This paper studies the productivity and distributional effects of large irrigation dams in India. Our instrumental variable estimates exploit the fact that river gradient affects a district's suitability for dams. In districts located downstream from a dam, agricultural production increases, and vulnerability to rainfall shocks declines. In contrast, agricultural production shows an insignificant increase in the district where the dam is located but its volatility increases. Rural poverty declines in downstream districts but increases in the district where the dam is built, suggesting that neither markets nor state institutions have alleviated the adverse distributional impacts of dam construction.

I. INTRODUCTION

“If you are to suffer, you should suffer in the interest of the country.” Indian Prime Minister Nehru, speaking to those displaced by Hirakud Dam, 1948.

Worldwide, over 45,000 large dams have been built, and nearly half the world's rivers are obstructed by a large dam. The belief that large dams, by increasing irrigation and hydroelectricity production, can cause development and reduce poverty has led developing countries and international agencies such as the World Bank to undertake major investments in dam construction. By the year 2000, dams generated 19 percent of the world’s electricity supply and irrigated over 30 percent of the 271 million hectares irrigated worldwide. However, these dams also displaced over 40 million people, altered cropping patterns, and significantly increased salination and waterlogging of arable land [World Commission on Dams 2000a]. The distribution of the costs and benefits of large dams across population groups, and, in particular, the extent to which the rural poor have benefited, are issues that remain widely debated.

Dams provide a particularly good opportunity to study the potential disjunction between the distributional and productivity implications of a public policy. The technology of dam
construction implies that those who live downstream from a dam stand to benefit, while those in the vicinity of and upstream from a dam stand to lose. From an econometric viewpoint, this implies that we can isolate the impact of dams on the two populations, and from a policy perspective, this suggests compensating losers is relatively easy. The inadequacy of compensation in such a comparatively simple case would suggest that the distributional consequences of public policies are perhaps harder to remedy than is typically assumed.

Proponents of large dam construction emphasize the role of large dams in reducing dependency on rainfall and enabling irrigation, providing water and hydropower. In contrast, opponents argue that while these benefits may be enjoyed by downstream populations, upstream populations benefit only from the construction activity and potentially from increased economic activity around the reservoir. In the absence of compensation, they suffer potentially large losses; flooding reduces agricultural and forest land, and increased salinity and waterlogging reduces the productivity of land in the vicinity of the reservoir [McCully 2001; Singh 2002]. Further, to fill the dam reservoir, water use upstream is often restricted, especially in rain-scarce years. This increases the vulnerability of upstream agricultural production to rainfall shocks [World Commission on Dams 2000b; Shiva 2002].

What is striking in the policy debates surrounding dam construction is the absence of systematic empirical evidence on how the average large dam affects welfare, especially of the rural poor. This paper aims to provide such evidence. We focus on India, which, with over 4,000 large dams, is the world’s third most prolific dam builder (after China and the United States). Large dam construction is the predominant form of public investment in irrigation in India. Between 1950 and 1993, India was the single largest beneficiary of World Bank lending for irrigation. An important justification for such investment, both by the Indian government and the World Bank, is agricultural growth and rural poverty alleviation [World Bank 2002; Dhawan 1993].

A comparison of outcomes in regions with and without dams is unlikely to provide a causal estimate of the impact of dams since regions with relatively more dams are likely to differ along other dimensions, such as potential agricultural productivity. To

1. India received roughly 26 percent of Bank loans, and irrigation made up 7 percent of total Bank lending [World Bank 2002]. Between 1951 and 1997, Indian public investment in major and medium irrigation projects was approximately 33 billion US dollars [Thakkar 2000].
address this problem, we exploit the fact, well documented in the
dam engineering literature, that the gradient at which a river
flows affects the ease of dam construction. In particular, there is
a nonmonotonic relationship between river gradient in an area
and its suitability for dam construction. Low (but nonzero) river
gradient areas are most suitable for irrigation dams while very
steep river gradient areas are suitable for hydroelectric dams.
Regions where the river gradient is either flat or somewhat steep
are the least likely to receive dams.

Our unit of analysis is the administrative unit below an
Indian state, a district. We exploit variation in dam construction
induced by differences in river gradient across districts within
Indian states to obtain instrumental variable estimates. Our
regressions control for differential state-specific time effects,
time-varying national effects of river gradient, and for other
district geographic features.

Our first set of results relate to agricultural outcomes. We
use annual district-level agricultural data and find that dam
construction leads to a significant increase in irrigated area and
agricultural production in districts located downstream from the
dam. Dams also provide insurance against rainfall shocks in
downstream districts. In contrast, dams have a noisy and typi-
cally insignificant impact on agricultural production in the dis-
tricts where they are built, and the vulnerability of agricultural
production to rainfall shocks significantly increases in these
districts.

Our second set of results relate to rural poverty. Using dis-
trict-level poverty data at five points in time we find that dams
significantly increase rural poverty in districts where they are
located. In contrast, poverty declines in districts downstream
from the dam, but relative to the increase in the dam’s district,
this decline is small. Our poverty results are consistent with the
findings of agricultural production and volatility. It is worth
noting, however, that with only five years of poverty data, it is
difficult to disentangle the poverty impact of dam construction
from differential time trends in poverty outcomes in districts
suitable to dams construction relative to other districts in the
same states.2

Taken together, our results suggest a failure of state-level
redistributive institutions. While we cannot identify all the

2. Inclusion of such trends makes the standard error of the estimate of the
own district poverty very large.
reasons for inadequate compensation of those who lose out, we are able to show that the poverty impact of dam construction is accentuated in districts with a history of relatively more extractive institutions (as captured by their historical land tenure systems, see Banerjee and Iyer [2005]). Our finding lends support to the view that institutions play an important role in ensuring the distribution of productive gains between winners and losers.

In Section II, we describe the dam construction process in India, review the case study literature on large dam construction in India, and use a simple production function framework to identify the expected effects of dams. In Section III, we describe the empirical strategy. We provide empirical results in Section IV and conclude in Section V.

II. Background

Irrigation dams, the focus of our study, make up over 90 percent of India’s large dams. In this section, we first describe the Indian irrigation dam construction process and, in particular, the role of geography in determining dam placement. We then use a simple agricultural production function framework to outline the main costs and benefits of irrigation dams. Finally, we discuss how Indian district-level data may be used to estimate some of these costs and benefits.

II.A. Dam Construction in India

Both the federal and state governments in India play an important role in dam construction. The Indian Planning Commission (a federal body) sets each state’s five-year water storage and irrigation targets. Given these targets and topological surveys of potential dam sites, the irrigation departments of each state proposes dam projects. Next, a federal committee examines the economic visibility of these projects. The Planning Commission selects the final projects on the basis of investment priorities and sectoral planning policies. Construction of a dam and the association canal network remain the state’s responsibility, though federal or international funding may be available.

The typical Indian irrigation dam is an earth dam: Water is impounded in a “reservoir” behind an artificial wall built across a river valley. Artificial canals channel water from the reservoir to downstream regions for irrigation. The area upstream from which water and silt flow into the reservoir and the area submerged by
the reservoir form the catchment area of the dam, while the area downstream covered by the canal network is the command area.

The state government agency and farmers jointly manage the irrigation system associated with a dam. The agency determines how much water to release to each branch outlet, and farmers served by that outlet decide how to share it. Farmers working on land covered by the dam’s canal network are eligible for dam irrigation. In contrast, to ensure that the reservoir is filled, the government agency often restricts water withdrawal upstream from the reservoir (for instance, by cancelling water pumping sites), especially in years of limited rainfall [Shiva 2002].

The viability and cost of dam construction at a location depend crucially on its geography. The ideal dam site is in a narrow river valley where the river flows at some gradient. Since current satellite imagery resolution for India is too coarse for us to identify the width of a river valley, we exploit the relevance of river gradient for dam construction.

The dam engineering literature provides multiple reasons as to why a river flowing at some gradient is preferred for dam construction. The first reason relates to reservoir construction. According to Golz [1977, p. 7], “to obtain economical storage capacity a reservoir site should be wide in comparison to the dam site and should be on a stream having a low or gentle gradient to obtain a long reservoir in proportion to the height of the dam.” The second reason is that water flow from dams to the irrigated area is typically via gravity. Hence, according to Cech [2003, pp. 150–152], “Dams for irrigation projects are generally constructed at an elevation high enough to deliver irrigation water to cropland entirely by gravity.” That said, the river gradient should not be too steep because fast flowing water would erode the canal. The U.S. Department of Agriculture [1971, pp. 320–322] states that dam canals “should be designed to develop velocities which are non-erosive for the soil materials through which the canal or lateral passes.” Water velocity, and therefore the potential for erosion, increases with river gradient. As a result, for irrigation dams, the recommended practice is to target dam sites where the river gradient in the direction of irrigation is neither too steep nor completely flat.

In contrast, higher river gradient reduces the cost of producing hydroelectricity [Warnick 1984]. To quote Cech [2003, pp. 150–152], “Dams for hydroelectric power generation are located at a site where the difference in elevations between the surface of
the new reservoir and the outlet to the downstream river is adequate to power electrical-generating turbines."

To summarize, engineering considerations suggest that river gradient should have a nonmonotonic effect on the likelihood of dam construction. A river flowing through a flat area is less likely to see dam construction while areas where the river flows at a moderate gradient should see more dam construction. Finally, while areas with a steep gradient are less suited for irrigation, areas with a very steep river gradient favor hydroelectric dam construction.

II.B. Benefits and Costs of Irrigation Dams

Between 1951 and 2000, food grain production in India nearly quadrupled, with two-thirds of this increase coming from irrigated areas [Thakkar 2000]. While dams account for 38 percent of India's irrigated area, estimates of what fraction of the increase in production can be attributed to dams vary from 10 percent [World Commission on Dams 2000b] to over 50 percent [Gopalakrishnan 2000].

To clarify the potential role of dams in affecting agricultural production we describe a simple agricultural production function framework, which is based on Evenson and McKinsey [1999].

We assume that agricultural output is a function of labor inputs \(L \), land surface \(K \), land quality \(A \), inputs such as fertilizer, seeds, and electricity \(I \), climate \(r \) (rainfall and temperature), farmer's ability \(u \), and a productivity shock \(\xi \). We denote the production function for land without access to an irrigation system (via pump or canal) as

\[
y = F_1(L, K, A, I, r, u, \xi)
\]

and the production function for land with access to an irrigation system as

\[
y = F_2(L, K, A, I, r, u, \xi).
\]

Evenson and McKinsey [1999] estimate these production functions using Indian data. They find that irrigation reduces the volatility of production by mitigating the effect of rainfall shocks and temperature. Further, irrigation and agricultural inputs, such as fertilizer, electricity, and seeds for high yielding variety (HYV) crops are complements. These findings and other studies, such as Singh [2002], suggest that irrigation enhances productivity by increasing multi-cropping and the cultivation of more profitable water-intensive cash crops, especially sugarcane.
Assume that access to irrigation has a fixed cost. This is the cost of accessing ground water in a region with no dams and the cost of accessing canal irrigation in a dam’s command area. If a farmer can obtain the optimal set of inputs, then she will invest in irrigation if its cost is below the long-run difference between the value function with and without irrigation. Her decision process follows a threshold rule: she switches if the productivity shock exceeds some threshold in a given period.

Relative to other forms of water harvesting, such as ground water and small dykes, dams reduce the fixed cost of accessing irrigation in the command area [Biswas and Tortajada 2001; Dhawan 1989]. Availability of dam irrigation will not affect the irrigation choices of farmers who have paid the sunk cost of accessing ground water irrigation. However, those farmers who would have invested in ground water irrigation in the future will instead opt for dam irrigation. Finally, some of the farmers who would not have chosen ground water irrigation will invest in the cheaper dam irrigation. Dams, therefore, increase irrigated area (though by less than the area actually irrigated by the dams). Consequently, the demand for labor, fertilizer, and seeds will increase, and the dependence of agricultural production on rainfall will decrease.

The impact of a dam is different in its catchment area. First, a significant fraction of land in the catchment area is submerged during dam construction. For instance, the World Commission on Dams [2000b] estimates that dam construction submerged 4.5 million hectares of Indian forest land between 1980 and 2000. Land submergence is usually accompanied by large-scale population displacement. Estimates of what fraction of the Indian population has been so displaced vary between 16 and 40 million people. The World Commission on Dams [2000b] estimates that the average Indian dam displaced 31,340 persons while a World Bank study in the mid-1990s estimated a lower number of 13,000 people per dam [Cernea 1996]. Case study evidence suggests that historically disadvantaged scheduled tribe populations have borne the brunt of displacement.³

Second, water seepage from the canal and the reservoir increases waterlogging and soil salinity and makes land less productive [Goldsmith and Hildyard 1984]. The Indian Water Resources Ministry estimated that roughly one-tenth of the area

³. Official figures for 34 large dams show that scheduled tribes, which make up 8 percent of India’s population, constituted 47 percent of those displaced [World Commission on Dams 2000b].
irrigated by dams suffered from either water-logging or salinity/alkalinity by 1991 [World Commission on Dams 2000b]. While waterlogging happens both around the canal and the reservoir (and therefore also affects the command area), remote sensing studies suggest that these problems are more pronounced in the drainage area (for instance, Khan and Sato [2000] show that compared to the drainage network, irrigation canals are relatively unaffected by this problem). This implies that irrigation in the catchment area is less profitable, but fertilizer use may increase since poorer soil requires more nutrients.

Finally, unaffected land in the catchment area upstream to the reservoir is unlikely to benefit from dam irrigation, as lift irrigation is rarely practiced for dams [Thakkar 2000]. In fact, government agencies, which control the flow of water (through the opening of gates and sluices and the control of water pumping sites), typically maximize water distribution through the canal network and, to achieve maximum water storage in the reservoir, often restrict water use upstream from a dam. Such restrictions are particularly prevalent in drought years when rainfall is insufficient to fill the reservoir (see, for instance Shiva [2002] and Tehri Report [1997]). As a result, the presence of a dam in a district may exacerbate water shortage and, therefore, the variance of agricultural production, in areas upstream to the dam. Taken together, cultivated land and potentially irrigated area and production are likely to decline in the catchment area.

Our model of agricultural production leaves out some benefits of dam construction. Dams may prevent floods and droughts by regulating the flow of water downstream. These effects can extend very far downstream. There is, however, a trade-off between using dams for flood control (which requires emptying the reservoir) and for irrigation (which requires filling the reservoir). Dams may also be used for electricity generation. Finally, dam reservoirs often provide a source of fishing and are sometimes developed as tourism sites.

On the cost side, an often-cited consequence of dam construction is adverse health effects for those living near the reservoir. A

4. Some argue that seepage may lead to benefits in the longer run because it allows water recharge [Dhawan 1993].

5. However, in India, there is very limited development of reservoirs for tourism, and most Indian studies of reservoir fisheries conclude that, while fish can be bred in the reservoir, large reductions in fish production in the neighboring reaches of the river (caused by dam-induced changes in river flow) imply an overall negative effect of dam construction on fisheries [Jackson and Marmulla 1994].
reservoir provides a natural habitat for vector breeding and, hence, for diseases such as malaria, filariasis, and river blindness [Sharma 1991].

In this paper, we evaluate the impact of dams on agricultural production and rural welfare (as measured by poverty rates). Several factors, notably migration and public policy, affect how the impact of dams on land productivity translates into individual welfare outcomes.

It is reasonable to expect labor and capital to migrate away from adversely affected parts of the catchment region towards the command area. Such migration would increase land prices in the command area and reduce the beneficial impact of dam construction on wages and poverty in the command area. It would also imply a smaller poverty increase in the catchment area than is predicted by the direct physical impact of dams. However, several recent papers (including Jayachandran [2006] and Topalova [2004]) show that factor market imperfections significantly inhibit such migration. Limited migration, in turn, implies that, in line with their productivity effects, dams will cause wages to increase and poverty to fall in the command area. The converse will be true in the catchment area.

Even if labor is immobile, public policy can reduce the impact of dam construction on welfare outcomes. India’s rehabilitation policy for dam-displaced populations is based on the Land Acquisition Act of 1894. This Act empowers the Indian government to acquire land for public purpose in return for cash compensation. Resettlement and compensation is the responsibility of the relevant project authorities and is based on project-specific government resolutions. Numerous studies suggest compensation rights of the landless, and those without formal land titles are typically not recognized [Thukral 1992]. Further, compensation is usually insufficient for the displaced to replace lost land by its equivalent in quality and extent elsewhere [Dreze, et al. 1997].

A related policy intervention would be to charge the downstream population for water usage. However, water charges in India remain so low that they often do not even cover the operation and maintenance costs of the canal system [Jones 1995]. In fact, Prasad and Rao [1991] show that tax collection costs often exceed the amount collected. The inability or unwillingness to

6. In 1980, the annual recurrent cost per hectare for access to irrigation was roughly Rs. 50 (1 U.S. dollar), while that of dam maintenance was closer to Rs. 300 (or 6 U.S. dollars).
charge an appropriate fee for water has three consequences: farmers in the command area have been encouraged to switch to water intensive crops, thereby, according to some, seriously limiting the gains in water availability; the canal systems are poorly maintained, which reduces their effectiveness [Jones 1995]; and redistribution of any benefits is limited.

II.C. Districts as the Unit of Analysis

We will estimate the effect of dams on economic outcomes at the district level, which is the lowest level of disaggregation for which household consumption and agricultural production data are available.

A district is the administrative unit immediately under the Indian state (somewhat analogous to a county in the United States) and forms the natural unit for the planning and implementation of state policies. In 1991, India had 466 districts, with a district, on average, having a population of 1.5 million and an area of 8,000 square kilometers.

The absence of data on the geographic extent of the catchment and command areas of large Indian dams prevents us from identifying the fraction of district area covered by the catchment and command areas of each dam. Available catchment and command area maps suggest that the district in which the dam is physically located usually contains most or all of its catchment area, even for large dams.7

Water distribution in the command area of a dam is usually via gravity through artificially constructed canals. The command area lies downstream from the reservoir, with the canal network extending in the downstream direction along the main canal and often covering parts of multiple districts.8

The estimated effect of a dam in the district where it is built combines the effects in catchment, command, and unaffected areas, and is a priori ambiguous. The effect of a dam on agricultural production in the neighboring downstream district should be unambiguously positive (since it only has part of the command

7. Some examples are Chari et al. [1994] and Chari and Vidhya [1995], Chakraborti et al. [2002], and Vidhya et al. [2002].
8. See again Chari and Vidhya [1994, 1995], Chakraborti et al. [2002], and Vidhya et al. [2002] for specific examples. However, there are instances where the command area covers districts that are not downstream. In personal correspondence, John Briscoe (until recently the Bank's senior water professional and spokesperson on water issues) offered one example: The command area of one of India's largest dams, the Bhakra Nangal dam, covers part of the district lateral to that in which it is built.
area) but will underestimate the command area effect (both because some (or all) of the downstream district will not be in the command area, and because part of the command area will not be in that district). But it is reasonable to expect that the dam’s own district and the neighboring downstream districts will be the most affected by the dams. In Table IV, we examine the effect of dams in all neighboring districts and find that, on average, dams only affect production and rural welfare in the district where they are built and in neighboring downstream districts. Our estimates are not quantitative estimates of the impact of the dam in its command and catchment areas, but rather its impact on the most relevant corresponding administrative units.

Finally, aside from the fact that consistent data are available at the district level, a district-level analysis presents one important advantage: Districts are relevant markets and social units within which people might relocate (for example, because they were displaced or their land became less productive), but migration across district lines in response to shocks is rare.

III. EMPIRICAL STRATEGY

Between 1971 and 1999 the number of large dams in India quadrupled from 882 to 3,364, and the average number of dams in a district increased from 2.39 to 8.66 (46 percent of the districts had no dams in 1999). There was significant regional variation in dam construction. Figures I and II, which depict district-wise dam construction in 1970 and 1999, respectively, show that dam construction was concentrated in western India, with relatively little dam construction in north and northeastern India. Figure III graphs overall dam construction in India. Dam construction was rapid between the mid-1970s and late-1980s but slowed down considerably in the 1990s.

OLS regression estimates of how the number of dams in a state affect agricultural, or welfare, outcomes are unlikely to be consistent. Richer and fast growing states can build relatively more dams. States that anticipate larger increases in agricultural
<table>
<thead>
<tr>
<th></th>
<th>Beginning period</th>
<th>End period</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Geography</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction district with river gradient 0–1.5%</td>
<td>0.75 (0.30)</td>
<td>0.08 (0.07)</td>
<td>GIS</td>
</tr>
<tr>
<td>Fraction district with river gradient 1.5–3%</td>
<td>0.08</td>
<td>0.06 (0.08)</td>
<td>GIS</td>
</tr>
<tr>
<td>Fraction district with river gradient 3–6%</td>
<td>0.06 (0.08)</td>
<td>0.11 (0.22)</td>
<td>GIS</td>
</tr>
<tr>
<td>Fraction district with river gradient above 6%</td>
<td>0.11 (0.22)</td>
<td></td>
<td>GIS</td>
</tr>
<tr>
<td>B. Dams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of dams in district</td>
<td>2.39 (4.55)</td>
<td>8.66 (16.58)</td>
<td>ICOLD Dam Register</td>
</tr>
<tr>
<td>Number of dams upstream to district</td>
<td>3.63 (7.77)</td>
<td>13.85 (30.57)</td>
<td>ICOLD Dam Register</td>
</tr>
<tr>
<td>C. Welfare</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per capita expenditure (log Rupees)</td>
<td>3.80 (0.20)</td>
<td>5.79 (0.27)</td>
<td>National Sample Survey</td>
</tr>
<tr>
<td>Headcount ratio</td>
<td>0.46 (0.16)</td>
<td>0.22 (0.14)</td>
<td>National Sample Survey</td>
</tr>
<tr>
<td>Poverty gap</td>
<td>0.27 (0.05)</td>
<td>0.04 (0.04)</td>
<td>National Sample Survey</td>
</tr>
<tr>
<td>Malaria incidence</td>
<td>1.31 (2.10)</td>
<td>0.47 (1.85)</td>
<td>National Malaria Eradication program</td>
</tr>
<tr>
<td>Agricultural wage (log Rupees)</td>
<td>1.44 (0.35)</td>
<td>1.71 (0.31)</td>
<td>Evenson-McKinsey</td>
</tr>
<tr>
<td>D. Agriculture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross cultivated area (in '000 hectares)</td>
<td>570 (277)</td>
<td>642 (324)</td>
<td>Evenson-McKinsey</td>
</tr>
<tr>
<td>Gross irrigated area (in '000 hectares)</td>
<td>138 (151)</td>
<td>169 (176)</td>
<td>Evenson-McKinsey</td>
</tr>
<tr>
<td>Total production (Rupees per '000 tons)</td>
<td>15,931 (12,749)</td>
<td>81,336 (110,130)</td>
<td>Evenson-McKinsey and own update</td>
</tr>
<tr>
<td>Yield (Rupees per hectare)</td>
<td>52.26 (30)</td>
<td>115.27 (62)</td>
<td>Evenson-McKinsey</td>
</tr>
<tr>
<td>Rainfall shock</td>
<td>0.079 (0.25)</td>
<td>-0.231 (0.23)</td>
<td>Delaware rainfall data</td>
</tr>
<tr>
<td>E. Demographics and Public Goods</td>
<td>Beginning period</td>
<td>End period</td>
<td>Source</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------</td>
<td>------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Rural population (in '000 persons)</td>
<td>1,295 (867)</td>
<td>1,887 (1,254)</td>
<td>Census of India</td>
</tr>
<tr>
<td>Rural in-migrants (in '000 persons)</td>
<td>366 (239)</td>
<td>486 (309)</td>
<td>Census of India</td>
</tr>
<tr>
<td>Fraction villages in district with any water facility</td>
<td>0.982 (0.03)</td>
<td>0.997 (0.01)</td>
<td>Census of India</td>
</tr>
<tr>
<td>Fraction villages in district with power</td>
<td>0.24 (0.26)</td>
<td>0.81 (0.22)</td>
<td>Census of India</td>
</tr>
<tr>
<td>Fraction villages in district with tarmac road</td>
<td>0.31 (0.19)</td>
<td>0.47 (0.26)</td>
<td>Census of India</td>
</tr>
<tr>
<td>Non-landlord districts (proportion)</td>
<td>0.61 (0.48)</td>
<td></td>
<td>Banerjee and Iyer [2005]</td>
</tr>
<tr>
<td>Tribal population share in district in 1971</td>
<td>0.10 (0.20)</td>
<td></td>
<td>Census of India [1971]</td>
</tr>
</tbody>
</table>

Beginning and end periods are (i) dams: 1971 and 1999; (ii) welfare measures: 1973 and 1999 (for malaria 1975 and 1995); (iii) production and rainfall: 1971 and 1999; (iv) area and wages: 1971 and 1987; (v) demographic and public goods: 1971 and 1991. All monetary values are in 1973 Rupees (at current exchange rate 44 Rupees = 1 U.S. dollar). Standard deviations in parentheses. Total production includes production of six major crops: wheat, rice, sorghum (jowar), sugarcane, pearl millet (bajra), maize. Headcount ratio is the proportion population living below the poverty line. Poverty gap is the average distance below the line expressed as a proportion of the poverty line (the average is over the whole population with the non-poor being zero distance below the line). Malaria incidence is the kg of average parasite incidence in the district. Rainfall shock is the fractional deviation of districts rainfall from the district mean (over 1971–1999). Non-landlord district is a district-level dummy which equals one if majority area in the district was under non-landlord arrangement. Further details on the data sources and variable construction are in the Appendix.
productivity are also likely to make more of these investments, implying a spurious positive relationship between poverty reduction and agricultural growth and dam building. Indeed, Merratouche [2004] finds larger poverty reductions for states that built more dams, but these findings cannot be given a causal interpretation.

Our identification strategy, therefore, relies on within-state differences in dam construction, specifically differences across districts in a state. We can, therefore, examine spillover effects from dams in neighboring districts but not state-wide economic effects of dam construction, such as their effect on prices deter-
mined at the state level. We discuss the possible direction of such state-wide effects as we interpret our results.

Consider the following regression:

\[y_{ist} = \beta_1 + \beta_2 D_{ist} + \beta_3 D_{ist}^{U} + \beta_4 Z_{ist} + \beta_5 Z_{ist}^{U} + \nu_i + \mu_{ist} + \omega_{ist}, \]

where \(D_{ist} \) denotes the number of dams in the district and \(D_{ist}^{U} \) the number of dams located upstream from district \(i \). \(\nu_i \) is a district fixed effect, \(\mu_{ist} \) is a state-year interaction effect and \(\omega_{ist} \) a district-year specific error term. \(Z_{ist} \) and \(Z_{ist}^{U} \) are a set of time varying control variables for the district and for upstream districts (the list of relevant control variables is discussed below).
District fixed effects allow us to control for time-invariant characteristics that affect the likelihood of dam construction in the district and state-year interactions for annual shocks, which are common across districts in a state. We only exploit cross-district variation in dam construction in a state for identification.

Within states, the residuals from regressions using annual agricultural data are strongly autocorrelated. In this setting, estimating generalized least squares rather than OLS, regressions can potentially increase efficiency. We compute feasible GLS estimates (FGLS) using the method proposed by Hansen [2006]. First, we obtain the time series process for the regression residual (after correcting for biases due to the small sample and inclusion of fixed effects). An AR(2) process best reflects the data, except for wages.9 We use these parameters to construct the FGLS weighting matrix. Misspecification in the time series process can cause the conventional FGLS standard errors to overreject the null hypothesis [Bertrand et al. 2004]. Therefore, we report standard errors, which are robust to arbitrary covariance of the FGLS residual within the state [Wooldridge 2003; Hansen 2006].10

9. For wages, the first difference over time—wage growth—is approximately i.i.d. on average.
10. If the time series process is correctly specified, then FGLS and these “clustered” standard errors are asymptotically equal. Even when the time series process is misspecified, FGLS is consistent and implies efficiency gains relative to
For OLS and GLS estimates to be consistent requires that the annual variation in dam construction across districts within a state be uncorrelated with other district-specific shocks. However, this assumption may be violated if, for instance, agriculturally more productive districts witness relatively greater dam construction. To address this problem, we develop an instrumental variable strategy based on the geography of dam construction.

III.A. Instrumental Variables Strategy

The nonmonotonic relationship between river gradient and the likelihood of dam construction (as described in Section II) forms the basis of our identification strategy.

To implement this strategy, we construct measures of district geography from a digital elevation map, which provides topographic information for multiple cells in each Indian district. We use information on surface elevation at each of the cells within a district to compute the fraction of district area in four different elevation categories: 0–250 meters, 250–500 meters, 500–1,000 meters, and above 1,000 meters. District gradient characterizes the steepness of the ground surface and is measured as the tangent of the surface. We compute the fraction of district area falling into four gradient categories: flat (0–1.5 percent), moderate (1.5–3 percent), steep (3–6 percent), and very steep (above 6 percent). Finally, to compute river gradient we restrict attention to cells in a district through which a river flows and compute the fraction of area in the above four gradient categories.

In our analysis, we control for elevation, overall gradient, and river length in a district and use differences in river gradient to predict the annual distribution of dams built in a state across districts. Figures II and IV illustrate our identification strategy. In Figure II, we see that, despite the presence of one of the world’s largest river basins, the Indo-Gangetic basin, almost no dam construction has occurred in north India. Figure IV depicts the average river gradient—central north India has very flat rivers,

OLS (since a common AR(2) (rather than an i.i.d. process) better approximates the data generating process). Use of the robust variance–covariance matrix insures consistent standard errors. Simulations reported by Hansen [2006] confirm that robust standard errors do not significantly worsen power when the data is, in fact, AR(2). OLS and FGLS results are qualitatively similar, but FGLS with an arbitrary covariance matrix has tighter confidence intervals, implying efficiency gains from estimating FGLS. OLS estimates with standard errors robust to time series autocorrelation are available from the authors.
while most of western India, which has seen the maximum dam construction, has rivers with moderate gradient.

In column (1) of Table II, we formally examine the relationship between the number of dams built in a district by 1999 and district river gradient. Our regressions include state fixed effects, district elevation, river length, and district gradient as controls. The omitted river gradient category is the proportion of river in
Our results confirm the importance of engineering considerations: A gentle river gradient (1.5–3 percent) increases the number of dams, while a steep gradient reduces it. However, a very steep river gradient (more than 6 percent) increases dam construction. The last effect is attributable to some multipurpose dams in our sample that provide both irrigation and hydroelectricity.11

Our panel regressions build on these findings. To predict the

11 We exclude purely hydroelectric dams but cannot identify predominantly hydroelectric multipurpose dams. Excluding the fraction of area in very steep gradient from the instrument set provides qualitatively identical results.
number of dams in a district, we exploit three sources of variation in dam construction: differences in dam construction across years in India, differences in the contribution of each state to this increase, and, finally, differences across districts within a state that are driven by the geographic suitability of districts.

We estimate panel regressions of the form

\[
D_{ist} = \alpha_1 + \sum_{k=2}^{4} \alpha_{2k}(RGr_{ki} \times \overline{D}_{st}) + \alpha_3(M_i \times \overline{D}_{st}) + \sum_{k=2}^{4} \alpha_{4k}(RGr_{ki} \times l_i) + \nu_i + \mu_{st} + \omega_{ist},
\]

where \(D_{ist}\) is the number of dams in district \(i\) of state \(s\) at time \(t\). \(\nu_i\), the district fixed effect, accounts for time-invariant district characteristics, which may affect dam building, and \(\mu_{st}\), the set of state-year interactions, accounts for the impact of state-level macro shocks.

\(RGr_{ki}\) denotes the river gradient variables. These enter the regression interacted with predicted dam incidence in the state, \(\overline{D}_{st}\). This is constructed by multiplying total dam construction in India with the fraction of total dams in the state in 1970. Use of predicted, rather than actual, dam incidence ensures that the measure is exogenous with respect to the number of dams in the district.\(^{12}\) The interaction of the \(RGr_{ki}\) variables with year dummies \((l_i)\) accounts for national time-varying effects of river gradient on the outcomes of interest. \(M_i\), the vector of district-specific time-invariant control variables, includes district elevation and overall gradient measures, river length, and district area.

Column (2) of Table II provides coefficient estimates for the poverty sample (five years of data), and column (3) for the agricultural production sample (twenty-nine years of data). The results are similar to the cross-sectional regression in column (1), except that the interaction of the proportion of district in the very steep gradient category and the predicted number of dams is significant. The F-statistics demonstrate that the instruments have sufficient power.

Let \(Z_{ist}\) denote the vector of right-hand side variables in (2), except for the interactions \(RGr_{ki} \times \overline{D}_{st}\). Similarly, define \(Z_{ist}^U\) as

\(^{12}\) The use of actual number of dams built in the state yields similar results [Duflo and Pande 2005].
the vector, which includes the same control variables for the upstream district.13 We estimate
\[(3) \quad y_{ist} = \delta_1 + \delta_2 D_{ist} + \delta_3 D^U_{ist} + Z_{ist} \delta_4 + Z^U_{ist} \delta_5 + \nu_i + \mu_{st} + \omega_{ist}. \]
To generate instruments for D_{ist} and D^U_{ist}, we use parameters from (2) to predict the number of dams per district \hat{D}_{ist}. For upstream districts, the predicted number of dams, \hat{D}^U_{ist}, is the sum of predicted values from (2) for all upstream districts (it equals zero if the district has no upstream district). We estimate (3) using \hat{D}_{ist}, \hat{D}^U_{ist}, Z_{ist}, and Z^U_{ist} as instruments.

The first-stage equation is
\[(4) \quad \Delta_{ist} = \phi_1 + \phi_2 \hat{D}_{ist} + \phi_3 \hat{D}^U_{ist} + Z_{ist} \phi_4 + Z^U_{ist} \phi_5 + \nu_i + \mu_{st} + \omega_{ist}, \]
where Δ_{ist} represents D_{ist} or D^U_{ist}.

Our procedure uses available information efficiently: by using all districts to predict the relationship between district geographic features and the number of dams (rather than just those that are upstream), we avoid averaging these features when there are several upstream districts.14

In the regression using annual data, we estimate (3) by feasible optimal IV (the equivalent of FGLS for IV). As with FGLS, we report standard errors that are robust to arbitrary covariance of the residual within a state.15

Our instrumental variable strategy exploits variation in the interaction of the river gradient variable in the district (or in the upstream district) with predicted dam construction in the state

\[\text{For } N \text{ districts indexed from 1 to } N, \hat{W}, \text{ in turn, equals } \sum_{j=1}^{N} u_j \mu_j, \text{ with } u_j = \sum_{t=1}^{T} \epsilon_j \tilde{z}_{jt}, \text{ where } \tilde{z}_{jt} \text{ is a row vector the } j \text{ th row of the matrix } \tilde{\Omega}^{-1/2} Z, \text{ and } \epsilon_j \text{ is the residual of the Optimal IV regression.} \]
(that is, the interaction of the 1970 share of dams in a state with dam construction in India). The inclusion of the interaction of river gradient with year dummies controls for any differential trends across regions with different river gradients. In particular, we control for the fact that the ease of nondam irrigation in regions with different river gradients may vary.\footnote{Controlling for district gradient, we would not expect nondam irrigation to be sensitive to river gradient (ground water irrigation, for instance, is independent of river gradient, but may depend on district gradient). In line with this, our results are not unaffected by whether or not we include the interaction of the river gradient with year dummies.}

The identifying assumption underlying our analysis is that absent dam construction, the evolution of economic outcomes across districts located in the same state but with different river gradients would not have systematically differed across states with more dams in 1970 and states with fewer dams in 1970. In 1970, Gujarat, Madhya Pradesh, and Maharashtra were the three states with the most dams. Gujarat and Maharashtra are among India’s richer states, though their agricultural income growth is not the highest in our sample. Still, one may worry that our instrument is picking up nondam-related differences in growth patterns across districts with different river gradient characteristics in richer and poorer states.

To address this concern, we report additional specifications. First, Figure III suggests that, at least for outcomes for which we have annual data, the time pattern of evolution of outcomes due to dam construction can potentially be distinguished from a linear trend that differs across regions with different river gradient. We, therefore, examine whether our results are robust to including as an additional control the interactions of a linear trend with the share of dams built by the state in 1970 and the river gradient variables (and the similar interactions with the upstream river gradient variables). Second, we check that our results are robust to including as additional controls the initial tribal population share and initial poverty in the district, each interacted with the predicted dam share in the state \bar{D}_{st} (and the corresponding interactions with upstream tribal share and poverty). This addresses the concern that regions favorable to dams may have also differed in terms of their initial poverty or tribal population shares, and that these initial conditions, not dam construction, determined subsequent agricultural and poverty changes.

In reality, dams vary significantly, both in their physical characteristics (this includes dam height and canal network) and
in their location (for instance, the productivity of surrounding agricultural land). Our IV estimates capture the “local average treatment effect” of dams, or their effect in districts where dams were built because the districts had favorable river gradients and which would, otherwise, not have received dams. Likewise, our upstream dam variable captures the effect of dams that were located upstream for a district because the river gradient in the upstream district was favorable. In other words, what we do not capture is the effect of dams placed in specific districts for, say, political reasons. This may imply that our estimates are close to a “best case scenario,” since we are measuring the economic impact of technologically appropriate dams. We recognize that this may differ from the impact of the “average” dam. While explicitly examining the impact of, say, different-sized dams could shed some light on this, our instruments do not have sufficient power for this.

IV. Results

IV.A. Agriculture

We start by examining how large dams have affected irrigated and cultivated area and agricultural production, both in the district where they are constructed and downstream. We have annual data for 271 districts for the years 1971–1999. Part A of Table III provides FGLS estimates equation (1), and Part B feasible optimal IV estimates equation (3). The “own district” coefficient captures the impact of dams built in that district while the “upstream” coefficient captures the impact of dams built in neighboring upstream districts (and we often refer to this as the downstream effect of dams). In the last row, we report the F-statistic for the first-stage regression for the “own district” dams (using the variable “dams predicted in own district”). The instruments appear sufficiently strong to avoid bias caused by weak instruments.

A first observation, and one to which we return below, is that the standard errors on the estimated “own district” coefficient always exceed those of the “dams upstream” coefficient.

17. Understanding the extent and impact of such heterogeneity is a very promising avenue for further work. Duflo and Pande [2005] report OLS estimates for whether the effect of dams varies with dam height and find the poverty impact is the most pronounced for very large dams (more than 30 meters).

18. The first stage F-statistic for dams in the upstream districts (available from the authors) is larger.
<table>
<thead>
<tr>
<th>Dams and Agriculture</th>
<th>Area</th>
<th>Inputs</th>
<th>Agricultural production</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gross irrigated area</td>
<td>Gross cultivated area</td>
<td>Fertilizer use</td>
</tr>
<tr>
<td></td>
<td>Level</td>
<td>Log</td>
<td>Level</td>
</tr>
<tr>
<td>Part A. FGLS</td>
<td>Own district</td>
<td>14.528</td>
<td>0.131</td>
</tr>
<tr>
<td></td>
<td>Upstream</td>
<td>17.830</td>
<td>0.198</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13.300)</td>
<td>(47.838)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12.639)</td>
<td>(48.233)</td>
</tr>
<tr>
<td>Part B. Feasible Optimal IV</td>
<td>Own district</td>
<td>232.092</td>
<td>0.728</td>
</tr>
<tr>
<td></td>
<td>Upstream</td>
<td>49.754</td>
<td>0.328</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(235.847)</td>
<td>(263.509)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(22.339)</td>
<td>(35.674)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,536</td>
<td>4,536</td>
</tr>
<tr>
<td></td>
<td>First stage</td>
<td>8.48</td>
<td>8.48</td>
</tr>
</tbody>
</table>

Regressions include district fixed effects, state*year interactions, interaction of the number of predicted dams in the state with district gradient, kilometers of river, district area, and district elevation and river gradient*year interactions (see notes to Table II for a full description of geography variables). They also include interaction of the number of predicted dams in the state with (average) gradient, kilometers of river, area and elevation in upstream districts, river gradient in upstream districts*year interaction, and an indicator for whether the district has any upstream districts. Regression coefficients are multiplied by 100. Standard errors, clustered by district, are reported in parentheses. Production and yield variables are in logs. We use the monetized value of production for six major crops (described in notes to Table I). Yield is defined as crop production per unit of land (Rs. per hectare). Non-water-intensive crops are sorghum (jowar), pearl millet (bajra), and maize, and water-intensive crops are wheat, rice, and sugarcane. The sample includes annual data for 271 districts in 15 states (defined by 1961 census boundaries). Area and fertilizer data cover 1971–1987 and production and yield data 1971–1999. Deviations in sample size are due to missing data. The last row provides the F-statistics from the regression of the number of dams in the district on the predicted number of dams in the own district.
In columns (1)–(4) we report level and log estimates for irrigated and cultivated area. The IV estimates indicate a significant increase in gross irrigated area in downstream districts—an additional dam increases irrigated area in the downstream district by roughly 0.33 percent or 497 hectares (this estimate is statistically indistinguishable from the FGLS estimate). The effect on irrigation in own district is also positive. The point estimate is similar to the downstream effect in the FGLS specification and larger in the IV specification. However, the associated standard errors are also very large (below we suggest possible explanations).

In columns (6) and (7) we consider the production and yield of the six major crops in districts (in logs). Both the FGLS and Optimal IV estimates suggest that dam construction significantly increases agricultural production (0.34 percent) and yield (0.19 percent) in the downstream districts. In contrast, own district estimates are smaller and insignificant.

Case study evidence (and our model) suggests that dam irrigation causes farmers to substitute towards water-intensive crops. In columns (8) and (9) of Table III, we see that dams had an insignificant impact on non-water-intensive crop production, but significantly increased the production of water-intensive crops in downstream districts. We find similar sized, but much noisier estimates, for water-intensive crop production in own district.

Table III provides a very consistent pattern for how dams affect agricultural production in downstream districts: They significantly increase irrigated area and agricultural production, especially of water-intensive crops. In contrast, the effect on production in own district is typically insignificant.

To the best of our knowledge, there are no other systematic estimates of the impact of dams on agricultural outcomes to which we can compare our estimates. However, we can provide two checks on whether the magnitude of estimated effects is plausible.

First, we can use direct estimates of the physical area irrigated and, hence, the associated increase in irrigated area is related to land productivity, then log acreage may be affected. In this case, we would expect dams to have a proportional, not level, effect on irrigated area. Since irrigated area and production typically have a log–log relationship, the average proportional impact of dams on area outcomes is also easier to compare with the average proportional impact on production.

We define sugarcane, rice, and wheat as water-intensive crops and sorghum, pearl millet, and maize as non-water-intensive crops.
gated by dams. Dam irrigation, in part, substitutes for alternative forms of irrigation. This suggests our estimates of the additional area irrigated due to dams should be lower than the actual area irrigated by dams. Our point estimates suggest that dams increased area irrigated in each downstream district by 497 hectares, and 2,321 hectares in own district. There are, on average, 1.75 districts downstream from a dam. This suggests that an additional 3,191 hectares are irrigated by a dam. This number can be compared to estimates of the average area irrigated by a dam. The Indian Planning Commission estimated that a dam irrigated 8,759 hectares in 1985. This estimate suggests that 36 percent of the area irrigated by dams would not have been irrigated otherwise.

Second, if we assume that the sole effect of dams on production downstream is through irrigation, then our instrument for having a dam upstream is also an instrument for area irrigated.21 This procedure gives us an elasticity of production with respect to dam-induced irrigation of 0.61 (standard error of 0.21, estimate not reported to save space). Relative to existing estimates, this is a plausible elasticity, though in the lower range.22

Robustness. In Tables IV and V, we check that our production results are robust to alternative specifications.23

In Part A of Table IV, we show that the production effects of the average dam do not extend to neighboring districts that are not downstream. This suggests that our focus on the impact of dams on the districts where they are located and downstream districts is reasonable. In Part B, we examine whether changes in agricultural production precede dam construction. We include dams in own district and upstream that are currently under construction and will be completed in the next five years as

21. Dams may directly affect production in the districts where they are built and therefore are inappropriate as an instrument for area irrigated. However, we would expect dams to mainly affect agricultural production in downstream districts by increasing irrigated area. Similar to existing irrigation elasticity estimates, we identify a total derivative, which includes adjustments made by farmers in response to the availability of irrigation.

22. FAO [1996], for instance, reviews the irrigation literature for Asia and report elasticities of crop yields with respect to production in the range of 1–4. India’s Planning Commission [1997, p. 474] assessed that “the yields on irrigated areas are generally two times higher than those for rain-fed areas.” Crop-specific estimates of percentage increase in yield due to irrigation for India are very similar to our estimate (75 percent for wheat [Mandal et al. 2005], 73 percent for winter maize [Mishra et al. 2001], and 63 percent for sugarcane [Ramesh and Mahadevaswamy 1998]).

23. For brevity, we only report results for agricultural production. Results for other agricultural outcomes are robust to these alternative specifications.
additional regressors. We find no evidence that agricultural production increases in the five years prior to dam completion.

In Table V, we first include an array of additional controls. In column (1), we control for the interaction of initial poverty in the district (and in the district upstream) with predicted dam construction in the state, and in column (2), we similarly control for initial tribal population. Our production estimates are unaltered. In column (3), we show that our results are robust to controlling for a linear time trend interacted with the state’s share of total
TABLE V
THE IMPACT OF DAMS: ROBUSTNESS CHECK

<table>
<thead>
<tr>
<th></th>
<th>Agricultural production</th>
<th>Headcount ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Additional control</td>
<td>Additional control</td>
</tr>
<tr>
<td></td>
<td>Initial poverty</td>
<td>Tribal population</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
</tbody>
</table>

Part A. OLS/FGLS

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Own district</td>
<td>0.168</td>
<td>0.207</td>
<td>0.144</td>
<td>0.168</td>
<td>0.279</td>
<td>0.266</td>
<td>0.250</td>
<td>0.310</td>
</tr>
<tr>
<td></td>
<td>(0.310)</td>
<td>(0.299)</td>
<td>(0.308)</td>
<td>(0.310)</td>
<td>(0.074)</td>
<td>(0.084)</td>
<td>(0.086)</td>
<td>(0.100)</td>
</tr>
<tr>
<td>Upstream</td>
<td>0.498</td>
<td>0.488</td>
<td>0.470</td>
<td>0.498</td>
<td>−0.077</td>
<td>−0.076</td>
<td>−0.084</td>
<td>−0.086</td>
</tr>
<tr>
<td></td>
<td>(0.137)</td>
<td>(0.140)</td>
<td>(0.154)</td>
<td>(0.137)</td>
<td>(0.039)</td>
<td>(0.041)</td>
<td>(0.039)</td>
<td>(0.033)</td>
</tr>
</tbody>
</table>

Part B. 2SLS/Feasible Optimal IV

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Own district</td>
<td>0.082</td>
<td>−0.162</td>
<td>0.219</td>
<td>0.082</td>
<td>0.748</td>
<td>0.782</td>
<td>0.256</td>
<td>0.867</td>
</tr>
<tr>
<td></td>
<td>(0.769)</td>
<td>(0.676)</td>
<td>(1.729)</td>
<td>(0.769)</td>
<td>(0.308)</td>
<td>(0.296)</td>
<td>(0.765)</td>
<td>(0.427)</td>
</tr>
<tr>
<td>Upstream</td>
<td>0.379</td>
<td>0.369</td>
<td>0.363</td>
<td>0.379</td>
<td>−0.168</td>
<td>−0.143</td>
<td>−0.185</td>
<td>−0.150</td>
</tr>
<tr>
<td></td>
<td>(0.115)</td>
<td>(0.115)</td>
<td>(0.163)</td>
<td>(0.115)</td>
<td>(0.068)</td>
<td>(0.069)</td>
<td>(0.076)</td>
<td>(0.071)</td>
</tr>
<tr>
<td>N</td>
<td>7,078</td>
<td>7,078</td>
<td>7,078</td>
<td>7,078</td>
<td>1,689</td>
<td>1,799</td>
<td>1,799</td>
<td>1,799</td>
</tr>
</tbody>
</table>

All regressions include district fixed effects, state*year interactions, interaction of the number of predicted dams in the state with district gradient, kilometers of river, district area, and district elevation and river gradient*year interactions (see notes to Table II for a full description of geography variables). They also include interaction of the number of predicted dams in the state with (average) gradient, kilometers of river, area and elevation in upstream districts, river gradient in upstream districts*year interactions, and an indicator for whether the district has any upstream districts. The additional controls are as follows: (i) in columns (1) and (4) the separate interactions of the number of predicted dams in the state with rural headcount ratio in 1973 in own district and in upstream districts, (ii) in columns (2) and (5) the separate interactions of the number of predicted dams in the state with 1971 tribal population share in own district and in upstream districts, and (iii) in columns (3) and (6) 1970 state dam share*linear time trend interacted with river gradient in own district and upstream districts. Regression coefficients in columns (1)–(3) and (5)–(7) are multiplied by 100. Coefficients in columns (4) and (8) are per 100 square kilometers. Standard errors are in parentheses. Columns (1)–(3) report FGLS (Part A) and Feasible Optimal IV (Part B) estimates with standard errors clustered by district. Columns (4)–(6) report OLS (Part A) and 2SLS (Part B) estimates with standard errors clustered by NSS region*year.
dams in 1970. Finally, in column (4), we show that our results are also robust to normalizing the number of dams by district area.

Variance of Production. Why are the estimated effects of dams so much noisier in the dam’s own district than in the downstream district? One reason is that the own district effect combines the (presumably negative) catchment area effect with a (presumably positive) effect in the part of the command area that falls within the district. The combined effect is likely to vary across districts, depending, for instance, on dam size and its location within the district. Such variability, in turn, would imply noisier estimates of the average effect.

Another possible reason (which does not exclude the above) is that dams affect the variance of agricultural production differentially across own and downstream districts. An important cause of annual variations in crop production across Indian districts is rainfall shocks. Dams are likely to reduce the sensitivity to rainfall shocks downstream, but to increase it in the upstream areas, due to restriction on water usage.

In Table VI, we examine whether dams mediate or amplify the effect of a rain shock on agricultural production. We measure rain shock as the fractional deviation of annual rainfall from the district's historical average. In column (1), we see that, controlling for dam presence, a positive rain shock enhances agricultural production. Column (2) shows that having a dam upstream reduces the adverse effect of a negative rain shock: The coefficients on the upstream dam’s rain shock interaction variable and the rain shock variable have opposite signs, and both coefficients are significant. In contrast, dams amplify the effect of a rain shock in own district. The coefficients on own district dam’s rain shock interaction variable and the rain shock variable have the same sign, and the interaction with dams is significant.

Our finding suggests that dams increase the variance of agricultural production in own district, without significantly increasing the mean production in the average district. If risk aversion decreases with income, then this increase is likely to be particularly harmful to the poor.

Other Inputs. Consistent with the predictions of a simple agricultural production function, we find that dams increase the production of water-intensive crops in downstream areas; two of

24. We follow the literature in modelling more rainfall as beneficial, since drought is the main problem in India.
TABLE VI
DAMS AND RAINFALL SHOCKS

<table>
<thead>
<tr>
<th></th>
<th>Agricultural production</th>
<th>Headcount ratio</th>
<th>Poverty gap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Rainshock</td>
<td>0.065</td>
<td>0.008</td>
<td>-0.041</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.044)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Dams</td>
<td>-0.011</td>
<td>0.109</td>
<td>0.765</td>
</tr>
<tr>
<td></td>
<td>(1.227)</td>
<td>(1.228)</td>
<td>(0.324)</td>
</tr>
<tr>
<td>Dams*rainshock</td>
<td>0.898</td>
<td>-0.243</td>
<td>0.149</td>
</tr>
<tr>
<td></td>
<td>(0.364)</td>
<td>(0.191)</td>
<td>(0.067)</td>
</tr>
<tr>
<td>Upstream dams</td>
<td>0.722</td>
<td>0.734</td>
<td>-0.184</td>
</tr>
<tr>
<td></td>
<td>(0.197)</td>
<td>(0.195)</td>
<td>(0.092)</td>
</tr>
<tr>
<td>Upstream dams*rainshock</td>
<td>-0.184</td>
<td>0.109</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.092)</td>
<td>(0.059)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>7,078</td>
<td>7,078</td>
<td>1,799</td>
</tr>
</tbody>
</table>

All columns report 2SLS regressions. Regressions include district fixed effects, state*year interactions, interaction of the number of predicted dams in the state with district gradient, kilometers of river, district area, and district elevation and river gradient*year interactions (see notes to Table II for a full description of geography variables). They also include interaction of the number of predicted dams in the state with (average) gradient, kilometers of river, area and elevation in upstream districts, river gradient in upstream districts*year interactions, and an indicator for whether the district has any upstream districts. All coefficients are multiplied by 100. Standard errors reported in parentheses. These are clustered by district in columns (1)-(2), and by NSS region*year in columns (3)-(6). Rainshock is the fractional annual deviation of district rainfall from its historic mean (defined over 1971–1999). Agricultural production is in logs. We have annual agricultural data for 217 districts and the years 1971–1999, and poverty data for 374 districts and 1973, 1983, 1987, 1993, and 1999. Missing district*year observations account for actual sample size.
these crops (rice and wheat) saw increased use of high yielding variety seeds. Column (5) in Table III also shows that dams led to an insignificant increase in fertilizer use.

The agricultural production function also suggests that dam irrigation should reduce the use of alternative forms of water infrastructure and increase electricity and fertilizer use (because canal irrigation requires electricity). In Table VII, we examine the impact on other inputs using decennial census data.25 Columns (1) and (2) provide some, albeit weak, evidence that nondam-related water infrastructure decreased (the number of canals shows an insignificant increase) and that electrification increased in downstream districts. Other measures of infrastructure are unchanged by dam construction (see column (3)) and suggest no crowding in (or out) of other government inputs.

25. Limited data availability for census outcomes implies less precise estimates. We, therefore, use a more powerful instrument—the interaction of our river gradient variables with actual dam incidence in the state (the results with predicted dam incidence are qualitatively similar, but noisier). Since the time series is very short, we provide robust, rather than clustered, standard errors. For the same reason, we also use actual dam incidence for demographic outcomes (Table VII) and when examining the impact of institutions (Table IX).
IV.B. Rural Welfare

Using our estimates to undertake a cost-benefit analysis of dam construction requires additional assumptions about the construction and operation costs of dams. We also need to make assumptions about unmeasured benefits and costs, such as the value of insurance downstream, possible effects in other neighboring districts that are too small to detect (although, on average, we do not observe any such effects), and agents’ optimizing behavior.

A different approach to assessing the overall impact of dams, and one we take, is to examine how large dams have affected the welfare of the rural poor. Agriculture is the main occupation of a majority of the rural poor, and India’s five-year plan documents (which identify, on a five-year basis, the government’s policy priorities) show that an explicit aim of public investment in irrigation is to increase agricultural productivity, reduce instability in crop production, and enhance the welfare of the rural poor. For instance, the opening chapter of India’s fifth five-year plan document begins, “The objectives in view are removal of poverty and achievement of self-reliance.”

We begin by examining the implications of dam construction for district demographics. This is an interesting question in and of itself and is also relevant for interpreting our poverty results (since our dataset is a panel of districts, rather than of individuals, the estimated effect of dam construction on poverty would be biased if dam construction induces either the relatively rich or relatively poor individuals to migrate across district boundaries). Columns (4) and (5) of Table VII report insignificant effects of dam construction on district census rural population outcomes, both overall population and in-migrants. A potential explanation is that imperfect credit and insurance markets inhibit labor mobility by the poor in response to regional economic shocks. Our findings are in line with anecdotal and case study evidence that suggests that displaced populations prefer to remain near their original habitats [Thukral 1992]. Other studies also find very limited migration in response to relatively large district-level economic shocks.26 These findings also imply that it is reasonable to use a district-level panel on poverty outcomes to examine how dam construction affects rural welfare. That said, we compute

bounds on how migration may have affected the estimated impact of dams on poverty [Manski 1990].

Our welfare results are in Table VIII; Part A provides OLS estimates and Part B 2SLS estimates. Column (1) shows that dams lead to an insignificant decline in mean per capita expenditure in the district where they are located and a marginally significant increase in per capita expenditure in downstream districts. In column (2), we examine the most basic rural poverty indicator: the head count ratio. This measures the fraction of rural households with a consumption level below the official poverty line. Each dam is associated with a significant poverty increase of 0.77 percent in its own district. In contrast, poverty decreases in downstream districts. Columns (3) and (4) bound our poverty results by making alternative assumptions about migration (we use the Table VII point estimates for in-migrants even though they are insignificant). The poverty results remain robust.28

Since there are, on average, 1.75 districts downstream of each dam, the poverty reduction in downstream districts is insufficient to compensate for the poverty increase in the dam’s own district. Another way of computing the overall poverty effect is to start with the observation that between 1973 and 1999 the average district had five dams built in own district and ten dams upstream. Our point estimate implies that this led to a 2.35 percent increase in the head count ratio (5*0.77 − 10*0.15). Over this time period, the head count ratio reduced by 23 percent, suggesting that poverty reduction in the average Indian district may have suffered as much as a 10 percent setback due to dam construction. An important caveat is that we have not accounted

27. The relatively short and very spaced time series implies that autocorrelation is unlikely to be a problem. In 1973 and 1983 poverty data is only available by NSS “region,” an entity larger than the district, but below the state. To account for this aggregation we cluster standard errors by NSS region*year. If we instead cluster them by NSS region, then our standard errors increase. However, results that are reported as significant at the 5 percent level remain significant at the 10 percent level or less (results available from the authors).

28. A simple back-of-the-envelope calculation suggests that the magnitude of our estimates is plausible. One of the channels through which dams increase poverty is displacement. World Commission on Dams [2000b] estimates that each dam displaced 31,340 persons. If 46 percent of them were already poor (this is the poverty rate in 1973), then 17,000 nonpoor people were displaced. Meanwhile, given the average district population, our 0.77 percent estimate suggests that each dam made an additional 14,530 persons poor. Of course, caveats apply: estimates on how many people are displaced is debated; not all those displaced will become poor, while dams may cause some nondisplaced individuals to become poor (if, for instance, dams made their land less productive), and some nondisplaced poor people will escape poverty due to dams.
TABLE VIII
DAMS AND RURAL WELFARE

<table>
<thead>
<tr>
<th>Headcount ratio</th>
<th>Per-capita expenditure</th>
<th>Assume poor in-migrants</th>
<th>Assume rich in-migrants</th>
<th>Poverty gap</th>
<th>Gini coefficient</th>
<th>Agricultural wage growth</th>
<th>Malaria incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Original</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
</tr>
<tr>
<td>Dams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Own district</td>
<td>−0.289</td>
<td>0.207</td>
<td>0.174</td>
<td>0.081</td>
<td>0.014</td>
<td>0.018</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>(0.115)</td>
<td>(0.084)</td>
<td>(0.083)</td>
<td>(0.081)</td>
<td>(0.030)</td>
<td>(0.027)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>Upstream</td>
<td>0.093</td>
<td>−0.082</td>
<td>−0.082</td>
<td>−0.027</td>
<td>0.007</td>
<td>0.057</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>(0.057)</td>
<td>(0.038)</td>
<td>(0.038)</td>
<td>(0.013)</td>
<td>(0.013)</td>
<td>(0.020)</td>
<td>(0.065)</td>
</tr>
<tr>
<td>Part A. OLS/FGLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Own district</td>
<td>−0.457</td>
<td>0.772</td>
<td>0.879</td>
<td>0.651</td>
<td>0.297</td>
<td>0.104</td>
<td>−0.045</td>
</tr>
<tr>
<td></td>
<td>(0.467)</td>
<td>(0.324)</td>
<td>(0.314)</td>
<td>(0.315)</td>
<td>(0.112)</td>
<td>(0.138)</td>
<td>(0.242)</td>
</tr>
<tr>
<td>Upstream</td>
<td>0.142</td>
<td>−0.154</td>
<td>−0.150</td>
<td>−0.039</td>
<td>0.000</td>
<td>0.069</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>(0.084)</td>
<td>(0.068)</td>
<td>(0.066)</td>
<td>(0.066)</td>
<td>(0.020)</td>
<td>(0.020)</td>
<td>(0.031)</td>
</tr>
<tr>
<td>Part B. 2SLS/Feasible Optimal IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Own district</td>
<td>−0.457</td>
<td>0.772</td>
<td>0.879</td>
<td>0.651</td>
<td>0.297</td>
<td>0.104</td>
<td>−0.045</td>
</tr>
<tr>
<td></td>
<td>(0.467)</td>
<td>(0.324)</td>
<td>(0.314)</td>
<td>(0.315)</td>
<td>(0.112)</td>
<td>(0.138)</td>
<td>(0.242)</td>
</tr>
<tr>
<td>Upstream</td>
<td>0.142</td>
<td>−0.154</td>
<td>−0.150</td>
<td>−0.039</td>
<td>0.000</td>
<td>0.069</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>(0.084)</td>
<td>(0.068)</td>
<td>(0.066)</td>
<td>(0.066)</td>
<td>(0.020)</td>
<td>(0.020)</td>
<td>(0.031)</td>
</tr>
<tr>
<td>N</td>
<td>1,799</td>
<td>1,799</td>
<td>1,799</td>
<td>1,799</td>
<td>1,799</td>
<td>1,794</td>
<td>4,272</td>
</tr>
<tr>
<td></td>
<td>7.71</td>
<td>7.71</td>
<td>7.71</td>
<td>7.71</td>
<td>7.71</td>
<td>8.71</td>
<td>10.95</td>
</tr>
<tr>
<td>First stage F-statistic (own district)</td>
<td>7.71</td>
<td>7.71</td>
<td>7.71</td>
<td>7.71</td>
<td>7.71</td>
<td>8.71</td>
<td>10.95</td>
</tr>
</tbody>
</table>

Regressions include district fixed effects, state*year interactions, river gradient*year interactions, and interaction of number dams in the state with (i) district gradient variables, (ii) kilometers of river and district area, and (iii) elevation variables and river gradient*year interactions (see Table II for a full description of the geography variables). They also include interaction of the number of dams in the state with (average) gradient, kilometers of river, area and elevation in upstream districts, river gradient in upstream districts*year interactions, and an indicator for whether the district has any upstream districts. Regression coefficients are multiplied by 100. Columns (1)–(6) regressions report OLS (Part A) and IV (Part B) estimates. Standard errors, clustered by 1.973 NSS region/year, are in parentheses. The unit of analysis is the Indian district as defined by 1981 census, we have data for 374 districts and years 1973, 1983, 1987, 1993, and 1999. Column (7) regression cover 1971–1987 for 271 districts (as defined by 1961 census). Column (8) regression covers 1975–1995 for 413 districts (defined by 1981 census). In both columns we report FGLS (Part A) and Feasible Optimal IV (Part B) estimates with standard errors clustered by district. Per-capita expenditure is in logarithms. Agricultural wage growth is defined as log(wage(t)/wage(t−1)). Column (2) uses head count ratio figures as computed from NSS data. Columns (3) and (4) adjust this using the Table V in-migration estimates. Column (3) assumes in-migrants are poor, and column (4) in-migrants are rich. Malaria incidence is measured as log annual Parasite Incidence (API) = log (No. of blood smears found positive for malaria/total population under surveillance).
for either state-wide, or small, effects that diffused over a large area.

Column (5) examines an alternative measure of rural poverty, the poverty gap. This measures the depth of poverty—specifically, how much income is needed to bring the poor to a consumption level equal to the poverty line. In line with our earlier results, we find that dams significantly increase the poverty gap in their own district, while reducing it downstream.

Column (6) examines within-district inequality as measured by the Gini coefficient. Dam construction did not significantly affect inequality, either in its own district or downstream districts. This suggests the main unequalizing effect of dams was across, not within, districts. In column (7), we find that dams lead to significant increases in male agricultural wage growth in downstream districts. This is consistent with our poverty findings—male agricultural wages are considered an important driver of poverty.

Finally, in column (8), we examine whether dams affect health outcomes, as measured by annual malaria incidence between 1976 and 1995. We find no evidence that dams increased the district-level prevalence of waterborne diseases, here malaria. This suggests that negative health effects did not drive the observed increase in poverty.

Robustness. In Part A, Table IV, we show that, similar to agricultural production, the poverty effects of dam construction do not extend to neighboring districts that are not downstream. In Part B, we include dams in own district and upstream that will be completed in the next five years as additional regressors. If dam construction activity itself lowered poverty, then comparing poverty outcomes before and after dam construction may lead us to overestimate their negative effect. Dam construction activity does not reduce poverty; in fact, poverty increases while dams are under construction. This is consistent with the fact that population displacement in the vicinity of the reservoir occurs during the construction period.

In columns (5)–(7) of Table V, we introduce additional controls to check for differential trends across districts with varying initial conditions. Our poverty results are robust to controlling for the separate interaction of the predicted number of dams in the state with initial poverty and tribal population share (columns (5) and (6)).

In column (7) we include the triple interaction of a linear
time trend, the initial dam incidence in the state (as a fraction of total dam construction in 1970), and the river gradient in the district. As with agricultural production, this specification is intended to control for the possibility that the trend in economic outcomes in a district which is more suitable for dam construction differed from that in other districts in the same state and that this also differed in the state that built more dams. We find that, while the results for the downstream district hardly change, the standard error of the own district estimates more than doubles (to 0.765), and the point estimates drops (to 0.25). The confidence interval includes both the previous estimate and zero. A likely reason for this is the limited time series for poverty data; with only five years of data, the time pattern of dam construction across India is difficult to disentangle from a linear trend, and there is very little identifying variation left. That said, this specification provides a relevant caveat to the robustness of the own-district poverty results.

Poverty and Rainfall. In addition to displacement and the loss of productivity of the land around the reservoir, the increased variance of production in the district where a dam is built may interact with low levels of migration and closed markets to amplify negative shocks and increase poverty [Jayachandran 2006]. Given limited access to insurance against risk in rural India and limited insurance options [Morduch 1995; Rosenzweig and Binswanger 1993; Rosenzweig and Wolpin 1993], this is a potentially important channel through which dam construction can increase poverty. In columns (3)–(6) of Table VI we examine whether dams amplify or reduce the poverty effect of rainfall shocks. In columns (3) and (5) we observe that, controlling for dams, positive rainfall shocks reduce both the head count ratio and the poverty gap. In columns (4) and (6), we examine whether dams alter the impact of rainfall shocks on poverty outcomes. Dams weakly reduce the impact of rainfall shocks on poverty in downstream districts, but significantly amplify it in the district where the dam is constructed. This is particularly true for the poverty gap, which accounts for depth of poverty; our finding is particularly worrisome as it suggests dams have worsened outcomes for households whose welfare was the lowest to begin with.

29. We have also estimated this regression for the bounded measures of head count ratio and the poverty gap (columns (3)–(5) in Table VIII), with similar conclusions.
Institutions, Politics, and Dams. The inability or unwillingness of those who benefit from dams to compensate groups of losers, or of the state to require them to do so when both groups are clearly identifiable ex-ante, suggests poorly functioning institutions of redistribution.

The absence of a statutory rehabilitation law, or even a national policy for rehabilitation, implies that state governments and project authorities face no legal imperative to undertake rehabilitation planning. World Commission on Dams [2000b] describes the rehabilitation policies of Indian states as “knee-jerk reactions to the manifestations of disaffection of populations on land which is acquired for public purposes.” Such arbitrariness suggests that actual compensation may depend on the ability of affected population groups to organize themselves and lobby government and project authorities. To explore this possibility, we examine whether the welfare consequences of dam construction vary with the presence of historically disadvantaged population groups and institutional quality.

Tribal populations in India face significant socioeconomic disadvantages, and case study evidence suggests that these groups have faced significant dam-induced population displacement. We, therefore, use the 1971 tribal population share in a district as our measure of the socioeconomic disadvantage faced by the district population.

To measure institutional quality, we use district-level data on historic land tenure arrangements. During the colonial period, the British instituted different land revenue collection systems across districts. In some districts, an intermediary (usually a landlord) was given property rights for land and tax collection responsibilities. In other districts, farmers were individually or collectively responsible for tax collection. In “landlord” districts, a class of landed gentry who had conflictual relationships with the peasants emerged. Banerjee and Iyer [2005] show that the ability of the population to organize themselves and obtain public goods exhibited marked differences across regions with different historical land tenure legacies. In landlord districts, class relations remain tense, rendering collective action more difficult. These districts continue to have lower public good provision, agricultural productivity, and higher infant mortality.30 If the population groups affected by dam construction are better able to

30. Banerjee and Iyer [2005] document that British politics, not district characteristics, determined whether a district was a landlord district.
organize themselves and obtain compensation in nonlandlord districts, then the poverty impact of dam construction should be muted in these districts. To examine this, we construct and use a nonlandlord dummy that equals one: The tax revenue system of the district was not landlord-based prior to independence.

In Table IX, we report regressions, which include the separate interactions of the dam’s variable with the 1971 district tribal population share and the nonlandlord district dummy as additional regressors (our instrument set is as before, plus the interaction with the tribal and landlord variables). Our sample is restricted to districts that were under direct British rule.

Column (1) shows that the impact of dams on agricultural production did not differ across landlord and nonlandlord districts. Nor did it vary with the tribal population share. This suggests that technological rather than institutional factors de-
termine the productivity effect of a dam. Columns (2) and (3) consider poverty outcomes. The poverty impact of dams is independent of the tribal population share of the district. However, historic land tenure arrangements significantly affect the poverty implications of dam construction. The effect of dams on poverty in own district is halved in nonlandlord districts, and we cannot reject the hypothesis that dams do not increase poverty in nonlandlord districts. We conjecture that in nonlandlord districts, the population is more effective in organizing itself to demand compensation from the state. It is also possible that the absence of the landed gentry gives the displaced more political power in nonlandlord districts.31

These findings point to the relevance of the institutional framework within which public policies, such as dam construction, are executed and suggests that “weak institutions” or social conflict may help explain the claim that the distributional consequences of dam construction have been particularly adverse in developing countries.

V. CONCLUSION

In 2000, public spending on infrastructure in developing countries averaged 9 percent of government spending, or 1.4 percent of GDP. Despite the magnitude of such spending, and a widespread belief that infrastructure is integral to development, evidence on how investment in physical infrastructure affects productivity and individual wellbeing remains limited [World Bank 1994].

In this paper, we have examined these questions in the context of large dam construction in India. We have argued that any credible evaluation of large dams must address the fact that dam placement is likely to be affected by regional wealth and the expected returns from dam construction in a region. This problem of endogenous placement arises in the evaluation of any large infrastructure project [Gramlich 1994]. While cross-country evidence finds that productive government spending enhances growth, most studies are unable to convincingly control for unobserved heterogeneity (see, for instance, Canning et al. [1994] and

31. At the state level, we found evidence that an increase in the fraction of left-wing legislators reduced dam construction. This effect was, however, only significant at the 10 percent level. A district’s tribal population share and the support enjoyed by other political parties did not affect state-level dam construction.
Esfahani and Ramirez (2003)). Exploiting geographic suitability for infrastructure allows us to address this concern and estimate returns to infrastructure investment.

Large dams in India have benefited downstream populations. In contrast, those living in the vicinity of the dam fail to enjoy any agricultural productivity gains and suffer from increased volatility of agricultural production. Our poverty results also suggest a worsening of living standards in the district where the dam is built; though limited data availability for the poverty outcomes limits our ability to wholly disentangle the poverty impact of dam construction from district-specific time trends in poverty, which are correlated with geographic suitability for dams.32

These findings have important policy implications. In Spring 2005, the World Bank announced $270 million in grants and guarantees for the Nam Theun 2 dam in Laos. The New York Times (June 5, 2005) quotes a senior World Bank official who justifies the return to dam lending as driven by the need to support infrastructure development in a “practical” way since, “You’re never ever going to do one of these in which every single person is going to say, ‘This is good for me’ ” [Fountain 2005]. Implicit in this statement is the belief that projects with an average positive return should be undertaken, as it will be possible to compensate the losers. We, however, find an unequal distribution of the costs and benefits associated with large dam construction in India and provide suggestive evidence that an important reason for this is institutional quality. In areas where the institutional structure favors the politically and economically advantaged, large dam construction is associated with a greater increase in poverty. Whether institutional quality could also explain the extent of dam construction across India is left for future research.

APPENDIX

A. Dams

Data on dams is from the World Registry of Large Dams, maintained by the International Commission on Large Dams

32. We are unable to examine (state-level) market equilibrium effects of dam construction; the most likely such effect is a price effect associated with increased production. If the poor are net sellers of agricultural products [Deaton 1989], then a decrease in food prices may have further accentuated poverty, relative to what we estimate.
A large dam is defined as a dam having a height of 15 meters from the foundation, or, if the height is between 5 and 15 meters, having a reservoir capacity of more than 3 million cubic meters. The registry lists all large dams in India, completed or under construction, together with the nearest city to the dam and date of completion. We use city information to assign dams to districts in the year of completion. The nine states in our sample without dams are Arunachal Pradesh, Mizoram, Nagaland, Punjab, Sikkim, Dadra and Nagar Haveli, Daman and Diu, Delhi, and Pondicherry. Punjab and Delhi have dams in neighboring upstream states.

B. Geography

District area, river kilometers, elevation, overall gradient, and river gradient are collated from two GIS files, which provide topographical information for India: GTOPO30 (elevation data, available at http://edcdaac.usgs.gov/gtopo30/gtopo30.html), and “dnnet” (river drainage network data, available at http://ortelius.maproom.psu.edu/dcw/). The files were processed by CIESIN, Earth Institute Columbia University. GIS data exists for multiple cells in every district. District gradient and elevation was computed as percent of district land area in different elevation/gradient categories (summed across the cells in the district). For river gradient, we used the same process but restricted attention to cells through which the river flowed. We identified neighboring districts and, within them, upstream and downstream districts from district census maps.

C. Agriculture Data

We use the Evenson and McKinsey India Agriculture and Climate dataset (available at http://chd.ucla.edu/dev-data), which covers 271 Indian districts across 13 Indian states, defined by 1961 boundaries and the years 1971–1987. This dataset provides information on gross area irrigated and cultivated, fertilizer use, crop-wise production, and male agricultural wages. We used the primary sources used by Evenson and McKinsey to update the production and yield data to 1999. Missing district year observations lead to variations in sample size. Kerala and Assam are the major excluded agricultural states. Also absent, but less important agriculturally, are the minor states and Union Territories in northeastern India, and the northern states of Himachal Pradesh and Jammu-Kashmir. We use the average 1960–1965 crop prices to obtain monetary production and yield values. All monetary

D. Rural Welfare Data

We use poverty estimates for 374 districts across 23 Indian states, defined by 1981 boundaries. We have poverty estimates for 1973, 1983–1984, 1987–1988, 1993–1994, and 1999–2000; these are derived from all-India household expenditure survey data collected by the Indian National Sample Survey (NSS). These surveys sample households within a district randomly (sample size is roughly 75,000 rural and 45,000 urban households). For 1973, NSS regional averages were obtained from Jain et al. [1988]. For all other years, Topalova [2004] computed district-wise statistics using the poverty lines proposed by Deaton [2003a, b]. The introduction of a new 7-day recall period (along with the usual 30-day recall period) for household expenditures on most goods in the 1999–2000 round is believed to have led to an overestimate of the expenditures based on the 30-day recall period. To achieve comparability across surveys Topalova [2004] follows Deaton and imputes, for 1999, the correct district per capita expenditure distribution from household expenditures on a subset of goods for which the new recall period questions were not introduced. The poverty, inequality, and mean per capita expenditure measures were derived from this distribution. District identifiers are available from 1987 onwards (in hard copy for 1993). For 1973 and 1983, we have NSS region estimates (a region is a group of neighboring districts for which the sample is sufficiently large for the NSS to deem the data “representative” of the region). We use the district matching across censuses and region to district matching provided in Murthi et al. [2001] and in Indian censuses to match regions to districts and account for district boundary changes.

33. The NSS organization does not report district averages, as it considers the district sample size inadequate for reliable district poverty estimates. This does not affect us, since we report results for a larger number of districts and do not make any inference about a particular district.

34. Poverty lines were unavailable for the smaller states and union territories of Arunachal Pradesh, Goa, Daman and Diu, Jammu and Kashmir, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim, Tripura, Andaman and Nicobar Islands, Chandigarh, Pondicherry, Lakshwadweep, Dadra Nagar, and Haveli. Most are already excluded because they have no dams or we lack other data for them. For those included, we use the neighboring states’ poverty line.
E. Population, Public Goods, and Landlord Data

District-level population and public goods data are from the Decennial Census, 1971, 1981, and 1991. Public goods data exist for 302 districts, defined by 1971 census boundaries. We aggregate village data (also known as village directory data) to compute the fraction of villages in the district with a particular public good (obtained from Banerjee and Somanathan [2005]). Population data are available for 339 districts defined by 1961 census boundaries (Maryland Indian District Database, http://www.bsos.umd.edu/socy/vanneman/districts/index.html). These data enter the regressions in logs. Finally, district-level data on colonial land tenure systems is from Banerjee and Iyer [2005] and is available for 151 districts that were under direct British rule.

F. Rainfall

We use the rainfall dataset, Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950–1999), Version 1.02, constructed by Cord J. Willows and Kanji Maturate at the Center for Climatic Research, University of Delaware. The rainfall measure for a latitude-longitude node combines data from 20 nearby weather stations using an interpolation algorithm based on the spherical version of Shepard’s distance-weighting method. We define a rainfall shock as the fractional deviation of the district’s rainfall from the district mean (computed over 1971–1999).

G. Malaria

Annual district-level malaria data for India is collected by the National Malaria Eradication Program (NMEP). It conducts a fever surveillance campaign in India. Blood smears were collected for a sample of fever cases in every Indian district. Our measure of malaria incidence in the log of the annual parasite incidence (API), where API is defined as (number smears positive for P. falicparum)/population under surveillance. District-wise annual data on API was collated from the following NMEP publications: (i) Epidemiology and Control of Malaria in India, NMEP 1996, and (ii) Malaria and its Control in India, Volumes 1–3, NMEP 1986.
REFERENCES

Jain, L.R., K. Sundaram, and S.D. Tendulkar, “Dimensions of Rural Poverty: An
Inter-Regional Profile,” *Economic and Political Weekly*, XXIII (1988), 2395–2408.

Vidhya, R., M. Karmegam, and K. Venugopal, “GIS based Diagnostic Analysis of
Irrigation System Performance Assessment of Bhadra Command Area at Disaggregated Level,” Map India (2002).

