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Abstract: This paper studies the relationship between state feedback policies and disturbance
response policies for the standard Linear Quadratic Regulator (LQR). For open-loop stable plants,
we establish a simple relationship between the optimal state feedback controller ut = K?xt and

the optimal disturbance response controller ut = L
(H)
?;1 wt−1 + . . .+L

(H)
?;Hwt−H with H-order. Here

xt, wt, ut stands for the state, disturbance, control action of the system, respectively. Our result

shows that L
(H)
?,1 is a good approximation of K? and the approximation error ‖K?−L(H)

?,1 ‖ decays
exponentially with H. We further extend this result to LQR for open-loop unstable systems,
when a pre-stabilizing controller K0 is available.
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1. INTRODUCTION

Linear quadratic regulator (LQR) is one of the most fun-
damental optimal control problems (Anderson and Moore,
2007). Its analytic solution and numerical methods have
been well-established in the literature. Specifically, the
infinite-time horizon LQR in the discrete time domain is
formulated as follows:

min
{ut}+∞

t=0

C := lim
T→∞

1

T
E
T−1∑
t=0

(
x>t Qxt+u

>
t Rut+2u>t Sxt

)
subject to xt+1 = Axt +But + wt, (1)

where xt ∈ Rn is the system state, ut ∈ Rm is the control
input, wt ∼ N (0, I) is the external Gaussian process noise,
and Q � 0, R � 0 and S ∈ Rm×n are performance matrices.
Throughout the paper, we make the standard assumption

that

[
Q S>

S R

]
� 0.

It is well-known that the optimal solution for (1) is a
state-feedback controller (or policy) ut = K?xt, and the
optimal gain K? ∈ Rm×n can be computed via solving an
algebraic Ricatti equation (Anderson and Moore, 2007).
The properties of the Ricatti equation and its numerical
solutions have been extensively studied (Kwakernaak and
Sivan, 1969; Kleinman, 1968; Englar and Kalman, 1966).
Most of these results are model-based and require the
knowledge of system matrices A,B and the weight matrices
Q,R, S. Motivated by the success of model-free policy
optimization in reinforcement learning, many recent studies
(see review Hu et al. (2022) and references therein) have
started to directly search an optimal policy by viewing the
LQR cost C(K) as a function of the policy parameterization
K ∈ Rm×n. This formulation C(K) is more suitable
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for model-free policy optimization but is generally non-
convex. Thanks to special properties in the optimization
landscape such as gradient dominance (Fazel et al., 2018),
these methods can still find the optimal controller for
the standard LQR problem despite of the non-convexity.
However, these properties often fail to generalize to other
linear optimal control problems such as sparse or structured
LQR, partially observable systems, (Zheng et al., 2021;
Hu et al., 2022), making it still challenging to develop
policy optimization methods with provable convergence
and optimality guarantees.

To avoid non-convexity, there are many other methods
to re-parameterize the control policy such that the cost
function becomes convex under new parameters. For the
general output-feedback case, the classical approach is the
Youla parameterization (Youla et al., 1976), and two recent
approaches are system-level synthesis (SLS) (Wang et al.,
2019) and input-output parameterization (IOP) (Furieri
et al., 2019); also see Zheng et al. (2022) for two new
parameterizations. Another specific idea is to parameterize
the control policy as a function of the past disturbances wt,
known as the disturbance response control (DRC) (Goulart
et al., 2006; Agarwal et al., 2019a). In particular, for open-
loop stable plants, given a horizon H ∈ N, we can use a
DRC of the form

ut = L
(H)
1 wt−1 + . . .+ L

(H)
H wt−H , (2)

where L
(H)
k ∈ Rm×n, k = 1, . . . ,H are policy parameters,

and view the LQR cost in (1) as a function C(L(H)) over

L(H) := {L(H)
1 , . . . , L

(H)
H }. It is not difficult to see that the

closed-loop state and input evaluations in (1) become affine
in L(H), and the LQR cost C(L(H)) is thus convex in terms
of L(H). Thanks to the convexity, disturbance-based policy
parameterizations appear to be easier and more suitable for
model-free and online learning setups, which have indeed



received increasing attention in online learning and control
communities; see e.g., Simchowitz et al. (2020); Li et al.
(2021); Agarwal et al. (2019a,b); Goulart et al. (2006). It is
known that DRC-type controllers are closely related with
other convex parameterizations such as the aforementioned
Youla, SLS, and IOP. 1

Our contribution. In this paper, we study the relation-
ship between the optimal state feedback policy K? and

the optimal DRC policy L
(H)
? in (2). For open-loop stable

plants (i.e., A in (1) is stable), it is not surprising that as

the horizon H increases, the optimal performance C(L
(H)
? )

will improve and converge to the optimal LQR perfor-
mance C(K?). Similar analysis has appeared in Agarwal
et al. (2019a) but in a slightly different online learning
setting. Our paper presents an interesting and not obvious

relationship: the first element L
(H)
?;1 in L

(H)
? is a good

approximation of K? and the approximation error decays
exponentially with increasing H (Theorem 1). Our result
points out a possibly simple way of converting disturbance
feedback controllers to state feedback controllers – instead
of obtaining a state feedback controller using transfer

functions 2 , we can simply extract L
(H)
?;1 which is already

a near optimal state feedback control gain. We further
generalize the result to the LQR with an unstable open-
loop system through considering DRC with a fixed pre-
stabilizing controller K0 (Corollary 1).

The proofs of our results are based on two intuitions: i)

the optimal infinite disturbance response L
(∞)
? (z) =∑+∞

k=1 L
(∞)
?;k z

−k induced by the optimal state feedback K?

has the exact equivalence L
(∞)
?,1 = K? (see (14)); ii) as the

horizon H → +∞, the optimal L
(H)
?;1 should converge to

L
(∞)
?;1 = K?. In particular, proving (ii) is more technically

involved, where we first derive a system of linear equations

satisfied by L
(H)
? (Lemma 1) and then show that L

(∞)
? is

an approximate solution of the linear equations (Lemma 2
and Corollary 2).

Related Work. Some previous studies have built certain
relationship between the state representation and other
convex parameterizations, e.g., (Goulart et al., 2006; Nett
et al., 1984). The setting that is most similar to our paper
is Goulart et al. (2006), where the authors established an
equivalence between the affine state feedback controllers
and the affine disturbance feedback controllers. However,
Goulart et al. (2006) only considered the finite time horizon
problem and dynamic state feedback controllers, which is
different from our setting in the infinite-time horizon. The
relationship established in Goulart et al. (2006) is very
different from our results, and the techniques involved in
the proofs are different as well.

2. PRELIMINARIES AND PROBLEM SETUP

In this paper, we consider the infinite-time horizon, time-
invariant, discrete time LQR problem as defined in (1).
Throughout this paper, we use ‖ · ‖ to denote the matrix

1 For example, interested readers can find some explicit connections
in the note: https://zhengy09.github.io/course/notes/L3.pdf.
2 That is, solving the transfer function from state x to control u
when controller u is in the DRC form (2).

`2 norm, and λmin(X) to denote the smallest eigenvalue
for a symmetric matrix X.

2.1 State-feedback controllers

When the plant (A,B) is stabilizbale, the optimal solution
to problem (1) is a linear state feedback controller ut =
K?xt with (c.f. Anderson and Moore (2007))

K? = −(R+B>PB)−1(B>PA+ S), (3)

where the cost-to-go matrix P satisfies the algebraic Ricatti
equation

P =A>PA−(A>PB+S>)(R+B>PB)−1(B>PA+S)+Q.

Thus, one natural perspective is to parameterize the policy
using a single feedback matrix K ∈ Rm×n, i.e., ut = Kxt,
which we call as the state feedback representation. As
stated in the introduction, this state feedback controller is
easy to implement, yet it has one drawback that the LQR
cost C(K) becomes non-convex with respect to K.

2.2 Disturbance response controllers

Another approach to solve the LQR problem (1) is from
a disturbance response perspective, which converts the
problem to a convex optimization.

Open-loop stable systems. For open-loop asymptoti-
cally stable systems, i.e., the spectral radius of A is smaller
than 1, we can consider a disturbance response controller
(DRC) of the form (Agarwal et al., 2019a; Simchowitz et al.,
2020):

ut = L
(H)
1 wt−1 + · · ·+ L

(H)
H wt−H ,

where ws = 0 for s < 0. We can view the LQR cost as a
function C(L(H)) of the DRC matrices

L(H) := {L(H)
1 , . . . , L

(H)
H }.

We then solve the following optimization problem to get
the optimal DRC controller:

min
L(H)

C(L(H)) := lim
T→∞

1

T
E
T−1∑
t=0

x>t Qxt+u
>
t Rut+2u>t Sxt

subject to xt+1 = Axt +But + wt, (4)

ut = L
(H)
1 wt−1 + · · ·+ L

(H)
H wt−H .

It is not difficult to see that (4) is a convex problem over
L(H) since the closed-loop state xt and input ut all become
affine in L(H).

In this paper, we are interested in establishing the relation-
ship between between the optimal state feedback policy K?

from (3) and the optimal DRC policy L
(H)
? from (4). First of

all, it is not surprising that as the horizon H increases, the

optimal performance C(L
(H)
? ) will improve and converge

to the optimal LQR performance C(K?). Similar analysis
has appeared in Agarwal et al. (2019a) but in a slightly
different online learning setting. For the self-completeness,
we provide our own analysis for the LQR problem on how

C(L
(H)
? ) approximates C(K?) as H increases in Appendix

B. In addition to this relationship between L
(H)
? and K?,

we will establish an interesting and not obvious relationship

which directly connects the first element L
(H)
?;1 in L

(H)
? with

K?, which will be presented in Theorem 1.



Open-loop unstable systems. The above open-loop
stability assumption is common for DRC type of controllers,
e.g., (Agarwal et al., 2019b; Simchowitz et al., 2020). Our
results can be easily extended to the unstable case by
adding a fixed pre-stabilizing state feedback gain K0 to
the DRC, as presented below. For unstable system, instead
of considering a DRC as in (2), we consider the following
modified DRC with a fixed pre-stabilizing state feedback
control gain K0:

ut = K0xt + L
(H)
1 wt−1 + · · ·+ L

(H)
H wt−H . (5)

Note that K0 in (5) is a pre-fixed matrix and does not
change when optimizing C(L(H)). Given that K0 stabilizes
the system, i.e., A+BK0 is stable, we could re-formulate
equation (1) by defining an auxiliary variable

ūt := ut −K0xt,

then the LQR problem could be re-formulated as:

min
L(H)

C(L(H)) := lim
T→∞

1

T
E
T−1∑
t=0

x>t Q̄xt + ū>t Rūt + 2ū>t S̄xt

s.t. xt+1 = Āxt +Būt + wt, (6)

ūt = L
(H)
1 wt−1 + · · ·+ L

(H)
H wt−H ,

where
Ā := A+BK0, S̄ := RK+S

Q̄ := Q+K>0 S+S>K0+K>0 RK0.
(7)

Note that Ā = A+BK0 is now a stable matrix. It can also
be shown that λmin(R−S̄Q̄−1S̄>) > 0; see Lemma 7 in the
Appendix. Furthermore, it is not hard to verify that the
optimal ūt should satisfy ūt = K̄?xt, where

K̄? = K? −K0.

Thus by considering the DRC with a pre-stabilizing K0,
we could transform the LQR problem (1) with an unstable
A to an LQR problem (6) with a stable Ā.

3. MAIN RESULTS

In this section, we present our main results on the rela-
tionship between state feedback policies and disturbance
response policies for LQR.

To characterize the stability degree, we introduce the
following definition of exponential stability.

Definition 1. ((τ, e−ρ)-stability). For τ ≥ 1, ρ > 0, we call
a matrix A (τ, e−ρ)-stable if ‖Ak‖ ≤ τe−ρk.

Note that for any open-loop asymptotically stable system,
there exist some τ ≥ 1, ρ > 0 such that both A and A−BK?

are (τ, e−ρ)-stable, i.e.,

‖Ak‖ ≤ τe−ρk, ‖(A−BK?)
k‖ ≤ τe−ρk. (8)

We will use τ, ρ later in our main result.

3.1 Open-loop stable systems

Our main result in this paper establishes a simple relation-
ship between the optimal control gain K? from the algebraic

Ricatti equation (3) and the optimal L
(H)
? from (4). In

particular, we can prove that L
(H)
?;1 is a good approximation

of K?, which is summarized in the theorem below.

Theorem 1. (Main Result). For open loop asymptotically
stable systems, let K? be the optimal feedback gain in (3),

and L
(H)
? be the optimal solution of (4). Then, we have

‖K?−L(H)
?;1 ‖ ≤

2τ3(‖B‖2‖K?‖‖Q‖+ ‖B‖‖K?‖‖S‖)
λmin(R−SQ−1S>)(1− e−2ρ)5/2

e−Hρ,

where L
(H)
?;1 denotes the first element in L

(H)
? . Here τ, ρ are

given in (8).

Theorem 1 suggests that as long as H is large enough, L
(H)
?;1

is a good approximation of K? and the approximation error
decays exponentially w.r.t H. Thus instead of implementing
the disturbance feedback as

ut = L
(H)
?;1 wt−1 + · · ·+ L

(H)
?;Hwt−H

(which is hard to implement because it needs computation
and storage of history disturbances wt−k), we could simply

design a state feedback with gain L
(H)
?;1 , which is much

easier to implement and still guarantees near-optimal
performance. However, we would also like to point out
that Theorem 1 heavily relies on the fact that the problem
is unconstrained. It would be an interesting future direction
to figure out whether similar relationship still holds for
constrained or distributed LQ control settings.

Remark 1. (Discussion on the stability assumption).
We would like to emphasize that Theorem 1 only holds
under the open-loop stability assumption, i.e., the spectral
radius of A is smaller than 1. Specifically in the proof, one
major lemma (Lemma 1) will not hold if A is not stable
(see more discussion in Remark 2 after the lemma). In fact,
without the stability assumption, for H that is not large
enough, it can be shown that there is no H-order DRC
that stabilizes the system (see Lemma 5 in the Appendix).
Theorem 1 also suggests that the approximation error
depends on the stability factors τ, ρ, the more stable the
system is, the better the approximation error will be.

3.2 Extension to unstable systems

As discussed in the end of Section 2, we can transform the
LQR problem (1) with an unstable A to an LQR problem
(6) with a stable Ā by considering the DRC with a pre-
stabilizing K0:

ut = K0xt + L
(H)
1 wt−1 + · · ·+ L

(H)
H wt−H .

Therefore, we can easily extend Theorem 1 to the unstable
systems, as shown below,

Corollary 1. (Extension to the unstable case). Let K? be
the optimal feedback gain in (3), and K̄? := K? −K0, If
both ‖A+BK0‖ and ‖A+BK?‖ are (τ, e−ρ)-stable, the

optimal solution L
(H)
? from (6) satisfies

‖K̄?−L(H)
?;1 ‖ ≤

2τ3(‖B‖2‖K̄?‖‖Q̄‖+ ‖B‖‖K̄?‖‖S̄‖)
λmin(R−S̄Q̄−1S̄>)(1− e−2ρ)5/2

e−Hρ,

where S̄, Q̄ are defined as in (7).

4. PROOF SKETCHES

In this section, we present the proof ideas for our main result
in Theorem 1 by a thorough investigation of problem (4).
We first introduce a result from Zhang et al. (2022a) which
shows that the solution to (4) can be explicitly expressed
as the solution to a system of linear equations (Lemma
1). We next demonstrate that the disturbance response
induced by the optimal control gain K? is an approximate
solution to the linear equations (Lemma 2). Combining
these two lemmas leads to the final result in Theorem 1.



4.1 Explicit solution for problem (4)

It is not difficult to see that problem (4) is an uncon-
strained quadratic optimization problem w.r.t. the variables

L
(H)
1 , . . . , L

(H)
H . Thus, it is expected that the optimal

solution comes from a system of linear equations. Indeed,
Zhang et al. (2022a) has identified these equations, which
are formally stated in the following lemma.

Lemma 1. (Zhang et al. (2022a)) For open-loop asymp-
totically stable systems, the optimal L(H) of problem (4)
satisfies a set of linear equations

M (H)L(H) + J (H) = 0, (9)

where M (H) ∈ RHnu×Hnu and J (H) ∈ RHnu×nx are

M (H):=


M11 M12 · · · M1H

M21 M22 · · · M2H

...
...

MH1 MH2 · · · MHH

 J (H) :=

J1...
JH

 , (10)

with submatrices Mkm ∈ Rnu×nu , Jk ∈ Rnu×nx defined as:

Mkm :=


B>GB +R, k = m

B>GAk−mB + SAk−m−1B, k > m

B>(Am−k)>GB +B>(Am−k−1)>S>, k < m

,

Jk := B>GAk + SAk−1. (11)

Here G ∈ Rnx×nx is defined as:

G :=

∞∑
t=0

(At)>QAt. (12)

Remark 2. Note that Lemma 1 requires A to be exponen-
tially stable; otherwise the matrix G in (12) is undefined.
Since (4) is a quadratic problem with respect to L(H), it
can be expected that the proof of Lemma 1 (see Zhang
et al. (2022a)) can be obtained by purely linear algebraic
manipulation that writes out C(L(H)) explicitly. In the
process, there is one step that uses the Taylor series:

(I − z−1A)−1 =

+∞∑
k=0

z−kAk,

which only holds true if A is exponentially stable.

4.2 Relationship to optimal state feedback control gain

We first consider the following disturbance response con-
troller induced by the optimal state feedback gain K?,

which we denoted as L
(∞)
? (z). That is, L

(∞)
? (z) is the

transfer function from the disturbance signal ω to the
control u when the controller is u(t) = K?x(t). It is

straightforward to obtain the formulation of L
(∞)
? (z),

L
(∞)
? (z) = z−1K?(I − z−1(A+BK?))

−1

=

+∞∑
k=1

L
(∞)
?;k z

−k, (13)

where
L
(∞)
?;k := K?(A+BK?)

k−1, k ≥ 1. (14)

Note that implementing the disturbance response controller

with transfer function L
(∞)
? (z) is equivalent to implement-

ing the state feedback controller with control gain K?. To

study the relationship of L
(H)
?;1 and K?, it is natural to

first study the relationship of L
(H)
? and L

(∞)
? . We establish

the relationship by showing that L
(∞)
? solves an ‘infinite

dimension’ version of equation (9) that is satisfied by L
(H)
? :

Lemma 2. The matrices L
(∞)
?;k defined in (14) satisfy

+∞∑
m=1

MkmL
(∞)
?;m + Jk = 0, ∀ k ≥ 1, (15)

where Mkm, Jk are defined in (11).

Lemma 2 is the key enabler of proving Theorem 1. For
structural clearness, we defer the proof of Lemma 2 to
Appendix A. We would like to emphasize that the proof of
Lemma 2 is technically involved and may be of independent
interest.

Here we give an intuitive explanation of this lemma. The

key insight is that L
(∞)
? should satisfy an ‘infinite dimension’

version of equation (9) (i.e., H → +∞), which is exactly
(15). Since ut = K?xt is globally optimal among all control
policies, it is expected that its induced disturbance response

L
(∞)
? solves the optimization problem (4) for H → +∞.

Thus intuitively, it is expected that if we let the horizon

H goes to infinity, the solution L
(H)
? for (9) will converge

to the optimal L
(∞)
? . This is the reason we expect L

(∞)
? to

satisfy (15), which is an ‘infinite dimension’ version of (9).
The detailed proof is provided in Appendix A.

Lemma 2 immediately results in the following corollary.

Corollary 2. Define L
(∞)
?;1:H as

L
(∞)
?;1:H =

[
L
(∞)
?;1 . . . ;L

(∞)
?;H

]
, (16)

then we have
M (H)L

(∞)
?;1:H + J (H) = E ,

where for all 1 ≤ k ≤ H,

[E ]k=

+∞∑
m=H+1

B>(A>)m−k−1(A>GB+S>)K?(A+BK?)
m−1.

Proof. From Lemma 2, we know that

+∞∑
m=1

MkmL
(∞)
?;m + Jk = 0,

=⇒
H∑
m=1

MkmL
(∞)
?;m + Jk = −

+∞∑
m=H+1

MkmL
(∞)
?;m = [E ]k,

which completes the proof.

4.3 Proof of Theorem 1

Proof. [of Theorem 1] From Lemma 1 and Corollary 2,
we have

M (H)L
(H)
? + J (H) = 0, M (H)L

(∞)
?;1:H + J (H) = E .

Subtracting these two equations leads to

M (H)(L
(H)
? − L(∞)

?;1:H) = −E .

Then, it is not difficult to see that



(L
(H)
? − L(∞)

?;1:H)>(L
(H)
? − L(∞)

?;1:H) = E>(M (H))−2E

� 1

λmin(M (H))2

H∑
k=1

[E ]>k [E ]k

� 1

λmin(R−SQ−1S>)2

H∑
k=1

‖[E ]k‖2I,

where the last inequality uses the result: λmin(M (H)) ≥
λmin(R−SQ−1S>), which can be found in Zhang et al.
(2022a) (Lemma 9).

We can upper bound the norm of [E ]k by

‖[E ]k‖ ≤
+∞∑

m=H+1

‖B‖2‖K?‖‖GAm−k‖‖(A+BK?)
m−1‖

+ ‖B‖‖K?‖‖S‖‖Am−k−1‖‖(A+BK?)
m−1‖

≤ ‖B‖
2‖K?‖‖Q‖τ3

1− e−2ρ
+∞∑

m=H+1

e−(2m−k−1)ρ

+ τ2‖B‖‖K?‖‖S‖
+∞∑

m=H+1

e−(2m−k−2)ρ

=
‖B‖2‖K?‖‖Q‖τ3

(1− e−2ρ)2
e−(2H−k+1)ρ

+
‖B‖‖K?‖‖S‖τ2

1− e−2ρ
e−(2H−k)ρ,

where the second inequality uses the result

‖GAm‖ ≤ τ2‖Q‖e−ρm

1− e−2ρ
which can be found in Zhang et al. (2022a) (Lemma 14).
Thus

H∑
k=1

‖[E ]k‖2 ≤ 2

(
‖B‖2‖K?‖‖Q‖τ3

(1− e−2ρ)2

)2 H∑
k=1

e−2(2H−k+1)ρ

+ 2

(
‖B‖‖K?‖‖S‖τ2

1− e−2ρ

)2 H∑
k=1

e−2(2H−k)ρ

≤ 2

(
‖B‖2‖K?‖‖Q‖τ3

(1− e−2ρ)2

)2
1

1− e−4ρ
e−2(H+1)ρ

+ 2

(
‖B‖‖K?‖‖S‖τ2

(1− e−2ρ)3/2

)2

e−2Hρ

≤ 2

(
τ3(‖B‖2‖K?‖‖Q‖+ ‖B‖‖K?‖‖S‖)

(1− e−2ρ)5/2

)2

e−2Hρ.

Finally, we have

(L
(H)
?;1 −K?)

>(L
(H)
?;1 −K?) = (L

(H)
?;1 −L

(∞)
?;1 )>(L

(H)
?;1 −L

(∞)
?;1 )

� (L
(H)
? − L(∞)

?;1:H)>(L
(H)
? − L(∞)

?;1:H)

� 2

λmin(R−SQ−1S>)2

×
(
τ3(‖B‖2‖K?‖‖Q‖+ ‖B‖‖K?‖‖S‖)

(1− e−2ρ)5/2

)2

e−2HρI.

This leads to

‖L(H)
?;1 +K?‖≤

2τ3(‖B‖2‖K?‖‖Q‖+‖B‖‖K?‖‖S‖)
λmin(R−SQ−1S>)(1− e−2ρ)5/2

e−Hρ,

which completes the proof.

Fig. 1. Approximation error ‖L(H)
?;1 −K?‖ and performance difference

C(L
(H)
?;1 )− C(K?) decays exponentially with H

5. NUMERICAL EXAMPLES

We consider the following randomly generated set of system
matrices A,B,Q,R, S:

A =

[−0.584 0.351 0.398
−0.366 −0.739 0.401
0.512 0.187 −0.761

]
, B =

[−0.1659
1.7690
−0.1603

]
,

Q=

[
9.549 −2.660 6.993
−2.660 2.702 −1.599
6.993 −1.599 8.282

]
, R =2.593, S=

[
0.043
0.206
−1.964

]
.

Given the system matrices, we directly call builtin function
dlqr in MATLAB System Control Toolbox to solve the

optimal state feedback gain K?. The optimal DRC L
(H)
? is

solved using eq (9). Figure 1 plots the approximation error

‖L(H)
?;1 −K?‖ as well as the cost different C(L

(H)
?;1 )−C(K?)

decays exponentially as H grows larger, which corroborates
our theoretical finding in Theorem 1.

6. CONCLUSION

This paper has established a simple relationship between
the optimal state feedback gain K? and the optimal distur-

bance response controller ut = L
(H)
?;1 wt−1 + . . .+L

(H)
?;Hwt−H .

The result shows that L
(H)
?;1 well approximates K? and the

approximation error decays exponentially with H, which
points out a possibly simpler way of converting disturbance
feedback controllers to state feedback controllers.
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Appendix A. PROOF OF LEMMA 2

Proof. Substituting the definitions of L
(∞)
?;k ,Mkm and Jk

into the left-hand side of (15), we have

+∞∑
m=1

MkmL
(∞)
?;m + Jk

=B>GAk+SAk−1+

k−1∑
m=1

B>GAk−mBK?(A+BK?)
m−1

+

k−1∑
m=1

SAk−m−1BK?(A+BK?)
m−1

+

+∞∑
m=k

B>(A>)m−kGBK?(A+BK?)
m−1

+

∞∑
m=k+1

B>(A>)m−k−1S>K?(A+BK?)
m−1+RK(A+BK?)

k−1.

From the relationship of K,P , we have that

RK?(A+BK?)
k−1 =−(R+B>PB)K?(A+BK?)

k−1

+B>PBK?(A+BK?)
k−1

(3)
= (B>PA+S)(A+BK?)

k−1+B>PBK?(A+BK?)
k−1

= B>P (A+BK?)
k + S(A+BK?)

k−1,

which gives
+∞∑
m=1

MkmL
(∞)
m +Jk

=B>

(
GAk+

k−1∑
m=1

GAk−mBK?(A+BK?)
m−1

)

+S

(
Ak−1+

k−1∑
m=1

Ak−m−1BK?(A+BK?)
m−1

)

+B>

(
+∞∑
m=k

(A>)m−kGBK?(A+BK?)
m−1

+

∞∑
m=k+1

(A>)m−k−1S>K?(A+BK?)
m−1+P (A+BK?)

k

)
−S(A+BK?)

k−1.

Since

GAk +

k−1∑
m=1

GAk−mBK?(A+BK?)
m−1

= GAk +GAk−1BK? +

k−1∑
m=2

GAk−mBK?(A+BK?)
m−1

= GAk−1(A+BK?) +

k−1∑
m=2

GAk−mBK?(A+BK?)
m−1

= G

(
Ak−1+

k−2∑
m=1

Ak−1−mBK?(A+BK?)
m−1

)
(A+BK?)

= G

(
Ak−1 +Ak−2BK?

+

k−2∑
m=2

Ak−1−mBK?(A+BK?)
m−1

)
(A+BK?)

=G

(
Ak−2+

k−3∑
m=1

Ak−1−mBK?(A+BK?)
m−1

)
(A+BK?)

2

= · · ·
= GA(A+BK?)

k−1,

and similarly

S

(
Ak−1+

k−1∑
m=1

Ak−m−1BK?(A+BK?)
m−1

)
=S(A+BK?)

k−1



we can further simplify the expression as
+∞∑
m=1

MkmL
(∞)
?;m + Jk

=B>
[
GA+

+∞∑
m=0

(A>)m[GBK?+S
>K?(A+BK?)](A+BK?)

m

− P (A+BK?)
]
(A+BK?)

k−1.

Let

X := −
+∞∑
m=0

(A>)m[GBK?+S>K?(A+BK?)](A+BK?)
m,

it suffices to show that X = GA − P (A + BK?). From
the definition of X we know that X satisfies the following
linear matrix equation

A>X(A+BK?)−GBK? − S>K?(A+BK?) = X.

From uniqueness of the Sylvester equation (see our online
version of this paper (Zhang et al., 2022b) Appendix D for
more details), we know that X is the unique solution to
the above linear matrix equation. Thus it suffices to show
that

A>(GA−P (A+BK?))(A+BK?)−GBK?−S>K?(A+BK?)

= (GA− P (A+BK?))

⇐⇒ A>GA(A+BK?)−A>P (A+BK?)
2

= G(A+BK?)− P (A+BK?) + S>K?(A+BK?)

⇐= A>GA−A>P (A+BK?) = G− P + S>K?.

From the definition of G =
∑+∞
k=0(A>)kQAk, we have that

A>GA+Q = G,

thus it suffices to show that

−A>P (A+BK?) = Q− P + S>K?

⇐⇒ P = A>PA+ (A>PB + S>)K? +Q

⇐⇒ P = A>PA

− (A>PB + S>)(R+B>PB)−1(B>PA+ S) +Q.

The last equation is exactly the discrete time algebraic
Ricatti equation for the optimal cost to go matrix, which
completes the proof.

Appendix B. PERFORMANCE DIFFERENCE

In this section we take a deeper look into the relationship
of DRC and state feedback control in terms of the
performance difference. We show that for any stabilizing
state feedback controller K, there exists an H-order DRC
that approximate the cost C(K), where the approximation
error decays exponentially with H (Lemma 3). As a
corollary, the performance difference of the optimal DRC

and the optimal LQR cost C(L
(H)
? )− C(K?) also decays

exponential with H. For any stabilizing K, we could define
its corresponding equivalent DRC as:

L
(∞)
K (z) = z−1K(I − z−1(A+BK))−1 =

+∞∑
h=1

L
(∞)
K;hz

−h,

where L
(∞)
K;h := K(A+BK)h−1, k ≥ 1.

We further define

L
(∞)
K;1:H := [L

(∞)
K;1 ; . . . ;L

(∞)
K;H ].

We have that the DRC defined by L
(∞)
K;1:H has similar cost

as C(K), which is formally stated in the following lemma:

Lemma 3. For any K such that (A+BK) is (τ, ρ)-stable,

the H-order DRC defined by L
(∞)
K;1:H satisfies that

C(L
(∞)
K;1:H)− C(K) ≤

n2xe
−2ρH

(
‖R‖+

4τ4(‖B‖‖K‖2+‖K‖)(‖B‖‖Q‖+‖S‖)
(1− e−2ρ)3

)
Before proving Lemma 3, we first cite an auxiliary lemma
from Zhang et al. (2022a) that is useful for throughout the
proof.

Lemma 4. (Zhang et al. (2022a), Appendix B).

C(L(H)) = trace
(
G+ 2L(H)>J (H) + L(H)>M (H)L(H)

)
.

Let H → +∞ we have that for any L(∞) that satisfies∑+∞
k ‖L(∞)

k ‖2 < +∞:

C(L(∞))=trace

G+2

+∞∑
k=1

L
(∞)
k

>
Jk+

+∞∑
k=1,m=1

L
(∞)
k

>
MkmL

(∞)
m

.
We are now ready to prove Lemma 3:

Proof. [of Lemma 3]

C(L
(∞)
K;1:H)− C(K) = C(L

(∞)
K;1:H)− C(L

(∞)
K )

= trace

(
2

+∞∑
h=H+1

L
(∞)
K,h

>
Jh

+

+∞∑
h=H+1

+∞∑
m=H+1

L
(∞)
K;h

>
MhmL

(∞)
K;m

)

≤ n2x

(
2

+∞∑
h=H+1

‖L(∞)
K;h‖‖Jh‖

+

+∞∑
h=H+1

+∞∑
m=H+1

‖L(∞)
K;h‖‖Mhm‖‖L(∞)

K;m‖

)

≤ n2x

(
2

+∞∑
h=H+1

‖L(∞)
K;h‖‖Jh‖

+

+∞∑
h=H+1

(
+∞∑

m=H+1

‖Mhm‖

)
‖L(∞)

K;h‖
2

)

Since L
(∞)
K;h = K(A + BK)h−1, Jh = B>GAh + SAh−1,

from Lemma 6 we have that

‖L(∞)
K;h‖‖Jh‖ ≤ ‖K‖

(
τe−ρ‖B‖‖Q‖

1− e−2ρ
+ ‖S‖

)
τ2e−2ρ(k−1),

=⇒
∞∑

h=H+1

‖L(∞)
K;h‖‖Jh‖

≤ τ2‖K‖
(
τe−ρ‖B‖‖Q‖

1− e−2ρ
+ ‖S‖

) +∞∑
h=H

e−2ρh

=
τ2

1− e−2ρ
‖K‖

(
τe−ρ‖B‖‖Q‖

1− e−2ρ
+ ‖S‖

)
e−2ρH

Further



+∞∑
m=H+1

‖Mkm‖

≤‖R‖+‖B>GB‖+2

+∞∑
m=1

‖B‖2‖GAm‖+2

∞∑
m=0

‖B‖‖S‖‖Am‖

(Lemma 6)

≤ ‖R‖+ τ2‖B‖2‖Q‖
1− e−2ρ

(
1+2

+∞∑
m=1

e−ρm
)
+

2τ‖B‖‖S‖
1− e−ρ

≤ ‖R‖+
4τ2(‖B‖2‖Q‖+ ‖B‖‖S‖)

(1− e−2ρ)2
.

Moreover,
+∞∑

h=H+1

‖L(∞)
K;h‖

2≤
+∞∑

h=H+1

‖K‖2τ2e−2ρ(h−1) =
τ2‖K‖2

1− e−2ρ
e−2ρH.

Combining these bounds together we get:

C(L(H))− C(K) ≤ n2xe−2ρH
(

2
τe−ρ‖B‖‖Q‖

1− e−2ρ
+ ‖S‖

+

(
‖R‖+

4τ2(‖B‖2‖Q‖+‖B‖‖S‖)
(1− e−2ρ)2

τ2‖K‖2

1− e−2ρ

))
≤n2xe−2ρH

(
‖R‖+ 4τ4(‖B‖‖K‖2+‖K‖)(‖B‖‖Q‖+‖S‖)

(1− e−2ρ)3

)
.

Corollary 3.

C(L
(H)
? )− C(K?) ≤

n2xe
−2ρH

(
‖R‖+ 4τ4(‖B‖‖K?‖2+‖K?‖)(‖B‖‖Q‖+‖S‖)

(1− e−2ρ)3

)
.

Proof. From the optimality of L
(H)
? , we have that

C(L
(H)
? )−C(K?)=C(L

(H)
? )−C(L

(∞)
? )≤C(L

(∞)
?;1:H)−C(L

(∞)
? ),

where L
(∞)
?;1:H = [L

(∞)
?;1 , . . . ;L

(∞)
?;H ]. Directly applying Lemma

3 finishes the proof.

Appendix C. STABILITY OF DRC

Lemma 5. Define A ∈ Rn×n, B ∈ Rn, e1 ∈ Rn as follows:

A =


2 1

. . .
. . .
2 1

2

 , B =


0
...
0
1

 , e1 =


1
...
0
0

 .
Then for H ≤ n, any DRC of the form (2) is not stable,
specifically we have that for t ≥ H

Ext+1x
>
t+1 �

(
e>1 A

HAH
>
e1

) t∑
k=H

Ak−He1e
>
1 A

k−H>,

whose norm blows up exponentially w.r.t. t.

Proof.

xt+1 = Axt +But + wt

= Axt +B(L
(H)
1 wt−1 + . . .+ L

(H)
H wt−H) + wt

= A2xt−1 + wt + (A+BL
(H)
1 )wt−1 + . . .

+ (ABL
(H)
H−1 +BL

(H)
H )wt−H +ABL

(H)
H wt−H−1

= · · ·

= wt+C1wt−1+. . .+CH−1wt−H+1+

t−1∑
k=H

Ak−HCHwt−k,

where Ck’s are matrices defined by

Ck = Ak +

k∑
t=1

Ak−tBL
(H)
t , 1 ≤ k ≤ H.

Thus we have that

Ext+1x
>
t+1 �

t−1∑
k=H

Ak−HCH
(
Ewt−kw>t−k

)
C>HA

k−H>

=

t−1∑
k=H

Ak−HCHC
>
HA

k−H>.

Furthermore, since H ≤ n, it is not hard to verify from the
definition of A,B, e1 that

e>1 A
H−kB = 0, 1 ≤ k ≤ H.

Thus

e>1 CHC
>
He1 = e>1 A

HAH
>
e1

=⇒ C>HCH �
(
e>1 A

HAH
>
e1

)
e1e
>
1 .

Substitute this into the above equation gives

Ext+1x
>
t+1 �

(
e>1 A

HAH
>
e1

) t∑
k=H

Ak−He1e
>
1 A

k−H>,

which completes the proof.

Appendix D. AUXILIARIES

Lemma 6. For any m ≥ 0, G defined in (12) satisfies

‖GAm‖ ≤ τ2‖Q‖e−ρm

1− e−2ρ
.

Proof. From the definition of G, we have

‖GAm‖ = ‖
∞∑
t=0

(At)>QAt+m‖ ≤
∞∑
t=0

‖Q‖‖At‖‖At+m‖

≤ ‖Q‖
∞∑
t=0

τ2e−ρ(2t+m) =
τ2‖Q‖e−ρm

1− e−2ρ
,

which completes the proof.

Lemma 7. λmin(R− SQ−1S>) > 0.

Proof. It is not hard to check that[
Q S

>

S R

]
=

[
I K>0
0 I

] [
Q S>

S R

] [
I 0
K0 I

]

=⇒ λmin

([
Q S

>

S R

])
� 0.

From Lemma 8 we have that λmin(R− SQ−1S>) > 0.

Lemma 8. λmin(R− SQ−1S>) ≥ λmin

([
Q S>

S R

])
.

Proof. Let λ := λmin

([
Q S>

S R

])
, then we have that[

Q S>

S R− λI

]
� 0 =⇒ (R− λI)− SQ−1S> � 0

=⇒ R− SQ−1S> � λI,

which completes the proof.


