68]. There is increasing consensus in the field of autoimmunity that priming the immune response is a necessary stage in autoimmune development [5]. Also, as mentioned earlier, type I IFN is associated with several autoimmune diseases, such as lupus [16] and more recently, type 1 diabetes [21]. These autoimmune diseases all share similarities, in that there appears to be an innate immune trigger that sets the stage for clinical disease. Lyme arthritis is unique in that the trigger is a known pathogen [1] that is the causative agent of disease pathogenesis, thus fulfilling Koch’s postulates [69]. Furthermore, mice are natural hosts of *B. burgdorferi*, which allows for study of host-pathogen interaction and disease progression within a natural environment.

Functional studies on the role of microRNAs in inflammatory diseases provide unique opportunities to examine the role of essential pathways in disease progression or resistance, where the “fine tuning” effect rendered by microRNAs can be used to model many complex diseases. Elucidating the role of TLR signaling in Lyme arthritis is a
perfect example. TLR2 and MyD88 knockout mice had severe defects in signaling which led to severely impaired host defense due to their essential role in immune response to pathogens [29,31]. While these findings shed valuable light on the necessity of TLR2 in host defense, the inability to decouple host defense and inflammation using these knockout systems made identifying the role of TLR signaling in arthritis development difficult. This difficulty was overcome using the B6 miR-146a⁻/⁻ mouse model, which maintained a functional (albeit hyperactive) TLR signaling pathway, and therefore had no defect in host defense.

Many individuals contain polymorphisms in genes that render proteins (or microRNAs) slightly more or slightly less active, without ablating the protein’s (or miR’s) function completely, which is often lethal. These individuals may be at risk for developing certain diseases, if they are exposed to environmental triggers, such as a viral or bacterial infection. Individuals containing hypermorphic alleles of genes involved in NF-κB activation (or hypomorphic alleles of genes involved in NF-κB repression) would be expected to be phenotypically similar to the B6 miR-146a⁻/⁻ mouse. Indeed, one study discussed previously has shown that individuals containing a certain polymorphism in TLR1 are susceptible to treatment-refractory Lyme arthritis [70]. These individuals have a cytokine expression profile that is in many ways similar to the profile seen in B6 miR-146a⁻/⁻ mice. Another study showed that individuals who had low antibody titers after vaccination with OspA (a B. burgdorferi lipoprotein) also had low expression of TLR1 on the surface of macrophages [71]. Additionally, several studies have shown that polymorphisms in miR-146a targets IRAK1 [72,73], TRAF6 [74,75], miR-146a [76], and the miR-146a target sequence within the 3’ UTR of IRAK1 [77] are associated with
susceptibility to rheumatic diseases. Since susceptibility to these diseases appears to share this common pathway, it is reasonable to suppose that B6 miR-146a−/− mice would also be more susceptible to models of these diseases as well. This is, in fact, the case. For example, in addition to developing more severe Lyme arthritis, B6 miR-146a−/− mice also develop more severe ankle swelling in the K/BxN serum transfer model of rheumatoid arthritis (Appendix C), and exogenous addition of miR-146a partially ameliorated arthritis symptoms in the collagen-induced arthritis mouse model [78]. Thus we see that microRNA knockout mice may be used as powerful tools for studying the mechanism of disease progression for many clinically relevant inflammatory and autoimmune diseases.

References

APPENDIX A

ROLE OF MICRORNA-155 REGULATION BY IL-10 DURING INNATE AND ADAPTIVE IMMUNE RESPONSE TO *BORRELIA BURGDORFERI* AND LYME ARTHRITIS DEVELOPMENT
Figure A.1. Generation of B6 IL10+/- miR-155+/- double knockout mouse. B6 IL10+/- and B6 miR-155+/- mice (generously provided by Dr. Ryan O’Connell) were mated to create a IL10+/- miR-155+/- double knockout (DKO) on the B6 background. Shown is an agarose gel loaded with PCR product using primers specific for wild-type (WT) and knockout (KO) copies of miR-155/Bic (top) and Il10 (bottom), with predicted product size indicated on left. First two lanes are from IL10+/- or miR-155+/- single knockout mice as controls. Third and last lanes are from the founder DKO female and male, respectively. Other lanes (4-8) are from litter of DKO founders.
Figure A.2. Effect of mR-155 on arthritis, host defense, and IFNγ response following a 4-week infection with *B. burgdorferi*. (A) Rear ankles were measured in a blinded fashion before and after 4 weeks postinfection, and change in ankle measurement is shown for B6, miR-155^{−/−}, IL10^{−/−}, and IL10^{−/−} miR-155^{−/−} DKO mice bacterial burden (B) and IFNγ profile (C, represented by *Ifng* and *Cxcl10*) in joint tissue was assessed by qRT-PCR analysis of *B. burgdorferi* 16SrRNA in joints, normalized to βactin. (D) Serum levels of IFNγ and IL-12 were measured by ELISA in the 4 strains indicated. Statistical significant difference between groups was determined by ANOVA followed by Tukey’s post-hoc analysis (* p<0.05, n ≥ 7 mice per group).
Figure A.3. Antibody response to *B. burgdorferi* is negatively regulated by IL-10 and positively regulated by miR-155 at 4 weeks postinfection, and miR-155 is required for IgG1 isotype switching. *B. burgdorferi*-specific antibody levels were measured by ELISA in 2-fold serial dilutions in sera collected from B6 (black circles), B6 miR-155^{−/−} (blue squares), B6 IL10^{−/−} (pink triangles), and DKO (gray diamonds) mice infected for 4 weeks. Total IgG, IgM, IgG1, IgG2c, and IgG3 were measured (n=≥7 mice per strain).
Figure A.4. Macrophage *B. burgdorferi*-induced cytokine production and IFNγ profile are negatively regulated by IL-10 and positively regulated by miR-155. Bone marrow-derived macrophages were cultured from B6, B6 miR-155\(^{-/-}\), B6 IL10\(^{-/-}\), and DKO mice, and were stimulated with *B. burgdorferi* for 24 hours (MOI 10:1). (A) Supernatant was collected and IL-10, IL-1β, IL-6, and IL-12 cytokine levels were measured by ELISA. (B) RNA was extracted from cells and transcripts quantified by qRT-PCR. Shown are transcripts levels of miR-155, *Tnfa*, *Cxcl9*, and *Cxcl10*. Statistical significant difference between groups was determined by ANOVA followed by Tukey’s post-hoc analysis (*p<0.05, n=3 per strain, n.d.=none detected).
Figure A.5. B cells from draining lymph nodes are major producers of IFNγ when stimulated with *B. burgdorferi*, which is independent of IL-10 and miR-155. Inguinal and popliteal lymph nodes were collected from B6, B6 miR-155−/−, B6 IL10−/−, and DKO mice and cells were stimulated with *B. burgdorferi in vitro* (MOI 10:1). At 3 and 5 days poststimulation, cytokine production was measured in cells by intracellular cytokine staining followed by flow cytometry. Shown is mean fluorescence intensity for IFNγ and TNFα in B220+ cells (n=3 per group).
IFNγ production by B cells

TNFα production by B cells
APPENDIX B

EFFECT OF IL-10 ON T AND B CELL PROLIFERATION IN LYMPH NODES, AND IMPACT OF ANTIBIOTIC TREATMENT ON ARTHRITIS, IFNγ RESPONSE, AND T CELL ACTIVATION
Figure B.1. B6 IL10$^{-/-}$ mice contain greater numbers of B and T cells in draining lymph nodes than wild-type B6 mice after infection with *B. burgdorferi* for 4 weeks.

Inguinal and popliteal lymph nodes were collected from B6 and B6 IL10$^{-/-}$ mice infected with *B. burgdorferi* for 4 weeks and analyzed by FACS. (A) Representative FACS plot of CD4+ T cells labeled with T cell activation markers CD44 (y-axis) and CD62L (x-axis). Top row are cells from uninfected B6 and IL10$^{-/-}$ mice, and bottom row are cells from B6 and IL10$^{-/-}$ mice infected for 4 weeks. (B) Total cells collected from uninfected and infected B6 and IL10$^{-/-}$ lymph nodes, categorized by B220+ (B cells), B220+ CD62Llo (activated B cells), CD4+ T cells, CD4+ CD62Llo CD44hi (activated CD4+ T cells), and CD8+ T cells. Statistical significant difference between groups was determined by ANOVA followed by Tukey’s post-hoc analysis (*p*<0.05, n=3 mice for each group, representative of 2 independent experiments).
A

CD4+ T Cells in Draining Lymph Nodes

B

Cell Populations in Draining Lymph Nodes (Total)
Figure B.2. Effect of antibiotic treatment on arthritis severity, IFNγ profile, and T cell activation in B6 IL10−/− mice. (A) B6 IL10−/− mice were infected with *B. burgdorferi* for 3 weeks followed by daily administration of ceftriaxone (or PBS) by i.p. injection for 4 weeks. Mice were assessed for arthritis, *Ifng* expression, and T cell activation at 9 weeks postinfection. (B) Arthritis was assessed by ankle measurement. *Ifng* expression was measured by qRT-PCR in joint, back skin (site of inoculation), and ankle skin in mice with or without ceftriaxone treatment at 3 and 9 weeks postinfection (+ BSK negative controls). Statistical significant difference between groups was determined by ANOVA followed by Tukey’s post-hoc analysis (*p<0.05, ***p<0.001, n≥5 mice per group). (C) Representative FACS plot of CD4+ (top) and CD8+ (bottom) T cells labeled with T cell activation markers CD44 (y-axis) and CD62L (x-axis) from uninfected, infected (no antibiotic treatment), and infected + antibiotic treated mouse inguinal and popliteal lymph nodes collected at 9 weeks postinfection. Representative of at least 5 mice per group.
A

IL-10^{−/−} mouse

Antibiotic treatment

No antibiotics

+ antibiotics

weeks

Arthritis, IFN profile

B

Arthritis Severity

Ankle Swelling (mm)

BSK

3wk

9wk

Inf. + Ceft.

Inf.

C

CD4+ T cells

Infected, No Antibiotics

Infected, Treated with Ceftriaxone

CD44

CD62L

CD62L

CD44

CD8+ T cells

Copies / 1000 β-actin

Joint

Back Skin

Ankle Skin

IFNγ

Uninfected

2.08

64.3

5.75

27.8

22.2

14.4

15.1

29.3

25.2

38.1

2.22

53.5

10.5

10.5

2.86

13.7
APPENDIX C

EFFECT OF MICRONA-146a ON ARTHRITIS IN THE K/BxN SERUM TRANSFER MODEL OF RHEUMATOID ARTHRITIS
Figure C.1. B6 miR-146a−/− mice have increased K/BxN serum-induced arthritis. B6 and B6 miR-146a−/− mice were administered 2 doses (day 0 and day 2) of 100 µl K/BxN serum by i.p. injection. Ankle swelling and histopathology scoring was determined at day 7 following administration of first dose. Statistical significant difference in ankle swelling was determined by ANOVA followed by Tukey’s post-hoc analysis (*p<0.05, n=10 mice per group). Increased trend in histopathology score was not statistically significant between groups by Mann-Whitney u-test (cutoff p value=0.05).