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This article develops a model and analysis to provide insight into two effective remedies to increase supply chain resilience:
(i) contracting with a secondary flexible backup supplier; and (ii) monitoring primary suppliers to obtain disruption risk information.
To investigate the true value of these strategies, an analysis is performed under imperfect information concerning the disruption risks
and considering a two-stage setting with recourse. In this setting, the firm first monitors its suppliers and then utilizes a recourse option
subject to the limited quantity of a capacity reserved a priori via a contract with a flexible backup supplier. The firm’s jointly optimal
behavior is analytically characterized (utilizing only the information available to the firm) regarding two interconnected decisions:
(i) the advance capacity investment/reservation level with a flexible backup supplier; and (ii) the inventory ordering policy of the
underlying products from both primary and backup suppliers. The presented results quantify effective disruption risk mitigation
strategies for firms and provide managerial insights into the value of (i) a flexible backup supplier; (ii) disruption risk information;
(iii) a contracted recourse option; and (iv) flexibility in the backup system.
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1. Introduction

In recent years, a variety of events have elevated to a strate-
gic level concerns over the pernicious effects of supply chain
disruptions. Consider the 2007 disruption in Boeing’s 787
Dreamliner’s supply chain. Advanced Integration Technol-
ogy (AIT) fell months behind building parts needed to as-
semble the plane, thereby wreaking havoc upon Boeing’s
787 inflexible supply chain. Boeing itself expected to take a
cash hit of $2.5 billion in 2008 from paying penalties to air-
line customers and to keep its suppliers afloat in the wake of
the serious cash flow disruption, according to Greising and
Johnsson (2007). However, it became clear that AIT had
in fact been facing serious production problems as early
as 2006 (see, for instance, Greising and Johnsson (2007)).
Thus, if Boeing had thoroughly monitored AIT in an effort
to obtain disruption risk information, it might have made
better ordering and contracting decisions in advance and
thereby protected against such havoc. To enable firms to
monitor their suppliers, some companies including Open
Ratings have developed supply chain monitoring software
that provides a firm with supplier visibility and actionable
insights before a disruption occurs.
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Consider also the disruption in the Toyota supply chain
on February 1, 1997. A fire at the Aisin Seiki Co. destroyed
most of its capacity to manufacture P-valves. Because of
Aisin’s ability to produce parts at low cost, Toyota had come
to rely on Aisin for this product (Sheffi, 2007). According
to the Wall Street Journal, Toyota officials called different
part makers to obtain P-valves, including Somic (Reitman,
1997). Somic had the flexibility to free up machines and
shift its production line to make P-valves. On February
6, right on schedule, it delivered its first P-valves to Toy-
ota (Reitman, 1997). Considering the enormous financial
impact of disruptions, it may be beneficial for many firms
that procure raw materials from low-price, high-volume pri-
mary suppliers to reserve in advance some capacity from a
secondary flexible backup supplier such as Somic to insure
the supply stream against possible disruptions. This article
gives insights into the potential benefits and risks.

Although disruptions are rare, their economic conse-
quences can be massive. Hendricks and Singhal (2005) in-
vestigate over 800 cases of disruptions in supply chains and
conclude that firms suffering from supply chain disrup-
tions experience about 30% lower stock returns than their
matched benchmarks (see also Kleindorfer et al. (2003)).
Kleindorfer and Saad (2005) formulate a set of 10 princi-
ples derived from the supply chain risk literature, three of
which are (i) diversification in sourcing; (ii) implementing
flexibility; and (iii) information sharing. These principles
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will be considered throughout this article from the perspec-
tive of a firm that procures materials from different sources.

We investigate two important strategic remedies to in-
crease supply chain reliability and responsiveness: (i) con-
tracting with a secondary flexible backup supplier (or
similarly to establish an in-plant flexible resource) that is
capable of adjusting its production mix to respond to the
requests of a firm in the case of a disruption; and (ii) obtain-
ing and assessing information about the disruption risk of
primary suppliers. Point (i) increases the flexibility and re-
sponsiveness of supply chains in facing disruptions. In point
(ii), monitoring suppliers allows firms to anticipate poten-
tial disruptions and adopt better operational decisions.

Using a model with two products, we quantify the
value of purchasing flexible backup capacity through a
generalized capacity reservation contract with a flexible
backup supplier. In this contract, also known as an option
contract, the buyer pays a fixed lump-sum payment to
the supplier at the beginning of the contract in return for
the delivery of any desired portion of the reserved fixed
capacity at an additional proportional purchasing cost.
(See Serel et al. (2001) for the traditional case that has
only the lump-sum cost.) If the buyer has enough on-hand
stock, less than the reserved capacity may be ordered to
avoid additional holding and purchasing costs. Indeed,
through this contract the buyer initially buys the option
to order (any combination of the two products) up to a
certain level from the supplier and later decides how to
exercise this option by specifying the ordering quantity
for each of the products. Moreover, based on the terms of
the contract, the flexible backup supplier guarantees any
amount of delivery up to the reserved capacity. Therefore,
from the firm’s point of view, this secondary supplier works
as a reliable flexible backup (that can mitigate the risk of
disruption in primary suppliers while reducing the cost of
keeping excess inventory) with a limited flexible capacity
in proportion to the up-front lump-sum investment.

Similar capacity reservation arrangements designed to
provide the buyer with flexibility in the order quantity are
observed in different high-tech industries such as semicon-
ductors, consumer electronics, telecommunications, and
pharmaceuticals (where the demand for high-tech prod-
ucts is highly volatile and difficult to forecast) as well as in
some automakers (Henig et al., 1997) and the textile and
garment industry (Eppen and Iyer, 1997). Capacity reser-
vation is also regarded as one of the countermeasures of
the “bullwhip effect” (Lee et al., 1997).

In addition to providing insights into purchasing flexible
backup capacity (through a capacity reservation contract),
we investigate the value of the firm’s monitoring of un-
reliable suppliers to obtain a more accurate perception of
disruption risks. Our analyses quantify the financial impact
of the misperception of the true reliabilities of suppliers.

To perform our analysis, we consider a two-stage setting
where the firm is endowed with a recourse possibility to
selectively utilize the capacity reserved with the secondary

flexible backup supplier after monitoring the risk of
primary suppliers. Using our two-stage setting, we also
investigate the value of implementing flexibility in the
backup system. The value of information on disrup-
tion risks is computed, optimal ordering decisions are
identified, and the optimal capacity reservation level is
quantified (including bounds).

The remainder of the article is organized as follows. We
review the literature in Section 2 and then in Section 3 we
describe our model. Section 4 considers the problem in a
two-stage setting with recourse. To gain insights into the
value of recourse, in Section 5 we provide some bench-
mark analysis by considering the case where benchmark is
not allowed. In Section 6, we use our framework to pro-
vide insights into the value of recourse, backup flexibility,
and disruption risk information. Finally, we summarize our
main findings in Section 7 and conclude.

2. Related literature

This article considers all-or-nothing supply: when the sup-
plier is up it delivers an order in full, while nothing can
be supplied when it is down. By contrast, in models with
yield uncertainty or random yield, the quantity received is
a random fraction of the quantity ordered (see Yano and
Lee (1995) for an comprehensive review of the literature).

The majority of supply disruption papers focus on a
single-supplier problem (see, for instance, Meyer et al.
(1979), Bielecki and Kumar (1988), Parlar and Berkin
(1991), Parlar and Perry (1995), Gupta (1996), Song and
Zipkin (1996), Moinzadeh and Aggarwal (1997), Parlar
(1997) and Arreola-Risa and De Croix (1998)). Parlar and
Perry (1996) and Gürler and Parlar (1997) are among
the supply disruption papers that consider more than
one supplier. Both papers consider a firm that faces con-
stant demand and sources from two identical-cost, infinite-
capacity suppliers. Anupindi and Akella (1993) study a
finite-horizon, discrete-time, independent and identically
distributed stochastic continuous demand model in which
there are two-zero-lead time random-yield suppliers.

More recent related supply disruption papers with
multiple retailers include Babich (2006), Tomlin (2006),
Tomlin and Snyder (2006), Babich et al. (2007), Chopra et
al. (2007), Dada et al. (2007), Federgruen and Yang (2009),
and Wang et al. (2010). Babich et al. (2007) study the effects
of disruption risk in a supply chain where one retailer
deals with competing risky suppliers who may default
during their production lead times. Babich (2006) uses a
single-period model of a two-echelon supply chain with
competing risky suppliers and a single firm and investigates
how the supplier default risk and default co-dependence
affect firm procurement and production decisions. Tom-
lin (2006) sheds light on some effective disruption risk
mitigation mechanism by considering a single-product
setting in which a firm can source from two suppliers, one
that is unreliable and another that is completely reliable but
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more expensive and may possess volume flexibility. Tomlin
and Snyder (2006) investigate the value of a threat advisory
system and develop multi-period models in which the firm
has a single unreliable supplier, as well as models in which
a second, perfectly reliable supplier is available. Dada et
al. (2007) consider a newsvendor that is served by multiple
suppliers, where any given supplier is identified to be
either perfectly reliable or unreliable. Chopra et al. (2007)
consider the effect of decoupling delays (recurrent risk) and
disruption risks in a model with two suppliers: an unreli-
able supplier and a perfectly reliable supplier that is under
a capacity reservation contract. Federgruen and Yang
(2009) consider supply diversification under general supply
risk for a single product and a single demand season. Wang
et al. (2010) use two-stage stochastic programming settings
and investigate the value of two disruption mitigation
mechanisms: dual sourcing and process improvement.

The effect of disruption information has also been stud-
ied under different settings in some recent papers (see, for
example, Tomlin (2009), Yang et al. (2009), and the refer-
ences therein).

All of the above-mentioned papers examine a single
product setting. However, a single-product setting does not
allow us to capture the mix flexibility of a backup supplier
such as Somic. To the best of our knowledge, this is the first
article that develops a two-product analysis to simultane-
ously consider the option of implementing mix flexibility
in supply and the possibility of obtaining disruption risk
information.

For reviews of flexibility, we refer readers to Sethi and
Sethi (1990), Gerwin (1993), and Suarez et al. (1995). In
fact, the mix flexibility of production operations is studied
in many papers, including Fine and Freund (1990), Jordan
and Graves (1995), Kouvelis and Vairaktarakis (1998), Van
Mieghem (1998), Graves and Tomlin (2003), Iravani et al.
(2005), Tomlin and Wang (2005), and Iravani et al. (2011).
Our study contributes to this literature by considering the
value of a flexible supplier/resource to compensate for the
unreliability of dedicated suppliers. Similar contributions,
but in the context of the design of queueing systems with
flexible resources, can be found in Saghafian et al. (2011)
and the references therein.

3. Model and notation

Consider a centralized model of the contracting and or-
dering decisions of a firm (a manufacturer or retailer)
in a two-echelon make-to-stock supply chain that pro-
duces/sells two types of products (namely, 1 and 2) and
has two dedicated suppliers, each capable of supplying units
(components, final products, or raw materials) for one of the
products. Denote the dedicated supplier of units of product
j as supplier j (for j = 1, 2). The firm also has a flexible
backup supplier (namely f) that can produce (under a ca-
pacity reservation contract) units for both products 1 and

2, the sum of which cannot exceed a reserved capacity,
Q̄f . The capacity reservation contract explicitly allows the
purchase of a flexible backup capacity, Q̄f . We typically
use subscripts for products, superscripts for suppliers, and
employ the following notation:

h j : holding cost per unit of product j , ( j = 1, 2);
p j : lost sale penalty cost per unit ( j = 1, 2);

of unmet demand of product j ,
r j : revenue per unit of product j sold, ( j = 1, 2);
c j : per unit purchasing cost of product ( j = 1, 2);

j from dedicated supplier j ,
cf

j : per unit purchasing cost of product ( j = 1, 2);
j from flexible supplier,

uf : per unit capacity reservation cost
of the flexible backup supplier,

uf
j : (= uf + cf

j ) unit cost of product j ( j = 1, 2);
from the flexible backup supplier,

q j : order quantity from dedicated ( j = 1, 2);
supplier j ,

q f
j : order quantity from the flexible ( j = 1, 2);

backup supplier for product j ,
Q̄f : reserved capacity (in units) from

the flexible backup supplier.

Figure 1 depicts the two-echelon supply chain model. We
assume the firm has a price-only contract with its unreliable
dedicated suppliers; i.e., the firm pays c j (≤ r j ) per unit de-
livered by dedicated (and unreliable) supplier j . Moreover,
it has a generalized capacity reservation contract with its
flexible backup supplier; i.e., the firm chooses the capacity
level of Q̄f units and pays the flexible backup supplier a
cost of uf × Q̄f at time 0 to reserve its capacity. The flexible
backup supplier, in return, agrees to deliver any order
of products 1 and 2 (q f

1 and q f
2) subject to q f

1 + q f
2 ≤ Q̄f ,

and the firm pays the purchasing cost of cf
1 q f

1 + cf
2 q f

2. We
allow uf

j = uf + cf
j to be greater or less than r j . However,

to avoid the trivial case where single sourcing from
the flexible backup supplier is always optimal, we shall
assume uf

j = uf + cf
j > c j . This corresponds to practice,

because the contract can be regarded as an investment in the
flexible supplier’s technology that is not cheaper than that of
inflexible ones. We also note that the flexible supplier in our
framework could be an in-plant flexible resource that
requires an upfront investment of uf per unit of capacity.

For j ( j = 1, 2), let L j (x) = h j [x]+ + p j [−x]+ and

Lj (x) = EDj [L j (x − Dj )] = h j

∫ x

0
(x − ξ )dFj (ξ )

+ p j

∫ ∞

x
(ξ − x)dFj (ξ ), (1)

where [x]+ = max {0, x}, and Fj (·) is the Cumulative Dis-
tribution Function (CDF) of the demand for product j
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Fig. 1. The two-echelon supply chain under consideration.

(random variable Dj ). We assume that Fj (·) (for both
j = 1, 2) is differentiable and has Fj (x) = 0 for all x ≤ 0
and Fj (x) > 0 for all x > 0. Denoting the survival function
(i.e., the complementary CDF) of demand of product j
by F̄j (·) = 1 − Fj (·), we define the inventory cost function
G j (·) as

G j (x) = Lj (x) − r j E[min(Dj , x)] = Lj (x)

− r j

∫ x

0
F̄j (ξ )dξ, (2)

where the last expression can be obtained via integration
by parts. In these definitions, Lj (·) is the expected total in-
ventory cost of product j (holding plus shortage) and G j (·)
is the expected cost minus the expected revenue obtained
from product j .

We note that a firm may not accurately perceive the dis-
ruption risk of its unreliable suppliers. However, we can
model the firm’s best estimate of the reliability of supplier
j (i.e., the probability that supplier j is up) by θ j . We
define � = (θ1, θ2) as the vector of perceived reliabilities
and � = (1 − π1

0 , 1 − π2
0 ) as the vector of true reliabilities.

Also, we let ϒ = (ε1, ε2) denote the firm’s error in esti-
mating the true reliability vector where � = � + ϒ (i.e.,
θ j = 1 − π

j
0 + ε j for both j = 1, 2).

4. Analyses with recourse (two-stage setting)

To generate insights into effective disruption mitigation
mechanisms for firms, we start by analyzing the case where
the firm can first monitor the “availability” (i.e., up or
down) state of its primary suppliers and then utilize a
recourse option of ordering from the secondary flexible
backup supplier. Note that the availability state may be con-
strued as the ability of a supplier to deliver the requested
products within a required time. In other words, one can
also think of the up (down) state in terms of on-time (late)
delivery.

The sequence of events in this two-stage scenario is as
follows. The firm first decides to reserve a capacity of Q̄f

units from the secondary flexible backup supplier and pays
uf × Q̄f to do so (Stage 1). Then, the firm observes the state
of its primary suppliers, purchases from the available ones,

and uses the flexible backup supplier subject to the reserved
capacity (Stage 2). Then, demands are realized and inven-
tory costs (inventory shortage or holding minus the sales
revenue) accrue. Observe that in Stage 1, the firm can in-
sure the supply stream against possible disruptions through
investment in a flexible backup capacity. It can then mon-
itor the suppliers and use this information to make better
ordering decisions. Indeed, in Stage 1, the firm can pur-
chase the (recourse) option to benefit from flexible backup
capacity proportional to its investment. In Stage 2, after
observing the disruption states, the firm can exercise this
option at a cost of cf

j per mix of type j . After analyzing
this sequence of events in Section 4.3, we will introduce
an alternative sequence of events to allow consideration of
offshore unreliable suppliers.

Using the above-mentioned framework we seek to an-
swer the following questions.

Question 1: If the reserved capacity in Stage 1 is limited, how
would the firm distribute the available flexible backup
capacity among its products based on the obtained
information?

Question 2: How much would a firm invest in the flexible
supplier as a backup for possible disruptions? Does ob-
taining a recourse option result in a reduction in such an
investment?
Also, comparing the scenario with recourse to the bench-
mark setting described in Section 5 (i.e., when the firm
cannot observe the states of unreliable suppliers before
ordering), we can ask the following question.

Question 3: How beneficial is having a recourse option for
firms, and can it be regarded as a strong risk mitigation
mechanism?
Moreover, it is interesting to compare a scenario with
two dedicated backup suppliers (one for each product)
with the one with a single but flexible backup supplier to
answer the following question.

Question 4: How beneficial is the flexibility of a backup sup-
plier, and for what firms should implementing flexibility
(in the backup system) be more attractive?
Finally, similar to our no-recourse setting, we want to
investigate the value of disruption risk information (that
can reduce the risk belief errors) and address the follow-
ing question.
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Question 5: How valuable is obtaining disruption risk in-
formation (under a recourse option) for firms, and can it
be regarded as a strong risk mitigation mechanism?

To answer such questions, let CU,U(Q̄f ), CU,D(Q̄f ),
CD,U(Q̄f ), and CD,D(Q̄f ) (U: Up, D: Down) denote the
minimum expected cost of the firm in the second stage, if
both suppliers are up, only the first supplier is up, only
the second supplier is up, and when none of them are up,
respectively. These costs can be computed as follows.

CU,U(Q̄f ) = min
q1,q2,q f

1,q
f
2≥0 s.t. q f

1+q f
2≤Q̄f

2∑
j=1

cf
j q f

j + c1 q1 + c2 q2

+ G1
(
q1 + q f

1

)+ G2
(
q2 + q f

2

)
, (3)

CU,D(Q̄f ) = min
q1,q f

1,q
f
2≥0 s.t. q f

1+q f
2≤Q̄f

2∑
j=1

cf
j q f

j + c1 q1

+ G1
(
q1 + q f

1

)+ G2
(
q f

2

)
, (4)

CD,U(Q̄f ) = min
q2,q f

1,q
f
2≥0 s.t. q f

1+q f
2≤Q̄f

2∑
j=1

cf
j q f

j + c2 q2

+ G1
(
q f

1

)+ G2
(
q2 + q f

2

)
(5)

CD,D(Q̄f ) = min
q f

1,q
f
2≥0 s.t. q f

1+q f
2≤Q̄f

2∑
j=1

cf
j q f

j +G1
(
q f

1

)+G2
(
q f

2

)
.

(6)

Now, if CStage 2(Q̄f ) represents the optimal expected cost of
Stage 2 as is perceived by the firm at the beginning of Stage
1, we have:

CStage 2(Q̄f ) = θ1 θ2 CU,U(Q̄f ) + θ1 (1 − θ2 )CU,D(Q̄f )

+ (1 − θ1), θ2CD,U(Q̄f ) + (1 − θ1)

× (1 − θ2) CD,D(Q̄f ). (7)

Then, the firm can determine the optimal capacity reserva-
tion level (Q̄f∗) at the beginning of Stage 1 by solving the
following program:

min
Q̄f≥0

uf Q̄f + CStage 2(Q̄f ). (8)

To determine the behavior of the firm, we must first opti-
mize non-linear programs (3) to (6) of Stage 2 for a given
capacity reservation level; thereafter, the optimal ordering
policy can be used to derive the optimal contracting level
as is perceived by the firm by solving program (8). This op-
timal capacity reservation level (a strategic decision) then
determines the tactical ordering behavior in each case (i.e.,
the minimizers of programs (3) to (6)). To solve programs
(3) to (6), we note that the objective functions are all jointly
convex in their variables (see Appendix C for the proof of
Lemma A1 and some other related results), and the con-
straints are linear. Hence, the Karush-Kuhn-Tuckor (KKT)
conditions are sufficient and necessary to characterize the
optimal solutions. To gain some insights, we first start by

considering a single-product setting as a special case and
next solve programs (3) to (6) to derive the optimal policy
of the firm under the original two-product setting.

4.1. Single–product special case

Consider a single-product version of the problem discussed
in the previous section. Since there is only one product and
one unreliable supplier, we suppress both the product in-
dex, j , and the index of unreliable suppliers. However, we
continue to use index f to denote the backup supplier. To
characterize the firm’s optimal capacity reservation level
from the backup supplier as well as its optimal ordering
policy, we need to first solve the problem in Stage 2 (i.e.,
derive the firm’s optimal ordering policy) for any level of
capacity reserved with the backup supplier in Stage 1. Sub-
sequently, we can use the obtained results to solve Stage 1
to find the optimal capacity reservation level.

Proposition 1. (Single product). Given that the firm reserves
Q̄f units of capacity from the backup supplier in Stage 1, the
optimal ordering policy of Stage 2 is as follows.

1. If cf > c and the unreliable supplier is observed to be up,
then q f∗ = 0, and q∗ = F−1(p + r − c)/(p + r + h).

2. If cf > c and the unreliable supplier is observed to be down,
then q f∗ = min{F−1(p + r − cf )/(p + r + h), Q̄f}.

3. If cf ≤ c and the unreliable supplier is observed to be up,
then:
(i) If

Q̄f ∈
[

F−1
(

p + r − cf

p + r + h

)
, +∞

]
,

then

q f∗ = F−1
(

p + r − cf

p + r + h

)
and q∗ = 0.

(ii) If

Q̄f ∈
[

F−1
(

p + r − c
p + r + h

)
, F−1

(
p + r − cf

p + r + h

) ]
,

then

q f∗ = Q̄f and q∗ = 0.

(iii) If

Q̄f ∈
[

0 , F−1
(

p + r − c
p + r + h

)]
,

then

q f∗ = Q̄f and q∗ = F−1
(

p + r − c
p + r + h

)
− Q̄f .
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4. If cf ≤ c and the unreliable supplier is observed to be down,
then:
(i) If

Q̄f ∈
[

F−1
(

p + r − cf

p + r + h

)
, +∞

]
,

then

q f∗ = F−1
(

p + r − cf

p + r + h

)
.

(ii) If

Q̄f ∈
[

0 , F−1
(

p + r − cf

p + r + h

) ]
,

then

q f∗ = Q̄f .

Proof. All proofs are provided in Appendix A. �
Parts 1 and 2 of Proposition 1 describe that when exercis-

ing the option from the backup supplier is more expensive
than purchasing from the unreliable supplier, the firm or-
ders only from a single source: it only uses the unreliable
supplier if it is up and only uses the backup supplier (as
much as required or the reserved capacity allows) other-
wise. As parts 3 and 4 of Proposition 1 show, when exer-
cising the option from the backup supplier is cheaper than
purchasing from the unreliable supplier, if the unreliable
supplier is observed to be up, then the firm either orders
nothing from the unreliable supplier or exhausts the ca-
pacity reservation option (unless the reserved capacity is
sufficient) and only orders the rest of its requirement from
the unreliable supplier. On the other hand, when the unreli-
able supplier is observed to be down, the firm exhausts the
capacity reservation option (unless the reserved capacity is
sufficient). In fact, the firm’s problem in a single-product
setting is much easier than the two-product setting, since it
is not facing the complex problem of rationing the available
limited flexible backup capacity between the two products
in an effective way. As we will show, in the two-product set-
ting, even when only one of the suppliers is down, the firm
may need to ration the backup flexible capacity between
the two products (see Theorem 2 part (2)).

Remark 1. A special case of the single-product version of
our model presented in this section is the case where the
cost of reserving capacity in Stage 1 (uf ) is negligible. In
this very special case where (i) the backup supplier is not
endowed with mix flexibility (since it is a single-product set-
ting) and (ii) backup capacity is unlimited (i.e., Q̄f is large
enough) and does not need to be reserved in advance, the
role of the backup supplier can be construed via the second
opportunity quick response models studied thoroughly in
papers such as Fisher and Raman (1996); (the Sport Ober-
meyer case), Eppen and Iyer (1997), Milner and Kouvelis
(2002), and Li et al. (2009). The main difference between

our work and such models, even under the special case of
a single-product setting, is that the firm must optimize the
amount of backup capacity to be reserved in advance (i.e.,
in anticipation of potential future disruptions) subject to a
reservation cost. Indeed, the firm in our model can ensure a
supply stream by buying backup capacity in advance. Note
that this investment greatly affects the ordering ability of
the firm in the second stage. Furthermore, another main
feature of our model that differentiates it from such studies
is the mix flexibility of the backup flexible supplier that we
will consider in the following. In the presence of a backup
capacity that is (i) limited and (ii) flexible, we provide in-
sights into the question of how to effectively benefit from
a recourse option and ration the limited backup capacity
between products to compensate for the disruption risk of
primary suppliers. Comparing our setting with a setting
where the backup capacity is not flexible (i.e., a setting
with two independent products), we will see that the mix
flexibility in the backup system provides a significant ad-
vantage for the firm in the presence of unreliable suppliers.
Another distinct and novel objective of our research is to
provide insights into the value of obtaining disruption risk
information as we will discuss in Sections 5.2 and 6.3.

Having the ordering policy in hand, we can now use
Proposition 1 to determine the optimal capacity reservation
level of Stage 1.

Proposition 2. (Capacity reservation level ). The optimal
capacity reservation level (as perceived by the firm) can be
characterized as follows:

1. If cf > c, then:

Q̄f∗ = F−1
([ p + r − ((uf + (1 − θ)cf )/(1 − θ))

p + r + h

]+)
.

2. If cf ≤ c, then:

Q̄f∗ = F−1
([ p + r − ((uf + cf − θc)/(1 − θ))

p + r + h

]+)
.

Parts 1 and 2 of Proposition 2 can be combined and
summarized as follows. Let c̄ = max{c, cf} and ĉ = (uf +
cf − θ c̄)/(1 − θ). Then,

Q̄f∗ = F−1

([
p + r − ĉ
p + r + h

]+)
,

which can be construed as a single-source (and single-
stage) traditional newsvendor setting with a perfectly re-
liable source and a purchasing cost ĉ. However, note that
this new purchasing cost, ĉ, is affected by the reliability
perception of the firm, θ , as well as the backup capacity
reservation costs, uf and cf . For instance, the firm will not
reserve any backup capacity in Stage 1 if its reliability per-
ception of the unreliable supplier is greater than a threshold
(that depends on the inventory, purchasing, and capacity
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reservation costs), even though it might be truly beneficial
to reserve some backup capacity.

4.2. Two-product case

We now consider our original two-product setting to pro-
vide insights into Questions 1 to 5. The following three
theorems solve programs (3) to (6) to define the optimal
ordering policy of the firm and provide insight into Ques-
tion 4. For brevity, we only consider the most interesting
situation where cf

j ≤ c j throughout this section, but other
situations can be analyzed in a similar way (see Appendix D
for the case where cf

j > c j ).

Theorem 1. (Both suppliers up). Let k = argmax{c j − cf
j :

j = 1, 2} denote the product with the higher difference in
purchasing cost, and l = 3 − k be the other product. If both
suppliers are observed to be up, then the following cases fully
characterize the optimal ordering policy of the firm, given a
reserved flexible backup capacity of Q̄f .

1. If

Q̄f ∈
[ ∑

j=k,l

F−1
j

(
p j + r j − cf

j

p j + r j + h j

)
, +∞

)
,

then

q f∗
j = F−1

j

(
p j + r j − cf

j

p j + r j + h j

)
and q j∗ = 0 ( j = k, l).

2. If

Q̄f ∈
[ ∑

j=k,l

F−1
j

(
p j + r j − cf

j − (
cl − cf

l

)
p j + r j + h j

)
,

∑
j=k,l

F−1
j

(
p j + r j − cf

j

p j + r j + h j

)]

then

q f∗
j = F−1

j

(
p j + r j − cf

j − t

p j + r j + h j

)
and q j∗ = 0 ( j = k, l),

where t ∈ (0, cl − cf
l ] is the solution to

∑
j=k,l

F−1
j

(
p j + r j − cf

j − t

p j + r j + h j

)
= Q̄f .

3. If

Q̄f ∈
[

F−1
k

(
pk + rk − cf

k − (
cl − cf

l

)
pk + rk + hk

)
,

∑
j=k,l

F−1
j

(
p j + r j − cf

j − (
cl − cf

l

)
p j + r j + h j

)]

then

q f∗
k = F−1

k

(
pk + rk − cf

k − (
cl − cf

l

)
pk + rk + hk

)
, q f∗

l = Q̄f − q f∗
k ,

qk∗ = 0,

and

ql∗ = F−1
l

(
pl + rl − cl

pl + rl + hl

)
− q f∗

l .

4. If

Q̄f ∈
[

F−1
k

(
pk + rk − ck

pk + rk + hk

)
,

F−1
k

(
pk + rk − cf

k − (
cl − cf

l

)
pk + rk + hk

) ]
,

then:

q f∗
k = Q̄f , q f∗

l = 0, qk∗ = 0,

and

ql∗ = F−1
l

(
pl + rl − cl

pl + rl + hl

)
.

5. If

Q̄f ∈
[

0 , F−1
k

(
pk + rk − ck

pk + rk + hk

) ]
,

then:

q f∗
k = Q̄f , q f∗

l = 0, qk∗ = F−1
k

(
pk + rk − ck

pk + rk + hk

)
− Q̄f ,

and

ql∗ = F−1
l

(
pl + rl − cl

pl + rl + hl

)
.

Theorem 1 part (1) shows that if the firm has already
reserved more than enough capacity (in Stage 1), it would
not order anything from the primary suppliers (in Stage 2)
and will only use the available flexible capacity, ordering
the optimal level for each of the products. The rest of the
reserved capacity is wasted to avoid paying extra holding or
purchasing costs. Even if the reserved capacity is below the
level identified in part (1) but is in the range described by
part (2), the firm will only use the reserved capacity. How-
ever, in this case, it will appropriately ration Q̄f between
the products. Indeed, t can be viewed as a fictitious addi-
tional ordering cost that is applied to optimally ration the
available flexible capacity. Part (3) states that if the avail-
able capacity is enough to fulfill a prescribed amount of
product k but not enough for both of the products, the firm
should use the flexible capacity to satisfy all of the optimal
ordering amount of product k. Hence, it would not order
anything from primary supplier k and use the rest of the
reserved capacity as well as primary supplier l to satisfy
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the requirement for product l. In the case that the reserved
capacity is not enough to meet the prescribed level for any
of the products but still is relatively large, part (4) shows
that the firm should set aside all the reserved flexible capac-
ity for product k (and not order from dedicated supplier
k). Hence, in this case, it is optimal to only use primary
supplier l to optimize the service level of product l. If the
reserved flexible capacity is very low, as is presented in part
(5), it is optimal to use all Q̄f units of the limited flexible
capacity for the “expensive” product (i.e., product k) and
also procure the rest of requirements of this product from
its primary supplier. Moreover, similar to case (6), product
l is sourced only through its primary supplier. We now treat
the case when exactly one of the suppliers is observed to be
disrupted.

Theorem 2. (One supplier up) Let m ∈ {1, 2} denote the dedi-
cated supplier that is observed to be up, and n = 3 − m be the
disrupted supplier. Then, the following cases fully character-
ize the optimal ordering policy of the firm, given a reserved
flexible backup capacity of Q̄f :

1. If

Q̄f ∈
[ ∑

j=n,m

F−1
j

(
p j + r j − cf

j

p j + r j + h j

)
, +∞

]
,

then:

q f∗
j = F−1

j

(
p j + r j − cf

j

p j + r j + h j

)
( j = n, m) and qm∗ = 0.

2. If

Q̄f ∈
[ ∑

j=n,m

F−1
j

([
p j + r j − cf

j − (
cm − cf

m

)
p j + r j + h j

)]+ )
,

∑
j=n,m

F−1
j

(
p j + r j − cf

j

p j + r j + h j

) )

then:

q f∗
j = F−1

j

([
p j + r j − cf

j − t

p j + r j + h j

]+)

( j = n, m) and qm∗ = 0,

where t ∈ (0, cm − cf
m] is the solution to

∑
j=n,m

F−1
j

([
p j + r j − cf

j − t

p j + r j + h j

]+)
= Q̄f .

3. If

Q̄f ∈
[

F−1
n

([
pn + rn − cf

n − (
cm − cf

m

)
pn + rn + hn

]+)
,

∑
j=n,m

F−1
j

([ p j + r j − cf
j − (

cm − cf
m

)
p j + r j + h j

]+)]

then:

q f∗
n = F−1

n

([
pn + rn − cf

n − (
cm − cf

m

)
pn + rn + hn

]+)
,

q f∗
m = Q̄f − q f∗

n ,

and

qm∗ = F−1
m

(
pm + rm − cm

pm + rm + hm

)
− q f∗

m .

4. If

Q̄f ∈
[

0 , F−1
n

([
pn + rn − cf

n − (
cm − cf

m

)
pn + rn + hn

]+)]

then:

q f∗
n = Q̄f , q f∗

m = 0,

and

qm∗ = F−1
m

(
pm + rm − cm

pm + rm + hm

)
.

It is noteworthy that Theorem 2 can be interpreted via The-
orem 1. In fact, by considering the disrupted supplier as a
supplier with a sufficiently large purchasing cost, Theorem
2 coincides with Theorem 1. However, in Theorem 2 the op-
erator [·]+ is used (whenever necessary) to ensure that the
ratios are within appropriate domain of functions F−1

j (·).
This is redundant in Theorem 1 because of the assump-
tion r j ≥ c j = cf

j + (c j − cf
j ) (for both j = k, l), which also

implies rk ≥ cf
k + (

cl − cf
l

)
since ck − cf

k ≥ cl − cf
l . To con-

clude, the following theorem treats the case when both
primary suppliers are disrupted and similarly can be inter-
preted via Theorem 1 with sufficiently large c j ( j = 1, 2).

Theorem 3. (Both suppliers disrupted). The following cases
fully characterize the optimal ordering policy of the firm when
both primary suppliers are observed to be disrupted, given a
reserved flexible backup capacity of Q̄f :

1. If

Q̄f ∈
[ ∑

j=1,2

F−1
j

( p j + r j − cf
j

p j + r j + h j

)
, +∞

]
,

then:

q f∗
j = F−1

j

( p j + r j − cf
j

p j + r j + h j

)
( j = 1, 2).

2. If

Q̄f ∈
[

0 ,
∑
j=1,2

F−1
j

( p j + r j − cf
j

p j + r j + h j

)]
,

then:

q f∗
j = F−1

j

([ p j + r j − cf
j − t

p j + r j + h j

]+)
( j = 1, 2),
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where t ∈ ( 0 , max j {p j + r j − cf
j } ] is the solution to

∑
j=1,2

F−1
j

([ p j + r j − cf
j − t

p j + r j + h j

]+)
= Q̄f .

Theorems 1, 2, and 3 solve programs (3) to (6). Note that
the separability of the ordering policy between products
(as reflected in Theorem 7) no longer applies. However, to
answer Question 2, one can use Theorems 1, 2, and 3 to
solve program (8) and obtain the optimal capacity reser-
vation level (for any parameter setting and any demands
distributions F1(·), F2(·)). For brevity, and to further an-
alytically characterize the optimal contracting level, how-
ever, we only consider the case where the following mild
assumption holds. For simplicity of presentation, it is also
convenient to fix the labeling of the products such that
product 2 is the product with higher difference in purchas-
ing cost (i.e., argmax{c j − cf

j : j = 1, 2} = 2).

Assumption 1. Demand distributions F1(·), F2(·) are such
that:

(i)

0 ≤ F−1
1

(
p1 + r1 − cf

1 − (
c2 − cf

2

)
p1 + r1 + h1

)

≤ F−1
2

(
p2 + r2 − c2

p2 + r2 + h2

)
,

and
(ii)

F−1
2

(
p2 + r2 − cf

2 − (
c1 − cf

1

)
p2 + r2 + h2

)

≤
∑
j=1,2

F−1
j

(
p j + r j − cf

j − (
c2 − cf

2

)
p j + r j + h j

)
.

Notice that the above assumption is not critical, since
(i) if it does not hold, analysis will follow similar lines;
and (ii) it holds for most settings where products are not
extremely different in their procurement and inventory
costs as well as their demand distributions. For instance, a
completely symmetric scenario where the parameters are
product independent satisfies conditions (i) and (ii).

The following proposition further helps to character-
ize the optimal capacity reservation level with the flexible
backup supplier. It states that q̄ f∗ can only take one of six
possible values. Therefore, it can be found by comparing
the cost of these six options.

Proposition 3. (Capacity reservation level). Under
Assumption 1, q̄ f∗ ∈ {Q̄f

k : k = 1, 2, . . . , 6}, where:

Q̄f
1

�= arg min
Q̄f∈I1

(
uf − θ1θ2(c2 − cf

2

)+ θ1θ̄2cf
2 + θ̄1θ2cf

1

)
Q̄f

+ θ̄1θ2G1(Q̄f ) + θ1θ̄2G2(Q̄f ) + θ̄1θ̄2�(Q̄f ),

Q̄f
2

�= arg min
Q̄f∈I2

(
uf − θ2(c2 − cf

2

)+ θ1θ̄2cf
2

)
Q̄f

+ θ1θ̄2G2(Q̄f ) + θ̄1θ̄2�(Q̄f ),

Q̄f
3

�= arg min
Q̄f∈I3

(
uf − θ̄1θ2(c2 − cf

2

)+ θ1cf
2

)
Q̄f

+ θ1G2(Q̄f ) + θ̄1θ̄2�(Q̄f ),

Q̄f
4

�= arg min
Q̄f∈I4

(
uf − θ1(c1 − cf

1

)− θ̄1θ2(c2 − cf
2

))
Q̄f

+ θ̄1θ̄2�(Q̄f ),

Q̄f
5

�= arg min
Q̄f∈I5

(
uf − θ1(c1 − cf

1

))
Q̄f + θ̄1�(Q̄f ),

Q̄f
6

�= arg min
Q̄f∈I6

uf Q̄f + �(Q̄f ),

with

θ̄ j = 1 − θ j , �(Q̄f ) =
∑
j=1,2

[
cf

j F−1
j

( p j + r j − cf
j − tQ̄f

p j + r j + h j

)

+ G j (F−1
j

( p j + r j − cf
j − tQ̄f

p j + r j + h j
)
)]

and tQ̄f is the solution to

∑
j=1,2

F−1
j

(
p j + r j − cf

j − tQ̄f

p j + r j + h j

)
= Q̄f ,

and

I1 =
[

0, F−1
1

(
p1 + r1 − cf

1 − (
c2 − cf

2

)
p1 + r1 + h1

)]
,

I2 =
[

F−1
1

(
p1 + r1 − cf

1 − (
c2 − cf

2

)
p1 + r1 + h1

)
,

F−1
2

(
p2 + r2 − c2

p2 + r2 + h2

)]
.

I3 =
[

F−1
2

(
p2 + r2 − c2

p2 + r2 + h2

)
,

F−1
2

(
p2 + r2 − cf

2 − (
c1 − cf

1

)
p2 + r2 + h2

)]
,

I4 =
[

F−1
2

(
p2 + r2 − cf

2 − (
c1 − cf

1

)
p2 + r2 + h2

)
,

∑
j=1,2

F−1
j

( p j + r j − cf
j − (

c2 − cf
2

)
p j + r j + h j

)]
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I5 =
[ ∑

j=1,2

F−1
j

( p j + r j − cf
j − (

c2 − cf
2

)
p j + r j + h j

)
,

∑
j=1,2

F−1
j

( p j + r j − cf
j − (

c1 − cf
1

)
p j + r j + h j

)
]
,

I6 =
[ ∑

j=1,2

F−1
j

( p j + r j − cf
j − (

c1 − cf
1

)
p j + r j + h j

)
,

∑
j=1,2

F−1
j

( p j + r j − cf
j

p j + r j + h j

)]
.

We now present a corollary of the above proposition that
provides two upper bounds on the optimal capacity reserva-
tion (or investment) level with the flexible backup supplier.
The first upper bound is the sum of optimal orders to two
separate, reliable, and dedicated suppliers with purchasing
costs cf

j ( j = 1, 2). This bound shows that the flexibility
of the backup supplier offers competitive advantage to the
firm. The second bound is the optimal capacity reservation
level without the recourse option (see Section 5 for anal-
ysis without the recourse option). Indeed, the second part
of the following corollary provides more insights to Ques-
tion 2 by presenting a condition under which obtaining a
recourse option will result in a non-strict reduction in the
capacity reserved (or the investment level) with the flexible
supplier.

Corollary 1. (Bounds). The optimal capacity reservation level
with the flexible backup supplier (with recourse) is bounded
above by

(i)

∑
j=1,2

F−1
j

( p j + r j − cf
j

p j + r j + h j

)
,

and
(ii) the optimal capacity reservation level without recourse,

if disruption risks are such that θ j (c j − cf
j ) ≥ uf for j =

1, 2.

To provide more insights, we now characterize the opti-
mal backup capacity reservation level under a symmetric
scenario where the two products have similar character-
istics (demand distributions, procurement and inventory
costs, and revenues—but not necessarily supplier reliabil-
ities). Such a symmetric scenario allows us to completely
characterize the optimal capacity reservation level and gain
some clear insights. To this end, the following theorem con-
siders a symmetric scenario and characterizes both cases
where the flexible secondary supplier is more expensive or
cheaper than the primary ones.

Theorem 4. (Symmetric scenario). Consider a symmetric
scenario where all parameters except (perhaps) the supplier
reliabilities are product-independent. Further, assume that

product demands follow a uniform distribution between 0 and
d (with d > (2 (p + r − uf − cf ))/(p + r + h) to ensure full
linearity of the demand CDFs in the working range). Then,

if c − cf ≥ uf , we have:

Q̄f∗ = 2d (p + r − uf − cf )
p + r + h

. (9)

However, if c − cf < uf , consider the following conditions
on the reliability of suppliers:
Condition 1 (C1) : θ̄1 θ̄2 ≥ 2 (uf − (c − cf ))/(p + r − c),
and Condition 2 (C2) : θ1 θ2 ≤ 1 − (uf − (c − cf ))/
(p + r − c). Then:

(i) when both C1 and C2 do not hold: q̄ f∗ = 0;
(ii) when C1 does not hold but C2 holds:

Q̄f∗ = d ((1 − θ1θ2)(p + r ) + θ1θ2c − uf − cf )

(θ̄1θ2 + θ1θ̄2 + (θ̄1θ̄2)/(2)(p + r + h)
, (10)

(iii) when C1 holds:

Q̄f∗ = 2d (p + r − c − (uf − (c − cf ))/(θ̄1 θ̄2))
p + r + h

. (11)

The above theorem describes that, when the procurement
cost from the flexible supplier (uf + cf ) is sufficiently cheap,
the optimal capacity reservation level is independent of dis-
ruption risks. Furthermore, similar to the case without re-
course (see Theorem 7), there is a separation of the joint
capacity reservation in this case; the optimal capacity re-
served presented in Equation (9) is the sum of the orders
of two independent newsvendors with a procurement cost
of uf + cf . However, when the procurement cost from the
flexible supplier is not cheap, the separation phenomenon
no longer exists. For instance, Equation (11) shows that the
optimal capacity reservation level with a recourse option is
a function of θ̄1 × θ̄2. However, as we will see in the case
without recourse (see Theorem 7), the optimal capacity
reservation level is the sum of two independent terms: one
a function of θ̄1 and the other a function of θ̄2.

4.3. Recourse analysis with offshore unreliable suppliers

In some situations, a firm may not be able to monitor its
unreliable suppliers before placing the orders. For instance,
unlike our motivating examples discussed in the Introduc-
tion, there might be geographical or other barriers between
such suppliers and the firm that prevent the firm from ef-
fectively monitoring its unreliable suppliers. Thus, we now
assume that the firm first places the orders with unreliable
suppliers, observes the delivered quantities, and then places
orders with the backup supplier. Specifically, the firm first
decides to reserve a capacity of Q̄f units from the secondary
flexible backup supplier and pays uf × Q̄f to do so. Simul-
taneously, the firm places orders with the dedicated unre-
liable suppliers (Stage 1). If the corresponding supplier is
up, the orders are fully delivered, and the firm pays the full
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purchasing price to the supplier. Otherwise, nothing is de-
livered and, therefore, the firm does not pay the purchasing
price (i.e., as before, the firm pays only per item delivered).
The firm can then use its flexible backup supplier subject to
the reserved capacity, Q̄f , by paying the capacity reserva-
tion exercise prices (Stage 2). Then, demands are realized
and either inventory shortage cost or holding minus the
sales revenue accrue.

Let CU,U(Q̄f , q1, q2), CU,D(Q̄f , q1), CD,U(Q̄f , q2), and
CD,D(Q̄f ) (U: up, D: down) denote the minimum expected
cost of the firm in the second stage, if both suppliers deliver
(i.e., has been up), only the first supplier delivers, only the
second supplier delivers, and when none of them delivers,
respectively. Analogous to programs (3) to (6), these costs
can be computed as follows.

CU,U(Q̄f , q1, q2) = c1 q1+c2 q2+ min
q f

1,q
f
2≥0 s.t. q f

1+q f
2≤Q̄f

2∑
j=1

cf
j q f

j

+ G1
(
q1 + q f

1

)+ G2
(
q2 + q f

2

)
, (12)

CU,D(Q̄f , q1) = c1 q1 + min
q f

1,q
f
2≥0 s.t. q f

1 +q f
2≤Q̄f

2∑
j=1

cf
j q f

j

+ G1
(
q1 + q f

1

)+ G2
(
q f

2

)
, (13)

CD,U(Q̄f , q2) = c2 q2 + min
q f

1,q
f
2≥0 s.t. q f

1+q f
2≤Q̄f

2∑
j=1

cf
j q f

j

+ G1
(
q f

1

)+ G2
(
q2 + q f

2

)
, (14)

CD,D(Q̄f ) = min
q f

1,q
f
2≥0 s.t. q f

1+q f
2≤Q̄f

2∑
j=1

cf
j q f

j + G1
(
q f

1

)
+ G2

(
q f

2

)
. (15)

Next, if CStage 2(Q̄f , q1, q2) denotes the optimal expected
cost of Stage 2 as is perceived by the firm at the beginning
of Stage 1, we have:

CStage 2(Q̄f , q1, q2) = θ1 θ2 CU,U(Q̄f , q1, q2)

+ θ1 (1 − θ2 )CU,D(Q̄f , q1)

+ (1 − θ1) θ2 CD,U(Q̄f , q2)

+ (1 − θ1)(1 − θ2) CD,D(Q̄f ).
(16)

Then, the firm can determine Q̄f∗ as well as q1∗, q2∗ at the
beginning of Stage 1 via

min
q1,q2,Q̄f≥0

uf Q̄f + CStage 2(Q̄f , q1, q2). (17)

Notice that the solution to Equation (15) is already given
in Theorem 3, although the value of Q̄f may differ. Hence,
we now need to solve programs (12) to (14).

Theorem 5. (Both suppliers up). For j = 1, 2, let

α j =
[

F−1
j

( p j + r j − cf
j

p j + r j + h j

)
− q j

]+
and

β j =
[

F−1
j

([ p j + r j − cf
j − t

p j + r j + h j

]+)
− q j

]+
,

where t is the solution to
∑2

j=1 β j = Q̄f . If Q̄f ∈
[
∑2

j=1 α j , ∞), then q f∗
j = α j . Otherwise, q f∗

j = β j .

The above theorem states that, if the reserved ca-
pacity from the backup supplier is enough, the firm
will set the order-up-to level of product j equal to
F−1

j ((p j + r j − cf
j )/(p j + r j + h j )); otherwise, to set the

order-up-to level, the firm rations the available backup ca-
pacity between the two products using parameter t. Here, t
can be thought of as an additional fictitious capacity reser-
vation exercise cost that rations the limited capacity. In each
of these cases, and for both products, if the delivered order
from the dedicated supplier is more than the order-up-to
level, the firm will not use the backup capacity. Otherwise,
the firm brings its inventory level to the order-up-to level
by reordering the rest of its requirement from the backup
supplier and paying the capacity reservation exercise cost.

Next, we solve programs (13) and (14) to analyze the case
where exactly one of the dedicated suppliers fails to deliver.

Theorem 6. (One supplier up). Let m ∈ {1, 2} denote the ded-
icated supplier that delivers, and n = 3 − m be the disrupted
supplier. Let

αm =
[

F−1
m

(
pm + rm − cf

m

pm + rm + hm

)
− qm

]+
,

αn = F−1
n

(
pn + rn − cf

n

pn + rn + hn

)
,

βm =
[

F−1
m

([
pm + rm − cf

m − t
pm + rm + hm

]+)
− qm

]+
,

and

βn = F−1
n

([
pn + rn − cf

n − t
pn + rn + hn

]+)
,

where t is the solution to
∑

j=m,n β j = Q̄f . If Q̄f ∈
[
∑

j=m,n α j , ∞), then q f∗
j = α j for j ∈ {m, n}. Otherwise,

q f∗
j = β j .

The above result states that the firm will set the order-
up-to levels as if both unreliable suppliers have delivered.
However, unlike the case where both suppliers deliver, the
firm can only reach the order-up-to level for product n
via the flexible backup supplier. Hence, for instance, if the
reserved capacity is enough, the firm will always order a
positive amount from the backup supplier for product n.
When the reserved backup capacity is not enough, the firm
will ration the available limited backup capacity, consider-
ing the amount delivered for product m.
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Since the solution to program (15) is already given in The-
orem 3, we have completely solved programs (12) to (15)
and, hence, CStage 2(Q̄f , q1, q2) is completely computed. It is
then straightforward to solve program (17) to characterize
the firm’s behavior in the first stage. Furthermore, it should
be clear that because of the early orders placed with the
unreliable suppliers, the optimal cost in program (17) pro-
vides an upper bound for the optimal cost in the previous
section.

5. Benchmark analyses: no recourse

To generate insights into the value of the recourse option
for firms (Questions 2 and 3 ) and provide some benchmark
analyses for Section 4, we now consider the much simpler
case where recourse is not allowed. We present the main
results here and provide further details about this setting in
Appendix C.

Theorem 7. Without the recourse option, the perceived op-
timal ordering and contracting decisions for the firm with
0 ≤ θ j < 1 ( j = 1, 2) are

q f∗
j = F−1

j

([ p j + r j − (
uf

j − θ j c j
)
/(1 − θ j )

p j + r j + h j

]+)
( j = 1, 2), (18)

q j∗ = F−1
j

(
p j + r j − c j

p j + r j + h j

)

−F−1
j

([ p j + r j − (
uf

j − θ j c j
)
/(1 − θ j )

p j + r j + h j

]+)
( j = 1, 2), (19)

Q̄f
∗ =

2∑
j=1

q f∗
j

=
2∑

j=1

F−1
j

([ p j + r j − (uf
j − θ j c j )/(1 − θ j )

p j + r j + h j

]+)
.

(20)

Theorem 7 shows in Equation (20) the amount of capacity
that the firm reserves, where uf

j = uf + cf
j . For each of the

products, the firm will order in total (from both suppliers of
that product) the same amount that it would order if it had a
single, reliable, dedicated supplier with linear ordering cost
c j . However, its perceived optimal ordering quantity from
the flexible supplier is modified to include its unreliability
beliefs about dedicated suppliers. It will then procure the
rest of its requirements from the unreliable dedicated sup-
plier. Theorem 7 also proves a separability phenomenon in
capacity reservation for the two products. As the reader may
have expected, the flexible backup supplier in this bench-
mark setting has capacity reserved at the same levels as if
there are two separate backup suppliers. This is intuitive

because the joint backup capacity is not decided a priori in
this section but is part of the optimization. However, as we
observed in Section 4, this separability disappears where
recourse is allowed.

5.1. Benchmark setting: the value of the secondary flexible
backup supplier

We denote the true (and not the perceived) value of the
flexible backup supplier for the firm by Vf and define it as:

Vf = CT (q ′1∗, q ′2∗, 0, 0, 0) − CT
(
q1∗, q2∗, q f∗

1 , q f∗
2 , Q̄f∗) ,

(21)

where CT (·) (as is defined in Equation (A67) in
Appendix C) denotes the true expected cost of the firm
under its perceived optimal decisions, and q ′ j∗ represents
the firm’s perceived optimal ordering quantity to dedicated
supplier j in the absence of the flexible supplier.

Using the perceived optimal ordering and contracting
levels presented in Theorem 7, we now derive the true value
of the flexible backup supplier for the firm in the following
lemma.

Lemma 1. The true value of the flexible backup supplier for
the firm under the capacity reservation contract is

Vf =
2∑

j=1

[
π

j
0

(
p j E(Dj ) − G j

(
q f∗

j

))
−(uf

j − (
1 − π

j
0

)
c j )q f∗

j

]
, (22)

where G j (·) and q f∗
j are defined in Equations (2) and (18),

respectively.

Now that we have a measure for the value of the flexible
backup supplier, we can answer an interesting question:

Question 6: If a firm perceives the capacity reservation con-
tract with a flexible backup supplier to be valuable (and
hence will wish to form a contract), will such a contract
be also truly valuable or not (and vice versa)?

Theorem 8.

(i) The firm perceives the capacity reservation contract with
the flexible backup supplier to be valuable, if and only if
its reliability belief vector � = (θ1, θ2) satisfies:

∃ j ∈ {1, 2} : θ j <
p j + r j − uf

j

p j + r j − c j
. (23)

(ii) The capacity reservation contract with the flexible
backup supplier is not truly valuable for the firm if for
both j = 1, 2:

max
{
θ j , 1 − π

j
0

} ≥ p j + r j − uf
j

p j + r j − c j
. (24)

From Theorem 8, we observe that if (p j + r j − uf
j )/

(p j + r j − c j ) ≤ θ j for both j = 1, 2, the firm is lucky that
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its belief is true (regardless of whether it is underestimat-
ing or overestimating): contracting with the flexible backup
supplier is neither perceived to be valuable nor is truly valu-
able for the firm. Also, a firm that overestimates the reli-
abilities of both of its dedicated suppliers (i.e., ε j > 0 for
both j = 1, 2) perceives the flexible backup supplier to be
valuable if, and only if, it is truly valuable (for the only if
part, follow the proof of Theorem 2). In fact, we have the
following observation:

Observation 1. Overestimating reliabilities does not have the
danger of mismatching perception and reality regarding the
decision of whether or not to reserve some flexible backup
capacity.

While the above observation presents a nice property
of overestimating, it does not mean that it is more prof-
itable to overestimate the reliabilities. Indeed, we can rigor-
ously prove the following theorem that verifies the intuitive
notion that firms with a more accurate reliability belief
(achievable through monitoring unreliable suppliers) can
benefit more from contracting with a flexible backup sup-
plier in terms of actual cost reduction.

Proposition 4. The true value of the flexible backup supplier
based on the firm’s errors in its reliability belief, denoted
by Vf (ε1, ε2), is non-increasing in the degree of disruption
risk perception error. That is, for j ∈ {1, 2} if ε j > 0, let
0 ≤ δ j < ε j and if ε j < 0, let ε j < δ j ≤ 0; then Vf (ε1, ε2) ≤
Vf (δ1, δ2).

The (numerical) Study A1 of Appendix C generates more
insights into the value of the flexible backup supplier. In
particular, the following observation from this study is of
interest.

Observation 2. Even with large errors in its reliability per-
ception of the primary suppliers, a firm with sufficiently
high profit margin can greatly benefit from reserving some
flexible backup capacity (despite the fact that the quality
of information is poor).

5.2. Benchmark setting: the value of disruption risk
information

As the previous section suggested, a firm gains additional
benefit if it obtains disruption risk information and removes
the uncertainty about the disruption risks of its suppliers.
For instance, in the example of Boeing’s supply chain dis-
cussed in Section 1, monitoring the production problems
of AIT in 2006 could help Boeing to protect against the
disruption.

Clearly, obtaining disruption risk information is costly
(e.g., the cost of establishing a threat level advisory system,
providing suppliers with incentives to collaboratively share
their related private information, or placing some of the
firm’s employees at the supplier’s site). Hence, there is a
trade-off between the cost of obtaining such information

and the savings due to better contracting and ordering deci-
sions. To examine this trade-off, we denote by Vi j

the value
of obtaining perfect information on dedicated supplier j
given that this supplier is in state i ∈ {0, +} and define it as

Vi j = CT
(
q1∗, q2∗, q f∗

1 , q f∗
2 , Q̄f∗)

− CT
(
q1#, q2#, q f#

1 , q f#
2 , Q̄f#|i j), (25)

where superscript # on decision variables describes that
they are the firm’s perceived optimal decisions with respect
to the new information (i.e., i j ), and CT (·|i j ) is the true
expected cost of the firm under such decisions (given that
dedicated supplier j is in state i j ). The value of the in-
formation on the disruption risk of unreliable supplier j
( j = 1, 2) can then be computed by

VI j = P(11(i j =+) = 1) V+ j + P(11(i j =0) = 1) V0 j

= (
1 − π

j
0

)
V+ j + π

j
0 V0 j

, (26)

where we have used P(11(i j =0) = 1) = π
j

0 . (Recall that � =
(1 − π1

0 , 1 − π2
0 ) is the vector of true reliabilities.) It is note-

worthy that the value of information on dedicated supplier
j (VI j ) defined in Equation (26) also represents an upper
bound for the amount of money that a risk-neutral firm
should be willing to pay to obtain information about the
disruption risk of dedicated supplier j .

To compute the total value of information, we can define
the aggregate value of information for the firm as VI =∑2

j=1 VI j , representing the savings that the firm can obtain
in its true expected costs by moving from a no-information
situation to a full/perfect information one, as computed in
the following lemma.

Lemma 2. The values of the information on the disruption
risk of the dedicated supplier j ( j = 1, 2) under the capacity
reservation contract for the firm are

V+ j = (
uf

j − (
1 − π

j
0

)
c j )q f∗

j + π
j

0

[
G j
(
q f∗

j

)
− G j

(
q f∗

j + q j∗)− c j (q f∗
j + q j∗)] , (27)

V0 j = (1 − π
j

0 )
[

c j q j∗ + G j
(
q j∗ + q f∗

j

)

− G j (F−1
j

( p j + r j − uf
j

p j + r j + h j

))]

+ π
j

0

[
G j
(
q f∗

j

)− G j

(
F−1

j

( p j + r j − uf
j

p j + r j + h j

))]

− uf
j

(
F−1

j

( p j + r j − uf
j

p j + r j + h j

)
− q f∗

j

)
, (28)

VI j = (uf
j − (

1 − π
j

0

)
c j )q f∗

j

+ π
j

0

[
G j
(
q f∗

j

)− G j

(
F−1

j

( p j + r j − uf
j

p j + r j + h j

))

− uf
j F−1

j

( p j + r j − uf
j

p j + r j + h j

)]
, (29)
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where G j (·), q f∗
j , and q j∗ are defined in Equations (2), (18),

and (19) respectively.

Now that we have a measure for the value of disruption
risk information, we can answer two interesting questions:

Question 7: When is obtaining disruption risk information
a better risk mitigation mechanism than contracting with
a flexible backup supplier?

Question 8: For which firms should obtaining disruption
risk information be more appealing?

We first provide insight into Question 7.

Proposition 5. There exist thresholds π̂
j

0 on the true unreli-
ability of the primary suppliers such that VI ≥ Vf whenever
π

j
0 ≤ π̂

j
0 ( j ∈ {1, 2}). That is, when suppliers are (truly) re-

liable enough, obtaining information is more valuable than
contracting with a flexible backup supplier.

When primary suppliers are reliable enough, investing in
an expensive backup supplier is not advantageous. How-
ever, obtaining information is still (relatively) advantageous
because it helps the firm to make better ordering decisions.

The following proposition (and later Observation 3) pro-
vide answers to Question 8. First, as is intuitively expected,
firms that currently do not have an accurate vector of relia-
bility belief can achieve larger savings in their true costs
through obtaining risk information. Hence, monitoring
suppliers should be more attractive for such firms.

Proposition 6. The value of information based on the firm’s
errors in its reliability belief, denoted by VI(ε1, ε2), is non-
decreasing in the degree of disruption risk perception error.
That is, for j ∈ {1, 2} if ε j > 0, let 0 ≤ δ j < ε j and if ε j < 0,

let ε j < δ j ≤ 0; then VI(ε1, ε2) ≥ VI(δ1, δ2). Furthermore,
if |δ j | ≥ |ε j |, then VI(ε1, ε2) ≤ VI(δ1, δ2).

The (numerical) Study 2 of Online Appendix C pro-
vides the following observations about disruption risk
information.

Observation 3. Disruption risk information is more attrac-
tive to firms with lower profit margins.

Observation 4. The sensitivity of the value of information
to belief errors is much higher for firms that tend to over-
estimate reliabilities than those who underestimate.

6. The value of recourse, flexibility, and information

We now use our framework with recourse to gain insights
into the value of three disruption mitigation mechanisms:
obtaining (i) a recourse option; (ii) flexibility in the backup
supply system; and (iii) disruption risk information on pri-
mary suppliers.

6.1. The value of recourse

To reveal the benefit of recourse and provide insights to
Question 3, we now compare the optimal cost of the model
with the recourse to the benchmark setting of Section 5
(where the firm cannot observe the state of the unreliable
suppliers before ordering).

Study 1: (Recourse). As in Studies A1 and A2 (described
in detail in Appendix C), consider a firm that is fac-
ing normally distributed demands of N(5000, 12002) and
N(3000, 8002), respectively, for products 1 and 2. Table 1
describes the percentage benefit of recourse as well as the
percentage reduction in optimal investment in the flexible
capacity based on the parameter settings of Table A2 (see
Appendix B). To focus on the effect of recourse, we assume
that (i) the firm has no error in its risk belief and (ii) cf

j

( j = 1, 2) is negligible compared to uf . By comparing the
settings with recourse and without it in Table 1, we gain the
following insights into Questions 2 and 3.

Observation 5. Recourse is a strong mitigation technique
for firms with a cost reduction that is always positive and
averages 37.7% in our study.

Since this reduction in cost is due to making more effec-
tive procurement decisions as a consequence of observing
disruption states, the above analysis gives quantitative ev-
idence of the value of postponing ordering decisions (to
the extent possible) until after monitoring the state of un-
reliable suppliers. Another interesting observation is the
following.

Observation 6. Investment in the flexible backup capacity
may be greater or smaller with recourse.

One might think that a firm with recourse would always
invest less in the flexible capacity, since later it can benefit
from its disruption observation to flexibly utilize the re-
served pooled capacity (a risk pooling effect). However, this
is not true in Settings 3, 4, and 7. For instance, in Setting 4,
the firm without recourse does not invest in the flexible ca-
pacity (according to Theorem 8). With a recourse option,
however, it knows that if in the second stage it observes
that (at least) one of the suppliers is down, it has much to
gain by channeling the reserved capacity to the appropri-
ate product(s). Hence, it prefers to invest in the secondary
supplier to reduce the risk.

6.2. The value of flexibility

We now use our analytical framework to provide insights
into Question 4.

Study 2: (Flexibility). To capture the value of implement-
ing flexibility in the backup system, we compare two sce-
narios: (i) one with two dedicated (i.e., inflexible) backup
suppliers, where the dedicated backup supplier of product
j has a capacity reservation cost of ud

j ; and (ii) one with a
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Table 1. Value of recourse and the difference in investment in the flexible backup capacity with and without recourse

Recourse No recourse

Setting no. Q̄f∗ Opt. cost Q̄f∗ Opt. cost Reduction in Q̄f∗ (%) Value of recourse (%)

1 3314 −6766.7 6845 −3156.0 51.59 114.41
2 3287 −6673.4 5415 −3563.2 39.30 87.29
3 3214 −7196.0 2571 −4771.7 −25.01 50.81
4 2459 −7495.7 0 −7050.8 −∞ 6.31
5 5206 −93662.7 8308 −90893.4 37.34 3.05
6 5095 −26510.3 8495 −25588.9 40.02 3.60
7 3233 −26484.6 2436 −23940.9 −32.72 10.62
8 3520 −24025.0 6432 −19 086.8 45.27 25.87

Average 37.744

single flexible backup supplier. Notice that, for computa-
tional purposes, the first scenario is a special case of our
modeling framework, and to analyze it one can simply use
the results provided in Section 4 twice (i.e., separately for
each product), each time setting the demand for one of
the products to zero. To investigate the value of flexibil-
ity, we assume that ud

j = (1 + 	)c j , where 	 represents a
“backup premium.” Then, to fairly price the capacity of
the flexible supplier, we consider uf as a weighted average
(based on quantities demanded for each) of ud

1 and ud
2 and

set uf = [
∑

j=1,2 E(Dj ) θ̄ j ud
j ]/[

∑
j=1,2 E(Dj ) θ̄ j ]. The other

parameter settings and assumptions are the same as those
used in Study 1. The results presented in Table 2 lead to the
following two observations.

Observation 7. The (mix) flexibility of a backup supplier is
highly beneficial to a firm that is procuring from unreliable
primary suppliers, with an average cost reduction of 36.7%
in our study. Moreover, the value of implementing flexibility
in the backup system increases as the backup premium
increases.

Observation 8. The capacity reserved with a single flexible
backup supplier is not always less than the total capacity
reserved with two dedicated backup suppliers. However,
the flexibility results in an average reduction of 23.5% (in
our study) in the total backup capacity purchased.

6.3. The value of disruption risk information

Finally, we use our analytical framework to gain insights
into Question 5 of the introduction to Section 4.

Study 3. (Information). Consider the parameter settings of
Study 1 (Table A2 of Appendix B) but assume that the
firm’s disruption risk belief (θ1, θ2) is subject to errors as
presented in Table 3. Table 3 presents the value of (perfect)
information by comparing the cost of the firm when its deci-
sion is based only on its belief (imperfect information) with
a scenario where it obtains risk information and decides
based on the true risk of its suppliers (perfect informa-
tion). From Table 3 we see that obtaining information may

decrease or increase the firm’s investment level in flexible
backup capacity, depending on whether the firm has been
overestimating or underestimating the risks. Furthermore,
we gain the following insight into Question 8.

Observation 9. Obtaining perfect disruption risk informa-
tion with a recourse option results in an average cost re-
duction of 4.12%, and it is not a very strong risk mitigation
technique compared to obtaining a recourse option and/or
implementing flexibility in the backup system.

In other words, once the firm obtains a recourse option
to benefit from the flexible backup capacity, the additional
benefit of reducing risk belief errors is modest. Additional
insights regarding the role of profit margin on the value of
disruption information are found in Appendix C.

7. Summary of findings and conclusion

We developed a rigorous quantitative methodology to cap-
ture the value of two key supply risk mitigation mecha-
nisms: (i) contracting with a secondary flexible backup sup-
plier and (ii) obtaining disruption risk information through
monitoring primary suppliers. We derived analytical mea-
sures for the true value of a flexible backup supplier as
well as the value of obtaining disruption risk information.
These measures determine upper bounds for the amount
of money that a risk-neutral firm should be willing to
invest to implement either of these strategies in order to
increase the reliability and responsiveness of its supply
chain.

In both settings with and without a recourse option, we
analytically characterized the firm’s behavior by explicitly
identifying the jointly optimal size of the backup capacity
reservation contract and the inventory ordering policy for
both products. This characterization was based upon the
firm’s perception of the primary suppliers’ disruption risks.

We observed that investing in a secondary flexible
backup capacity can be harmful if the current information
about the risk of primary suppliers is not perfect. We
showed that monitoring unreliable suppliers to make better
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Table 2. The value of flexibility and the reduction in investment in the backup capacity due to flexibility

Value of flexibility (%) Reduction in total capacity reserved (%)
	 	

Setting no. 0% 5% 10% 15% Avg. (%) 0% 5% 10% 15% Avg. (%)

1 0.5 16.6 28.0 44.0 22.3 31.6 36.6 16.6 36.0 30.2
2 8.3 16.5 31.6 36.2 23.2 24.9 45.2 16.5 39.6 31.5
3 4.6 13.1 24.9 37.5 20.0 22.3 46.7 13.1 55.8 34.5
4 6.8 16.0 22.3 17.6 15.7 1.6 49.7 16.0 5.1 18.1
5 0.5 1.0 1.6 2.1 1.3 9.3 13.5 1.0 36.4 15.0
6 0.0 3.6 9.3 9.9 5.7 104.9 0.0 3.6 40.3 37.2
7 101.7 103.2 104.9 107.4 104.3 104.0 −54.1 103.2 −48.6 26.1
8 96.7 97.4 104.0 105.8 101.0 40.8 −100.6 97.4 −55.7 −4.5
Avg. (%) 27.4 33.4 40.8 45.1 36.78 42.4 4.6 33.4 13.6 23.52

risk estimates enhances the benefit of purchasing flexible
backup capacity. We also identified conditions under which
a firm is lucky in the sense that regardless of whether it is
overestimating or underestimating the reliabilities, it per-
ceives investing in a flexible backup capacity to be valuable
only if it is truly valuable. For instance, we found that over-
estimating supplier reliabilities does not have the danger of
mismatching perception and reality regarding a decision
to reserve some flexible backup capacity. Moreover, we
showed that contracting with a flexible backup supplier is
more beneficial for firms with low perception errors about
the reliability of their suppliers than those with high errors.
By contrast, disruption risk information is more valuable
for firms with higher perception errors. Additionally, we ob-
served that disruption risk information is more attractive to
firms with low profit margins than those with high ones. We
also showed that when suppliers are (truly) reliable enough,
obtaining information is a better risk mitigation technique
than contracting with a flexible supplier. We also found
that the value of disruption risk information is much more
sensitive to the misperception errors for firms who tend to
overestimate (rather than underestimate) the reliabilities.

Next, comparing the scenarios with and without the re-
course option, our study found that having the recourse
option can be regarded as an effective risk mitigation tech-

nique for firms with an average cost reduction of 37%. This
observation sheds more light on the benefit of monitor-
ing suppliers and provides further evidence that firms with
unreliable suppliers should try to postpone (to the extent
possible) their ordering decisions until after monitoring the
disruption state of their suppliers. We also observed that
the amount of investment in the flexible backup capacity
may or may not be reduced when a firm obtains a recourse
option. Furthermore, we showed that when the perceived
reliability of the suppliers is larger than a critical fraction,
having a recourse option reduces the optimal investment in
the flexible backup capacity.

We investigated the value of implementing flexibility
in the backup system: contracting with a single flexible
backup supplier rather than two inflexible ones. Our study
showed an average cost reduction of 36%, so flexibility can
indeed be highly beneficial; furthermore, it becomes more
beneficial as the backup premium increases.

We evaluated the benefit of obtaining risk information
under the recourse option, but our results suggest that it
is not a strong mitigation mechanism. Without recourse,
it is potent. We also extended our two-stage analyses to a
similar setting with offshore unreliable suppliers, where the
availability of unreliable suppliers can only be identified by
observing the delivered quantities.

Table 3. The value of disruption risk information under recourse

Belief error Perfect info. Imperfect info.

Setting no. ε1 ε2 Q̄f ∗ Opt. cost Q̄f ∗ Opt. cost Reduction in Q̄f ∗(%) Value of info. (%)

1 0.1 0.1 3886 −7028.4 3314 −6956.7 −17.26 1.03
2 −0.1 −0.1 0 −7 861.4 3287 −7334.1 ∞ 7.19
3 0.1 −0.1 3965 −6136.1 3214 −6003.4 −23.40 2.21
4 0.2 0.15 3924 −6 581.8 2459 −5,701.4 −59.58 15.44
5 0.15 0.2 7463 −91 331.9 5206 −90 117.2 −43.37 1.35
6 −0.1 0.2 3755 −26660.9 5095 −26548.1 26.29 0.42
7 0.2 0.2 4664 −26504.6 3233 −25654.2 −44.29 3.31
8 0.15 0.2 4486 −24457.9 3520 −23977.1 −27.46 2.01

Average 4.121
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We leave it to future research to investigate the effects of
dynamic changes in the reliability of the suppliers on the
results provided in this article. Future research may also in-
vestigate the multi-period trade-offs in carrying inventory
over time and dynamically monitoring suppliers to hedge
against such dynamically changing risks. Another possi-
ble direction for future research is to investigate the effect
of correlation in disruption risk across different suppliers
and/or correlation in demand across different products on
the results provided in this study.
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Appendices

Appendix A: Proofs

Proof of Proposition 1. Note that the KKT conditions
are sufficient and necessary for characterizing the optimal
solution (i.e., the optimal ordering policy). Let µ, λf ,
and λ denote the Lagrangian multipliers for constraints
q f ≤ Q̄f , q f ≥ 0, and q ≥ 0, respectively. First consider the
case where the unreliable supplier is observed to be up.
Using the Leibniz rule to get the derivative of the objective
function cfq f + cq + G(q + q f ), the KKT conditions can
be written as

q f ≤ Q̄f ,

c + (h + p + r )F(q + q f ) − p − r = λ,

cf + (h + p + r )F(q + q f ) − p − r = λf − µ,

µ(q f − Q̄f ) = 0,

λq = 0,

λfq f = 0,

q, q f , µ, λ, λf ≥ 0.

Equivalently,

q f ≤ Q̄f ,

c − λ = µ − λf + cf ,

q + q f = F−1
(

p + r − (c − λ)
p + r + h

)
,

µ(q f − Q̄f ) = 0,

λq = 0,

λfq f = 0

q, q f , µ, λ, λf ≥ 0.

Similarly, when the unreliable supplier is down, the KKT
conditions are

q f ≤ Q̄f ,

q f = F−1
(

p + r − (cf + µ − λf )
p + r + h

)
,

µ(q f − Q̄f ) = 0,

λfq f = 0,

q f , µ, λf ≥ 0.

To prove Part 1, set q f∗ = µ = λ = 0, λf = cf − c, and

q∗ = F−1
(

p + r − c
p + r + h

)
,

and observe that the KKT conditions are satisfied. To
prove Part 2, if

Q̄f ≥ F−1
(

p + r − cf

p + r + h

)
,

then set

q f∗ = F−1
(

p + r − cf

p + r + h

)
, µ = λf = 0,

and observe that KKT conditions are satisfied. Otherwise,
choose µ such that

Q̄f = F−1
(

p + r − (cf + µ)
p + r + h

)
.

Then, observe that setting q f∗ = Q̄f and λf = 0 satisfies the
KKT conditions. For Part 3 (i), set µ = λf = 0, λ = c − cf ,
q∗ = 0, and

q f∗ = F−1
(

p + r − cf

p + r + h

)
.

For Part 3 (ii), choose µ such that

Q̄f = F−1
(

p + r − (cf + µ)
p + r + h

)

and set λf = 0, λ = c − cf + µ, q f∗ = Q̄f , and q∗ = 0. For
Part 3 (iii), set µ = c − cf , λf = λ = 0, q f∗ = Q̄f , and

q∗ = F−1
(

p + r − c
p + r + h

)
− Q̄f .

Similarly, to prove Part 4 (i), set µ = λf = 0 and

q f∗ = F−1
(

p + r − cf

p + r + h

)
,

and to prove Part 4 (ii), choose µ such that

Q̄f = F−1
(

p + r − (cf + µ)
p + r + h

)

and set λf = 0 and q f∗ = Q̄f . �
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Proof of Proposition 2. Recall that the optimal capac-
ity reservation level, similar to Equation (8), is ¯q f∗ =
arg minQ̄f≥0 uf Q̄f +θCU(Q̄f ) + (1 − θ)CD(Q̄f ), where CU(·)
(CD(·)) denotes the cost of Stage 2 if the unreliable sup-
plier is observed to be up (down). For the ease of notation,
let

l = F−1
(

p + r − cf

p + r + h

)
and l ′ = F−1

(
p + r − c
p + r + h

)
.

When cf > c, from Proposition 1 Part 1, CU(·) = a for some
constant a. Moreover, from Proposition 1 Part 2, CD(Q̄f ) =
cf (l ∧ Q̄f ) + G(l ∧ Q̄f ), where x ∧ y = min{x, y}. Thus, the
optimization problem when cf > c is minQ̄f≥0 uf Q̄f + (1 −
θ)[cf (l ∧ Q̄f ) + G(l ∧ Q̄f )]. Note that since the optimizer of
uf Q̄f + (1 − θ)[cf Q̄f + G(Q̄f )] on Q̄f ≥ 0 is

F−1
([

p + r − (uf/(1 − θ) + cf )
p + r + h

]+)
,

which is always less than l, the proof of Part 1 is com-
plete. When cf ≤ c, we need to consider three cases: (i)
Q̄f ∈ [l, ∞); (ii) Q̄f ∈ [l ′, l]; and (iii) Q̄f ∈ [0, l ′]. In case (i),
from Proposition 1 Parts 3 (i) and 4 (i), we have CU(Q̄f ) =
CD(Q̄f ) = cfl + G(l). Thus, in this case, the optimization
problem is minQ̄f≥l uf Q̄f + cfl + G(l), which has the solu-

tion ¯q f∗ = l. In case (ii), from Proposition 1 Parts 3 (ii)
and 4 (ii), CU(Q̄f ) = CD(Q̄f ) = cf Q̄f + G(Q̄f ). Hence, the
optimization problem is minl ′≤Q̄f≤l uf Q̄f + cf Q̄f + G(Q̄f ).
Note that the unconstrained version of this problem has
the optimizer

F−1
([

p + r − (uf + cf )
p + r + h

]+)
≤ l ′,

where the inequality holds since by our modeling as-
sumption uf + cf > c. Hence, the optimizer in case (ii)
is ¯q f∗ = l ′, since the objective function is convex. In
case (iii), from Proposition 1 Parts 3 (iii) and 4 (ii),
CU(Q̄f ) = cf Q̄f + G(l ′) + c(l ′ − Q̄f ) and CD(Q̄f ) = cf Q̄f +
G(Q̄f ). Thus, the optimization problem in this case is equiv-
alent to min0≤Q̄f≤l ′(u

f + cf − θc)Q̄f + (1 − θ)G(Q̄f ), which
has the optimizer

F−1
([

p + r − (uf + cf − θc)/(1 − θ )
p + r + h

]+)
≤ l ′,

where the inequality holds since by our modeling assump-
tion uf + cf > c. Next observe that the optimizer in case (i)
is a feasible point in case (ii) and also the optimizer of case
(ii) is a feasible point in case (iii). Hence, the optimizer of
case (iii) gives the global optimal solution to the problem,
and the proof is complete. �

Proof of Theorem 1. Consider program (3). Notice that
it is a convex program with linear constraints. Hence, the

KKT conditions are sufficient and necessary. Using the
Leibniz rule these conditions are as follows:

q f
1 + q f

2 ≤ Q̄f

c j + (h j + p j + r j )Fj
(
q j + q f

j

)− p j − r j = λ j

( j = 1, 2), (A1)

cf
j + (h j + p j + r j )Fj

(
q j + q f

j

)− p j − r j = λf
j − µ

( j = 1, 2), (A2)

µ
(
q f

1 + q f
2 − Q̄f

) = 0

λ j q j = 0 ( j = 1, 2),

λ
f
j q f

j = 0 ( j = 1, 2),

q j , q f
j , µ, λ j , λ

f
j ≥ 0. ( j = 1, 2).

Conditions (A1) and (A2) result that:

c j − λ j = µ − λf
j + cf

j ( j = 1, 2),

q j + q f
j = F−1

j

(
p j + r j − (c j − λ j )

p j + r j + h j

)
. ( j = 1, 2).

Hence, the KKT conditions can be written as follows:

q f
1 + q f

2 ≤ Q̄f , (A3)

c j − λ j = µ − λf
j + cf

j ( j = 1, 2), (A4)

q j + q f
j = F−1

j

(
p j + r j − (c j − λ j )

p j + r j + h j

)
( j = 1, 2), (A5)

µ
(
q f

1 + q f
2 − Q̄f

) = 0, (A6)

λ j q j = 0 ( j = 1, 2), (A7)

λf
j q

f
j = 0 ( j = 1, 2), (A8)

q j , q f
j , µ, λ j , λf

j ≥ 0. ( j = 1, 2). (A9)

Now, it is sufficient to show that the optimal solution in
each part satisfies the above conditions.

1. If

Q̄f ∈
⎡
⎣ ∑

j=k,l

F−1
j

( p j + r j − cf
j

p j + r j + h j

)
, +∞

⎤
⎦

set

µ = λf
j = 0, and λ j = c j − cf

j ( j = 1, 2).

Then observe that

q f∗
j = F−1

j

( p j + r j − cf
j

p j + r j + h j

)
and q j∗ = 0 ( j = 1, 2)

satisfy the KKT conditions.

2. If

Q̄f ∈
[ ∑

j=k,l

F−1
j

( p j + r j − cf
j − (

cl − cf
l

)
p j + r j + h j

)
,

×
∑
j=k,l

F−1
j

( p j + r j − cf
j

p j + r j + h j

)]
,
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set

µ = t, λk = ck − cf
k − µ, λl = cl − cf

l − µ, and

λf
k = λf

l = 0.

Then observe that

q f∗
j = F−1

j

( p j + r j − cf
j − t

p j + r j + h j

)
and

q j∗ = 0 (for both j = k, l)

satisfy the KKT conditions, where t ∈ (0, cl − cf
l ] is a

solution to:∑
j=k,l

F−1
j

( p j + r j − cf
j − t

p j + r j + h j

)
= Q̄f .

3. If

Q̄f ∈
[

F−1
k

(
pk + rk − cf

k − (
cl − cf

l

)
pk + rk + hk

)
,

∑
j=k,l

F−1
j

( p j + r j − cf
j − (

cl − cf
l

)
p j + r j + h j

)]
,

set

µ = cl − cf
l , λf

l = λf
k = λl = 0, and

λk = (ck − cf
k) − (

cl − cf
l

)
.

Then observe that

q f∗
k = F−1

k

(
pk + rk − cf

k − (
cl − cf

l

)
pk + rk + hk

)
,

q f∗
l = Q̄f − q f∗

k , qk∗ = 0, and

ql∗ = F−1
l

(
pl + rl − cl

pl + rl + hl

)
− q f∗

l

satisfy the KKT conditions.
4. If

Q̄f ∈
[

F−1
k

(
pk + rk − ck

pk + rk + hk

)
,

F−1
k

(
pk + rk − cf

k − (
cl − cf

l

)
pk + rk + hk

)]
,

suppose t ∈ (cl − cf
l , ck − cf

k] is a solution to

Q̄f = F−1
k

(
pk + rk − cf

k − t
pk + rk + hk

)
.

Then set µ = t, λk = ck − cf
k − µ, λl = λf

k = 0, and λf
l =

µ − (
cl − cf

l

)
. Then observe that

q f∗
k = Q̄f , q f∗

l = 0, qk∗ = 0 and

ql∗ = F−1
l

(
pl + rl − cl

pl + rl + hl

)

satisfy the KKT conditions.

5. If

Q̄f ∈
[

0 , F−1
k

(
pk + rk − ck

pk + rk + hk

)]
,

set

µ = ck − cf
k, λ

l = λk = λf
k = 0, and

λf
l = (ck − cf

k) − (
cl − cf

l

)
.

Then observe that

q f∗
k = Q̄f , q f∗

l = 0, qk∗ = F−1
k

(
pk + rk − ck

pk + rk + hk

)
− Q̄f , and

ql∗ = F−1
l

(
pl + rl − cl

pl + rl + hl

)

satisfy the KKT conditions.

�

Proof of Theorem 2. Consider program (4) or (5) depend-
ing on whether m = 1 or 2 (respectively). Notice that both
programs are convex with linear constraints. Hence, the
KKT conditions are sufficient and necessary. Using the
Leibniz rule and similar to the derivation of the KKT con-
ditions in the proof of Theorem 1 these conditions are as
follows (see the proof of Theorem 1 for more details on the
derivation of the KKT conditions):

q f
m + q f

n ≤ Q̄f ,

cm + (hm + pm + rm)Fm
(
qm + q f

m

)− pm − rm = λm,

(A10)

cf
m + (hm + pm + rm)Fm

(
qm + q f

m

)− pm − rm = λf
m − µ,

(A11)

cf
n + (hn + pn + rn)Fn

(
q f

n

)− pn − rn = λf
n − µ, (A12)

µ
(
q f

m + q f
n − Q̄f

) = 0,

λmqm = 0,

λf
mq f

m = 0,

λf
nq f

n = 0,

qm, q f
m, q f

n, µ, λm, λf
m, λf

n ≥ 0.

Conditions (A10) to (A12) result in

cm − λm = µ − λf
m + cf

m,

qm + q f
m = F−1

m

(
pm + rm − (µ − λf

m + cf
m)

pm + rm + hm

)
,

q f
n = F−1

n

(
pn + rn − (µ − λf

n + cf
n)

pn + rn + hn

)
.
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Hence, the KKT conditions when only supplier m ∈
{1, 2} turns out to be up can be written as

q f
1 + q f

2 ≤ Q̄f , (A13)

cm − λm = µ − λf
m + cf

m, (A14)

qm + q f
m = F−1

m

(
pm + rm − (

µ − λf
m + cf

m

)
pm + rm + hm

)
, (A15)

q f
n = F−1

n

(
pn + rn − (

µ − λf
n + cf

n

)
pn + rn + hn

)
, (A16)

λmqm = 0, (A17)

λf
mq f

m = 0, (A18)

λf
nq f

n = 0, (A19)

qm, q f
m, q f

n, µ, λm, λ f
m, λ f

n ≥ 0. (A20)

Now, it is sufficient to show that the optimal solution in
each part satisfies the above conditions.

1. If

Q̄f ∈
[ ∑

j=n,m

F−1
j

( p j + r j − cf
j

p j + r j + h j

)
, +∞

]
,

set

λm = cm, µ = λf
m = λf

n = 0

Then observe that

q f∗
j = F−1

j

( p j + r j − cf
j

p j + r j + h j

)
(for both j = n, m)

and qm∗ = 0

satisfy the KKT conditions.
2. If

Q̄f ∈
[ ∑

j=n,m

F−1
j

([ p j + r j − cf
j − (

cm − cf
m

)
p j + r j + h j

)]+)
,

∑
j=n,m

F−1
j

( p j + r j − cf
j

p j + r j + h j

))
,

set

µ = t, λm = cm − cf
m − t and λf

m = λf
n = 0.

Then observe that

q f∗
j = F−1

j

([ p j + r j − cf
j − t

p j + r j + h j

]+)
(for both j = n, m)

and qm∗ = 0

satisfy the KKT conditions, where t ∈ (0, cm − cf
m] is a

solution to:

∑
j=n,m

F−1
j

([ p j + r j − cf
j − t

p j + r j + h j

]+)
= Q̄f .

3. If

Q̄f ∈
[

F−1
n

([
pn + rn − cf

n − (
cm − cf

m

)
pn + rn + hn

]+)
,

×
∑

j=n,m

F−1
j

([ p j + r j − cf
j − (

cm − cf
m

)
p j + r j + h j

]+))
,

set

µ = cm − cf
m and λf

m = λf
n = λm = 0.

Then observe that

q f∗
n = F−1

n

([
pn + rn − cf

n − (
cm − cf

m

)
pn + rn + hn

]+)
,

q f∗
m = Q̄f − q f∗

n , and

qm∗ = F−1
m

(
pm + rm − cm

pm + rm + hm

)
− q f∗

m

satisfy the KKT conditions.
4. If

Q̄f ∈
[

0 , F−1
n

([
pn + rn − cf

n − (
cm − cf

m

)
pn + rn + hn

]+)]

let t ∈ (cm − cf
m, ∞) be a solution to

F−1
n

([
pn + rn − cf

n − t
pn + rn + hn

]+)
= Q̄f .

Set

µ = t, λf
m = µ − (

cm − cf
m

)
and λf

n = λm = 0.

Then observe that

q f∗
n = Q̄f , q f∗

m = 0, and qm∗ = F−1
m

(
pm + rm − cm

pm + rm + hm

)

satisfy the KKT conditions.
�

Proof of Theorem 3. Consider program (6). Notice that
this program is convex with linear constraints. Hence, the
KKT conditions are sufficient and necessary. Using the
Leibniz rule and similar to the derivation of the KKT con-
ditions in the proof of Theorems 1 and Theorem 2, these
conditions are as follows:

q f
1 + q f

2 ≤ Q̄f ,

cf
j + (h j + p j + r j )Fj

(
q f

j

)− p j − r j = λf
j − µ ( j = 1, 2),

(A21)

µ
(
q f

1 + q f
2 − Q̄f

) = 0,

λf
j q

f
j = 0 ( j = 1, 2),

q f
j , µ, λf

j ≥ 0. ( j = 1, 2).
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By rewriting condition (A21), KKT conditions are

q f
1 + q f

2 ≤ Q̄f , (A22)

q f
j = F−1

j

( p j + r j − (
µ − λf

j + cf
j

)
p j + r j + h j

)
( j = 1, 2), (A23)

µ
(
q f

1 + q f
2 − Q̄f

) = 0, (A24)

λf
j q

f
j = 0 ( j = 1, 2), (A25)

q f
j , µ, λf

j ≥ 0. ( j = 1, 2). (A26)

Now, it is sufficient to show that the optimal solution of
each part satisfies the above KKT conditions.

1. If

Q̄f ∈
[ ∑

j=1,2

F−1
j

( p j + r j − cf
j

p j + r j + h j

)
, +∞

]
,

set µ = λf
1 = λf

2 = 0.

Then, observe that

q f∗
j = F−1

j

( p j + r j − cf
j

p j + r j + h j

)
(for both j = 1, 2)

satisfies the KKT conditions.
2. If

Q̄f ∈
[

0 ,
∑
j=1,2

F−1
j

( p j + r j − cf
j

p j + r j + h j

)]

set µ = t and λf
1 = λf

2 = 0. Then, observe that

q f∗
j = F−1

j

([ p j + r j − cf
j − t

p j + r j + h j

]+)
(for both j = n, m)

satisfies the KKT conditions, where t ∈ ( 0 , max j {p j +
r j − cf

j } ] is a solution to

∑
j=1,2

F−1
j

([ p j + r j − cf
j − t

p j + r j + h j

]+)
= Q̄f .

�
Proof of Proposition 3. Let

I7 =
[ ∑

j=1,2

F−1
j

( p j + r j − cf
j

p j + r j + h j

)
, ∞

)

and notice that
⋃7

k=1 Ik = [0, ∞). Thus, defining

Q̄f
k = arg min

Q̄f∈Ik

uf Q̄f + CStage 2(Q̄f ),

we have:

Q̄f∗ = arg min
Q̄f≥0

uf Q̄f + CStage 2(Q̄f )

= arg min
Q̄f∈{Q̄f

k,k=1,...,7}
uf Q̄f + CStage 2(Q̄f ) . (A27)

It remains to identify Q̄f
k for k = 1, 2, . . . ., 7 using The-

orems 1, 2 and 3. First, using part (i) of these theorems,
notice that on I7:

CStage 2(Q̄f ) = K1.

for some constant K1. (We use K, K1, . . . , K8 to represent
constants throughout this proof.) Thus, since uf ≥ 0, we
have:

Q̄f
7 = arg min

Q̄f∈I7

uf Q̄f + CStage 2(Q̄f )

= min
Q̄f∈I7

Q̄f =
∑
j=1,2

F−1
j

( p j + r j − cf
j

p j + r j + h j

)
.

Hence, Q̄f
7 ∈ I6. Thus, from Equation (A27), Q̄f∗ ∈

{Q̄f
k, k = 1, . . . , 6}. Next, on I6, using part (ii) of The-

orems 1, 2, and 3: CU,U(Q̄f ) = CU,U(Q̄f ) = CU,D(Q̄f ) =
CD,U(Q̄f ) = CD,D(Q̄f ) = �(Q̄f ). (Notice that although
Theorems 1, 2, and 3 are presented based on open end
intervals, one can consider closed intervals, since CStage 2(·)
is continuous at end points.) Therefore,

CStage 2(Q̄f ) = θ1 θ2 CU,U(Q̄f ) + θ1 (1 − θ2 )CU,D(Q̄f )

+ (1 − θ1) θ2 CD,U(Q̄f ) + (1 − θ1)(1 − θ2)

× CD,D(Q̄f )

= �(Q̄f ),

and

Q̄f
6 = arg min

Q̄f∈I6

uf Q̄f + CStage 2(Q̄f )

= arg min
Q̄f∈I6

uf Q̄f + �(Q̄f ).

Next, if Q̄f ∈ I5 then, using part (3) of Theorem 1,
CU,U(Q̄f ) = (cf − c) Q̄f + K2 for some constant K2. More-
over, from Theorem 2 parts (3) and (2) (respectively)
we have: CU,D(Q̄f ) = (cf

1 − c1)Q̄f + K3, and CD,U(Q̄f ) =
�(Q̄f ). Also, from Theorem 3 part (2) CD,D = �(Q̄f ). Thus,

CStage 2(Q̄f ) = (− θ1(c1 − cf
1

))
Q̄f + θ̄1�(Q̄f ) + K,

for some constant K. Hence,

Q̄f
5 = arg min

Q̄f∈I5

(
uf − θ1(c1 − cf

1

))
Q̄f + θ̄1�(Q̄f ).

Next, if Q̄f ∈ I4 then, using part (3) of Theorems
1 and 2, CU,U(Q̄f ) = (cf − c) Q̄f + K2, CD,U(Q̄f ) = (cf

2 −
c2)Q̄f + K4 (for some constants K2, K3, K4). Also, from
Theorem 3 part (2) CD,D = �(Q̄f ). Hence,

Q̄f
4 = arg min

Q̄f∈I4

(
uf − θ1(c1 − cf

1

)− θ̄1θ2(c2 − cf
2

))
× Q̄f + θ̄1θ̄2�(Q̄f ).

Similarly, on I3, from part (4) of Theorems 1 and
2: CU,U(Q̄f ) = cf

2 Q̄f + G2(Q̄f ) + K5, CU,D(Q̄f ) = cf
2 Q̄f +
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G2(Q̄f ) + K6. Moreover, from part (3) of Theorem 2,
CD,U(Q̄f ) = (cf

2 − c2)Q̄f + K4. Also, from Theorem 3 part
(2), CD,D = �(Q̄f ). Hence,

Q̄f
3 = arg min

Q̄f∈I3

(
uf − θ̄1θ2(c2 − cf

2

)+ θ1cf
2

)
Q̄f

+ θ1G2(Q̄f ) + θ̄1θ̄2�(Q̄f ).

Next, on I2, from part (5) of Theorem 1, CU,U(Q̄f ) =
(cf

2 − c2)Q̄f + K7. Also, from Theorem 2, CU,D(Q̄f ) =
cf

2 Q̄f + G2(Q̄f ) + K6. Moreover, from part (3) of Theo-
rem 2, CD,U(Q̄f ) = (cf

2 − c2)Q̄f + K4. Also, from Theorem
3 part (2), CD,D = �(Q̄f ). Thus,

Q̄f
2 = arg min

Q̄f∈I2

(
uf − θ2(c2 − cf

2

)+ θ1θ̄2cf
2

)
Q̄f

+ θ1θ̄2G2(Q̄f ) + θ̄1θ̄2�(Q̄f ).

Finally, on I1, from part (5) of Theorem 1, CU,U(Q̄f ) =
(cf

2 − c2)Q̄f + K7. Also, from Theorem 2, part (4),
CU,D(Q̄f ) = cf

2 Q̄f + G2(Q̄f ) + K6 and CD,U(Q̄f ) = cf
1 Q̄f +

G1(Q̄f ) + K8. Moreover, from Theorem 3 part (2), CD,D =
�(Q̄f ). Thus,

Q̄f
1 = arg min

Q̄f∈I1

(
uf − θ1θ2(c2 − cf

2

)+ θ1θ̄2cf
2 + θ̄1θ2cf

1

)
Q̄f

+ θ̄1θ2G1(Q̄f ) + θ1θ̄2G2(Q̄f ) + θ̄1θ̄2�(Q̄f ),

which completes the proof. �
Proof of Corollary 1. To prove part (i) notice that, from
Proposition 3, Q̄f∗ ∈ {Q̄f

k, k = 1, . . . , 6}. Moreover, Q̄f
k ∈

Ik (see Proposition 3 for definition of Ik for k = 1, . . . , 6).
Thus, since every member of I6 is greater than or equal to
any member of Ik for k = 1, . . . , 5, we have:

Q̄f∗ ≤ Q̄f
6 ≤ max

Q̄f∈I6

Q̄f =
∑
j=1,2

F−1
j

(
p j + r j − cf

j

p j + r j + h j

)
.

To prove part (ii) notice that, when θ j (c j − cf
j ) ≥ uf (for

j = 1, 2), the optimal capacity reservation level without re-
course presented in Theorem 7 is greater than or equal to
the upper bound of capacity reservation level with recourse
obtained in part (i) (since CDFs Fj (.) are non-decreasing).
Hence, when θ j (c j − cf

j ) ≥ uf (for j = 1, 2), the optimal
capacity reservation level with recourse is less than or
equal to the optimal capacity reservation level without
recourse. �

Proof of Theorem 4. Notice that when parameters are
product independent, each of the intervals I2, I3, and I5
in Proposition 3 only include a single point. Moreover, in
that case, I2 = I3 ⊂ I4 and I5 ⊂ I6. Thus, by Proposition 3,
Q̄f∗ ∈ {Q̄f

1, Q̄f
4, Q̄f

6}. Additionally, using symmetric param-
eters in Proposition 3, �(Q̄f ) = 2 [cf Q̄f/2 + G(Q̄f/2)] =
cf Q̄f + 2 G(Q̄f/2).

Next notice that since G(·) is a convex function (G ′′(·) =
(p + r + h) f (·) ≥ 0 using Leibniz rule), �(·) is a convex
function. Thus, Q̄f

1, Q̄f
4, and Q̄f

6 are minimizers of con-
vex functions on convex (and compact) sets. Thus, we
can characterize them using the first order condition. We
have:

Q̄f
1 = arg min

Q̄f∈I1

(
uf − θ1θ2(c2 − cf

2

)+ θ1θ̄2cf
2 + θ̄1θ2cf

1

)
Q̄f

+ θ̄1θ2G1(Q̄f ) + θ1θ̄2G2(Q̄f ) + θ̄1θ̄2�(Q̄f ),

Therefore, to characterize Q̄f
1, using the Leibniz rule and

setting the derivative of the objective function equal to zero
results in the candidate:

Q̂f
1 = d

(
(1 − θ1θ2)(p + r ) + θ1θ2c − uf − cf

)
(θ̄1θ2 + θ1θ̄2 + (θ̄1θ̄2)/2)(p + r + h)

.

However, Q̂f
1 ∈ I1 only if C1 does not hold but C2 holds,

Q̂f
1 is less than any point in I1 if C2 does not hold, and Q̂f

1
is greater than any point in I1 otherwise. Thus,

Q̄f
1 =

⎧⎪⎪⎨
⎪⎪⎩

0 if C2 does not hold,

Q̂f
1 if C2 holds but C1 does not hold,

d (p + r − c)/(p + r + h)
otherwise.

(A28)

To characterize Q̄f
4, notice that:

Q̄f
4 = arg min

Q̄f∈I4

(
uf − θ1(c1 − cf

1

)− θ̄1θ2(c2 − cf
2

))
Q̄f

+ θ̄1θ̄2�(Q̄f ).

Thus, using the Leibniz rule and setting the deriva-
tive of the objective function equal to zero results in the
candidate:

Q̂f
4 = 2d (p + r − c − (uf − (c − cf ))/(θ̄1 θ̄2))

p + r + h
.

However, Q̂f
4 is in I4 only if C1 holds and c − cf < uf , Q̂f

4
is less than any point in I4 if C1 does not hold and c − cf <

uf , and Q̂f
4 is greater than any point in I4 if c − cf ≥ uf .

Thus,

Q̄f
4 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d (p + r − c)/(p + r + h)
if C1 does not hold and c − cf < uf ,

Q̂f
4 if C1 holds and c − cf < uf ,

2 d (p + r − c)/(p + r + h)
if c − cf ≥ uf .

(A29)

Similarly, to characterize Q̄f
6, using the Leibniz rule and

setting the derivative of the objective function equal to zero
results in the candidate:

Q̂f
6 = 2d (p + r − c − (uf − (c − cf ))/(θ̄1 θ̄2))

p + r + h
. (A30)

However, Q̂f
6 ∈ I6 only if c − cf ≥ uf , Q̂f

6 is less than any
point in I4 if c − cf < uf and Q̂f

6 cannot be greater than all



Flexible backup suppliers and disruption information 857

points in I6 (since uf ≥ 0). Thus,

Q̄f
6 =

{
2 d (p + r − uf − cf )/(p + r + h) if c − cf ≥ uf ,

2 d (p + r − c)/(p + r + h) if c − cf < uf .

(A31)

Now, since by Proposition 3 Q̄f∗ ∈ {Q̄f
1, Q̄f

4, Q̄f
6}, it

remains to compare the cost of Q̄f
1, Q̄f

4, and Q̄f
6 under

different conditions. First, if c − cf ≥ uf , then C1 and C2
trivially hold. Therefore, Q̄f

1 = d (p + r − c)/(p + r + h)
(from Equation (A28)), Q̄f

4 = 2d (p + r − c)/(p + r + h)
(from Equation (A29)), and Q̄f

6 = 2d (p + r − uf − cf )/
(p + r + h) (from Equation (A31)). Thus, we notice that
I1 = [0, Q̄f

1], I4 = [Q̄f
1, Q̄f

4], and I6 = [Q̄f
4, 2 d (p + r − c)/

(p + r + h)]. However, since Q̄f
4 is the minimizer over

I4 = [Q̄f
1, Q̄f

4], Q̄f
4 has a lower cost than Q̄f

1. Moreover,
since Q̄f

6 is the optimizer over I6 = [Q̄f
4, 2 d (p + r − c)/

(p + r + h)], Q̄f
6 has a lower cost than Q̄f

4. Hence, Q̄f
6 =

2d (p + r − uf − cf )/(p + r + h) is the optimal solution.
Second, consider the case where c − cf < uf . If as

in (i) both C1 and C2 do not hold then Q̄f
1 = 0,

Q̄f
4 = d (p + r − c)/(p + r + h) and Q̄f

6 = 2d (p + r − c)/
(p + r + h). Next notice that Q̄f

4 is a minimizer over
I4 = [Q̄f

4, Q̄f
6] and hence has a lower cost than Q̄f

6. Also,
Q̄f

1 = 0 is a minimizer over I1 = [0, Q̄f
4] and hence has

a lower cost than Q̄4. Thus, in this case, Q̄f∗ = Q̄f
1 = 0.

However, if as in (ii) C1 does not hold but C2 holds
then Q̄f

1 = q̂ f
1, Q̄f

4 = d (p + r − c)/(p + r + h), and
Q̄f

6 = 2d (p + r − c)/(p + r + h). Next notice that Q̄f
4 is a

minimizer over I4 = [Q̄f
4, Q̄f

6] and hence has a lower cost
than Q̄f

6. Also, Q̄f
1 = 0 is a minimizer over I1 = [0, Q̄f

4] and
hence has a lower cost than Q̄4. Thus, in this case, Q̄f∗ = q̂ f

1.
Next if as in (iii) C1 holds, first consider the case where C2

holds as well. In this case, Q̄f
1 = d (p + r − c)/(p + r + h),

Q̄f
4 = Q̂f

4, and Q̄f
6 = 2d (p + r − c)/(p + r + h). Next since

Q̄f
4 = Q̂f

4 is a minimizer over I4 = [Q̄f
1, Q̄f

6], Q̄f
4 = Q̂f

4 has
lower cost than Q̄f

1 and Q̄f
6. Thus, in this case Q̄f∗ = Q̂f

4.
To complete part (iii) now suppose that C1 holds but C2
does not. Then Q̄f

1 = 0, Q̄f
4 = Q̂f

4, and Q̄f
6 = 2d (p + r −

c)/(p + r + h). Next, similar to the previous case, since
Q̄f

6 ∈ I4 and Q̄f
4 is a minimizer over I4, Q̄f

4 = Q̂f
4 has a lower

cost than Q̄f
6. Therefore, Q̄f∗ ∈ {0, Q̂f

4}. To determine Qf∗
in this case, it is sufficient to compare the cost of options
Q̄f = 0 and Q̄f = Q̂f

4. To compute CStage2(Q̄f
1 = 0), using

part (5) of Theorem 1, part (4) of Theorem 2, and part (2)
of Theorem 3 we have:

CU,U(0) = 2 cd(p + r − c)
p + r + h

+ 2G
(

d(p + r − c)
p + r + h

)
,

CU,D(0) = cd(p + r − c)
p + r + h

+ G
(

d(p + r − c)
p + r + h

)
+ G(0),

CD,U(0) = cd(p + r − c)
p + r + h

+ G
(

d(p + r − c)
p + r + h

)
+ G(0),

CD,D(0) = 2 G(0).

Hence,

CStage 2(0) = θ1 θ2 CU,U(0) + θ1 (1 − θ2 )CU,D(0) + (1 − θ1)

× θ2 CD,U(0) + (1 − θ1)(1 − θ2) CD,D(0)

= (θ1θ̄2 + θ̄1θ2 + 2θ1θ2)
[

cd(p + r − c)
p + r + h

+G
(

d(p + r − c)
p + r + h

)]
+ (θ1θ̄2 + θ̄1θ2 + 2θ̄1θ̄2)G(0).

Moreover, since Q̄f = 0, uf Q̄f + CStage 2(0) = CStage 2(0).
Next, we compute the cost of option Q̄f = Q̂f

4 and compare
it with the cost of Q̄f = 0 computed above. Since Q̂f

4 ∈ I4,
we shall use part (3) of Theorems 1, 2, and part (1) of
Theorem 3. Doing so we have:

CU,U
(
Q̂f

4

) = (cf − c)Q̂f
4 + 2

[
cd(p + r − c)

p + r + h

+ G
(

d(p + r − c)
p + r + h

)]
,

CU,D
(
Q̂f

4

) = (cf − c)Q̂f
4 + 2

[
cd(p + r − c)

p + r + h

+ G
(

d(p + r − c)
p + r + h

)]
,

CD,U
(
Q̂f

4

) = (cf − c)Q̂f
4 + 2

[
cd(p + r − c)

p + r + h

+ G
(

d(p + r − c)
p + r + h

)]
,

CD,D
(
Q̂f

4

) = cf Q̂f
4 + 2G

(
Q̂f

4/2
)
.

Hence,

CStage 2
(
Q̂f

4

) = θ1 θ2 CU,U
(
Q̂f

4

)+ θ1 (1 − θ2 )CU,D
(
Q̂f

4

)
+ (1 − θ1) θ2 CD,U

(
Q̂f

4

)+ (1 − θ1)(1 − θ2)

× CD,D
(
Q̂f

4

)
= [cf − (1 − θ̄1θ̄2)c]Q̂f

4 + 2(1 − θ̄1θ̄2)

×
[

cd(p + r − c)
p + r + h

+ G
(

d(p + r − c)
p + r + h

)]
+ 2θ̄1θ̄2G

(
Q̂f

4/2
)
,

and the total optimal cost with Q̄f = Q̂f
4 is uf Q̂f

4 +
CStage 2(Q̂f

4). Thus, denoting the optimal cost with Q̄f =
Q̂f

4 minus the optimal cost with Q̄f = 0 by 	 (after
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simplification) we have:

	 = (
(1 − θ1θ2) + θ̄1θ̄2)[cd(p + r − c)

p + r + h

+ G
(

d(p + r − c)
p + r + h

)
− G(0)

]
(A32)

+ (
uf + cf − (1 − θ̄1θ̄2)c)Q̂f

4 + 2θ̄1θ̄2[G(Q̂f
4/2

)− G(0)].
(A33)

Next notice that both Equation (A32) and Equation (A33)
are non-positive. To see that Equation (A32) is non-
positive, define g(x) = cx − G(x) − G(0) and notice that
Equation (A32) is equal to ((1 − θ1θ2) + θ̄1θ̄2)g(q∗) with

q∗ = F−1
(

p + r − c
p + r + h

)
= d(p + r − c)

p + r + h
.

Hence, Equation (A32) is non-positive, since g(0) = 0 and
q∗ is the minimizer of g(·) (G(·) is convex and q∗ is the solu-
tion to the first-order condition). Next, to see that Equation
(A33) is non-positive, define:

ĝ(x) = (uf + cf − (1 − θ̄1θ̄2)c)x + 2θ̄1θ̄2[G(x/2) − G(0)],

and notice that Equation (A33) is equal to ĝ(Q̂f
4). Thus,

Equation (A33) is non-positive, since ĝ(0) = 0 and ĝ(·)
is a convex function minimized at Q̂f

4 (see the definition
of Q̂f

4 or check the first and second-order conditions of
ĝ(·)). Hence, 	 ≤ 0. Thus, Q̄f∗ = Q̂f

4, and the proof is
complete. �

Proof of Theorem 5. Notice that program (12) is con-
vex with linear constraints, and therefore KKT condi-
tions are necessary and sufficient to characterize the op-
timal solution. Assume that λf

j ( j = 1, 2) and µ represent
the Lagrangian multipliers corresponding to constraints
q f

j ≥ 0 and q f
1 + q f

2 ≤ Q̄f , respectively. Using the Leibniz
rule, KKT conditions are

q f
1 + q f

2 ≤ Q̄f ,

cf
j + (h j + p j + r j )Fj

(
q j + q f

j

)− p j − r j = λf
j − µ

( j = 1, 2),
(A34)

µ
(
q f

1 + q f
2 − Q̄f

) = 0,

λf
j q

f
j = 0, ( j = 1, 2),

q f
j , µ, λ

f
j ≥ 0. ( j = 1, 2).

Condition (A34) results in

q f
j = F−1

j

( p j + r j − cf
j + λf

j − µ

p j + r j + h j

)
− q j . ( j = 1, 2).

Hence, the KKT conditions can be written as follows:

q f
1 + q f

2 ≤ Q̄f , (A35)

q f
j = F−1

j

( p j + r j − cf
j + λf

j − µ

p j + r j + h j

)
− q j ( j = 1, 2),

(A36)

µ
(
q f

1 + q f
2 − Q̄f

) = 0, (A37)

λf
j q

f
j = 0 ( j = 1, 2),

(A38)

q f
j , µ, λ

f
j ≥ 0. ( j = 1, 2).

(A39)

Now, it is trivial to show that the optimal solutions α j
and β j satisfy conditions (A35) to (A39) in the appropriate
range of Q̄f defined in the theorem. �

Proof of Theorem 6. The proof follows from Theorem 5
after setting qn = 0. �

Proof of Theorem 7. Let µ, λ j , and λf
j for ( j = 1, 2)

denote the Lagrangian multipliers, respectively, for con-
straints (A65) to (A66). KKT conditions (with subscript P
denoting the perceived costs) are then:

q f
1 + q f

2 ≤ Q̄f , (A40)

∂CP/∂q j − λ j = 0 ( j = 1, 2), (A41)

∂CP/∂q f
j − λf

j + µ = 0 ( j = 1, 2), (A42)

∂CP/∂ Q̄f − µ = 0 ( j = 1, 2), (A43)

µ
(
q f

1 + q f
2 − Q̄f

) = 0, (A44)

λ j q j = 0 ( j = 1, 2), (A45)

λf
j q

f
j = 0 ( j = 1, 2), (A46)

q j , q f
j , µ, λ j , λ

f
j ≥ 0 ( j = 1, 2). (A47)

Moreover, using the Leibniz rule we have:

∂CP/∂q j = θ j [c j + (h j + p j + r j )Fj
(
q j + q f

j

)− p j − r j ]
( j = 1, 2),

∂CP/∂q f
j = cf

j + θ j [(h j + p j + r j )Fj
(
q j + q f

j

)− p j − r j ],

+ (1 − θ j )[(h j + p j + r j )Fj
(
q f

j

)− p j − r j ]
( j = 1, 2),

∂CP/∂ Q̄f = uf
j . ( j = 1, 2).
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Hence, conditions (A40) to (A47) are

q f
1 + q f

2 ≤ Q̄f ,

θ j [c j + (h j + p j + r j )Fj
(
q j + q f

j

)− p j − r j ] = λ j

( j = 1, 2),
cf

j + θ j [(h j + p j + r j )Fj
(
q j + q f

j

)− p j − r j ] + (1 − θ j )

[(h j + p j + r j )Fj
(
q f

j

)− p j − r j ] = λf
j − µ ( j = 1, 2),

µ = uf
j ( j = 1, 2),

µ
(
q f

1 + q f
2 − Q̄f

) = 0

λ j q j = 0 ( j = 1, 2),
λf

j q
f
j = 0 ( j = 1, 2),

q j , q f
j , µ, λ j , λf

j ≥ 0 ( j = 1, 2).

or equivalently:

Fj
(
q j∗ + q f∗

j

) = λ j/θ j + p j + r j − c j

p j + r j + h j
( j = 1, 2), (A48)

Fj
(
Qf∗

j

) = (λf
j − λ j + θ j c j − uf

j )/(1 − θ j ) + p j + r j

p j + r j + h j

( j = 1, 2), (A49)

Q̄f
∗ = q f∗

1 + q f∗
2

λ j q j∗ = 0 ( j = 1, 2), (A50)
λf

j q
f∗
j = 0 ( j = 1, 2), (A51)

q j , q f
j , λ

j , λf
j ≥ 0, ( j = 1, 2). (A52)

Since by assumption uf
j > c j and h j ≥ 0, we have((

θ j c j − uf
j

)
/(1 − θ j )

)+ p j + r j

p j + r j + h j
≤ 1.

Hence, if ((
θ j c j − uf

j

)
/(1 − θ j )

)+ p j + r j

p j + r j + h j
≥ 0,

setting λ j = λf
j = 0 (for every j ∈ {1, 2} that satisfies this

inequality) to guarantee conditions (A50) to (A52) results
in the optimal solution:

q f∗
j = F−1

j

( p j +r j −
((

uf
j −θ j c j

)
/(1 − θ j )

)
p j +r j +h j

)
( j = 1, 2)

q j∗ = F−1
j

(
p j + r j − c j

p j + r j + h j

)

−F−1
j

( p j +r j −
((

uf
j −θ j c j

)
/(1−θ j )

)
p j + r j +h j

)
( j = 1, 2)

Q̄f
∗ =

2∑
j=1

Qf∗
j =

2∑
j=1

F−1
j

( p j +r j −
((

uf
j −θ j c j

)
/(1−θ j )

)
p j +r j +h j

)
.

However, if((
θ j c j − uf

j

)
/(1 − θ j )

)+ p j + r j

p j + r j + h j
< 0,

Equation (A49) cannot be satisfied with λ j = λf
j = 0.

In this case, however, setting Qf∗
j = λ j = 0 satisfies all

KKT conditions and hence is optimal. Therefore, because
Fj (0) = 0, a general optimal solution for 0 ≤ θ j < 1 is

Qf∗
j = F−1

j

([ p j + r j − ((
uf

j − θ j c j
)
/(1 − θ j )

)
p j + r j + h j

]+)
( j = 1, 2),

q j∗ = F−1
j

(
p j + r j − c j

p j + r j + h j

)

−F−1
j

([ p j +r j −
((

uf
j −θ j c j

)
/(1−θ j )

)
p j +r j +h j

]+)
( j = 1, 2),

Q̄f
∗ =

2∑
j=1

Qf∗
j =

2∑
j=1

F−1
j

([ p j +r j −
((

uf
j −θ j c j

)
/(1−θ j )

)
p j +r j +h j

]+)
,

and the proof is complete. �

Proof of Lemma 1. To obtain optimal decisions in the ab-
sence of the flexible supplier, set q f

1 = q f
2 = Q̄f = 0 in Equa-

tion (A63) and use the Leibniz rule to derive first-order
condition (or simply use the results of a basic newsvendor
model with lost sales). Doing that we get

q ′ j∗ = F−1
j

(
p j + r j − c j

p j + r j + h j

)
.

Then, using Equation (A67) we have:

CT (q ′1∗, q ′2∗, 0, 0, 0)

=
2∑

j=1

[(
1 − π

j
0

)(
c j F−1

j

(
p j + r j − c j

p j + r j + h j

)

+ G j

(
F−1

j

(
p j + r j − c j

p j + r j + h j

)))
+ π

j
0 G j (0)

]
.

Also, to obtain CT (q1∗, q2∗, Qf∗
1 , Qf∗

2 , Q̄f∗), substitute the
perceived optimal values (derived by Theorem 7) in to
Equation (A67). Hence, using Equation (21) and after sim-
plification we have:

Vf = CT (q ′1∗, q ′2∗, 0, 0, 0) − CT
(
q1∗, q2∗, Qf∗

1 , Qf∗
2 , Q̄f∗)

=
2∑

j=1

[
π

j
0

(
G j (0) − G j

(
Qf∗))− (

uf
j − (

1 − π
j

0

)
c j )Qf∗

j

]
.

Now, replacing G j (0) = p j E(Dj ) in the above equation
completes the proof. �

Proof of Theorem 8. To prove part (i), note that the value
of the flexible supplier as perceived by the firm (and not its
true value) is

Vf =
2∑

j=1

(1 − θ j )
(

p j E(Dj ) − G j
(
Qf∗

j

))− (
uf

j − θ j c j )Qf∗
j ,

where for simplicity we have removed subscript P to denote
that Vf here is a perceived value. We first show that Vf as
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perceived by the firm is positive if and only if

∃ j ∈ {1, 2} : q f∗
j

= F−1
j

([ p j + r j − ((
uf

j − θ j c j
)
/(1 − θ j )

)
p j + r j + h j

]+)
> 0.

To show this, for x ∈ [0, ∞) let Vf
j (x) = (1 −

θ j )(p j E(Dj ) − G j (x)) − (uf
j − θ j c j ) x denote the per-

ceived value of the flexible supplier with respect to product
j if the firm orders x units of product j from the flexible
supplier. Then we have:

∂
(
Vf

j

)
∂x

= −(1 − θ j )((h j + p j + r j )Fj (x) − p j − r j )

+ θ j c j − uf
j .

Hence,

∂

∂x

(
∂
(
Vf

j

)
∂x

)
= −(1 − θ j ) (h j + p j + r j ) f j (x) ≤ 0

Therefore, Vf
j (·) is concave and the first-order condition

yields

max
{

Vf
j (x) : x ∈ [0, ∞)

} = Vf
j

(
Qf∗

j

)
.

Additionally, because G j (0) = p j E(Dj ), we get Vf
j (0) = 0.

Hence, we have Vf
j (Qf∗

j ) ≥ 0. Also, ∂(Vf
j )/∂x > 0 for x ∈

[0, Qf∗
j ) shows that Vf

j (·) is increasing in [0, Qf∗
j ). Hence,

Vf
j (Qf∗

j ) > 0 if, and only if, Qf∗
j > 0. Now, note that the

value of the flexible supplier as perceived by the firm is
Vf = ∑2

j=1 Vf
j (Qf∗

j ). Therefore, Vf > 0 if, and only if,

∃ j ∈ {1, 2} : Qf∗
j

= F−1
j

([ p j + r j − ((
uf

j − θ j c j
)
/(1 − θ j )

)
p j + r j + h j

]+)
> 0.

Moreover, because Fj (·) is non-decreasing and Fj (x) > 0
for all x > 0, the above condition is equivalent to

∃ j ∈ {1, 2} : p j + r j − uf
j − θ j c j

1 − θ j
> 0,

which is equivalent to

∃ j ∈ {1, 2} : (1 − θ j )(p j + r j ) > uf
j − θ j c j ,

or, similarly

∃ j ∈ {1, 2} : p j + r j − uf
j > θ j (p j + r j − c j ).

This is equivalent to Equation (23) (as r j > c j and hence
(p j + r j − c j ) > 0).

We prove part (ii) by contradiction. First, note that by
Lemma 1, the true value of the flexible supplier for the firm
is

Vf =
2∑

j=1

[
π

j
0

(
p j E(Dj )−G j

(
Qf∗

j

))−uf
j −
(
1−π

j
0

)
c j Qf∗

j

]
.

Now suppose Vf > 0 . Because Qf∗
1 = Qf∗

2 = 0 results in
Vf = 0, we then have: ∃ j ∈ {1, 2} : Qf∗

j > 0 or equivalently
(by proof of part (i)):

∃ j ∈ {1, 2} : θ j <
p j + r j − uf

j

p j + r j − c j
.

Since the proof for other cases can be obtained in the same
way (merely a change of notation), without loss of gener-
ality suppose this is true for j = 1; i.e., we have:

θ1 <
p1 + r1 − uf

1

p1 + r1 − c1
, (A53)

and Qf∗
2 = 0. We then show that it yields:

max
{
θ1, 1 − π1

0

}
<

p1 + r1 − uf
1

p1 + r1 − c1
, (A54)

which is a contradiction with the condition given in Equa-
tion (24) that for both j = 1, 2:

max {θ j , 1 − π
j

0 } ≥ p j + r j − uf
j

p j + r j − c j
.

To show that we get Equation (A54), note that using Equa-
tion (A53), we just need to show that we get:

1 − π1
0 <

p1 + r1 − uf
j

p1 + r1 − c1
(A55)

for the case where θ1 < 1 − π1
0 . To show that we get Equa-

tion (A55) in this case, let Vf
j (x) = π

j
0 (p j E(Dj ) − G j (x)) −

(uf
j − (1 − π

j
0 )c j ) x for x ∈ [0, ∞) denote the true value of

the flexible supplier with respect to product j if the firm
orders x units of product j from the flexible supplier. Now,
consider the fact that:

∂
(
Vf

j

)
∂x

= −π
j

0 ((h j + p j + r j )Fj (x) − p j − r j )

+ (
1 − π

j
0

)
c j − uf

j ,

and

∂

∂x

(
∂
(
Vf

j

)
∂x

)
= −π

j
0 (h j + p j + r j ) f j (x) ≤ 0.

Hence, Vf
j (·) defined above is concave and the first-order

condition yields:

max
{

Vf
j (x) : x ∈ [0, ∞)

}
= Vf

j

(
F−1

j

( p j + r j − ((
uf

j − (
1 − π

j
0

)
c j
)
/
(
π

j
0

))
p j + r j + h j

))
.
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Now, since θ1 < 1 − π1
0 , we have:

p j + r j − ((
uf

j − (
1 − π

j
0

)
c j
)
/π

j
0

)
p j + r j + h j

<
p j + r j − ((

uf
j − θ j c j

)
/(1 − θ j )

)
p j + r j + h j

≤ Fj
(
q f∗

j

)
.

Therefore, as Fj (·) is non-decreasing, we have

F−1
j

(
p j + r j − ((

uf
j − (

1 − π
j

0

)
c j
)
/π

j
0

)
p j + r j + h j

)
≤ q f∗

j .

Furthermore, because ∂(Vf
j )/∂x < 0 in the interval:(

F−1
j

(
p j + r j − ((

uf
j − (

1 − π
j

0

)
c j
)
/π

j
0

)
p j + r j + h j

)
, +∞

)
,

Vf
j (x) is strictly decreasing in this interval. Hence, consid-

ering the initial assumptions that Vf > 0 and Qf∗
2 = 0 we

have:

0 < Vf = Vf
1

(
q f∗

1

)+ Vf
2

(
q f∗

2

)
< Vf

1

(
F−1

j

( p j + r j −
((

uf
j − (

1 − π
j

0

)
c j
)
/π

j
0

)
p j + r j + h j

))
+ 0.

Now because Vf
1 (0) = 0 and Fj (·) is non-decreasing and

Fj (x) > 0 for all x > 0, the above condition yields:

p j + r j − ((
uf

j − (
1 − π

j
0

)
c j
)
/π

j
0

)
p j + r j + h j

> 0,

which is equivalent to Equation (A55), which in turn im-
plies Equation (A54). However, this is a contradiction and
hence the proof is complete. �

Proof of Proposition 4. It is sufficient to show that for
both j = 1, 2: ∂(Vf )/∂ε j ≤ 0 if ε j > 0 and ∂(Vf )/∂ε j ≥ 0
otherwise. To show this note that by Lemma 1 we have:

Vf (ε1, ε2) =
2∑

j=1

[
π

j
0

(
p j E(Dj ) − G j

(
q f∗

j

))
− (

uf
j − (

1 − π
j

0

)
c j )q f∗

j

]
where using Theorem 7:

q f∗
j

= F−1
j

([ p j +r j −
((

uf
j −
(
1−π

j
0 + ε j

)
c j
)
/(π0−ε j )

)
p j +r j +h j

]+)
.

(A56)

Hence, using the technique for computing derivative of an
inverse function, we have:

∂
(
q f∗

j

)
∂ε j

= −
(
uf

j − c j
)

(p j + r j + h j )(π0 − ε j )2 f j
(
q f∗

j

) ≤ 0 (A57)

since uf
j ≥ c j for both j = 1, 2. Moreover,

∂(Vf )
∂ε j

= ∂(Vf )

∂q f∗
j

∂q f∗
j

∂ε j
.

Therefore,

∂(Vf )
∂ε j

= −
(
uf

j − c j
)

(p j + r j + h j )(π0 − ε j )2 f j
(
q f∗

j

)
× [− π

j
0

(
(p j + r j + h j )Fj

(
q f∗

j

)
− p j − r j

)− (
uf

j − (1 − π0)c j )]. (A58)

Now, notice that because of Equation (A56), −π
j

0 ((p j +
r j + h j )Fj

(
q f∗

j

)− p j − r j ) − (uf
j − (1 − π0)c j ) is not neg-

ative if ε j ≥ 0 and is not positive if ε j ≤ 0. Hence, us-
ing inequality (A57) and Equation (A58), the proof is
complete. �

Proof of Lemma 2. If the firm knows that dedicated sup-
plier j is up, it would not reserve the flexible supplier’s
capacity for product j and would just order from dedi-
cated supplier j because this supplier is cheaper than the
flexible one. The optimal ordering quantity of this prod-
uct in this case can be determined using a simple single-
source newsvendor problem. This quantity is the same as
total optimal ordering quantity for product j in the general
no-information case; i.e., q f∗

j + q j∗ where q f∗ and q j∗ are
presented in Theorem 7. Using these optimal quantities we
would have:

V+ j = CT
(
q1∗, q2∗, q f∗

1 , q f∗
2 , q̄ f∗)

− CT
(
q1#, q2#, q f#

1 , q f#
2 , Q̄f#|i j > 0

)
= uf

j Qf∗
j + [

(1 − π
j

0 )(c j q j∗ + G j
(
q j∗ + q f∗

j

)
)

+ π
j

0 G j
(
q f∗

j

) ]
− G j

(
q f∗

j + q j∗)− c j (Qf∗
j + q j∗).

Then, simplification results in Equation (27). To derive V0 j
,

note that if the firm knows that dedicated supplier j is in
the down state (i.e., is disrupted), it procures only from
the flexible supplier (for product j ) and will solve a single-
source newsvendor problem with procurement cost of uf

j .
Hence, in that case, its optimal cost for this product is

G j

(
F−1

j

( p j + r j − uf
j

p j + r j + h j

))
+ uf

j F−1
j

( p j + r j − uf
j

p j + r j + h j

)
.

Then, using Equation (25) and simplification yields
Equation (28). Moreover, by implementing these values for
V+ j

and V0 j
, the value of information on the threat level

of dedicated supplier j (VI j ) can be obtained using its def-
inition (i.e., VI j = (1 − π

j
0 )V+ j + π

j
0 V0 j

). Using this and
simplification then results in Equation (29) and the proof is
complete. �
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Proof of Proposition 5. From Lemmas 1 and 2 (and after
simplification) we have:

VI − Vf =
2∑

j=1

[
2
(
uf

j − c j )q f∗
j + π

j
0

[
2
(
G j
(
q f∗

j

)+ c j q f∗
j

)

−
(

G j

(
F−1

j

( p j + r j − uf
j

p j + r j + h j

))

+ uf
j F−1

j

( p j + r j − uf
j

p j + r j + h j

)
+ p j E(Dj )

)]]
.

Next if

2
(
G j
(
q f∗

j

)+ c j q f∗
j

)−
(

G j

(
F−1

j

( p j + r j − uf
j

p j + r j + h j

))

+ uf
j F−1

j

( p j + r j − uf
j

p j + r j + h j

)
+ p j E(Dj )

)
≥ 0,

let π̂
j

0 = 1. Otherwise, let

π̂
j

0 = min
{ −2

(
uf

j − c j
)

q f∗
j

2
(
G j
(
q f∗

j

)+ c j q f∗
j

)− (
G j (F−1

j

((
p j + r j − uf

j

)
/(p j + r j + h j )

))+ uf
j F−1

j

((
p j + r j − uf

j

)
/(p j + r j + h j )

)+ p j E(Dj )
) , 1

}
,

and notice that since uf
j ≥ c j , VI − Vf ≥ 0 whenever π

j
0 ≤

π̂
j

0 . �

Proof of Proposition 6. To show the first part, it is sufficient
to show that for both j = 1, 2 ∂(VI)/∂ε j ≤ 0 if ε j < 0 and
∂(VI)/∂ε j ≥ 0 if ε j > 0. To show this note that:

∂(VI)
∂ε j

= ∂(VI)

∂q f∗
j

∂q f∗
j

∂ε j
.

Moreover, recall that:

q f∗
j = F−1

j

([p j +r j −
((

uf
j −
(
1−π

j
0 +ε j

)
c j
)
/(π0−ε j )

)
p j +r j +h j

]+)
.

(A59)

Hence, using the technique to get the derivative of an inverse
function we have:

∂
(
q f∗

j

)
∂ε j

= −
(
uf

j − c j
)

(p j + r j + h j )(π0 − ε j )2 f j
(
q f∗

j

) ≤ 0, (A60)

since uf
j ≥ c j for both j = 1, 2. Therefore, to show the re-

sult, it is sufficient to show that ∂(VI)/∂ Qf∗
j ≤ 0 if ε j > 0

and (∂(VI))/(∂ Qf∗
j ) ≥ 0 if ε j < 0. But from Lemma 3 we

have:

VI j = (uf
j − (

1 − π
j

0

)
c j )q f∗

j + π
j

0

[
G j
(
q f∗

j

)

− G j

(
F−1

j

( p j + r j − uf
j

p j + r j + h j

))

− uf
j F−1

j

( p j + r j − uf
j

p j + r j + h j

)]
, (A61)

and VI = ∑2
j=1 VI j . Additionally, using the Leibniz rule

and Equation (2) we get

∂G j (q f∗)

∂q f∗
j

= [
(h j + p j + r j )Fj

(
q f∗

j

)− p j − r j
]
.

Hence, using Equation (A61) and replacing Qf∗
j from Equa-

tion (A59) in addition to replacing π
j

0 by 1 − θ j + ε j yields:

∂(VI)

∂ Qf∗
j

= −ε j
(
uf

j − c j
)

1 − θ j
.

Therefore, since uf
j ≥ c j and θ j < 1 for both j = 1, 2, we

have ∂(VI)/∂q f∗
j ≤ 0 if ε j > 0 and ∂(VI)/∂q f∗

j ≥ 0 if ε j <

0 for both j = 1, 2. Hence, the proof of the first part is
complete. To show the second part (i.e., to show that VI(·, ·)
is non-decreasing in y j = |ε j | for both j = 1, 2), notice
that:

∂(VI)
∂y j

= ∂(VI)
∂ε j

∂ε j

∂y j
.

Thus, to show ∂(VI)/∂y j ≥ 0, it is sufficient to
show that (for both j = 1, 2) ∂(VI)/∂ε j ≤ 0 if ε j <

0 and ∂(VI)/∂ε j ≥ 0 if ε j > 0, which is shown
above. �

Appendix B: Parameter settings

The different parameter settings considered to illustrate the
different behaviors, results and insights in Studies A1 and
A2 of Appendix C are as follow. In Table A1, setting 2
represents a case with much higher marginal revenues for
the products than setting 1. Setting 3 includes changes in
other parameters which result in different critical ratios.

The parameter settings considered for Study 1 are listed
in Table A2. The first four settings are identical except for
the reliability beliefs. The other settings include variations
on other parameters as well.
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Table A1. Suite of parameter settings in studies A1 and A2

Setting no. uf
1 = uf

2 j p j r j h j π
j

0 c j

1 4.0 1 5.5 5.0 0.5 0.15 3.0
2 4.0 6.0 0.7 0.12 3.5

2 4.0 1 5.5 15.0 0.5 0.15 3.0
2 4.0 20.0 0.7 0.12 3.5

3 4.0 1 5.0 8.0 0.5 0.08 3.0
2 8.0 10.0 0.7 0.03 3.5

Appendix C: Further results on the analysis
without recourse

To find the optimal sourcing and contracting levels, let
C̃(q1, q2, q f

1, q f
2, Q̄f ) be the random variable denoting the

one-period cost of the firm if it reserves flexible backup ca-
pacity Q̄f and orders q j ( j = 1, 2) units from the dedicated
supplier j and q f

j ( j = 1, 2) units from the flexible backup
supplier for product j . Then, if we let i j ∈ {0, +} denote
the current state of the supplier j , where i j = 0 if supplier
j is down and i j = + otherwise, we have:

ED2 ED1

[
C̃
(
q1, q2, q f

1, q f
2, Q̄f

)]
= uf Q̄f +

2∑
j=1

[
cf

j q f
j + 11(i j �=0)

(
c j q j + G j

(
q j + q f

j

))
+ 11(i j = 0)G j

(
q f

j

)]
, (A62)

Table A2. Suite of parameter settings in study 1

Setting no. uf j p j r j h j θ j c j

1 4.0 1 5.5 5.0 0.5 0.80 3.0
2 4.0 6.0 0.7 0.80 3.5

2 4.0 1 5.5 5.0 0.5 0.85 3.0
2 4.0 6.0 0.7 0.90 3.5

3 4.0 1 5.5 5.0 0.5 0.90 3.0
2 4.0 6.0 0.7 0.85 3.5

4 4.0 1 5.5 5.0 0.5 0.95 3.0
2 4.0 6.0 0.7 0.95 3.5

5 4.0 1 5.5 15.0 0.5 0.85 3.0
2 4.0 20.0 0.7 0.90 3.5

6 4.2 1 5.0 8.0 0.5 0.85 4.0
2 8.0 10.0 0.7 0.90 4.0

7 4.5 1 7.0 8.0 0.9 0.95 3.8
2 8.0 10.0 0.7 0.90 3.5

8 5.0 1 7.0 8.0 0.9 0.85 3.8
2 8.0 10.0 0.7 0.85 3.5

where G j (·) is defined in (2). Hence, the expected cost as
perceived by the firm is

CP
(
q1, q2, q f

1, q f
2, Q̄f

)
= Ei2 Ei1 ED2 ED1

[
C̃
(
q1, q2, q f

1, q f
2, Q̄f

)]
= uf Q̄f +

2∑
j=1

[
cf

j q f
j + θ j (c j q j + G j

(
q j + q f

j

))
+ (1 − θ j )G j

(
q f

j

)]
, (A63)

where the subscript P on C(·) describes that it is the per-
ceived (and not the true) value.

The problem for the firm then is to optimize the ordering
and contracting decisions to minimize its perceived cost
subject to the terms of the contract:

min
q1,q2,q f

1,q
f
2,Q̄f

CP
(
q1, q2, q f

1, q f
2, Q̄f

)
, (A64)

subject to:

q f
1 + q f

2 ≤ Q̄f , (A65)

q j , q f
j ≥ 0 ( j = 1, 2). (A66)

Moreover, using Equation (A62), the true expected cost
of the firm based on any given ordering and contracting
decisions can be computed using the true reliabilities as

CT
(
q1, q2, q f

1 , q f
2 , Q̄f

)
= uf Q̄f +

2∑
j=1

[
cf

j q f
j + (1 − π

j
0 )
(
c j q j + G j

× (
q j + q f

j

))+ π
j

0 G j
(
q f

j

)]
. (A67)

Note that while the firm’s decisions are based on its per-
ceived reliabilities, the true cost defined in Equation (A67)
depends on both the perceived and true reliabilities. In fact,
we need to solve model (A64) to (A66) to derive the firm’s
optimal perceived decisions and implement them in Equa-
tion (A67) to determine the associated true total cost.

To solve our non-linear model (A64) to (A66), we first
need the following lemma.

Lemma A1. The objective function CP (q1, q2, q f
1, q f

2, Q̄f ) is
jointly convex in its variables. Moreover, with θ j ∈ (0, 1) ( j =
1, 2) and uf �= 0, the convexity is strict.

Proof of Lemma A1. To show convexity, we need to show
that the Hessian matrix (H) of the function CP(·) is pos-
itive semi-definite. Using the Leibniz rule, G ′

j (x) = (h j +
p j + r j ) F(x) − (r j + p j ) and G ′′

j (x) = (h j + p j + r j ) f (x).
Therefore, the Hessian matrix can be written as

H =

⎡
⎢⎢⎢⎢⎢⎣

a1 0 a1 0 0
0 a2 0 a2 0
a1 0 b1 0 0
0 a2 0 b2 0

0 0 0 0 uf

⎤
⎥⎥⎥⎥⎥⎦ ,
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where a j = θ j (h j + p j + r j ) f j (q j + q f
j ) and b j = a j +

(1 − θ j ) f (q f
j ) ( j = 1, 2). Next, solving the character-

istic equation |H − λI| = 0, we obtain the following
eigenvalues:

λ1 = 1
2

(h1 + p1 + r1)
[
(1 − θ1) f1

(
q f

1

)+ 2 θ1 f1
(
q1 + q f

1

)
+
√[

(1 − θ1) f1
(
q f

1

)]2 + [
2 θ1 f1

(
q1 + q f

1

)]2]
,

λ2 = 1
2

(h1 + p1 + r1)
[
(1 − θ1) f1

(
q f

1

)+ 2 θ1 f1
(
q1 + q f

1

)
−
√[

(1 − θ1) f1
(
q f

1

)]2 + [
2 θ1 f1

(
q1 + q f

1

)]2]
,

λ3 = 1
2

(h2 + p2 + r2)
[
(1 − θ2) f2

(
q f

2

)+ 2 θ2 f2
(
q2 + q f

2

)
+
√[

(1 − θ2) f2
(
q f

2

)]2 + [
2 θ2 f2

(
q2 + q f

2

)]2]
,

λ4 = 1
2

(h2 + p2 + r2)
[
(1 − θ2) f2

(
q f

2

)+ 2 θ2 f2
(
q2 + q f

2

)
−
√[

(1 − θ2) f2
(
q f

2

)]2 + [
2 θ2 f2

(
q2 + q f

2

)]2]
,

λ5 = uf .

Now notice that since (i) f j (·) is a probability density
function; (ii) θ j ∈ [0, 1]; and (iii) r j , p j , h j , uf ∈ [0, +∞),
all of the above eigenvalues are non-negative. Therefore, H
is positive semi-definite and hence CP(·) is jointly convex.
Moreover, if θ j �= 0, 1 and uf �= 0, all of the eigenvalues are
positive; hence, H is positive definite. Thus, with θ j �= 0, 1
and uf �= 0, CP(·) is also strictly convex. �
Study A1. Consider a firm facing two normally (and in-
dependently) distributed demands for its products. Partic-
ularly, let D1 and D2 respectively follow N(5000, 12002)
and N(3000, 8002), where N(µ, σ 2) denotes a normal dis-
tribution with mean µ and a standard deviation of σ . To
illustrate different cases, we consider three sets of differ-
ent parameter settings presented in Table A2 in Appendix
B. Figure A1 depicts the corresponding Improvement Per-
centages (IP’s) in the firm’s true expected costs due to con-
tracting with the flexible supplier versus its reliability belief
error ϒ = (ε1, ε2). We denote by IP(F)% the cost improve-
ment percentage due to the existence of the flexible backup
supplier:

IP(F)% = Vf

|CT (q ′1∗, q ′2∗, 0, 0, 0)| × 100.

Note that IP(F)% > 0 implies that contracting is profitable
and IP(F)% ≤ 0 indicates a non-profitable contracting sit-
uation. The former case can be seen in parts (a) and (b),
and the latter can be seen in part (c) of Figure A1. The cor-
responding capacity reservation levels for each parameter
setting are depicted in Figure A1 (Appendix C). As one spe-
cific example, a firm with parameter setting 1 (see Table A1
in Appendix B) and with a reliability belief of � = (0.8, 0.9)
(i.e., with belief error ϒ = (−0.05, +0.02) based on π1 and

π2 presented in Table A1) will form a contract and reserve a
capacity level of Q̄f

∗ = 6238.9 units. Based on this decision,
the firm would be able to reduce its expected total true costs
by IP(F)% = 29.5%. However, as can be seen in Figure A1
part (a), if this firm has large errors in its reliability belief,
it will not be able to greatly reduce its costs by contract-
ing with the flexible backup supplier. (For instance, IP(F)
is less than 1% with ϒ ≈ (−0.8, −0.8).) However, a firm
with parameter setting 2 and with the same reliability be-
lief (� = (0.8, 0.9)) will reserve a capacity of Q̄f

∗ = 8945.5
units and will be able to reduce its expected total true costs
by IP(F)% = 14.6%. Although the percentage benefit for
this firm is less than the first one, even with large errors in
its reliability belief (e.g., with ϒ ≈ (−0.8, −0.8)), as can be
seen in Figure A1 part (b), it will still be able to reduce its
true expected costs approximately by 14%. In other words,
accuracy in estimating the dedicated suppliers’ reliabilities
is critical for the former firm but not for the latter. This
is due to the high profit margins in setting 2 which makes
a secondary backup flexible supplier still highly valuable,
even with large errors in belief. This results in Observation
2 presented in the main body of the article. �

Study A2. Consider a firm facing two normally distributed
demands for its products as discussed in Study A1. Let
IP(I)% denote the IP in the firm’s expected true costs due
to obtaining information about disruption risk of both of
its unreliable suppliers. This value can be computed by

IP(I)% = VI
|CT (q1∗, q2∗, Qf∗

1 , Qf∗
2 , Q̄f∗)| × 100,

where CT (q1∗, q2∗, Qf∗
1 , Qf∗

2 , Q̄f∗) is the firm’s expected true
cost under its perceived optimal decisions before obtain-
ing information. Figure A2 illustrates different values of
IP(I)% for the parameter settings 1 to 3 (presented in
Table A1 in Appendix B) versus the errors in the firm’s
reliability belief. As some particular examples, considering
the cases discussed in Study A1. A firm with parameter set-
ting 1 and with a reliability belief vector of � = (0.8, 0.9)
(ϒ = (−0.05, +0.02)) can greatly reduce its true costs by
IP(I)% = 148.9%, if it obtains full information about its
unreliable suppliers’ disruption risk. However, a firm with
parameter setting 2 and with same belief (and same error
as the previous firm) � = (0.8, 0.9) (ϒ = (−0.05, +0.02))
can only reduce its cost by IP(I)% = 6.9%. Finally, a
firm with parameter setting 3 and with � = (0.87, 0.90)
(ϒ = (−0.05, −0.07)) can benefit from full information by
an amount equal to IP(I)% = 19.2% of its current (no-
information) true cost. Therefore, if this latter firm is
risk-neutral and if establishing a system to obtain such
information adds its costs by 10%, it should choose to es-
tablish such a system and hence reduce its true expected
total cost by 9.2%.

This study reveals additional interesting insights. First,
notice that the information is much more valuable in setting
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Fig. A1. The value of a flexible backup supplier (IP(F)%) in settings 1 to 3 for different values of error in the firm’s reliability belief
(ε1, ε2).

1 than setting 2. Since setting 1 represents lower profit mar-
gins than setting 2, this suggests Observation 3 presented
in the main body of the article.

This observation is consistent with what we observed in
Study A1 and can be explained as follows. When profit
margins are tight, overinvesting in the expensive secondary
supplier (resulting from underestimating the reliabilities) is
very costly and cannot be justified by the profit obtained
from higher potential sales in the case of a disruption. On
the other hand, underinvesting in the flexible resource (re-
sulting from overestimating the reliabilities) is more harm-
ful in the case of high profit margins than low ones only
when a disruption actually occurs and because of the lost
sales. However, the probability of facing a disruption is low.
Thus, in expectation, underinvesting is also percentage-wise
more costly when profit margins are low than when they
are high.

Second, as can be seen in Figure A2, when a firm is over-
estimating the reliability of its primary supplier (i.e., when
ε j > 0), the value of information is much more sensitive
to belief errors than the case of underestimating. This re-

sults in Observation 4 presented in the main body of the
article.

Notice that when a firm overestimates the reliability of
its suppliers, it invests less in the secondary flexible backup
capacity. In such a situation, with a little better estimation
(less error), the firm will invest a little more in the backup
capacity. Although the change in investment is relatively
small, the cost benefit is large since the backup capacity can
work as an insurance in the event of pernicious disruptions.

�

Appendix D: Further results on the two-product setting
with recourse

In this appendix, we derive the optimal ordering behavior
of the firm (under the two-product setting with recourse) in
Stage 2 for the case where cf

j > c j for both j = 1, 2. Note
that the analysis in this case is much simpler than the case
cf

j ≤ c j provided in the main body of the article.
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Fig. A2. The value of information (IP(I)%) for different values of firm’s reliability belief error (ε1, ε2).

We start with the case where the firm observes both un-
reliable suppliers to be up.

Proposition A1 (Both suppliers up). Given any reserved
flexible backup capacity of Q̄f , when cf

j > c j , it is optimal
to set:

q f∗
j = 0 and q j∗ = F−1

(
p j + r j − c j

p j + r j + h j

)
,

when both unreliable suppliers are observed to be up.

When the firm only observes one of the unreliable sup-
pliers to be up, the optimal ordering policy is as follows.

Proposition A2 (One supplier up). Let m ∈ {1, 2} denote
the dedicated supplier that is observed to be up, and n =
3 − m be the disrupted supplier. Given a reserved flexible
backup capacity of Q̄f , when cf

j > c j , it is optimal to set:

q f∗
n = min

{
Q̄f , F−1

(
p j + r j − cf

n

p j + r j + h j

)}
, q f∗

m = 0, and

qm∗ = F−1
(

p j + r j − cm

p j + r j + h j

)
.

When the firm observes both unreliable suppliers to be
disrupted, the ordering policy is the same as Theorem 3.
From these results we have the following:

Observation 10. Unlike the case studied in the main body,
when cf

j ≥ c j , rationing the limited backup capacity only
occurs when both unreliable suppliers are observed to be
down.

Proof of Proposition A1. Please note that, as before, the
KKT conditions are necessary and sufficient to character-
ize the optimal solution. Moreover, the KKT conditions
are the same as those in the proof of Theorem 1:

q f
1 + q f

2 ≤ Q̄f , (A68)

c j − λ j = µ − λf
j + cf

j ( j = 1, 2), (A69)

q j + q f
j = F−1

j

(
p j + r j − (c j − λ j )

p j + r j + h j

)
( j = 1, 2), (A70)

µ
(
q f

1 + q f
2 − Q̄f

) = 0, (A71)
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λ j q j = 0 ( j = 1, 2), (A72)

λf
j q

f
j = 0 ( j = 1, 2), (A73)

q j , q f
j , µ, λ j , λ

f
j ≥ 0. ( j = 1, 2). (A74)

Observe that setting λ j = 0, µ = 0, λf
j = cf

j − c j , Qf∗
j =

0, and q j∗ = F−1((p j + r j − c j )/(p j + r j + h j )) satisfy the
above KKT conditions. �
Proof of Proposition A2. Note that the KKT conditions
for this case are the same as those in the proof of Theorem
2:

q f
1 + q f

2 ≤ Q̄f , (A75)

cm − λm = µ − λf
m + cf

m, (A76)

qm + q f
m = F−1

m

(
pm + rm − (

µ − λf
m + cf

m

)
pm + rm + hm

)
, (A77)

q f
n = F−1

n

(
pn + rn − (

µ − λf
n + cf

n

)
pn + rn + hn

)
, (A78)

λmqm = 0, (A79)

λf
mq f

m = 0, (A80)

λf
nq f

n = 0, (A81)

qm, q f
m, q f

n, µ, λm, λ f
m, λ f

n ≥ 0. (A82)

If

Q̄f ≥ F−1
(

p j + r j − cf
n

p j + r j + h j

)
,

set µ = 0. Otherwise, chose µ such that:

F−1
(

p j + r j − cf
n − µ

p j + r j + h j

)
= Q̄f .

Next, observe that setting λf
m = µ + cf

m − cm, λf
n = 0, λm =

0, q f∗
n = min{Q̄f , F−1((p j + r j − cf

n)/(p j + r j + h j )),
q f∗

m = 0, and qm∗ = F−1((p j + r j − cm)/(p j + r j + h j ))
satisfy the KKT conditions, which are sufficient and
necessary to characterize the optimal solution. �
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