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We demonstrate, first in literature, that potential functions can be constructed in a continuous
dissipative chaotic system and can be used to reveal its dynamical properties. To attain this
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explicitly construct a potential function monotonically decreasing along the system’s dynamics,
revealing the structure of the chaotic strange attractor. The potential function is not unique for
a deterministic system. We also decompose the dynamical system corresponding to a curl-free
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tors and nonchaotic strange attractors are discussed within current decomposition framework.
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1. Introduction

Nonlinear dynamical systems are known for their
complex behaviors: nonpointwise attractor, quasi-
periodic oscillation, and chaotic motion [Strogatz,
2001]. These behaviors largely restrict traditional
techniques from analyzing the systems globally.
We draw inspiration from potential functions in
physics. We find a continuous scalar function (and
name it potential function) in phase space, mono-
tonically decreasing along the system’s dynam-
ics. When the system reaches steady states (i.e.
attractor), the scalar function will remain constant.
This potential function not only generalizes exist-
ing approaches of Lyapunov function and first inte-
gral, but also encompasses concepts like stability
[Lyapunov, 1992] and reversibility [Li et al., 2010;
Vollmer et al., 1998] into a unified framework.

Previously, we have rigorously defined potential
function in mathematical terms and demonstrated
that potential functions (or Lyapunov functions)
can be analytically constructed in oscillating sys-
tems [Zhu et al., 2006; Ma et al., 2013]. In this
paper, we further motivate such research by show-
ing the construction of potential functions in a
chaotic system, and providing additional insights
for chaotic and strange attractors.

Constructing potential-like functions in chaotic
systems is an approach already taken by
researchers. There are various efforts addressing
the issue of finding functions with a restricted
portion of the properties held by potential func-
tions. There are generalized Hamiltonian approach
[Sira-Ramirez & Cruz-Hernandez, 2001], energy-like
function technique [Sarasola et al., 2005], minimum
action method [Zhou & Weinan, 2010], and etc., in
search for a unified description of chaotic dynamics.
These previous methods all construct a potential-
like function to analyze some chaotic system such
as the Lorenz system [Lorenz, 1963]. The scalar
functions in these works all lack certain important
properties (cf. Sec. 6).

Those important drawbacks of the existing
methods motivate a real potential function to
describe the behavior of chaotic systems. We orga-
nize the paper as follows to demonstrate the con-
struction and application of this potential function.
First of all, we formally define the potential function
and a decomposition framework in Sec. 2. In Sec. 3,
we create an attractor that is chaotic according to
the standard definition for analysis. Then, a poten-
tial function for this chaotic attractor is constructed

in Sec. 4, showing the structure of the chaotic
strange attractor. In Sec. 7, we demonstrate that
our decomposition framework separates the origi-
nal vector field into two orthogonal components:
a gradient part and a rotation part. This decom-
position helps understand the different origins for
chaotic attractor and strange attractor, explaining
why there exists both chaotic nonstrange attractors
and nonchaotic strange attractors.

2. Potential Function

We first state the definition of a potential func-
tion. In Sec. 2.1, a decomposition scheme of generic
dynamical systems associated with the potential
function will be discussed.

Definition 2.1 (Potential Function [Ao, 2004; Yuan
et al., 2011]). Suppose a vector field ẋ = f(x) :
R

n −→ R
n induces a flow φt. Let Ψ : R

n −→ R

be a continuous function with derivative: Ψ̇(x) =
dΨ/dt|x exist at x ∈ R

n. Then Ψ satisfying the
following conditions is called a potential function
for the dynamical system: ẋ = f(x).

(a) Ψ̇(x) = dΨ/dt|x ≤ 0 for all x ∈ R
n.

(b) Ψ̇(x∗) = 0 if and only if x∗ ∈ O, where O is the
limit set of the dynamical system: ẋ = f(x).

In other words, a potential function is a Lya-
punov function. In Definition 2.1, the flow φt on the
limit set O can be fixed, periodic, or chaotic.

It is proved in [Ma et al., 2013] that: if a tra-
jectory is dense in the limit set, then a locally
positive definite Lyapunov function implies asymp-
totic orbital stability to the trajectory. And by the
LaSalle invariance principle, the convergence region
can be extended to a bounded simply-connected
region: R = {x |Ψ(x) < M}, satisfying: Ψ(x) is
differentiable and Ψ(x) < 0 for any x ∈ R\O.

Hence, with the potential function, all the hid-
den attractors [Leonov & Kuznetsov, 2013] can
be found by identifying the local minima of the
potential function (an interesting example of hid-
den attractor is found by [Leonov et al., 2011]).

2.1. Decomposition scheme

Previously, we have found that a generic dynamical
system can be decomposed into a dissipative com-
ponent and a conservative component [Yuan & Ao,
2012]:
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ẋ = f(x)

= −D(x)∇Ψ(x) + Q(x)∇Ψ(x), (1)

where D(x) is a semi-positive definite symmet-
ric matrix and Q(x) is skew-symmetric. Once we
obtained the potential function for the system, we
can express the two matrices as [Yuan et al., 2011]:

D = − f · ∇Ψ
∇Ψ · ∇Ψ

I (2)

and

Q =
f ×∇Ψ
∇Ψ · ∇Ψ

. (3)

Here, I denotes identity matrix and the general-
ized cross product of two vectors defines a matrix:
x× y = A = (aij)n×n = (xiyj − xjyi)n×n.

For this construction, (Q∇Ψ(x)) · ∇Ψ = 0 and
(D∇Ψ(x)) × ∇Ψ = 0 (for an arbitrary matrix D,
the second relation may not be true), corresponding
exactly to the curl-free component and divergence-
free component in Helmholtz decomposition [Kobe,
1986]. This means that a generic system is com-
posed of a gradient part and a rotation part [Ao
et al., 2013; Qian, 2013]. For the gradient part,
potential Ψ is an energy function; for the rotation
part, Ψ is a first integral.

Naively, a dynamical system ẋ = f(x) can
always be decomposed into three parts [Cheng
et al., 2000]:

ẋ = f(x) = M(x)∇Ψ(x), (4)

M(x) = J(x) − D(x) + Q(x), (5)

where J(x) and D(x) are semi-positive definite
symmetric matrices and Q(x) is skew-symmetric.
In our framework, however, matrix J(x) is zero:
J(x) = 0. If we take Ψ as an energy function, J = 0
means that in a closed system, energy is either dis-
sipated or conserved, but never created.

Further, as have been discussed in the context
of nonequilibrium thermal dynamics [Olson & Ao,
2007], the gradient part and the rotation part cor-
respond to two different structures in geometry: a
dissipative bracket {·, ·}; and a generalized Poisson
bracket [Arnold et al., 1989] [·, ·].1

A dissipative bracket {·, ·} associates with
matrix D(x):

{f, g} = ∂ifDij∂jg,

and is generally defined as symmetric: {f, g} =
{g, f}; and semi-positive definite: {f, f} ≥ 0; sat-
isfying Leibniz’ rule: {fg, h} = f{g, h} + g{f, h}.

While a generalized Poisson bracket [·, ·] asso-
ciates with matrix Q(x):

[f, g] = ∂ifQij∂jg,

and can be generally defined as antisymmetric:
[f, g] = −[g, f ]; satisfying Leibniz’ rule: [fg, h] =
f [g, h] + g[f, h].

Hence, the original differential equations can be
expressed as:

ẋi = −{xi,Ψ} + [xi,Ψ].

That is, a generic dynamical system is a direct
composition of the two well-studied geometric
structures.

Later, this gradient-rotation decomposition
framework would provide additional insight to the
understanding of chaotic attractors and strange
attractors.

3. Simplified Geometric Lorenz
Attractor

Many efforts have been made to analyze the Lorenz
system [Lorenz, 1963] as a typical model for chaos
[Li et al., 2012]. Yet to the best knowledge of the
authors, there is only numerical evidence that the
Lorenz equations support a robust strange attractor
[Tucker, 1999]. Total understanding of the Lorenz
attractor, including but not limited to an analytic
proof that the Lorenz attractor is chaotic is still
lacking [Smale, 1998].

An early work [Guckenheimer & Williams,
1979] attempted to study chaotic systems by con-
structing a geometric model in a piecewise fashion
to resemble the Lorenz system. The resultant “geo-
metric Lorenz attractor” from the piecewise model
is studied in some depth and an analogy is made
between it and the Lorenz system [Tucker, 1999].
This methodology is practically effective, yet the
model system can become even simpler to be ana-
lytically proved as chaotic.

Hence, we start out constructing a simplified
geometric Lorenz attractor. The model system is

1To avoid confusion, we restrict the use of generalized Poisson brackets in this section (Sec. 2).
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described by piecewise continuous ordinary differ-
ential equations (ODE), similar to the “geometric
Lorenz attractor”. We integrate trajectories in each
continuous region of the model system. Then we
reveal the structure of the attractor by finding
the Poincaré map between the continuous regions.
Through the Poincaré map, the attractor is proved
to be a chaotic attractor according to the widely
applied definition [Robinson, 2004] of Devaney
chaos.

3.1. Model system description

The piecewise continuous ODE model is described
in each continuous region (from RA to RC , along
with RB′ and RC′ as the symmetric counterparts of
RB and RC) as follows, corresponding to Fig. 1.

(1) In region RA, where x ∈ [0, 2],2 y ∈ [−2, 2],
z ∈ [0, 2], yz ∈ [−2, 2]:




ẋ = 0

ẏ = y

ż = −z.

(6)

The dynamics in this region is characterized by
saddle points at y = z = 0. These saddle points
are responsible for causing bifurcation in origi-
nally closed trajectories.

(2) Region RB is defined as: x ∈ [0, 2/3 + 8/(3π)×
θ], y ∈ (2, 4], z ∈ [0, 2],

√
(z − 2)2 + (y − 2)2 ∈

[1, 2], where:

θ = arccos
y − 2√

(z − 2)2 + (y − 2)2
,

denoting the angle that point (y, z) form with
respect to the center (2, 2).
In RB : 



ẋ = − x

θ +
π

4
ẏ = 2 − z

ż = y − 2.

(7)

Trajectories in this region rotate for an angle of
π/2 with respect to y = z = 2 and contract in
the x direction.

(3) In region RC , where x ∈ [0, 2/3], y ∈
[−1, 4], z > 2,

√
(z − 2)2 + (y − 2)2 ≥ 1,

Fig. 1. The Simplified Geometric Lorenz Attractor. The dynamical system we study here is defined piecewise in regions RA,
RB , and RC , along with regions RB′ and RC′ as the symmetric counterparts of RB and RC . The front, side, and top views of
the regions of definition are shown in panels (a) through (c) respectively. Trajectories of this dynamical system would converge
into an attractor AL (cf. Sec. 3.4 and Fig. 7), which is a simplified version of the geometric Lorenz attractor.

2The square brackets in this (Sec. 3) and the following sections mean closed intervals, not the generalized Poisson brackets.
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√
(z − 2)2 + (y − 3/2)2 ≤ 5/2:


ẋ = 0

ẏ = 2 − z

ż =
9y
8

− 21
8

+

√
(3y − 7)2 + 8(z − 2)2

8
.

(8)

In this region, trajectories rotate for another
angle of π with respect to y = z = 2 and expand
in the y direction.

The whole system is set symmetrical with
respect to the line: x = 1; y = 0; z ∈ R.
We change the coordinate of (x, y, z) into (2 −
x,−y, z) to have expressions of the vector field
in regions RB′ and RC′ from expressions in
regions RB and RC .

(4) Region RB′ is defined as: x ∈ [4/3−8/(3π)× θ,

2], y ∈ [−4,−2), z ∈ [0, 2],
√

(z − 2)2 + (y + 2)2 ∈
[1, 2], where:

θ = arccos
−y − 2√

(z − 2)2 + (y + 2)2
,

denoting the angle that point (y, z) form with
respect to the center (−2, 2).
In RB′ : 



ẋ =
2 − x

θ +
π

4
ẏ = z − 2

ż = −y − 2.

(9)

Vector field in region RB′ corresponds exactly
to that in RB.

(5) In region RC′ , where x ∈ [4/3, 2], y ∈
[−4, 1], z > 2,

√
(z − 2)2 + (y + 2)2 ≥ 1,√

(z − 2)2 + (y + 3/2)2 ≤ 5/2:


ẋ = 0

ẏ = z − 2

ż = −9y
8

− 21
8

+

√
(3y + 7)2 + 8(z − 2)2

8
.

(10)

Vector field in region RC′ corresponds exactly
to that in region RC .

We note that the model system in regions
RB′ and RC′ is just a change of variables of the
system in regions RB and RC . To avoid redun-
dancy, we will only take regions RA, RB and
RC to represent all the regions of definition in
the following analysis.

3.2. Near saddle-focus fixed points

We have constructed the model system containing
one saddle fixed point. As in the Lorenz system,
there would actually be another two saddle-focus
fixed points when the system expands to the whole
R

3 space. In this section, we complete the dynami-
cal system near the two saddle-focus fixed points so
that the convergence behavior away from the attrac-
tor can be further demonstrated.

We denote the regions near the two saddle-focus
fixed points as regions RD and RD′ (cf. Fig. 2), each
consisting of three parts. For region RD, we denote
the three parts as: regions RDA , RDB , and RDC .
Regions RD and RD′ are symmetrical with respect
to the line: x = 1; y = 0; z ∈ R, just as in the previ-
ous section. Hence, we follow the convention stated
in the previous section: to take regions RDA′ , RDB ′ ,
and RDC ′ representing their symmetrical counter-
parts. The regions: RDA , RDB , and RDC and the
differential equations in them are written as the fol-
lowing.

(1) Region RDA is close to region RA and is defined
as: x ∈ [0, 2], y ∈ [1, 2], z ∈ [1, 2], yz ∈ (2, 4].
We simply take differential dynamical system
in it to be the same as that in region RA:


ẋ = 0

ẏ = y

ż = −z.

(11)

States in this region are unstable in the y direc-
tion and stable in the z direction, causing a
rotation effect.

(2) Region RDB is close to region RB and is defined
as: x ∈ [0, 2/3+8/(3π)×θ], y ∈ (2, 3], z ∈ [1, 2],√

(z − 2)2 + (y − 2)2 < 1.
Here,

θ = arccos
y − 2√

(z − 2)2 + (y − 2)2
,

denoting the angle that point (y, z) form with
respect to the center (2, 2).
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Fig. 2. Near Saddle-Focus Fixed Points. When the system expands to contain regions RD and RD′ , two saddle-focus fixed
points would emerge. This figure elaborates on the system near the two saddle-focus fixed points. (a) The regions containing
the two saddle-focus fixed points, i.e. RD and RD′ are shown along with other regions. (b)–(d) The front, top, and side views
of region RD are shown respectively.

In region RDB :


ẋ = − x

θ +
π

4
ẏ = 2 − z

ż = y − 2.

(12)

Same as in region RB , trajectories in this region
rotate for an angle of π/2 with respect to y =
z = 2 and contract in the x direction.

(3) In region RDC , where x ∈ [0, 2/3], y ∈ [1, 3],
z > 2,

√
(z − 2)2 + (y − 2)2 < 1:



ẋ = 0

ẏ = 2 − z + (y − 2)

×
(

1√
(z − 2)2 + (y − 2)2

− 1

)

ż = y − 2 + (z − 2)

×
(

1√
(z − 2)2 + (y − 2)2

− 1

)
.

(13)

In this region, trajectories tend to converge
to the unit-radius circle centered at y =
z = 2. Hence, states in the whole region

RD are attracted to the circle: x = 0,√
(z − 2)2 + (y − 2)2 = 1.

It is observable that region RD containing a
saddle-focus fixed point, forms a semi-stable limit
cycle at x = 0,

√
(z − 2)2 + (y − 2)2 = 1 (when y,

z ∈ [1, 2], the curve of the limit cycle changes
expression to: x = 0, yz = 2). This limit cycle
locates at the boundaries between region RD and
its adjacent regions. This phenomenon corresponds
with many observations that fixed points transit
into chaotic behaviors through limit cycles [Zhou &
Weinan, 2010].

Also, this section demonstrates that the domain
of definition in the model system is not restricted
to the regions discussed above. If we take dynami-
cal system in the rest of R

3 space converging into
the defined regions (RA through RD, RB′ through
RD′), the domain of definition can be expanded to
the whole space.

3.3. Trajectory and Poincaré map

Based on Eqs. (5)–(9), we simulate the trajectory
of the dynamical system (shown in Fig. 3). Tra-
jectories in each region can be analytically solved.
To study the structure of the attractor, we solve
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Fig. 3. Simulated Trajectory of the System. We simulated a trajectory of the dynamical system constructed. It appears to
have “erratic” behaviors, similar to the Lorenz system.

the trajectories in regions RA, RB, and RC respec-
tively:

(1) In region RA, trajectories are represented as:


x = x0

y = y0e
t

z = z0e
−t,

(14)

where z0 can usually be taken as 2.
Hence, states in this region are exponentially

unstable in the y direction and exponentially
stable in the z direction.

(2) In region RB , trajectories are:


x = x0

(
1 − 4

3π
t

)

y =
√

(y0 − 2)2 + (z0 − 2)2 sin t + 2

z = −
√

(y0 − 2)2 + (z0 − 2)2 cos t + 2,

(15)

where y0 can be 2.

Parameter t increases from 0 to π/2, and we
can observe that x(t) decreases monotonically
while y(t) and z(t) form a circle.

(3) In region RC , trajectories are:


x = x0

y =

√(
3
2
y0 − 7

2

)2

+ (z0 − 2)2 cos t

+
1
3


1−

√(
3
2
y0 − 7

2

)2

+(z0 − 2)2


+ 2

z =

√(
3
2
y0 − 7

2

)2

+ (z0 − 2)2 sin t + 2,

(16)

where z0 can be 2.
As t increases from 0 to π, trajectories in

region RC move along circles determined by
initial conditions.
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Fig. 4. Poincaré Map of the Dynamical System. This
Poincaré map is taken over the surface of z = 2. This map is
a “baker’s map” and creates a Cantor set multiplying a real
line segment.

To further study the structure of the attractor
of the system, we want to calculate the Poincaré
map of the system. Here, we take the Poincaré
surface of section as: z = 2, and find the resul-
tant Poincaré map as a discrete dynamical sys-
tem defined on [0, 2] × [−1, 1] (shown in Fig. 4 and
follows).

When (x, y) ∈ [0, 2] × [0, 1],




xn+1 =
1
3
xn

yn+1 = 2yn − 1;
(17)

When (x, y) ∈ [0, 2] × [−1, 0),




xn+1 =
1
3
xn +

4
3

yn+1 = 2yn + 1.
(18)

The above discrete dynamical system is a
“baker’s map” [Kuznetsov, 2012], and can be under-
stood figuratively as the following. In the x direc-
tion, the mapping is contractive. The square of
definition: [0, 2] × [−1, 1] is contracted to the one
third of it, forming a rectangle: [0, 2/3] × [−1, 1].
In the y direction, the mapping is expansive just
as the doubling map [Robinson, 2004]. The rect-
angle is stretched to: [0, 2/3] × [−3, 1]. Then we
keep the right half of the resulting rectangle and
move the left half: [0, 2/3] × [−3,−1) to the posi-
tion: [0, 2/3] × [−1, 1). It can readily be seen that
the invariant set is formed by iteratively remov-
ing the middle third of the intervals along the x
direction.

3.4. Attractor of the model system

We denote the attractor of the model system as:
AL. And with the Poincaré map of the model sys-
tem defined as a dynamical system on [0, 2]× [−1, 1]
[Eqs. (17) and (18)], we denote its attractor as:
AP . In this section, we first express attractor AP of
the Poincaré map in terms of the Cantor set; then
we can describe attractor AL of the original model
system.

Here, an attractor A of a dynamical sys-
tem with flow φt can be formally defined as the
following.

Definition 3.1 (Attractor). An attractor A of a
dynamical system ẋ = f(x) with flow φt is a com-
pact invariant set, with an open set U containing A

such that for each x ∈ U , φt(x) ∈ U for all t ≥ 0
and A =

⋂
t≥0 φt(U).

We have already found the Poincaré map of the
model system by iteratively removing the middle
third of the invariant sets along the x direction.
That is, first, remove the set (2/3, 4/3) × [−1, 1];
then, remove the middle third of the left two sets
[0, 2/3] × [−1, 1] and [4/3, 2] × [−1, 1]; and iterate
the process all along. We represent all the removed
intervals iteratively as the following:

C1 =
(

2
3
,
4
3

)
× [−1, 1]

and

Cn+1 =
(

Cn

3
∪ Cn + 4

3

)
× [−1, 1]. (19)

The attractor of the Poincaré map is [0, 2] ×
[−1, 1] minus the union of all the sets Ci:

AP = [0, 2] × [−1, 1] −
∞⋃
i=1

Ci × [−1, 1]

=

(
[0, 2] −

∞⋃
i=1

Ci

)
× [−1, 1]

= C × [−1, 1], (20)

where C denotes the Cantor set [Peitgen et al., 2004]
defined on the interval of [0, 2].

Attractor AP of the Poincaré map is the Cantor
set multiplying a real line segment. We can calculate
its box-counting dimension [Peitgen et al., 2004]
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to be:

db(AP ) = lim inf
ε→0

log N(ε, AP )

log
(

1
ε

)

= 1 +
ln(2)
ln(3)

. (21)

Here, we consider subdivision of R
n into boxes of

sides of length ε. And N(ε, AP ) denotes the num-
ber of ε-boxes needed to cover the attractor AP (a
more elaborate definition can be found in [Robin-
son, 1995]). According to the calculation, attrac-
tor AP is of fractal dimension, a strange attractor
[Anishchenko & Strelkova, 1998].

With the trajectories of the system analytically
solved in each region, we further express attrac-
tor AL of the model system as (assuming θ =
arccos(y − 2)/

√
(z − 2)2 + (y − 2)2):

In region RA, x ∈ C;
In region RB, (4/(3π) × θ + 1/3)−1x ∈ C;
In region RC , x ∈ C.

The box-counting dimension of attractor AL is
then calculated to be:

db(AL) = lim inf
ε→0

log N(ε, AL)

log
(

1
ε

)

= 2 +
ln(2)
ln(3)

. (22)

The attractor AL of the model system is hence a
strange attractor with fractal dimension.

It will also be proved in the following Sec. 3.5
that attractors AP and AL are chaotic attractors.

3.5. Proof of the attractor
as chaotic

By the widely applied definition [Robinson, 2004]
of Devaney chaos, an attractor A is defined as a
chaotic attractor if:

(1) the attractor is indecomposable (i.e. if ∅ �= A
′ ⊆

A is an attractor, then A
′ = A);

(2) the system is sensitive to initial conditions when
restricted to A (defined in the following Defini-
tion 3.2).

Definition 3.2. A map (a continuous-time system
is defined similarly) has sensitive dependence on ini-
tial conditions when restricted to its invariant set A,

if there exists r, for any p0 ∈ A, and δ > 0, there
exists p′0 ∈ A: |p′0 − p0| < δ, and an iterate k > 0
such that

|fk(p′0) − fk(p0)| ≥ r. (23)

Attractor AL has already been taken as the
smallest attracting set, so it is an indecomposable
attractor by default. We just need to prove that the
system has sensitive dependence on initial condi-
tions when restricted to AL.

We first prove that attractor AP of the Poincaré
map is chaotic using the fact that the doubling map
[Robinson, 2004] is sensitively dependent upon ini-
tial conditions when restricted to its attractor. Then
we prove in exactly the same way that attractor AL

of the model system is chaotic by the sensitivity
of AP .

Proposition 1 [Sensitive Dependence of the
Poincaré Map]. The Poincaré map of the model sys-
tem has sensitive dependence upon initial conditions
when restricted to its attractor AP .

Proof. For any p0 ∈ AP , with its neighboring ini-
tial point p′0 ∈ AP , we take p′0 as (x′

0, y
′
0) = (x′

0,
y′0 − δ · Sign(y0)).

Clearly, ‖pn − p′n‖ ≥ |yn − y′n|. So, proving sen-
sitivity to initial conditions of AP is equivalent to
that of the Doubling Map:

yn+1 = �2yn�, (yi ∈ (0, 1),∀ i). (24)

With the sensitive dependence upon initial condi-
tions of doubling map when restricted to its attrac-
tor proved [Robinson, 2004], Poincaré map of the
model system is also sensitive when restricted to its
attractor AP . �

In exactly the same way, the model system
can thus be proved sensitively dependent upon ini-
tial conditions when restricted to its attractor AL.
Hence, it is a chaotic attractor by definition.

We also calculate the commonly used indicator
of chaos: Lyapunov exponents [Robinson, 2004] for
the model system at fixed points. By solving the
Lyapunov exponents in each coordinate direction,
we find that in region RA: �x = 0, �y = 1, and
�z = −1. It can be found that there is a positive
Lyapunov exponent �y = 1 denoting exponential
expansion in the y direction. In regions RB and RC ,
�x = �y = �z = 0, which means that the expansion
effect causing the sensitivity of the system is mainly
exerted in region RA.
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Here, the Lyapunov exponents are calculated
to demonstrate that the mixing effect is imposed
by the saddle dynamics at the center; while other
parts of the system facilitate recurrence, an interest-
ing phenomenon observed in the Lorenz system. It
should be noted that in time varying systems, pos-
itive largest Lyapunov exponent may not guaran-
tee chaoticity [Leonov & Kuznetsov, 2007; Leonov,
2008].

From this and the former section, we find that
the attractor of the model system is a chaotic
attractor with fractal dimension: a strange chaotic
attractor [Anishchenko & Strelkova, 1998].

4. Construction of Potential
Function in the Chaotic System

Based on the above observation, we want to start
constructing a potential function to describe the
overall structure of the chaotic system. First, we
construct a “seed function”, F , to account for the
“strangeness” of the system’s attractor. Then we
prove its continuous differentiability so that it can
be applied in the construction of potential function
for the model system. Later, we explicitly express
the potential function in terms of the seed func-
tion F .

4.1. Definition of the “seed
function” F

Definition 4.1 [Function F ]. Let

f1(x) =




0, x ∈
[
0,

2
3

]
∪
[
4
3
, 2
]

1 − cos(3πx), x ∈
(

2
3
,
4
3

)
;

(25)

and

fn+1(x) =




1
9
× fn(3x), x ∈

[
0,

2
3

]

0, x ∈
(

2
3
,
4
3

)

1
9
× fn(3x − 4), x ∈

[
4
3
, 2
]
.

(26)

Thus, we define the function F(x) as:

F(x) =
∞∑

n=1

fn(x). (27)

Fig. 5. Illustration of the Self-Similar Function: F . We
hereby plot function F to intuitively visualize it. With F ,
construction of a potential function in the chaotic system
would be natural.

Function F(x) defined on [0, 2] is shown in
Fig. 5. It has a fractal structure as the attractor
AP of the Poincaré map.

4.2. Proof of F(x) as continuous
differentiable

In this subsection, we prove that the function F(x)
defined by Eq. (27) is continuously differentiable.

Proposition 2 [Continuous Differentiability of
Function F ]. Function F(x) =

∑∞
n=1 fn(x) defined

in Definition 4.1 is continuously differentiable.

Proof. We first calculate the derivative of every
fn(x) on [0, 2]. Then we bound fn(x) and |f ′

n(x)|
by geometric series to prove uniform convergence of
their sums, thus proving that F(x) =

∑∞
n=1 fn(x)

is continuously differentiable.
By definition [Eqs. (25) and (26)]:

f1(x) =




0, x ∈
[
0,

2
3

]
∪
[
4
3
, 2
]

1 − cos(3πx), x ∈
(

2
3
,
4
3

)

and

fn+1(x) =




1
9
× fn(3x), x ∈

[
0,

2
3

]

0, x ∈
(

2
3
,
4
3

)

1
9
× fn(3x − 4), x ∈

[
4
3
, 2
]
,
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taking derivative on both sides:

f ′
1(x) =




0, x ∈
[
0,

2
3

]
∪
[
4
3
, 2
]

3π sin(3πx), x ∈
(

2
3
,
4
3

)

and

f ′
n+1(x) =




1
3
× f ′

n(3x), x ∈
[
0,

2
3

]

0, x ∈
(

2
3
,
4
3

)

1
3
× f ′

n(3x − 4), x ∈
[
4
3
, 2
]
.

We can see that f1(x) ≤ 2 and |f ′
1(x)| ≤ 3π.

And also, f ′
n(x) is continuous for any x ∈ [0, 2].

If we further denote the set in which fn(x) is
nonzero as Cn, we have:

C1 =
(

2
3
,
4
3

)

and

Cn+1 =
Cn

3
∪ Cn + 4

3
. (28)

Since Cn ⊂ [0, 2],

Cn

3
∩ Cn + 4

3
⊂
[
0,

2
3

]
∩
[
4
3
, 2
]

= ∅.

We thus can conclude that:

fn+1(x) ≤ 1
9
fn(x) ≤ 9−nf1(x) ≤ 2 × 9−n

and

|f ′
n+1(x)| ≤ 1

3
|f ′

n(x)| ≤ 3−n|f ′
1(x)| ≤ 3π × 3−n,

for any x ∈ [0, 2].
At this point, we give an upper bound for the

series
∑m

n=1 fn(x) and its derivative (although the
least upper bound is even smaller if we note that
Cn ∩ Cn+1 is actually empty, an upper bound is
good enough):

m∑
n=1

fn(x) ≤ 9
4
− 1

4
× 9−m,

and that
m∑

n=1

|f ′
n(x)| ≤ 9π

2
− 3π

2
× 3−m.

∑m
n=1 fn(x) is uniformly convergent and∑∞

n=1 f ′
n(x) is uniformly absolutely-convergent.

Therefore,
∑∞

n=1 f ′
n(x) and

∑∞
n=1 fn(x) are all uni-

formly convergent.
With every fn(x) continuously differentiable,

F(x) =
∑∞

n=1 fn(x) is continuously differentiable:

d

dx
F(x) =

∞∑
n=1

f ′
n(x). (29)

�

Clearly, the points where F(x) = F ′(x) = 0
form a Cantor set C corresponding to the attractor
AL of the model system (F(x) = 0 if and only if
x ∈ C). At this point, we found that the potential
function can be constructed in the following section.

4.3. Constructing potential
function in the chaotic system

As in Eq. (12) we use θ to denote the angle that
(y, z) form with respect to the center (2, 2):

θ = arccos
y − 2√

(z − 2)2 + (y − 2)2
.

Then, we construct potential function in each region
respectively:

(1) In the right part of region RA, where x, y, z ∈
[0, 2], yz ∈ [−2, 2]:

ΨA =
(

4
9π

θ +
5
9

)
F(x). (30)

(2) In region RB , where x ∈ [0, 2], y ∈ (2, 4],
z ∈ [0, 2],

√
(z − 2)2 + (y − 2)2 ∈ [1, 2]:

ΨB =
(

4
9π

θ +
5
9

)
F
((

4
3π

θ +
1
3

)−1

x

)
.

(31)

(3) In region RC , where x ∈ [0, 2/3], y ∈
[−2, 4], z > 2,

√
(z − 2)2 + (y − 2)2 ≥ 1,√

(z − 2)2 + (y − 3/2)2 ≤ 5/2:

ΨC =
(
− 4

9π
θ +

5
9

)
F(3x). (32)

We plot the potential function taken on the
Poincaré section in Fig. 6.

If we are also interested in the dynamics near
saddle-focus fixed points, the potential function
in regions RDA , RDB , and RDC can also be
constructed as follows.
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Fig. 6. Potential Function on Poincaré Section. On the
Poincaré section, the potential function is demonstrated to
be a fractal object: it is zero when point (x, y, 2) belongs to
the attractor AL, i.e. Ψ|z=2 = 0 when x ∈ C. And when
(x, y, 2) does not belong to the attractor, the potential func-
tion Ψ has a self-similar structure.

(1) In region RDA , where x ∈ [0, 2], y ∈ [1, 2],
z ∈ [1, 2], yz ∈ [2, 4]:

ΨDA =
(

4
9π

θ +
5
9

)
F(x) + 1 −

(
1
2
yz − 2

)2

.

(33)

(2) In region RDB , where x ∈ [0, 2/3 + 8/(3π)× θ],
y ∈ [2, 3], z ∈ [1, 2],

√
(z − 2)2 + (y − 2)2 ∈

[0, 1]:

ΨDB =
(

4
9π

θ +
5
9

)
F
((

4
3π

θ +
1
3

)−1

x

)

+ 1 − (z − 2)2 − (y − 2)2. (34)

(3) In region RDA , where x ∈ [0, 2/3], y ∈ [1, 3],
z > 2,

√
(z − 2)2 + (y − 2)2 ≤ 1:

ΨDC =
(
− 4

9π
θ +

5
9

)
F(3x)

+ 1 − (z − 2)2 − (y − 2)2. (35)

Potential function in region RD is gradually higher
in the center of the region than in its boundary
with other regions. Hence, points in this region
will naturally converge to its boundary (at x =
0,
√

(z − 2)2 + (y − 2)2 = 1, when y > 2 or z > 2;
and at x = 0, yz = 2, when y, z ∈ [1, 2]).

The construction of the potential function is
not unique. If we change the expression of f1(x) in

the definition of the “seed function” F(x), we can
have a different potential function for the system.

5. Verification of the Potential
Function

In this section, we verify the integrity of the poten-
tial function from three angles: First, we show that
it is continuous in the domain. Second, we demon-
strate that it decreases monotonically along the vec-
tor field. Third, we show that ∇Ψ(x) = 0 if and only
if x belongs to the attractor of the system.

5.1. Continuity of the potential
function

(1) At the boundary of region RA and RB, y = 2,
x ∈ [0, 2], z ∈ [0, 1].

Substituting values of x, y, z into Eq. (30),
θ = arccos 0 = π/2; (4/(3π) × θ + 1/3)−1 = 1;
and (4/(9π) × θ + 5/9) = 7/9. Therefore,

ΨA|y=2− =
7
9
F(x) = ΨB1 |y=2+ .

(2) At the boundary of region RB and RC , z = 2,
x ∈ [0, 2/3], and y ∈ [3, 4].

Substituting values of x, y, z into Eq. (31),
θ = arccos 1 = 0; (4/(3π)× θ +1/3)−1 = 3; and
(±4/(9π) × θ + 5/9) = 5/9. Therefore,

ΨB |z=2− =
5
9
F(3x) = ΨC1 |z=2+ .

(3) At the boundary of region RC and RA, z = 2,
x ∈ [0, 2/3], and y ∈ [−1, 1].

Substituting values of x, y, z into Eq. (32),
θ = arccos(−1) = π; (4/(9π) × θ + 5/9) = 1;
and (−4/(9π) × θ + 5/9) = 1/9. Therefore,

ΨA|z=2− = F(x) ΨC |z=2+ =
1
9
F(3x).

It can be observed that in the definition of
F(x) =

∑∞
n=1 fn(x),

fn+1(x) =
1
9
fn(3x), x ∈

[
0,

2
3

]
.

Because f1(x) = 0 in [0, 2/3],

1
9
F(3x) =

∞∑
n=2

fn(x) = F(x), (36)

for x ∈ [0, 2/3].
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Please note that this is a critical point in the construction of potential function in cases of self-similar
attractors. If the potential function constructed is not self-similar accordingly, the boundary would not
totally fit.

5.2. Monotonic decreasing of the potential function

In this subsection, we take Lie derivative (derivative along the vector field) [Arnold, 1983] of the potential
function along vector fields in each region remembering that F(x) ≥ 0 for any x ∈ [0, 2].

(1) In the right part of region RA, where x, y, z ∈ [0, 2], yz ∈ [−2, 2]:


ẋ = 0

θ̇ = Sgn(z − 2)
(
− z − 2

(z − 2)2 + (y − 2)2
ẏ +

y − 2
(z − 2)2 + (y − 2)2

ż

)
= −(2 − y)z + (2 − z)y

(z − 2)2 + (y − 2)2
.

Since ẋ = 0 and y, z ∈ [0, 2],

Ψ̇A =
4
9π

F(x)θ̇ = − 4
9π

(2 − y)z + (2 − z)y
(z − 2)2 + (y − 2)2

F(x) ≤ 0. (37)

(2) In region RB , where x ∈ [0, 2], y ∈ (2, 4], z ∈ [0, 2],
√

(z − 2)2 + (y − 2)2 ∈ [1, 2]:


ẋ = −x

(
π

4
+ arccos

y − 2√
(z − 2)2 + (y − 2)2

)−1

= −x

(
π

4
+ θ

)−1

θ̇ =
z − 2

(z − 2)2 + (y − 2)2
ẏ − y − 2

(z − 2)2 + (y − 2)2
ż = −1.

Ψ̇B =
4
9π

F
((

4
3π

θ +
1
3

)−1

x

)
θ̇ +

(
4
9π

θ +
5
9

)(
4
3π

θ +
1
3

)−2

F ′
((

4
3π

θ +
1
3

)−1

x

)

×
((

4
3π

θ +
1
3

)
ẋ − 4

3π
xθ̇

)

= − 4
9π

F
((

4
3π

θ +
1
3

)−1

x

)
+
(

4
9π

θ +
5
9

)(
4
3π

θ +
1
3

)−2

F ′
((

4
3π

θ +
1
3

)−1

x

)

×
(
−
(

4
3π

θ +
1
3

)(π

4
+ θ
)−1

x +
4
3π

x

)
.

Since (−( 4
3πθ + 1

3)(π
4 + θ)−1x + 4

3πx) = 0,

Ψ̇B = − 4
9π

F
((

4
3π

θ +
1
3

)−1

x

)
≤ 0. (38)

(3) In region RC , where x ∈ [0, 2/3], y ∈ [−1, 4], z > 2,
√

(z − 2)2 + (y − 2)2 ≥ 1,√
(z − 2)2 + (y − 3/2)2 ≤ 5/2:


ẋ = 0

θ̇ = − z − 2
(z − 2)2 + (y − 2)2

ẏ +
y − 2

(z − 2)2 + (y − 2)2
ż

=
(z − 2)2

(z − 2)2 + (y − 2)2
+

y − 2
(z − 2)2 + (y − 2)2

(
9y
8

− 21
8

+

√
(3y − 7)2 + 8(z − 2)2

8

)
> 0.
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Hence,

Ψ̇C = − 4
9π

F(3x)θ̇ ≤ 0. (39)

5.3. Potential function and the attractor

In this subsection, we verify that the potential function attains extremum: ∇Ψ(x) = 0 if and
only if x = (x, y, z) belongs to the attractor AL of the system. Again, θ = arccos(y − 2)/√

(z − 2)2 + (y − 2)2.

(1) In the right part of region RA, where x, y, z ∈ [0, 2], yz ∈ [−2, 2]:

∇ΨA =




(
4
9π

θ +
5
9

)
F ′(x)

4
9π

z − 2
(z − 2)2 + (y − 2)2

F(x)

− 4
9π

y − 2
(z − 2)2 + (y − 2)2

F(x)




.

In this equation, F(x) = 0 and F ′(x) = 0 if and only if x ∈ C; and point (x, y, z) belongs to the
attractor AL if and only if x ∈ C. Combining the two equivalence relations, ∇ΨA = 0 if and only if
(x, y, z) ∈ AL.

(2) In region RB , where x ∈ [0, 2], y ∈ (2, 4], z ∈ [0, 2],
√

(z − 2)2 + (y − 2)2 ∈ [1, 2]:

∇ΨB =




(
4
9π

θ +
5
9

)(
4
3π

θ +
1
3

)−1

F ′
((

4
3π

θ +
1
3

)−1

x

)

4
9π

z − 2
(z − 2)2 + (y − 2)2

×
(
F
((

4
3π

θ +
1
3

)−1

x

)
−
(

4
3π

θ +
5
3

)(
4
3π

θ +
1
3

)−2

F ′
((

4
3π

θ +
1
3

)−1

x

))

− 4
9π

y − 2
(z − 2)2 + (y − 2)2

×
(
F
((

4
3π

θ +
1
3

)−1

x

)
−
(

4
3π

θ +
5
3

)(
4
3π

θ +
1
3

)−2

F ′
((

4
3π

θ +
1
3

)−1

x

))




.

In this equation, F((4/(3π) × θ + 1/3)−1x) = 0 and F ′((4/(3π) × θ + 1/3)−1x) = 0 if and only if
(4/(3π) × θ + 1/3)−1x ∈ C; and point (x, y, z) belongs to the attractor AL if and only if (4/(3π) × θ +
1/3)−1x ∈ C. Combining the two equivalence relations, ∇ΨB = 0 if and only if (x, y, z) ∈ AL.

(3) In region RC , where x ∈ [0, 2/3], y ∈ [−1, 4], z > 2,
√

(z − 2)2 + (y − 2)2 ≥ 1,√
(z − 2)2 + (y − 3/2)2 ≤ 5/2:

∇ΨC =




(
− 4

3π
θ +

5
3

)
F ′(3x)

4
9π

z − 2
(z − 2)2 + (y − 2)2

F(3x)

− 4
9π

y − 2
(z − 2)2 + (y − 2)2

F(3x)




.
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In this equation, F(3x) = 0 and F ′(3x) = 0 if
and only if x ∈ C; and point (x, y, z) belongs to
the attractor AL if and only if x ∈ C. Combin-
ing the two equivalence relations, ∇ΨC = 0 if
and only if (x, y, z) ∈ AL.

In exactly the same way, we can also show the
integrity of the potential function in region RD.

6. Comparison with Related Works

As discussed in the introduction, constructing a
potential-like function in the chaotic system is
an effort that is by no means totally strange to
researchers. Until recently, there are various efforts
seeking to describe chaotic dynamics using general-
ized Hamiltonian approach [Sira-Ramirez & Cruz-
Hernandez, 2001], energy-like function technique
[Sarasola et al., 2005], minimum action method
[Zhou & Weinan, 2010], and etc. These previous
methods all construct a potential-like scalar func-
tion to analyze certain chaotic system. Unfortu-
nately, the scalar functions in these works all lack
certain important properties.

For example, the generalized Hamiltonian sys-
tems approach takes a quadratic form of the state
variables as the “generalized Hamiltonian” [Sira-
Ramirez & Cruz-Hernandez, 2001], a Hamiltonian
that includes conserved dynamics, energy dissipa-
tion, and energy input: corresponding to the case
of J(x) �= 0 in Eq. (5). This generalized Hamilto-
nian increases and decreases along with time and
becomes a chaotic oscillating signal itself. There-
fore, it remains an issue as to what additional
insight this generalized Hamiltonian can provide
about the original system.

The energy-like function technique is essentially
similar to the generalized Hamiltonian approach.
Its energy-like function differs from the generalized
Hamiltonian in a way that it may not be a quadratic
form of the state variables. Rather, the energy-like
function is constructed based on the “geometric
appearance” [Sarasola et al., 2005] of the attrac-
tor corresponding to the specific chaotic system.
Although this technique would seem more sophisti-
cated, its energy-like function still oscillates chaot-
ically along with time, describing chaotic dynamics
in a chaotic fashion. Loss of monotonicity restricts
the function from describing the system’s essential
properties like stability and controllability [Sabuco
et al., 2012; Guo et al., 2012].

The minimum action method, however, casts
the problem under the light of zero noise limit. By
constructing an auxiliary Hamiltonian [Freidlin &
Wentzell, 2008] (commonly denoted as “Freidlin–
Wentzell Hamiltonian”), Freidlin–Wentzell action
functional can be minimized [Freidlin & Wentzell,
1998]. This method analyzes the chaotic system
by possible transitions between limit sets [Zhou &
Weinan, 2010]. But since the Freidlin–Wentzell
Hamiltonian can be not bounded even in globally
stable systems, it is not a quantitative measure com-
parable between points in state space, hence, not an
ideal potential function.

In short, each of all the previous works focuses
on one attribute of the potential function. However,
as we can see from our constructive result, only
when all the requirements (in Definition 1) are met,
would the potential function reflect evolution of the
whole system and structure of the chaotic attractor.
In this sense, the current work is the first construc-
tion to satisfy such strong conditions, providing a
both detailed and global description for a chaotic
system.

Once such Lyapunov function is obtained,
robustness analysis [Sastry, 1999], optimal control
[Zinober, 1994], and attractor dimension [Leonov,
2008] problems can be solved straightforwardly.

7. Chaotic Attractor and Strange
Attractor

With the potential function constructed, we can
solve the system’s attractor without any need of
numerical simulation. We find that the attractor is
composed of connected surfaces, each of infinite lay-
ers. Starting from the plane x = 2, we show the
configuration of these layers in Fig. 7. Since geo-
metric configuration of chaotic attractor interests
many researchers [Gilmore, 1998], we demonstrate
in the figure that the chaotic attractor of the system
studied in this paper consists of orientable surfaces.

The chaotic attractor of the model system in
this paper is a strange attractor of fractal dimension
[Anishchenko & Strelkova, 1998]. In the literature
of dynamical systems, there have long been discus-
sions about the relationship between chaotic attrac-
tors and strange attractors [Grebogi et al., 1984].
Several examples of strange nonchaotic attractors
and nonstrange chaotic attractors have been found
[Anishchenko & Strelkova, 1998]. In recent years,
strange nonchaotic attractors have been observed in
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Fig. 7. Strange Chaotic Attractor. We find that a connected surface of the attractor is of infinite layers. We show how surface
x = 2 is linked to the other equipotential layers. It can be seen that the surface of the attractor is orientable. We hereby
demonstrate the strange chaotic attractor viewed from (a) front, (b) side and (c) top. The trajectory running from point (2,
1/4, 2) is also shown in the figure.

a number of diverse experimental situations ranging
from quasiperiodically driven mechanical or elec-
tronic systems to plasma discharges. And recently,
considerable effort has gone into searching for the
occurrence of these attractors [Prasad et al., 2007].

The potential function approach provides a uni-
fied framework to treat the topics of chaotic attrac-
tors and strange attractors together. To illustrate
this insight, we need to apply our decomposition
method [Eq. (1)]:

ẋ = f(x) = −D∇Ψ(x) + Q∇Ψ(x)

where

D = − f · ∇Ψ
∇Ψ · ∇Ψ

I

and

Q =
f ×∇Ψ
∇Ψ · ∇Ψ

.

We first analyze our model system with this
decomposition framework in Sec. 7.1. In Secs. 7.2
and 7.3, we further modify our model system to two
typical cases interesting to many researchers: a non-
strange chaotic attractor and a strange nonchaotic

attractor. After analyzing these two cases, we
explain the different origins of chaotic attractors
and strange attractors in general in Sec. 7.4.

7.1. Decomposition of the chaotic
system

According to our decomposition scheme, we first
decompose the chaotic dynamical system in each
region into two components: the gradient compo-
nent and the rotation component.

In region RA, ∇ΨA is solved as:

∇ΨA =




(
4
9π

θ +
5
9

)
F ′(x)

− 4
9π

2 − z

(z − 2)2 + (y − 2)2
F(x)

4
9π

2 − y

(z − 2)2 + (y − 2)2
F(x)




.

We can find the expression of the matrix DA,
accounting for the gradient component of the vector
field in region RA:

DA = − fA · ∇ΨA

∇ΨA · ∇ΨA
I =

4
9π

(2 − y)z + (2 − z)y
(z − 2)2 + (y − 2)2

F(x)

(
4
9π

θ +
5
9

)2

(F ′(x))2 +

(
4
9π

)2

(z − 2)2 + (y − 2)2
(F(x))2

I. (40)

1450015-16

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

4.
24

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
H

A
N

G
H

A
I 

JI
A

O
 T

O
N

G
 U

N
IV

E
R

SI
T

Y
 o

n 
09

/1
6/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



February 26, 2014 19:52 WSPC/S0218-1274 1450015

Potential Function in a Continuous Dissipative Chaotic System

The decomposed gradient part would be:

DA∇ΨA =

4
9π

(2 − y)z + (2 − z)y
(z − 2)2 + (y − 2)2

F(x)

(
4
9π

θ +
5
9

)2

(F ′(x))2 +

(
4
9π

)2

(z − 2)2 + (y − 2)2
(F(x))2




(
4
9π

θ +
5
9

)
F ′(x)

− 4
9π

2 − z

(z − 2)2 + (y − 2)2
F(x)

4
9π

2 − y

(z − 2)2 + (y − 2)2
F(x)




.

Also, we can find the decomposed rotation part by finding QA as:

QA =
fA ×∇ΨA

∇ΨA · ∇ΨA

=
1

(
4
9π

θ +
5
9

)2

(F ′(x))2 +

(
4
9π

)2

(z − 2)2 + (y − 2)2
(F(x))2

×




0 −y

(
4
9π

θ +
5
9

)
F ′(x) z

(
4
9π

θ +
5
9

)
F ′(x)

y

(
4
9π

θ +
5
9

)
F ′(x) 0 − 4

9π
(2 − z)z − (2 − y)y
(z − 2)2 + (y − 2)2

F(x)

−z

(
4
9π

θ +
5
9

)
F ′(x)

4
9π

(2 − z)z − (2 − y)y
(z − 2)2 + (y − 2)2

F(x) 0




. (41)

The decomposed rotation part would then be:

QA∇ΨA =
1

(
4
9π

θ +
5
9

)2

(F ′(x))2 +

(
4
9π

)2

(z − 2)2 + (y − 2)2
(F(x))2

×




− 4
9π

(
4
9π

θ +
5
9

)
(y − 2)z + (z − 2)y
(z − 2)2 + (y − 2)2

F ′(x)F(x)

y

(
4
9π

θ +
5
9

)2

(F ′(x))2 +
(

4
9π

)2 (y − 2)2y − (y − 2)(z − 2)z
((z − 2)2 + (y − 2)2)2

(F(x))2

−z

(
4
9π

θ +
5
9

)2

(F ′(x))2 +
(

4
9π

)2 (y − 2)y(z − 2) − (z − 2)2z
((z − 2)2 + (y − 2)2)2

(F(x))2




. (42)

As the system approaches its attractor, i.e. F(x) → 0,

F(x)
(F ′(x))2

= lim
x→0

(
1
9

)n

(1 − cos(3πx))((
1
3

)n

3π sin(3πx)
)2 = lim

x→0

(
1
9

)n 1
2
(3πx)2((

1
3

)n

9π2x

)2 =
1

18π2
. (43)
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When the system converges to its attractor, the
gradient matrix DA would be:

DA = −
4
9π

(y − 2)z + (z − 2)y
(z − 2)2 + (y − 2)2(

4
9π

θ +
5
9

)2

F(x)
(F ′(x))2

I

= − 2
81π3

(y − 2)z + (z − 2)y
(z − 2)2 + (y − 2)2(

4
9π

θ +
5
9

)2 I, (44)

which is finite.
Consequently, the gradient component DA∇ΨA

of the system would converge to zero when
approaching the attractor. Motion on the attractor
is caused totally by the rotation part: QA∇ΨA.

In exactly the same way, the decomposition
procedure can be carried out in region B and region
C, and the same conclusion holds.

7.2. Nonstrange chaotic attractor

We first examine an example of nonstrange chaotic
attractor by modifying our original system a little
[in region RB , Eq. (12)]:

In region RB , we set

θ = arccos
y − 2√

(z − 2)2 + (y − 2)2
,

as in Eq. (12). Then we change the dynamical sys-
tem in region RB (defined as x ∈ [0, 4/π × θ],
y ∈ [2, 4], z ∈ [0, 2],

√
(z − 2)2 + (y − 2)2 ∈ [1, 2])

to: 


ẋ = −x

θ

ẏ = 2 − z

ż = y − 2.

The same as in the original system, the domain of
definition can be expanded to the whole R

3 space.
Consequently, the Poincaré map would be as

follows:

When (x, y) ∈ [0, 2] × [0, 1],{
xn+1 = 0

yn+1 = 2yn − 1.

When (x, y) ∈ [0, 2] × [−1, 0),{
xn+1 = 1

yn+1 = 2yn + 1.

The attractor A
′
L of the modified system

would be: (assuming θ = arccos(y − 2)/√
(z − 2)2 + (y − 2)2):

In region RA, x = 0 or 2;
In region RB , (π/2) × (x/θ) = 0 or 2;
In region RC , x = 0 or 2.

The attractor is shown in Fig. 8. We can calcu-
late its box-counting dimension to be:

db(A′
L) = lim inf

ε→0

log N(ε, A′
L)

log
(

1
ε

) = 2, (45)

which is an integer dimension. Actually, the attrac-
tor A

′
L is just two orientable surfaces folded

together. It is no longer a strange attractor
anymore.

Exactly as in the original system, the modi-
fied attractor can be proved to be chaotic. And
we can also calculate the commonly used indica-
tor of chaos: Lyapunov exponents [Robinson, 2004]
for the model system at fixed points. Lyapunov
exponents are solved in each direction as: �x = 0,
�y = 1, and �z = −1 in region RA (in other regions,
�x = �y = �z = 0). It is found that there is a posi-
tive Lyapunov exponent �y = 1 denoting exponen-
tial expansion in the y direction, exactly as in the
original model system.

The modified attractor is a nonstrange chaotic
attractor.

Now, we construct a potential function Φ for
the new dynamical system by first appointing a new
seed function F (x) defined in [0, 2]:

F (x) = 1 − cos(πx), x ∈ [0, 2].

The potential function can be represented in
terms of F as:

(1) In the right part of region RA, where x, y, z ∈
[0, 2]:

ΦA =
(

θ

π

)
F (x).

(2) In region RB , where y ∈ [2, 4], z ∈ [0, 2],√
(z − 2)2 + (y − 2)2 ∈ [1, 2], x ∈ [0, 4/π × θ]:

ΦB =
(

θ

π

)
F

(
πx

2θ

)
.
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Fig. 8. Nonstrange Chaotic Attractor. We change the expression of the system a little, so that the attractor is just two
orientable surfaces folded together, rather than a fractal structure. However, it remains to be a chaotic attractor. We hereby
demonstrate the nonstrange chaotic attractor viewed from (a) front, (b) side and (c) top. The trajectory running from point
(2, 1/4, 2) is also shown in the figure.

(3) In region RC , where x = 2, y ∈ [−2, 4], z > 2,
√

(z − 2)2 + (y − 2)2 ≥ 1,
√

(z − 2)2 + (y − 3/2)2 ≤ 5/2:

ΦC = 0.

For the potential function Φ defined above, {(x, θ) |Φ(x, θ) = 0} corresponds to the attractor.
We can further decompose the system as we did with the original model system:

ẋ = f(x) = −D∇Φ(x) + Q∇Φ(x).

In region RA:

∇ΦA =
1
π




θF ′(x)

− 2 − z

(z − 2)2 + (y − 2)2
F (x)

2 − y

(z − 2)2 + (y − 2)2
F (x)




.

DA = − fA · ∇ΦA

∇ΦA · ∇ΦA
I =

π
(2 − y)z + (2 − z)y
(z − 2)2 + (y − 2)2

F (x)

θ2(F ′(x))2 +
1

(z − 2)2 + (y − 2)2
(F (x))2

I.

(46)

The decomposed gradient part would be:

DA∇ΦA =

(2 − y)z + (2 − z)y
(z − 2)2 + (y − 2)2

F (x)

θ2(F ′(x))2 +
(F (x))2

(z − 2)2 + (y − 2)2




θF ′(x)

− 2 − z

(z − 2)2 + (y − 2)2
F (x)

2 − y

(z − 2)2 + (y − 2)2
F (x)




. (47)
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By calculating QA:

QA =
fA ×∇ΦA

∇ΦA · ∇ΦA

=
π

θ2(F ′(x))2 + (F (x))2




0 −yθF ′(x) zθF ′(x)

yθF ′(x) 0 −(2 − z)z − (2 − y)y
(z − 2)2 + (y − 2)2

F (x)

−zθF ′(x)
(2 − z)z − (2 − y)y
(z − 2)2 + (y − 2)2

F (x) 0




,

(48)

the decomposed rotation part would be:

QA∇ΦA =
π

θ2(F ′(x))2 + (F (x))2




−(y − 2)z + (z − 2)y
(z − 2)2 + (y − 2)2

θF ′(x)F (x)

yθ2(F ′(x))2 +
(y − 2)2y − (y − 2)(z − 2)z

((z − 2)2 + (y − 2)2)2
(F (x))2

−zθ2(F ′(x))2 +
(y − 2)y(z − 2) − (z − 2)2z

((z − 2)2 + (y − 2)2)2
(F (x))2




. (49)

The properties of the gradient part and the
rotation part correspond exactly to the original
model system. That is, the gradient part converges
to zero when approaching the attractor; motion on
the attractor is determined by the rotation part.

7.3. Strange nonchaotic attractor

A strange nonchaotic attractor can also be con-
structed.

We simply take the gradient of potential func-
tion Ψ of the original system in each region of
definition: 


ẋ = −∂xΨ

ẏ = −∂yΨ

ż = −∂zΨ.

If we take the left part of region RA for exam-
ple, the vector field would be:

fA =




−
(

4
9π

θ +
5
9

)
F ′(x)

− 4
9π

z − 2
(z − 2)2 + (y − 2)2

F(x)

4
9π

y − 2
(z − 2)2 + (y − 2)2

F(x)




.

The resultant ODE system defined by the gra-
dient is dynamical since it is Lipschitz continuous
in each region. And with the existence and unique-
ness of the flow guaranteed by Lipschitz continuity,
conditions for the system being a dynamical system
can be satisfied and extended to include boundaries.

The system would converge downward the
potential function Ψ until reaching the states where
Ψ = 0. Consequently, the attractor of this system
is characterized by Ψ = 0, as in the original model
system. Hence, the gradient system’s attractor is
the same attractor AL of the original model system,
whose box-counting dimension:

db(AL) = lim inf
ε→0

log N(ε, AL)

log
(

1
ε

) = 2 +
ln(2)
ln(3)

. (50)

The system has a strange attractor.
Since ∇Ψ = 0 when Ψ = 0, the dynamical sys-

tem is not sensitively dependent upon initial condi-
tions when restricted to the attractor. The attractor
is not chaotic. Also, its Lyapunov exponents at the
fixed points (where x ∈ C, y = z = 0) would be:
�x = −(1/3)n × 9π2, �y = �z = 0. Hence, it is a
strange nonchaotic attractor.

Decomposition of this system would give:
D(x) = I and Q(x) = 0. Thus, f(x) = −D∇Ψ(x)
is just the gradient system.
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7.4. Chaotic attractor versus
strange attractor

The previous two examples show that the concepts
of chaotic attractor and strange attractor do not
imply each other. Under our framework of decom-
position [Eq. (1)]:

ẋ = f(x) = −D∇Ψ(x) + Q∇Ψ(x).

Since Ψ̇ = ∇Ψ · ẋ = ∇Ψ · (D∇Ψ), Ψ decreases
monotonically according to the gradient component
D∇Ψ of the vector field f . Then the attractor is
naturally characterized by: {x∗ |D∇Ψ(x∗) = 0}.
So, whether the attractor is a strange attractor is
determined by the gradient part of the vector field.

Sensitive dependence upon initial conditions
when restricted to the attractor, however, is deter-
mined by the rotation part of the vector field: Q∇Ψ.
Once the system has evolved to the limit set, D∇Ψ
would equal to zero, and Q∇Ψ would be prevalent.
Hence, the rotational vector field on the attractor
causes the traverse motion on the limit set, leading
to dynamical sensitivity [Liao, 2012]. In this sense
nonzero rotation part of the dynamical system is
a necessary condition for causing hyperbolic chaos
[Kuznetsov, 2012].

By observing Eq. (1), we can find the following
scenarios:

When Ψ is a simple potential function, i.e.
a Morse function, the system only contains fixed
points. This type of dynamics is well understood
[Marsden & McCracken, 1976].

When Ψ is not a Morse function, in particular,
when ∇Ψ(x) = 0 on a connected fractal surface,
the system’s dynamics become complicated. In this
case, if:

(1) Q is bounded on the attractor, i.e. Q∇Ψ = 0,
and D is not zero, the system’s attractor is
strange, but there is no motion on the attrac-
tor. We have a strange nonchaotic attractor.
Dynamic behavior near such attractor is domi-
nated by the gradient part;

(2) Q∇Ψ �= 0 on the attractor, and D is uniformly
zero in the whole space, the system is charac-
terized by conserved dynamics. The attractor
would be the whole state space, and hence, non-
strange. But chaotic motion still exists in this
situation, corresponding to the previous obser-
vation of Hamiltonian chaos [Lai et al., 1993];

(3) Q∇Ψ �= 0 on the attractor, and D is not
zero, the system has a strange chaotic attractor.
Outside the attractor, the gradient part: D∇Ψ
determines that the system is dissipative; on the
attractor, the system has conserved dynamics,
as a result of nonzero rotation part: Q∇Ψ.

When {x |∇Ψ(x) = 0} is not fractal, but has
nontrivial structure (at least cannot be embedded
in a three-dimensional surface of zero genus), the
attractor is not strange anymore. But, as shown in
Sec. 7.2, the attractor is still possible to be chaotic,
depending on the rotation part: Q∇Ψ.

To sum up, gradient and rotation parts of
the vector field are responsible for the creation of
strange attractor and chaotic attractor respectively.
Although they are both affected by the geometrical
configuration of the potential function Ψ, they rep-
resent dissipation and circulation respectively.

8. Conclusion

In the present paper it is shown that potential
functions with monotonic properties can be con-
structed in a continuous dissipative chaotic system
with strange attractor. Such potential function is a
continuous function in phase space, monotonically
decreasing with time and remains constant if and
only if the limit set is reached. This definition is a
natural restriction of generic dynamics since it is a
direct generalization of Lyapunov function and cor-
responds to the concept of energy.

Potential function defined this way also implies
that the dynamics can be decomposed into two
parts: a gradient part, dissipating energy potential;
and a rotation part, conserving energy potential.
The gradient part drives the system towards the
attractor while the rotation part perpetuates the
system’s circular motion on the attractor.

To demonstrate the power of this framework in
chaotic systems, we simplify the geometric Lorenz
attractor, and prove by definition that it is a chaotic
attractor. We analytically and explicitly construct a
suitable potential function for the attractor, which,
to our best knowledge, is the first example in chaotic
dynamics. The potential function reveals the fractal
nature of the chaotic strange attractor.

We further analyze the concept of chaotic
attractor and strange attractor with our decompo-
sition. It is found that chaotic attractor originates
in the rotation part, facilitating the state points to
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traverse the limit set; while strange attractor orig-
inates in the gradient part, causing initial states
attracted to the limit set.
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