Introducing a Novel Tool Capturing Parents' Perceived Social Value of Bilingualism

Sarah Surrain \& Gigi Luk June 28, 2019

How do contextual factors shape children's bilingual development?

How do contextual factors shape children's bilingual development?

Why measure perceptions of bilingualism?

Aims of the current study

- Develop and evaluate two scales for use in bilingualism research in the U.S.
- Demonstrate how Item Response Theory can complement classical approaches to guide scale development

Study 1: PoB scale

- The degree to which bilingualism is seen as valued in the society
- Intended for use with all adults, including parents

Study 2: PoB+ scale

- The degree to which bilingualism is seen as valuable for one's child
- Intended for use with parents

Study 1.

 Measuring Perceptions of the Value of Bilingualism with the PoB Scale1. Scale development
2. Psychometric properties
3. Demographic correlates

Participants

Sample 1 ($n=210,109$ parents)

- Qualtrics panels
- Adults 18+ representing U.S. population in education, race \& region
- Oversampled Spanish-speaking parents of toddlers

Sample 2 ($\mathrm{n}=212$ parents)

- Amazon Mechanical Turk (MTurk)
- Limited to parents of children <7
+ - Slightly younger, whiter, more education

Combined Sample ($\mathrm{n}=422$ total, 321 parents)

- 44\% L1 English, no L2
= \quad - 60\% 4-yr college degree or higher
- Mean age of $37(S D=14)$
- 62% female

Developing the PoB scale

The ability to speak more than one language is highly valued in the United States.
The United States should have more than one official language.
To be considered American, one should speak English (Reversed)
Languages in addition to English should be taught in public elementary schools.
Parents in the United States who don't speak English should learn English to help their children. (Reversed)
People who speak more than one language should earn more money in the United States.
To be successful in the United States you need to speak more than one language.
Teachers, doctors, lawyers and police officers in the United States should speak a language in addition to English so they can communicate with the people they serve.
Parents whose native language is not English should teach their native language to their children.
Learning a second language helps a person think more creatively.
Learning a second language will negatively affect a person's first language (reversed)
I wish I spoke another language (in addition to the language or languages I speak at this time).
Speaking more than one language helps a person understand people from different cultural backgrounds.

Developing the PoB scale

Strongly disagree	Disagree	Somewhat disagree	Somewhat agree	Agree	Strongly agree
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

- 6-point Likert scale from 1 (strongly disagree) to 6 (strongly agree)
- Translated to Spanish (4\% of respondents took the survey in Spanish)
- Cognitive interviews were conducted in English and Spanish ($\mathrm{n}=8$)

Reliability and Factor Analysis

- Cronbach's alpha $=.82$
- 80% of the variance explained by one factor

	Item-total r	Factor loading
PoB1	.41	.36
PoB2	.70	.63
PoB3R	.40	.25
PoB4	.74	.72
PoB5R	.16	.02
PoB6	.68	.65
PoB7	.59	.57
PoB8	.69	.68
PoB9	.64	.63
PoB10	.75	.76
PoB11R	.18	.07
PoB12	.68	.67
PoB13	.67	.67

Fit statistics for 1-factor CFA $\chi^{2}(d f=65)=501.23$, RMSEA=.126, CFI=.765, TLI = .718, SRMR=. 095

IRT Category Characteristic Curves

IRT Category Characteristic Curves

PoB5R. Parents in the United States who don't speak English should learn English to help their children. (Reversed) ($a=0.02$)

PoB3R. To be considered American, one should speak English (Reversed) ($a=0.47$)

PoB11R. Learning a second language will negatively affect a person's first language (Reversed) ($a=0.46$)

Properties of the 10-item PoB Scale

- Cronbach's alpha $=.86$ (vs. . 82)
- 99% of the variance explained by one factor (vs. 80\%)
- 1-factor CFA improved

$$
\chi^{2}(d f=35)=193.922, R M S E A=.104, C F I=.898, T L I=.869, S R M R=.060
$$

Correlations with demographics

	PoB	L1 Eng no L2	Years of education	Age
L1 English, no L2	$-.39^{* * *}$			
Years of education	$.20^{* * *}$	$-.18^{* * *}$		
Age	$-.30^{* * *}$	$.28^{* * *}$	$-.10^{*}$	
Female	$.19^{* * *}$	-.09	-.04	-.09

Regression Analysis

Study 1 Summary

- PoB scale was unidimensional, but 3 items stood out as problematic
- IRT revealed that these items were providing little information
- The final 10-item scale was more internally consistent
- More positive perceptions of bilingualism associated with
- Speaking a non-English language
- More years of education
- Being female
- Being younger*
*but age mattered more for those who only spoke English
Study 2. Measuring Parents'

Perceptions of the Value of Bilingualism for their Child using the PoB+

1. Scale development
2. Psychometric properties
3. Demographic correlates

Participants

Parents from combined sample ($\mathrm{n}=321$)

- Same as full sample in gender and education
- Slightly younger ($\mathrm{M}=34, \mathrm{SD}=9$)
- 39\% L1 English, no L2
- 31% speak a non-English language to child at least half of the time

Developing the PoB+ scale

PoB+1 It is important for my child to SPEAK more than one language.
PoB+2 Speaking more than one language will help my child succeed in school in the long term.

PoB+3 It is important for my child to learn to READ and WRITE more than one language.

PoB+4 Speaking more than one language will help my child compete in the job market.

PoB+5R My child will be confused if he or she learns two languages at the same time. (reversed)
PoB+6 Speaking more than one language will help my child become a stronger thinker.

```
PoB+7R To be successful, the ONLY language my child needs to speak well is
        English. (reversed)
```

PoB+8 Speaking more than one language will help my child understand people from different cultural backgrounds.

Reliability and Factor Analysis

- Cronbach's alpha $=.88$
- 99% of the variance explained by the first factor

	Item-total r	Factor loading
PoB+1	.85	.84
PoB+2	.81	.81
PoB+3	.81	.76
PoB+4	.80	.76
PoB+5R	.52	.42
PoB+6	.83	.82
PoB+7R	.62	.47
$\mathrm{PoB}+8$.78	.72

Fit statistics for 1-factor CFA $\chi^{2}(d f=20)=89.50$, RMSEA=.128, $C F I=.922, T L I=.891, S R M R=.055$

IRT Category Characteristic Curves

It is important for my child to SPEAK more than one language.
($a=3.72$)
POBplus_4

POBplus_7R

POBplus_2

POBplus_5R

POBplus_8

Speaking more than one language will help my child become a stronger thinker. ($a=3.20$)

IRT Category Characteristic Curves

Correlations

	PoB+	PoB	L1 Eng no L2	Years of education Age
PoB scale score	$.82^{* * *}$			
L1 English, no L2	$-.41^{* * *}$	$-.33^{* * *}$		
Years of education	$.13^{*}$.09	$-.11^{*}$	
Age	-.09	-.10	$.18^{* *}$.03
Female	$.19^{* * *}$.22	-.10	-.10

Regression Analysis

Study 2 Summary

- The 8-item PoB+ scale showed strong internal consistency and unidimensionality
- The reverse-coded items provided the least information but were of substantive interest
- Positive perception of bilingualism for child associated with
- Speaking a non-English language
- Being female
- More years of education*
*but education mattered more for those who only spoke English

Limitations

- Online survey
- Only available in English and Spanish
- Content validity and construct coverage
- Items about negative consequences of bilingualism
- Is this a separate construct?

Conclusions \& Next Steps

- The PoB and PoB+ scales are psychometrically promising and short enough to embed in a longer survey.
- Stay tuned for:
- PoB scores by census data - local language diversity matters!
- PoB+ scores predict home language practices and decision to apply for a dual language program
- Relation to child language outcomes following preschool entry
- PoB adaptations for Quebec, Luxembourg,

Social
Context

Caregiver
attitudes
 Singapore, Shanghai

Thank you! Any questions?

Gigi Luk

Gladys Alexandra Dasha So Yeon Aguilar Chen Maghooli Shin

Appendices

Study 1 Methods: Participants

	Sample 1 $(\mathrm{n}=210)$	Sample 2 $(n=212)$	Combined $(n=422)$
Female	64\%	60\%	62\%
Age	42 (17)	33 (7)	37 (14)
Born in U.S.	86\%	90\%	88\%
L1 English, doesn't speak an L2	46\%	43\%	44\%
Region of U.S.			
West	26\%	21\%	24\%
South	35\%	38\%	36\%
Midwest	22\%	21\%	22\%
Northeast	16\%	19\%	18\%
Education			
Some high school or less	10\%	-	5\%
High school graduate	27\%	13\%	20\%
Some college or Associates	27\%	25\%	26\%
Degree			
College Graduate	26\%	45\%	36\%
Graduate School Degree	10\%	17\%	24\%
Ethnicity/Race			
White alone (not Hispanic)	50\%	67\%	58\%
Black	11\%	4\%	8\%
Asian or Pacific Islander	5\%	8\%	6\%
Hispanic	31\%	17\%	24\%
Mixed race or other	3\%	4\%	3\%

Item-score histograms for all 13 PoB items

All 13 original PoB items with the mean and standard deviations ($\mathrm{n}=422$)

	PoB Item	M	SD
PoB1	The ability to speak more than one language is highly valued in the United States.	4.77	1.30
PoB2	The United States should have more than one official language.	3.40	1.71
PoB3R	To be considered American, one should speak English. (Reversed)	2.63	1.55
PoB4	Languages in addition to English should be taught in public elementary schools.	4.69	1.31
PoB5R	Parents in the United States who don't speak English should learn English to help their children. (Reversed)	1.97	1.06
PoB6	People who speak more than one language should earn more money in the United States.	3.89	1.48
PoB7	To be successful in the United States you need to speak more than one language.	3.45	1.56
PoB8	Teachers, doctors, lawyers and police officers in the United States should speak a language in addition to English so they can communicate with the people they serve.	4.37	1.40
PoB9	Parents whose native language is not English should teach their native language to their children.	4.73	1.16
PoB10	Learning a second language helps a person think more creatively.	4.69	1.30
PoB11R	Learning a second language will negatively affect a person's first language. (Reversed)	4.77	1.44
Pob12	I wish I spoke another language (in addition to the language or languages I speak at this time).	4.80	1.36
PoB13	Speaking more than one language helps a person understand people from different cultural backgrounds.	4.77	1.30

Note: Items 3, 5, and 11 were reverse coded. These items were later dropped from the scale.

Checking Local Independence for the PoB

Covariance residuals

IRT Graded Response Model

$$
P\left(Y_{p i} \geq k \mid a_{i}, b_{i k}, \theta_{p}\right)=\frac{1}{\left(1+\exp \left(-a_{i}\left(\theta_{p}-b_{i k}\right)\right)\right.} ; \theta_{p} \sim N(0,1)
$$

- Y is the response given by participant p on an item i that has k boundaries between response options.
- All items had six response options, resulting in 5 different boundaries ($k=1 . . .5$).
- The latent construct, hypothesized to be the degree to which bilingualism is seen as valuable in the society, is represented by theta (θ), which is constrained to a have mean of 0 and a standard deviation of 1 .
- The discrimination parameter (a) represents the degree to which an item distinguishes between respondents with similar latent attitudes.
- The location parameter (b) tells us the theta score needed to have a 50% chance of scoring at or above each boundary.

IRT: Item parameters

Note: All items have 6 score points and thus 5 threshold location parameters.

Regression Analysis

	Model 5
L1 English, no L2	$-0.571^{* *}(.086)$
Years of education	$0.051^{* *}(0.019)$
Age (centered)	$-0.005(0.005)$
Female	$0.300^{* * *}(0.084)$
L1 Eng x Age	$-0.014^{*}(0.006)$
Constant	$-0.648(0.294)$
R^{2}	.240
df_m	5
df_r	416
F	26.23

Methods: Participants

	Sample 1 $(\mathrm{n}=109)$	Sample 2 $(\mathrm{n}=212)$	Combined $(\mathrm{n}=321)$
Parent is female	67%	60%	62%
Parent age	$35(11)$	$33(7)$	$34(9)$
Parent was born in U.S.	80%	90%	87%
Parent years of education	$14.5(2.2)$	$15.3(1.8)$	$15.1(2.0)$
Parent Knowledge of Infant	$4.6(2.0)$	$5.5(2.1)$	$5.2(2.1)$
Development (KIDI) score	30%	43%	39%
Parent L1 English, doesn't speak L2		52%	50%
Language parent speaks to child	48%	22%	19%
All English	13%	24%	27%
Mostly English	32%	7%	4%

Item-score histograms for the PoB+

Perceptions of Bilingualism for one's child (PoB+) scale

	PoB+ Item	M	SD
PoB+1	It is important for my child to SPEAK more than one language.	4.65	1.27
PoB+2	Speaking more than one language will help my child succeed in school in the long term.	4.83	1.18
PoB+3	It is important for my child to learn to READ and WRITE more than one language.	4.60	1.31
PoB+4	Speaking more than one language will help my child compete in the job market.	5.04	1.08
PoB+5R	My child will be confused if he or she learns two languages at the same time. (reversed)	4.45	1.53
PoB+6	Speaking more than one language will help my child become a stronger thinker.	4.88	1.18
PoB+7R	To be successful, the ONLY language my child needs to speak well is English. (reversed)	3.82	1.49
PoB+8	Speaking more than one language will help my child understand people from different cultural backgrounds.	5.05	1.05

Checking Local Independence for the PoB+

Covariance residuals

	P0Bplus_1	POBplus_2	POBplus_3	P0Bplus_4	P0Bplu~5R	POBplus_6	P0Bplu~7R	POBplus_8
P0Bplus_1	0.000							
POBplus_2	-0.020	0.000						
POBplus_3	0.205	-0.054	0.000					
POBplus_4	-0.081	0.100	-0.092	0.000				
P0Bplus_5R	-0.067	-0.054	-0.165	0.046	0.000			
P0Bplus_6	-0.047	0.004	-0.052	0.057	0.062	0.000		
P0Bplus_7R	0.084	-0.052	0.038	-0.130	0.452	0.010	0.000	
P0Bplus_8	-0.011	-0.013	-0.023	0.005	0.073	0.034	-0.054	0.000

- Moderate to high, positive correlation between the residuals of the two reverse-coded items
- Moderate, positive correlation between the residuals on items 1 and 3 , which have similar wording
- Modification indices indicated that covarying the errors on items 1 and 3 results in a 48.640 reduction in χ^{2}

	$\chi^{2}(\mathrm{df})$	RMSEA	CFI	TLI	SRMR
Model 1: One factor CFA	$89.50(20), \mathrm{p}=<.001$.128	0.922	0.891	0.055
Model 2: CFA w/ corr. errors	44.01 (19), $\mathrm{p}=<.001$.079	0.972	0.959	0.047

But What About Local Independence?

- Items PoB+1 and PoB+3 have similar wording and both have relatively high discrimination parameters (3.72 and 3.27).
- Could these two items have inflated discrimination estimates and undue influence on the latent variable? (Edelen \& Reese, 2007, p.7)
- If $\mathrm{PoB}+3$ is dropped
- Range of discrimination parameter estimates changes slightly (.95-3.52 instead of .90-3.72)
- Two items change ranking (PoB+1 moved to $5^{\text {th }}$ place and PoB+6 moved to $1^{\text {st }}$)
- Mean difference in location parameter was . 04 (75% of the 35 location parameters changed by $>.01$
- However, theta scores from the two models correlate . 9879

IRT Item parameters

Regression Analysis

Model 5

L1 English, no L2	$-1.904^{* * *}(.745)$
Years of education	$0.003^{* *}(.032)$
Female	$0.526^{* * *}(.126)$
L1 Eng x Female	$-0.489^{*}(.199)$
L1 Eng x Education	$0.097^{*}(.048)$
Constant	$-0.092(.505)$
R2	.233
df_m	5
df_r	315
F	19.09

