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Abstract

How does supporting early clean technologies affect the long-run transition away from

dirty technologies? Early policy action generates immediate environmental benefits

from increased adoption of available efficient products, but may result in intertemporal

substitution away from later products with greater potential for reducing externalities.

I examine how standards and subsidies supporting early advancements in lighting effi-

ciency (halogens, CFLs) impacted the adoption of later products with higher efficiency

(LEDs). I estimate a model of residential lighting demand, using structural methods
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adapted from dynamic models to capture how the market size and distribution of con-

sumer heterogeneity depended endogenously on the history of past purchases. Counter-

factual simulations suggest that delaying the implementation of standards from 2012

to 2018 would result in 36% greater LED sales over this period, while delaying the

phase-out of CFL subsidies from 2012 to 2018 would result in 20% fewer LEDs sold.

Across a range of specifications, I find that environmental benefits from some early

policy action outweigh the environmental cost of reduced LEDs adoption; the over-

all environmental externality is minimized when standards are implemented in 2012

and CFL subsidies are phased-out after 2014. Sensitivity analyses around alternative

technology lifetimes, externalities, and innovation responses identify conditions under

which early policy intervention would be counterproductive.

JEL Codes: H22, L67, Q54, Q55, Q58

1 Introduction

Climate scientists and economists agree that avoiding catastrophic consequences of cli-

mate change will require a dramatic transition in energy technologies. Supporting early

clean or efficient technologies has been a mainstay of policy interventions towards this goal.

While early incentives for clean technologies immediately shift consumption away from dirty

products, in the longer term these policies may either “crowd in” or “crowd out” the devel-

opment of later-generation clean technologies (Sivaram, 2017). For example, early support

for hybrid vehicles may have increased consumer awareness of alternative fuel vehicles more

broadly or promoted battery research that proved useful for later electric vehicles. However,

these policies may have also caused consumers to adopt long-lived vehicles with smaller en-

vironmental benefits than electric vehicles or shifted innovation resources to solving hybrid

design challenges with little applicability to more advanced clean vehicles.1 In this paper, I

1Other anecdotal examples of the potential for long-run “crowd out” of superior environmental technolo-
gies include competition between silicon-based solar PV and solar cells made from other materials, between
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examine how incentivizing the deployment of earlier-generation clean technologies may affect

the long-run transition away from dirty technologies, using the market for efficient lighting

as an empirical setting. Given the scale of emissions reductions needed for climate change

mitigation, hindering the development of potentially superior clean energy technologies may

substantially increase the long-term social cost of climate change mitigation efforts.

Economic theory can illuminate why the timing of environmental policy may have sig-

nificant implications for the long-run efficiency of climate change mitigation. For one, many

clean technologies are durable products, so subsidies or standards that encourage immediate

adoption of long-lived products may reduce the market size for later-generation, more effi-

cient technologies or change the distribution of consumers who consider adopting these later

technologies.2 Even if the market size for later-generation products eventually increases due

to stock turnover, a smaller initial market size may slow the process of learning-induced cost

reductions (Benkard, 2004; Levitt et al., 2013), and longer time-to-profitability for these

later products may diminish firms’ willingness to invest in new technologies (Stein, 1989;

Budish et al., 2015).3 In efficient policy design, any dynamic inefficiencies in the longer-term

transition to clean or efficient products must be weighed against the benefits of achieving

immediate reductions in emissions.

To analyze this issue, I study the market for efficient lighting, where the incumbent inef-

ficient technology (incandescents) was replaced by several types of more efficient products.

During this transition, the later-generation efficient technology (light emitting diodes, or

LEDs) competed with both the earlier-generation efficient technology (compact fluorescent

lighting, or CFLs) and a more efficient version of the incumbent technology (halogens). Two

key policies influenced the recent development of the efficient lighting market in the United

lithium ion batteries and other battery chemistries, and between ethanol-based biofuels and biofuels derived
from other organic matter; in these examples, public support for the early technology may have hindered
the development of later technologies with potentially greater long-term technical promise (Sivaram, 2017).

2Solar panels, wind turbines, energy storage, electric vehicles, electric heating systems, industrial process
improvements, and efficient appliances are all examples of durable clean technologies.

3Alternatively, knowledge spillovers from the deployment of early efficient products may accelerate the
development of later products, given sufficient similarities in their respective technologies, manufacturing
processes, or marketing requirements.
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States. First, numerous state and utility programs have provided product rebates to coun-

teract the higher upfront cost of efficient bulbs, first for CFLs and later for LEDs. Second,

federal lighting efficiency standards removed most traditional incandescent bulbs from the

market beginning in 2012, precipitating the large-scale adoption of halogen bulbs and, to a

lesser extent, increased adoption of CFL bulbs. Through my analysis of consumer purchase

decisions, I simulate the development of the efficient lighting market given different policy

scenarios, asking how the timing of these policy instruments influenced their outcomes. The

lighting market provides an ideal setting for investigating the technology transition process,

given that this process has advanced further than for many other energy technologies. Fur-

thermore, this market is also independently important given the technical potential of LEDs

to reduce global electricity consumption — by 7-10% according to one industry estimate

(Kooroshy et al., 2016).4

To conduct this analysis, I build a structural model of demand in the residential lighting

market over 2010 to 2018 to determine the impact of subsidies and standards on the pene-

tration of different technologies. To estimate this model, I rely primarily on retail sales data

and estimate a discrete choice demand model in the spirit of Berry et al. (1995). Because

light bulb lifetimes vary significantly by technology type, ranging from 1,000 hours for an in-

candescent bulb to 8,000 hours for a CFL bulb to 15,000 to 25,000 hours or more for an LED

bulb, I consider how the distribution and number of potential customers depends on the past

history of technology adoption. This component of the analysis is essential to account for

the heterogeneous adoption of efficient lighting at the household level, documented in EPA

(2010), as the distribution of consumer preferences represented in the market may evolve

over the study period. It is also important to account for the nearly 40% decrease in new

bulb shipments over the study period, largely a result of longer light bulb lifetimes. To model

this endogenous evolution of market size and consumer heterogeneity, I adapt methods from

dynamic demand models for my static demand setting; to my knowledge, this paper is one

4Efficient lighting has also been a primary driver of reductions in residential electricity consumption over
the last decade (Davis, 2017).
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of the first to account for endogenous coming-to-market as part of a static demand system,

and the approach outlined in this paper may be applicable to other markets undergoing

technology transitions.

Counterfactual simulations take a multipronged approach. First, I ask how the impact

on the environmental externality would change if federal efficiency standards were phased

in or subsidies for CFLs were phased out at an alternate date during the study period.

Second, to capture how these welfare impacts might change in the presence of alternate

innovation paths, I ask how much faster or slower the marginal cost of LEDs would have

needed to fall during the study period to achieve the same total LED market size under each

of these counterfactual policy scenarios. Finally, I examine how these results depend on the

characteristics of the technology in question, by asking how results would differ if we altered

bulb lifetime or externality production by technology.

These counterfactual simulations predict that delaying the beginning of efficiency stan-

dards from 2012 to 2018 would result in 29.0% greater LED sales over the study period.

This change in total LED sales is equivalent to LED prices falling by half a percentage point

faster each quarter during the study period. Likewise, delaying the phase-out of CFL sub-

sidies from 2012 to 2018 would result in 35.6% fewer LEDs sold, which is equivalent to a

similar in magnitude decrease in the rate of LED price changes. However, counterfactual

simulations suggest that these reductions in the size of the initial LED market do not out-

weigh the immediate environmental benefits from at least some early policy intervention.

The average externality per hour of lighting sold during the study period is minimized when

standards are implemented beginning in 2012 and when CFL subsidies are terminated after

2014. While 2012 was the year of actual standards implementation, 2014 was earlier than

many actual lighting rebate programs fully discontinued their support for CFLs.

In examining how these counterfactual results depend on key technology parameters,

I find that the relationship between the timing of standards and the average externality

produced is remarkably robust to a range of alternative LED price declines. However, the
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impact of standards timing is sensitive to the parameters such as the relative lifetime of

halogen bulbs, the technology that most directly benefited from standards implementation.

The impact of rebates timing is more sensitive to the rate of LED price declines, and ending

rebates anywhere from 2011 to 2016 may minimize the average externality, depending on the

rate at which LED prices fall. Under alternative assumptions about CFL lifetimes — that

frequent on-off switching did not cause realized lifetimes to be unexpectedly lower than rated

lifetimes — phasing out subsidies as early as 2012 may have produced the lowest average

externality.

This paper connects to several areas of literature. The core idea of competition across

multiple generations of clean or efficient technologies is similar in spirit to several papers

that have considered dynamic effects of other environmental policies. Most notably, Langer

and Lemoine (2018) derive the optimal path of subsidies for a clean technology whose price

is declining over time and where consumers exhibit heterogeneous willingness-to-pay for the

clean product. Their model, evaluated empirically in the context of the California Solar

Initiative, focuses on a single technology for which the regulator seeks to achieve some total

quantity of deployment by a terminal date; the model trades off the higher willingness-to-pay

of early adopters, which would favor increasing subsidies over time, with higher initial prices,

which would favor decreasing subsidies over time. By contrast, my paper focuses on discrete

changes in technologies available for decarbonizing a given sector, assuming that the regulator

wants to reduce emissions by some amount, and trades off initial efficiency gains with longer-

run improvements in technology performance. Other relevant papers that examine dynamic

issues in clean technology development include Gerarden (2018) on endogenous investments

in solar technology improvement; Covert and Sweeney (2020) on learning rates within and

across firms in wind turbine manufacturing; and Bollinger and Gillingham (2019) on learning-

by-doing in solar installations.5

5In many cases, innovation market failures may interact with inefficiencies from second-best environmental
policies, given the dual market failure associated with climate change (Jaffe et al., 2005). Also of note,
Johnstone et al. (2010) consider the impact of policy instrument choice on energy innovation, using a multi-
country panel dataset of patent applications. Their results suggest that technology-specific policies such
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This paper also builds on the literature on climate and directed technical change, which

examines long-run transition paths from dirty to clean production and posits that the total

size of the clean or dirty sector can affect both the direction and magnitude of technological

progress (Acemoglu, 2002; Aghion et al., 2009; Acemoglu et al., 2012; Casey, 2019). However,

much of this literature focuses on competition between a single “dirty” sector and a single

“clean” sector, ignoring whether the dominance of certain clean technologies over others

may have implications for the long-run potential growth of the clean sector. One exception

is Acemoglu et al. (2019), which studies the impact of using natural gas as a “bridge fuel”

on the growth of renewable energy with greater emissions reduction potential.

Third, this paper also contributes to a long evaluation literature on energy efficiency

programs, both academic literature and studies commissioned by program administrators

(Houde and Aldy, 2017; Allcott and Greenstone, 2012, 2017; Hoffman et al., 2017). In one of

the few academic economics papers to examine the efficient lighting market over this period,

Allcott and Taubinsky (2015) use online and in-store experiments to quantify consumers’

failure to internalize savings from installing CFLs instead of incandescent bulbs, concluding

that information and attention biases are insufficient to justify bans on incandescent bulbs.

My paper complements this work by examining the impact of lighting subsidies and standards

over a longer time horizon and considering the positive rather than normative implications

of consumer preferences over different lighting technologies.

Finally, this paper employs methods from the extensive literature on discrete choice

demand estimation, including several papers that estimate demand systems using retail

scanner data specifically (Berry et al., 1995; Nevo, 2001, 2003; Hendel and Nevo, 2006b,a,

2013; Villas-Boas, 2007; Dubois and Bonnet, 2010; Asker, 2016). My paper builds on these

static demand models by endogenizing the quantity and distribution of consumers in the

market in each period, using methods derived from dynamic demand estimation (Lee, 2013;

as feed-in tariffs are useful for encouraging innovation in technologies that are costlier and further from
commercial competitiveness, while general policies such as renewable energy credits (RECs) are more likely
to induce innovation in more advanced technologies.
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Gowrisankaran and Rysman, 2012).

Section 2 develops a simple theory model of multiple clean technology generations to

clarify ideas. Section 3 describes the development of the efficient lighting market over 2010 to

2018 and provides reduced form statistics to illustrate the impact of standards and subsidies

on lighting technology choice. Section 4 describes the structural model used for demand

estimation, including the modeling of endogenous coming-to-market. Section 5 describes

the data used in the analysis and the estimation procedure. Section 6 offers findings from

counterfactual simulations of alternative policy designs. Finally, Section 7 concludes and

offers directions for future research.

2 Theory

To clarify ideas, I construct a simple model of multiple generations of clean technology

under varying environmental policy instruments. The model takes as given that policymakers

may not be able to implement the optimal carbon tax due to political economy constraints

and considers the design of a second-best policy that minimizes distortions in this dynamic

setting.6 I first discuss how private optimization by consumers and the resulting technology

market shares depend on product availability in each period. I then show how the total

externality produced over multiple periods can be decomposed into several determinants of

consumer demand. Finally, when policymakers are constrained to implement a technology-

specific policy on only the first-generation clean technology (e.g., a subsidy), I show that

the efficient price on this good is weakly higher when the policymaker must also consider

the arrival of the second-generation technology. I discuss how this efficient price on the

first-generation technology varies with key product and market characteristics, including the

relative externality produced by different technologies and the arrival rate of the later clean

6The model is similar in spirit to literature in public finance that begins with the presupposition that the
optimal lump sum taxation is not feasible for policymakers and considers the efficient design of distortionary
taxation to achieve redistribution objectives or raise government revenue. See Brown (2016) and Hendren
and Sprung-Keyser (2020).
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technology relative to the lifetime of the early technology.

2.1 Consumer Choice Over Multiple Technologies

I assume that there are three products available to consumers: the dirty technology D,

the first-generation clean technology C1, and the second-generation clean technology C2.7

Let per-period indirect utility for individual i consuming product j be given by:

Uij = νij − pj

where pj represents the price for product j, common to all consumers, and νij represents

i’s idiosyncratic preference for product j, for j ∈ {D,C1, C2}. Consumers may also choose

not to consume any of the three products, with the resulting utility normalized to 0. Each

consumer may choose at most one technology in each period.8

The second-generation clean technology becomes available to consumers at period t = A;

the first-generation clean product has a lifetime of length L. I assume that the arrival time

of the second-generation technology is weakly less than the lifetime of the first-generation

technology (A ≤ L), so consumers who adopt the long-lived first-generation clean product

have left the market when the second-generation becomes available. The dirty technology

is assumed to last for only one period, so consumers of this product are still in the market

when the second-generation clean technology arrives.9 To simplify notation in illustrating the

7In this simple model, I assume that each technology corresponds to a single product. In my empirical
estimation of lighting demand, I allow for multiple products per technology.

8In this model, a “consumer” represents a household choosing a particular technology for a specific use
case, such as a household choosing a particular lighting technology for a specific lamp. In this sense, the model
is ruling out utility interactions across multiple products (e.g., light bulbs) owned by the same household,
which matches the approach taken in my empirical estimation.

9A note about timing assumptions is useful here. I assume in this simple model that the first-generation
clean product C1 has a longer lifetime than the dirty product D, which is an appropriate choice for modeling
the efficient lighting market, as described further below. While more subtle, this model set-up may also be
appropriate for decisions such as installing solar panels, where the “dirty technology” entails continued use
of grid electricity generated primarily from fossil fuels, which may be stopped at any time, while the “clean
technology” has a lifetime of 10 to 20 years, which entails substantial technological lock-in for a consumer
making this adoption decision. Furthermore, similar dynamic effects might be observed when dirty and
clean technologies have similar lifetimes but a policy is designed to encourage early replacement of the dirty
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consumer’s optimization decision, I will set A = 2 and L = 2 in the derivation that follows,

although I discuss how results generalize to arbitrary A and L (provided that A ≤ L). Given

this simplifying assumption, the consumer’s potential consumption bundles (jt=1, j
′
t=2) are:

(D,D), (C1, C1), (D,C2), (0, C2), and (0, 0).10

Technology prices and preferences are assumed to be fixed over all periods. I assume that

the efficient technology is more expensive than the dirty one, and the price of the efficient

technology is decreasing in subsequent generations, such that pd < pc2 < pc1 . Although I

model constraints on consumers’ future choice sets based on their previous consumption of

the durable first-generation clean product, I ignore the role of lumpy investments in this

simple model; pj represents a per-period rental price rather than an upfront investment

cost. Each of the three technologies also creates some negative externality, ζj, where the

magnitude of this externality is greatest for the dirty product and decreasing with subsequent

generations of the clean product (ζd > ζc1 > ζc2). The externality associated with the outside

option is 0. Lastly, I also assume that individuals (and later the regulator) have perfect

foresight over the arrival of the second-generation efficient technology.11 While stylized, this

assumption allows me to focus on the market characteristics of greatest interest. I discuss

in the Appendix how this basic framework could be used to determine the efficient direction

for policy updating, given an existing set of second-best policies, as new information about

the second-generation technology becomes available.

Consumer i will prefer one bundle to another if the discounted present value of (private)

utility from the former is greater than that of the latter. Given consumer discount factor λ,

product, such as the cash-for-clunkers program.
10It is trivial to show that if the consumer prefers either D or C1 over no consumption in the first period,

then the same preference relation will also hold in the second period, and vice versa. Therefore, we can
ignore the bundles (0, D), (D, 0), (0, C1), (C1, 0), (D,C1), and (C1, D).

11An interesting avenue for future research would be examining how the presence of uncertainty influences
the most salient tradeoffs from the regulator’s perspective. I discuss this issue further in my counterfactual
policy simulations for the lighting market.
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we can derive pairwise preference relations across all combinations of consumption bundles:

{jt=1, j
′
t=2} ≺ {kt=1, k

′
t=2} ↔ Uijt=1 + λUij′t=2

≤ Uikt=1 + λUik′t=2
(1)

Substituting indirect utility expressions for each consumption bundle allows us to derive

threshold values for νij above which consumers are willing to adopt one technology over

another. I obtain the following pairwise preference relations:

(D,D) ≺ (0, 0)↔ νid ≤ pd

(C1, C1) ≺ (D,D)↔ νic1 − νid ≤ pc1 − pd

(C1, C1) ≺ (0, 0)↔ νic1 ≤ pc1

(D,C2) ≺ (D,D)↔ νic2 − νid ≤ pc2 − pd

(0, C2) ≺ (0, 0)↔ νic2 ≤ pc2

(D,C2) ≺ (C1, C1)↔ νid − pd + λ(νic2 − pc2) ≤ (1 + λ)(νic1 − pc1)

(0, C2) ≺ (C1, C1)↔ λ(νic2 − pc2) ≤ (1 + λ)(νic1 − pc1)

These preference relations and the resulting technology consumption shares are depicted

graphically in Figures 1 and 2. Figure 1 illustrates consumer choice of technology conditional

on νid ≥ pd; that is, consumers in this region prefer the dirty product to the outside option,

so the relevant consumption bundles are (D,D), (C1, C1) and (D,C2). The set of consumers

who prefer (C1, C1) to (D,D) is illustrated in Figure 1a, and the set of consumers who

prefer (D,C2) to (D,D) is illustrated in Figure 1b. As is apparent in these figures, a

subset of consumers prefer both (C1, C1) and (D,C2) to (D,D); some fraction will adopt

the first-generation clean technology right away, whereas others will wait for the availability

of the second-generation clean technology. The relative size of these two groups is depicted

by the triangles in the upper right corner of Figure 1c. The slope of the line separating

these two regions is determined by the timing assumptions of the model. In general, the
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slope is equal to λA−1−λL
1−λL ; in our simple two period set-up, this slope reduces to λ

1+λ
.12

(For myopic consumers who do not internalize the future arrival of the second-generation

technology, this slope becomes a horizontal line, and consumers in the upper right corner

all choose (C1, C1).13) Conversely, Figure 2 illustrates consumer choices for the region where

νid < pd, so the relevant consumption bundles are (0, 0), (C1, C1), and (0, C2). Once again,

the triangles in the upper right corner of the diagram depict the relative size of the consumer

group that waits for C2 versus the group that immediately adopts C1, with slope λA−1−λL
1−λL .

Because the joint distribution of the idiosyncratic preference parameters F (νid, νic1 , νc2) is

left unspecified, this model set-up allows for arbitrary correlations in consumer preferences

across different technologies. We may expect, for example, some positive correlation in

idiosyncratic consumer preferences for the two types of clean technologies, νic1 and νic2 . This

distribution of consumer heterogeneity would result in a larger mass of consumers around

the 45 degree line in Figures 1c and 2a, with a smaller mass of consumers in the upper left

and lower right corners.

2.2 Impact of Policy on Overall Externality

As illustrated in Figures 1 and 2, the decentralized solution from individual optimization

can be expressed as a series of thresholds above which consumers prefer one consumption

bundle to another. Any policy intervention in this market will change these adoption thresh-

olds. Due to the presence of externalities in this market, it is optimal to impose a general

Pigouvian tax, where the effective tax rate on each technology is exactly equal to the exter-

nality associated with that product.

Proposition 1: When the social planner is able to implement a market-wide tax schedule,

12Given A = L = 2, the slope is equal to λA−1−λL

1−λL = λ(1−λ)
(1+λ)(1−λ) = λ

1+λ
13Consumers may also apply a non-zero discount factor that is smaller than the social planner’s discount

factor (i.e., the consumer’s discount rate is higher than would be socially optimal). Under the two-period
model presented here, this partial myopia would result in a smaller slope and more consumers choosing
(C1, C1) over (D,C2) relative to what a social planner would choose (not accounting for externality-related
mispricing). That is, too few consumers would be willing to wait for the improved second-generation tech-
nology relative to what would be socially optimal.
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the optimal policy sets

t∗d = ζd, t
∗
c1

= ζc1, and t∗c2 = ζc2

where t∗j represents the optimal level of the effective tax on technology j.

Proof: See Appendix.14

Figure 3 shows how this optimal Pigouvian tax changes the threshold at which consumers

choose one consumption bundle over another. For example, the threshold above which

consumers prefer (C1, C1) to (D,D) decreases from νic1 ≥ pc1 − pd + νid to νic1 ≥ pc1 − pd +

νid + ζc1 − ζd (Figure 3a).

In practice, however, policymakers may not have access to a general Pigouvian tax due

to political economy or other constraints. Instead, policymakers often impose technology-

specific policies, such as subsidies on early-generation clean products or standards that are

only binding on the dirty product.15 These technology-specific policies may correct certain

distortions in the market resulting from unpriced externalities, but inevitably introduce

additional distortions by operating on only certain technologies. The relevant distortions

depend not only on the products available to consumers in a particular period, but also on

dynamic distortions related to the arrival of new generations of clean or efficient products.

For example, policymakers often use subsidies on early clean technologies as a second-

best policy for reducing negative externalities. As illustrated in Figure 4, these subsidies will

not only increase the mass of consumers adopting (C1, C1) over (D,D), which is the desired

policy outcome, but will also increase (C1, C1) adoption relative to (0, 0), (0, C2), and (D,C2).

Subsidy-induced adoption of the early clean technology — which still produces some negative

externality, albeit less than the dirty technology — is a known phenomenon in a static setting.

For example, subsidies for electric vehicles not only increase consumption of electric vehicles

relative to gasoline-powered cars, but also increase consumption of electric vehicles relative

14In this stylized model, I do not separately model consumer decisions to reduce use of an externality-
producing product from decisions not to consume the product; both are captured through the outside option.

15Policies that are de jure technology-nonspecific may be de facto technology-specific, such as performance
standards applied to all products but in practice binding only for the dirty product.

13



to walking, biking, or using public transportation. However, the impact of subsidizing C1 on

adoption of the later clean technology C2 only becomes apparent in a dynamic setting. This

effect is important for understanding the long-run externality reduction in this market.16

When these dynamic effects are considered, the impact of a second-best policy on overall

externality production may operate through several channels. First, second-best policies

change the characteristics of consumers’ choice sets in a static sense, such as by changing

the price of the early clean technology through subsidies or by changing the characteristics

of the dirty technology through standards. This effect is captured by the shifting threshold

for adopting (C1, C1) over (D,D) or (0, 0) in Figure 4. This channel is well-understood in

the literature. Second, when the efficient technology is a durable good, increased adoption of

the long-lived early clean product may change the total quantity of consumers in the market

when the second-generation, more efficient product becomes available. This effect is captured

by the shifting threshold for adopting (C1, C1) over (D,C2) or (0, C2). Third, increased

adoption of the early efficient product may also change the distribution of consumers available

in the market for later consumption. This effect depends on the specific distribution of

heterogeneous consumers over the preference space depicted in Figure 4. For example, if

preferences are positively correlated across the clean products, early policy intervention may

disproportionately affect those consumers who would otherwise adopt C2 when it becomes

available. All three of these channels are relevant in my empirical estimation below.17

16In another technology-specific policy intervention, standards that bind on the dirty product will change
the externality associated with consuming D. As a direct or indirect consequence, these standards may
simultaneously alter other characteristics of D or the distribution of idiosyncratic preferences for D, such
as by increasing the cost of producing the dirty product and thereby its price. Even if consumers do
not internalize the change in the externality resulting from the standard, these changes to other product
characteristics will change the thresholds above which consumers are willing to adopt (D,D) over (0, 0),
(C1, C1), or (D,C2) and/or the mass of consumers above or below these thresholds.

17So far this model holds fixed the marginal cost of C1 and C2; I discuss below the potential for endogenous
innovation response in this stylized set-up.
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2.3 Efficient Second-Best Policy

Total social surplus from this market is given by the sum of consumer and producer

surplus associated with each of the three technologies, as well as the sum of the total exter-

nality produced. For this stylized model, I assume that the price of each technology is equal

to its marginal resource cost. The efficient level of a second-best technology-specific policy

will balance the marginal benefits associated with correcting existing distortions with the

marginal costs of introducing new ones.

To illustrate, I again consider a subsidy on an early-generation clean product. In the

absence of any later-generation clean technologies, the efficient second-best policy will weigh

the marginal benefits of correcting the relative prices of the dirty product versus the clean

product against the marginal cost of further distorting the relative prices of the clean prod-

uct versus no consumption. Define sj,j′ as the share of consumers adopting {jt=1, j
′
t=2}.18

Proposition 2: When the social planner is constrained to implement a tax schedule on C1

only and there are two technologies (D and C1), the efficient second-best pricing policy on

C1 is given by:

t̂c1 = (1/
∂sc1,c1
∂tc1

)[ (ζd − ζc1)
∂sd,d
∂tc1︸ ︷︷ ︸

Impact on C1/D margin

+ ζc1(
∂sc1,c1
∂tc1

+
∂sd,d
∂tc1

)︸ ︷︷ ︸
Impact on C1/no adoption margin

]

Proof: See Appendix.

Given a general Pigouvian tax, the optimal pricing policy on C1 is always a tax that

internalizes the negative externality from consuming C1. However, when policymakers are

constrained to impose a new price schedule on C1 only, the optimal pricing policy may instead

be a subsidy (a negative tax), provided that the avoided externality from shifting consumers

to the clean product instead of the dirty product outweighs the additional externality from

shifting consumers to the clean product instead of the outside option.

18The share of consumers adopting no technology in either period is given by s0,0 = 1 − sd,d − sc1,c1 −
sd,c2 − s0,c2 ≥ 0.
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When we also introduce later-generation clean technologies, the efficient second-best

policy must also consider the additional cost of shifting consumers to the first-generation

clean product instead of the second-generation clean product.

Proposition 3: When the social planner is constrained to implement a tax schedule on C1

only and there are three technologies (D, C1, and C2), the efficient second-best pricing policy

on C1 is given by:

t̂c1 = (1/
∂sc1,c1
∂tc1

)[ (ζd − ζc1)
∂sd,d
∂tc1︸ ︷︷ ︸

Impact on C1/D margin

+ ζc1(
∂sc1,c1
∂tc1

+
∂sd,d
∂tc1

+
∂sd,c2
∂tc1

+
∂s0,c2

∂tc1
)︸ ︷︷ ︸

Impact on C1/no adoption margin

+ (
ζd + λζc2

1 + λ
− ζc1)

∂sd,c2
∂tc1

+ (
λζc2

1 + λ
− ζc1)

∂s0,c2

∂tc1︸ ︷︷ ︸
Impact on C1/C2 margin

]

Proof: See Appendix.

From this expression, we see that the efficient subsidy will be smaller when the policymaker

must also consider the impact of the early policy on the later-generation clean technology,

provided that the total externality from waiting for C2 is less than the total externality from

consuming C1.

We can also evaluate how the efficient second-best policy changes with various product

and market characteristics. First, consider how t̂c1 changes when consumers are more likely

to substitute away from C1 to C2 given an increase in the price of C1 (i.e.,
∂sc1,c1
∂tc1

and

(
∂sd,c2
∂tc1

+
∂s0,c2
∂tc1

) both increase by an equal magnitude, holding all other terms fixed). If

the externality from the (D,C2) bundle is smaller than that of the (C1, C1) bundle, then

greater substitutability between C1 and C2 will decrease the efficient level of a subsidy on

C1.19 However, if the externality from the (D,C2) bundle is larger, then the impact of

greater substitutability from C1 to C2 will depend on the allocation of consumers between

the (0, C2) and (D,C2) bundles. Moreover, the efficient price schedule on C1 is increasing in

19Since tc1 < 0 represents a subsidy while tc1 > 0 represents a tax,
∂t̂c1
∂z > 0 means that a subsidy is

decreasing in magnitude or a tax is increasing in magnitude, given an increase in some parameter z.
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the externality from consuming C1, holding constant the level of the externality associated

with D, C2, and the outside option. Conversely, the efficient level of the C1 pricing policy

is decreasing in the externalities associated with either D or C2, again holding constant the

externality associated with all other technologies. Lastly, definitively signing comparative

statics on the efficient C1 pricing policy with respect to the arrival time of C2 or the lifetime

of C1 is not possible without making further assumptions on the distribution of νid, νic1 and

νic2 . In the Appendix, I assume that these heterogeneous preference parameters are jointly

uniform on the unit cube and discuss the conditions required for t̂c1 to be increasing or

decreasing in A or L.

As noted above, I have modeled prices that are fixed for a given technology across all

periods. It is also possible that prices in later periods depend on cumulative adoption in

previous periods, through own-technology learning or cross-technology spillovers. In gen-

eral, the presence of own-technology learning would be expected to augment the mechanical

impact of first-generation durability on second-generation market size, by increasing the

attractiveness of the first-generation technology in later periods as well. By contrast, the

presence of cross-technology spillovers would mitigate this direct impact, as early adoption

of the first-generation clean technology would make the second-generation technology more

attractive for later consumers. While I do not model these impacts explicitly to preserve

model tractability, the counterfactual simulations in my empirical analysis enable me to ask

how the rate of second-generation price declines would need to change to offset the impact

of various policy designs.

3 Efficient Lighting Market

Over the period 2010 to 2018, the market for efficient lighting saw rapid technological

innovation and replacement of the incumbent incandescent bulb by three different efficient

technologies – halogens, CFLs, and LEDs. Traditional incandescent bulbs had existed for
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decades and were well-liked by consumers; thes bulbs were also highly inefficient, losing up

to 90% of their input energy as waste heat. Halogens used the same underlying technol-

ogy as traditional incandescent bulbs but were approximately 30% more efficient.20 CFLs

represented the first mass market efficient light bulb that used a fundamentally different

underlying technology. These bulbs initially emerged in the residential lighting market in

the 1990s, with significant improvements in cost and quality over the 2000s. Finally, LEDs

entered the residential lighting market in the early 2010s, particularly following the commer-

cial introduction of Philips Lighting’s 60W-equivalent A-shaped LED bulb in early 2012.21

The cost and performance of LED bulbs improved considerably over the study period, such

that LEDs now dominate CFLs on virtually all characteristics that consumers (or the social

planner) might care about.

All four of these technologies could be used for the same general purpose applications,

such as household lamps.22 In this paper, I focus specifically on general purpose “A shape”

light bulbs, which could be used in a variety of standard applications.23 A representative ex-

ample of these bulbs for each of the four lighting technologies is given in Figure 5. Consumers

distinguish different types of A-shaped bulbs by their light output, generally denominated in

terms of the power consumption of an equivalent incandescent bulb. Common types include

40W-equivalent, 60W-equivalent, 75W-equivalent, and 100W-equivalent bulbs; Table 1 pro-

20A useful analogy here might be a highly fuel-efficient internal combustion engine vehicle – the underlying
technology is the same as the traditional product, but various engineering improvements drove efficiency gains
(at a cost). Most general purpose halogen bulbs sold during this period exactly met the federal efficiency
standards for lighting but no more.

21This bulb won the Department of Energy’s L-Prize competition, awarded to the first lighting manu-
facturer to develop a 60W-equivalent household LED with certain desirable specifications. The scientific
breakthrough that made it possible to use LEDs for general purpose lighting was the Nobel Prize-winning
discovery of the blue LED in the early 1990s. This discovery opened the door to using LEDs for screens, in-
cluding in televisions, computers, tablets, and phones, which created spillover benefits in the general purpose
lighting market. LEDs use a fundamentally different technology to produce light than traditional incandes-
cent bulbs, converting electricity directly into light particles rather than relying on the intermediate step of
heating a filament until it glows, which produces significant waste heat in addition to useful light.

22As throughout the paper, I use the term “lamp” here in the colloquial sense to refer to the item of
furniture containing a light bulb and emitting light. In the lighting industry, however, “lamp” is a technical
term that is used to refer specifically to the light bulb, while “luminaire” refers to the lamp plus all the other
components required for a functional device, such as the electrical connection, the lamp socket, and so forth.

23I also include spiral CFLs which, although not officially classified as A-shaped bulbs, had compatible
screw bases and were marketed as replacements for traditional A-shaped bulbs.
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vides the actual wattage for each of these bulb types by technology. A primary determinant

of CFL and LED quality during this period was the light “color” – that is, whether the

bulb produced a warm light or a cooler light. Consumers generally preferred warmer colored

bulbs, as this light color more closely approximated incandescent light, but warmer light was

technologically more difficult to produce using CFL or LED technology. Over the course of

the study period, much of the technological innovation in LEDs related to creating warm

light bulbs at lower cost.

Bulbs using different technologies also varied in their cost structure. The upfront purchase

price was highest for the most efficient light bulbs, CFLs and LEDs, but operating costs

(based on electricity consumption from use) were lower and lifetimes were higher compared

to the less efficient and less durable incandescent and halogen bulbs. As a result, consumers

could generally save on the overall cost of owning and operating a bulb by purchasing more

efficient lighting technologies, but it was well documented that consumers often balked at

the relatively high upfront cost. The cost of producing LEDs declined significantly over the

study period; once available in the market, the median price of LED bulbs declined at a rate

of approximately $3.25 per bulb per year (see Figure 6). The most significant cost reductions

in CFLs occurred prior to the study period, and median prices increased slightly as federal

efficiency standards were phased in and then declined as LEDs gained greater market share.

During these years, two sets of policies shaped the evolution of the U.S. lighting market

in particular: federal efficiency standards and state and utility subsidies for efficient lighting.

Provisions in the Energy Independence and Security Act of 2007 banned the manufacture or

import of general purpose light bulbs below certain efficiency levels, which no incandescent

bulbs were capable of meeting. This federal efficiency standard therefore resulted in the

removal of traditional incandescent bulbs from the U.S. market; halogens emerged in their

stead, with most halogens sold during this period meeting the exact minimum efficiency

permitted under the law. The standard was implemented in three phases, affecting 100W-

equivalent bulbs from January 1, 2012; 75W-equivalent bulbs from January 1, 2013; and
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40W- and 60W-equivalent bulbs from January 1, 2014.24 California implemented the same

set of efficiency standards one year early, between 2011 and 2013, as part of a legislative

compromise given that the state had already adopted its own lighting efficiency requirements

that were preempted by the EISA of 2007.25 Figure 13 shows the rapid decline in sales of

each type of incandescent bulb, as retailers sold any existing inventory after the standards

came into effect, paired with the rapid rise in sales of halogen bulbs. A second phase of

lighting efficiency standards was set to come into effect on January 1, 2020, which would

have effectively removed halogens from the market, leaving only CFLs and LEDs.26 However,

these more stringent standards faced legal challenges under the Trump administration, and

their future has been uncertain since mid-2019.

In contrast to nationwide efficiency standards, subsidies for efficient lighting were quite

local, administered at the state or utility level, with the generosity of subsidy programs vary-

ing considerably across the country. These subsidies were often driven by energy efficiency

policies at the state level, most notably the passage of dozens of Energy Efficiency Resource

Standard (EERS) programs and various changes in cost recovery mechanisms for utilities

that incentivized electricity demand reductions. These state and utility programs included a

wide range of incentives for efficient appliances, building weatherization, and other measures,

targeted at residential, commercial, industrial, and public sector electricity users. Nonethe-

less, efficient lighting was generally the most cost-effective option available (Hoffman et al.,

2017). As a result, subsidies for efficient lighting were often a substantial portion of the

purchase price, averaging around $1 per bulb for general purpose CFLs and $7 to $10 per

bulb for LEDs.

The particular form of these subsidies differed by utility or state administrator. In

some areas, subsidies took the form of manufacturer buydowns or direct discounts, where

24As a largely symbolic gesture, Congress voted to defund the enforcement of these provisions in late 2011,
but the major lighting manufacturers all continued to comply with the standard.

25Nevada had also adopted state-wide lighting standards by 2007, but declined to implement the federal
standards early.

26The second phase of the standards would have also applied efficiency standards to a broader set of light
bulbs, such as globe-shaped bulbs, chandelier bulbs, and several types of directional bulbs.
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the sponsoring agency would negotiate a lower price with retail partners (and sometimes

manufacturers). Consumers would then pay this lower price directly, which would also

be reflected in store labels, perhaps with additional signage acknowledging the role of the

sponsor. The store would then submit sales data for covered products to the sponsor at the

end of some pre-defined period to be compensated for the lower prices charged to consumers.

By contrast, under instant rebate programs, consumers would often use in-store coupons or

other paperwork to receive discounted prices at the point of purchase. Finally, with mail-in

rebates, consumers were required to save receipts showing purchases of covered products and

mail them to the sponsoring organization, often to receive a credit on their utility bill.

The combination of widespread policies to promote the adoption of new lighting tech-

nologies and rapid technological development in this sector resulted in substantial changes

in the composition of lighting sales over 2010 to 2018. While incandescent bulbs constituted

60 to 70% of the general purpose lighting market prior to the federal efficiency standards,

with CFLs as the primary technological competitor, halogens constituted 40 to 50% of the

general purpose lighting market by 2015. General purpose LEDs did not yet exist as a com-

mercial product at the start of the study period, but commanded approximately 35% of the

national market share by 2018. Figure 7 shows the share of general purpose bulb shipments

by technology type and year, using data from the National Electrical Manufacturers Asso-

ciation (NEMA). Figures 8, 9, 10, and 11 illustrate how this aggregated time series belies

substantial regional variation in the rate of halogen, CFL, and LED adoption, using retailer

sales data from Nielsen.

4 Model

4.1 Consumer Utility

To understand the impact of policy design and timing on the evolution of the efficient

lighting market, I first model consumer utility from general purpose lighting, focusing on the
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residential lighting market. I assume that utility is independent across lightbulb purchases

and that a product’s lifetime utility is realized at the moment of purchase. That is, I do not

directly model consumer stockpiling and at-home inventories. I define each market as a U.S.

county and each period as a quarter of a year; a consumer’s choice set consists of all light

bulbs sold in a given county over a given quarter, following Villas-Boas (2007), Asker (2016),

and Dubois and Bonnet (2010). Based on survey data, I assume that consumers come to

the market to purchase a light bulb when an existing light bulb fails.

The expected indirect lifetime utility for consumer i purchasing product j in market m

at period t is therefore given by:

Uijmt = xjmtβi − αpjmt + ξjmt + εijmt (2)

Here xjmt gives the product’s observable characteristics, which I define to be bulb type (40W-

equivalent, 60W-equivalent, 75W-equivalent, or 100W-equivalent); technology (incandescent,

halogen, CFL, or LED); annual operating costs; and brand, defined as a dummy for whether

the product is a private label brand or not.27 Product characteristics that are properties

of the bulb technology or wattage-equivalence, such as actual wattage, lifetime, or mercury

content (in the case of CFLs), are captured by product category dummies that interact

technology and wattage-equivalence.28 pjmt gives the product price (per bulb) charged to

consumers, taking the weighted average across multiple stores in a county. For states or

utility territories implementing buydown discount programs, the price charged to consumers

may be inclusive of these special discounts. ξjmt gives unobservable product quality at

the product-county-quarter level. Finally, εijmt gives the standard Type 1 extreme value

27Throughout this discussion, I use “product category” to refer to each combination of wattage-equivalence
and technology. My sample includes 16 product categories, constructed from four wattage-equivalences and
four technologies.

28To first order, these characteristics are all derived directly from the technology and wattage-equivalence
of the bulb, and variations within a product category were generally second-order compared to variations
across product categories. For example, incandescent lifetimes might vary from 750 hours to 2,000 hours for
“double life” bulbs, while LED lifetimes might vary from 15,000 to 25,000 hours – but in all cases, LED and
CFL lifetimes were multiple times longer than incandescent and halogen lifetimes.
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error term, which I assume to be independent and identically distributed across consumers,

products, counties, and periods. The coefficients α and βi measure the impact on consumer

utility of price and other observable characteristics, respectively.

My preferred model specification allows consumer utility from efficient lighting to depend

on observable demographic characteristics. I interact various consumer demographic charac-

teristics (education, Democratic voter, concern about climate change, support for Renewable

Portfolio Standard policies) with an indicator for whether a given bulb is “efficient,” defined

as either a CFL or LED.29 In alternative specifications, I allow for a separate interaction

between demographics and CFL and LED indicators, to allow for more flexible preference

relationships between CFLs and LEDs, though I do not find that results change meaningfully

in this more complex specification.

I also include flexible time variables interacted with technology. My preferred specifica-

tion includes an indicator for periods before the federal efficiency standards came into effect,

interacted with each type of incandescent, halogen, and CFL bulbs. I also include a linear

time trend and a quadratic time trend interacted with each type of LED bulb, to account

for changes in consumer awareness of LEDs over time and observed changes in LED product

quality (e.g., improvements in light color). An alternative specification includes time period

dummies instead of time trends interacted with LED product categories.

We can decompose the expression for expected indirect lifetime utility in Equation 2 into

components that are common to all consumers within a market and components that are

29Renewable Portfolio Standards were state-level policies for encouraging renewable energy deployment.
RPS policies were similar in spirit to state-level Energy Efficiency Resource Standards, which were often the
policy impetus for efficient lighting subsidies.
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heterogeneous across consumers:30

Uijmt = xjmtβ − αpjmt + ξjmt︸ ︷︷ ︸
δjmt

+ Di

∑
k

πkxjkmt︸ ︷︷ ︸
µijmt

+εijmt

where Di represents consumer demographic characteristics and k indexes product charac-

teristics. Here I follow the now-standard notation from Berry et al. (1995) in using δjmt

to denote common components of indirect utility and µijmt to denote idiosyncratic compo-

nents. I will use θ1 = [β, α] to denote the estimated parameters that enter the common

component of indirect utility, and θ2 = π to denote the estimated parameters that enter the

idiosyncratic component.

Given this indirect utility specification, consumer i will choose product j over j′ whenever

Uijmt > Uij′mt. Consumers also have the option to choose the outside option, which I define

to be lighting purchased at non-Nielsen stores; I assume Ui0mt = εi0mt. This set-up yields

the following familiar expression for logit choice probabilities, where sijmt is the probability

that consumer i chooses product j:

sijmt =
exp(δjmt + µijmt)

1 +
∑

j′∈Jm exp(δj′mt + µij′mt)

which yields the following expression for market shares:

sjmt =

∫
sijmt · fmt(µimt)dµimt

Note that the distribution of idiosyncratic utility fmt(µimt) depends on both the market

and the time period. In standard discrete choice models, it is typical to ignore the time-

30As in the simple theory model presented in Section 2, a consumer’s indirect utility from a given product
can be decomposed into a component common to all consumers and an idiosyncratic component unique to
each consumer. In the empirical model, however, the common component incorporates product characteris-
tics other than price, and the idiosyncratic component depends on interactions between demographics and
product characteristics (and potentially random preference draws).
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dependence of consumer heterogeneity, or to assume that it arises exogenously to the model.

As I describe further below, I explicitly model how the distribution of consumer preferences

within a market evolves endogenously as a function of past purchases.

4.2 Consumer Entry into Market

While consumer utility from light bulb purchases is well approximated by a static model,

I must also account for the fact that the history of past lighting purchases affected the

distribution and rate of consumers coming to the market to purchase new light bulbs. The

expected lifetime of general purpose bulbs varied considerably across technologies. While a

typical rated lifetime of an incandescent bulb was about 1,000 hours (or 11 months, given

three hours of use per day) and a typical rated lifetime of a halogen bulb was about 2,000

hours (1.8 years), the rated lifetime of CFLs and LEDs was considerably longer, at about

8,000 hours (7.3 years) and 15,000 to 25,000 hours (13.7 to 22.8 years), respectively.31

This difference in bulb lifetime by technology has two key implications for my model.

First, consumers whose homes were filled with short-lived incandescent bulbs could be ex-

pected to come to the market to replace expired bulbs far more frequently than consumers

whose homes were instead filled with longer-lived CFLs. Consequently, one possible impli-

31In my primary model specification, I use 1,200, 2,000, 8,000, and 25,000 hours as representative
lifetimes for incandescents, halogens, CFLs, and LEDs, respectively. Two comments are in order about
these representative lifetimes. First, actual CFL lifetimes may have been considerably shorter than rated
CFL lifetimes, because frequent on-off switching by residential users diminished the effective lifetime, a
technological property of CFLs but not other types of light bulbs. Following the U.S. Department of Energy
(2016), I use modified failure rates that account for the impact of on-off cycle time on actual CFL lifetimes;
I also conduct sensitivity analyses that use the full 8,000-hour lifetime instead. Second, consumer reports
generally cited 2,000 hours or 1,000 to 3,000 hours as typical halogen lifetimes, so I have adopted 2,000
hours as a midpoint of these possible lifetimes; see, for example, https://www.efficiencymaine.com/

at-home/lighting-solutions; https://web.archive.org/web/20151110161940/https://www.energy.
gov/energysaver/how-energy-efficient-light-bulbs-compare-traditional-incandescents;
https://www.energyrating.gov.au/document/factsheet-light-bulb-buyers-guide; and https:

//www.thelightbulb.co.uk/resources/light_bulb_average_rated_life_time_hours. Technologically,
halogen lifetimes may differ from incandescent lifetimes for comparable bulbs because they are able to
operate with higher filament temperatures and chemical properties of halogen bulbs allow tungsten to
be continually redeposited on the filament instead of accumulating inside the bulb shell. An alternative
account of halogen lifetimes suggests that by 2019, only 20% of halogens had 2,000-hour lifetimes while 80%
had 1,000-hour lifetimes, resulting in an average rated life of 1,200 hours (National Electrical Manufacturers
Association, 2019). Shorter halogen lifetimes would lessen the impact of early standards adoption on the
total quantity of LEDs sold, by lessening the impact on the total market size later in the study period.
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cation of early support for CFLs was removing a substantial share of likely early adopters

of LEDs from the market for several years — for example, those consumers with strong

preferences for efficient light bulbs. Second, the residential general purpose lighting market

saw substantial declines in total light bulb shipments over this period, as bulbs lasted longer

and consumers therefore needed to replace their bulbs less frequently, which my model must

be able to rationalize. NEMA data included in regulatory filings reveals that total gen-

eral purpose lighting shipments and imports declined by 38.5% from 2011 to 2017 (NEMA,

2016).

As a result, I model both the absolute number of consumers coming to market in a

given quarter and the distribution of consumers’ idiosyncratic preferences as a function of

past purchases by technology type. Given my assumption that consumers enter the market

primarily to replace failed bulbs, the expected number of bulbs purchased in t is given by:32

Expected number of bulbs purchased in t = Expected number of bulb failures in t

=

∑
i

(∑
j∈Iit

h(aijt, lI , houij)︸ ︷︷ ︸
Incandescent

+
∑
j∈Hit

h(aijt, lH , houij)︸ ︷︷ ︸
Halogen

+
∑
j∈Cit

h(aijt, lC , houij)︸ ︷︷ ︸
CFL

+
∑
j∈Lit

h(aijt, lL, houij)︸ ︷︷ ︸
LED

)

|It|+ |Ht|+ |Ct|+ |Lt|

(3)

Here h(·) gives the hazard rate for bulb failure.33 This probability of failure is in turn a

function of a bulb’s age in years (aijt), which depends on when the bulb was purchased; the

bulb’s rated lifetime (lj); and the number of hours that the bulb is used per day (houij).

32Of course, this set-up does not account for the role of new household creation alongside the replacement
of existing household bulbs. Additional robustness tests are underway to account for the rate of population
growth in a county, assuming that the “new” consumers exhibit the same distribution of preferences as the
underlying population before accounting for selection due to past purchases. In this alternate version of
the model, the “existing” consumers continue to behave according to the baseline model described in this
section, entering the market to replace failed bulbs.

33I assume that this hazard rate generally takes the same form across technologies, conditional on bulb
lifetime. The exception is CFLs, where effective lifetime was notably shortened by more frequent on-off
switching. I incorporate the estimated prevalence of on-off cycles shorter than 30 minutes to adjust downward
the expected time-to-failure of CFL bulbs. This characteristic did not affect other bulb technologies. I discuss
the construction of bulb lifetimes in greater detail in the data appendix.
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I adopt the simplifying assumption that the daily hours-of-use does not depend on bulb

technology, while the rated lifetime depends entirely on bulb technology.34 It, Ht, Ct, and

Lt denote the existing installed base of incandescent, halogen, CFL, and LED bulbs, respec-

tively; I use an i subscript on these terms to denote household-specific installed bases by

technology.35 Insofar as consumer i has a larger base of long-lived bulbs, this consumer will

enter the market less frequently in subsequent periods.36

5 Estimation

5.1 Sample Construction

To estimate this demand model for general purpose lighting, I rely primarily on the

Nielsen retail scanner dataset over the period 2010 to 2018. This dataset provides prices and

quantities information for lightbulbs sold at individual stores on a weekly basis. The dataset

covers over half of total national sales at grocery stores and drug stores, and about one-third

of sales at mass market retailers, with some heterogeneity by geographic area. Coverage of

convenience stores is much more limited, and I drop these stores from my sample. Individual

stores are anonymized in the dataset, but geographic information is provided at the county

level; the dataset also links stores associated with the same retailer or parent company.

Individual lighting products are identified by their 12- or 13-digit Universal Product

34Here I am ignoring potential correlations between intensity of lighting energy use and willingness-to-adopt
energy-efficient lighting technologies; see Dubin and McFadden (1984) for further discussion of potential
biases that this simplifying assumption may introduce.

35This assumption about constant hours-of-use across technology types also means that I am effectively
assuming away a behavioral response as consumers adopted more efficient lighting. This approach seems
reasonable in the short and medium term, as lighting costs constituted a small overall fraction of household
budgets and sufficient time had not yet elapsed for residential lighting installations to change substantially.
Survey data from the DOE’s Lighting Market Characterization Reports suggests that the average daily
operating hours per lamp in the residential sector (1.8 hours in 2010 and 1.9 hours in 2015) remained
relatively constant over the study period (Navigant Consulting, 2012, 2017). When considered over many
decades, however, human consumption of lighting as increased substantially as technology has improved, so
we would expect to see a stronger behavioral response over a longer time period; see Nordhaus (1996).

36I assume that each consumer has the same number of bulbs and use the average number of bulbs per
household (50.4) to scale counterfactual results; this scaling factor does not influence estimation.
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Code (UPC). This code allowed me to connect sales data with a secondary dataset of prod-

uct characteristics that I assembled from historical product catalogs, third-party retailers,

and other sources. For UPCs that could not be externally validated (e.g., for private label

brands where UPCs were obscured to maintain store anonymity), I relied on product de-

scriptions contained within the Nielsen data to identify lighting technology, bulb type, and

other key characteristics. Following this matching process, I limited the sample for analy-

sis to 100W-equivalent, 75W-equivalent, 60W-equivalent, and 40W-equivalent medium base

Type A bulbs or medium base spiral CFLs.37 Additional details about the light bulb sample

construction are provided in the data appendix.

Table 2 provides summary statistics for light bulbs included in the final sample, and

Figure 12 shows the technology share of sales in the Nielsen data. Note that the technology

profile by year does not exactly match national shipments data from NEMA, as presented in

Figure 7. Instead, the Nielsen dataset includes a higher share of incandescent and halogen

bulbs relative to CFLs and LEDs. There are several possible explanations for this discrep-

ancy. First, the Nielsen data includes a higher share of grocery stores and drug stores relative

to mass market retailers, and anecdotally, CFLs and LEDs commanded higher market share

at mass market retailers and home improvement stores. Second, the extent of coverage in

the Nielsen data varies across geographic area. Finally, some bulbs included in the national

shipments data were sold to commercial customers or were sold online rather than in retail

stores. While I use population weights in my counterfactual simulations to account for the

under- or over-representation of some counties among Nielsen retailers, my results should be

interpreted relative to technology shares observed at Nielsen retailers rather than in other

sales or shipments data.

37Because more than 95% of Type A lamps are used in the residential sector, it is reasonable to assume
that this sample reflects purchases by residential consumers (Navigant Consulting, 2017). In my sample con-
struction, I elected not to include decorative bulbs, such as globe-shaped or candle-shaped bulbs; directional
bulbs, such as floodlight or reflector bulbs; or specialty bulbs, such as bug lamps or colored bulbs. These
types of light bulbs were not covered by the first phase of the federal efficiency standards and generally had
different use cases from standard bulbs. I also drop smart LEDs from my final sample, since these bulbs
provided other services such as Wi-Fi connectivity.

28



I filtered the sample used for estimation by the type of rebate (if any) offered by the

utilities serving residential customers in a given county. Using data published annually by

the U.S. EPA on Energy Star lighting programs, I manually matched utilities by rebate

type to information on the geographic coverage of a given utility territory, reported at the

county level on the Energy Information Administration (EIA)’s Form 861.38 In some cases,

lighting programs were implemented by state agencies or consortia of several utilities, where

the contemporaneous list of member utilities was generally included in the individual EPA

reports. I then dropped counties with mail-in or instant rebates for residential customers

purchasing general purpose bulbs in order to reduce measurement error in the price variable

used for estimation, as these rebates generally would not be reflected in the price paid by

the consumer at the register.39

Finally, I filtered the sample by the extent of coverage in the Nielsen data. After aggre-

gating across all stores in a county, I dropped counties below the fifth percentile of bulbs

sold per quarter (253 bulbs) or below the fifth percentile for number of unique products sold

per quarter (8 products, where a product is defined by technology, wattage-equivalence, and

brand). I also dropped counties that did not appear in the Nielsen data in certain years, in

order to have a complete time series for modeling the evolution of the installed base of light-

ing. My final sample includes 852 counties, 36 quarters, and 560,098 product-county-quarter

observations.

To the primary data set on light bulb purchases and product characteristics, I bring addi-

tional demographic data to capture heterogeneity in the distribution of consumer preferences

across geographic areas. I use four different demographic variables in alternative model spec-

ifications. Information on the county-level share of college-educated individuals comes from

the American Community Survey. Information on the share of individuals expressing belief

38Energy Star was a federal certification program for many types of efficient appliances, including efficient
lighting (principally CFLs and LEDs). Data on lighting programs comes from U.S. Environmental Protection
Agency (2010-2018).

39In this process, I retained counties with manufacturer buydown programs or no active rebate program,
as well as counties with mail-in or instant rebates for commercial or specialty customer classes (e.g., K-12
education) or for specialty bulbs (e.g., holiday lights).
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in human-caused climate change or support for state Renewable Portfolio Standards comes

from the Yale Program on Climate Change Communication, which estimates county-level

variation in climate attitudes (Howe et al., 2015). Lastly, information on the county-level

share of Democratic voters is taken from Dave Leip’s Atlas of U.S. Presidential Elections

(Leip, 2017).

5.2 Identification

Demand estimation follows the now-standard procedure outlined in Berry et al. (1995),

although I vary the nested fixed point routine to account for endogenous coming-to-market,

as described further below. The consumer choice of light bulbs is static and utility is assumed

to be separable across multiple lighting purchases. I allow for the fact that retailers and/or

manufacturers may observe the realization of ξjmt prior to determining the optimal markup.

To address this potential correlation between ξjmt and pjmt, which could lead to biased

estimates of α, I adopt the traditional instrumental variables strategy used in BLP and other

papers in this literature. Given a vector of instruments Zjmt, the identifying assumption is:

E[ξjmt|Zjmt] = 0

In this setting, three different sets of instruments may be appropriate.40 First, I use

cost shifters at the manufacturer level to capture exogenous changes in input prices for

manufacturing light bulbs, including price indices for semiconductors, fluorescent ballasts,

and certain rare earth minerals. Semiconductors were a key input in the manufacture of

LED chips, and LEDs benefited from the continued decline in semiconductor manufacturing

40I also test a fourth set of instruments, following Hausman (1996). I construct these instruments using
mean quarterly prices by product category (i.e., technology by wattage-equivalence), using all other census
divisions except the one in which a given county is located. The identification assumption here is that
there are no national shocks in demand for a particular type of light bulbs, beyond what is captured in my
time trends. For my specification with prices measured in levels rather than logs, I find that the estimated
coefficient on price is meaningfully reduced in magnitude when I include Hausman instruments, so I elect
not to include them in my final specification.
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costs over the study period. Fluorescent ballasts were a key input for CFL bulbs, as were

rare earth minerals used to make phosphors coating the inside of bulbs.41 Following Villas-

Boas (2007), I interact these instruments with a technology dummy, to reflect the fact that

changes in these input prices are likely to affect different bulb technologies in different ways.

Second, I use cost shifters at the retailer level, to capture exogenous changes in retailers’

operating costs, including average retail wages, commercial real estate price indices, and

diesel prices as a proxy for transportation costs. While manufacturing cost shifters varied

over time, retail cost shifters varied both over time and across geographic markets. Table 3

provides summary statistics for each of these cost shifters; additional discussion of the data

used to construct these cost shifters is provided in the data appendix.

As a third set of instruments, I follow Gandhi and Houde (2019) in building differen-

tiation instruments using product characteristics in a given market. Because the Nielsen

data provides a sample of sales in each market, rather than a full census, I use two different

approaches for constructing differentiation instruments, both of which are intended to cap-

ture a product’s proximity to other products in characteristics space. First, I calculate the

fraction of all other products in the market, using store-level product offerings, that share a

given characteristic (technology, wattage-equivalence, or brand). This measure is intended

to capture the frequency with which a consumer might encounter a product with a given

characteristic across all stores in the market, which would be expected to influence markups.

Second, I count the number of other products in a given store with a particular product

characteristic, and then take the average of this number across all stores in the market.

This measure is intended to capture a product’s similarity to other products available in

the same store, which would also be expected to influence markups. Both of these sets of

differentiation instruments depend on the assumption that store-level stocking decisions are

made before unobserved shocks to demand or product quality are revealed. This assumption

may be more appropriate at chain retailers where procurement decisions are made centrally

41Rare earth minerals were also used in LEDs, but in much lower quantities, so I use CFL-specific weights
in constructing these instruments.
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but pricing decisions are made locally, or in stores where inventory decisions are made less

frequently than pricing decisions.

5.3 Coming-to-Market Algorithm

To account for endogenous coming-to-market, I modify the standard fixed point algo-

rithm commonly used in discrete choice demand estimation (the “inner loop” of BLP-style

estimation). In the standard BLP algorithm, distributions of consumer heterogeneity are dis-

cretized by taking a finite number (ns) of draws from distributions of observed demographics

or unobserved preference heterogeneity. These draws are used to simulate the distribution of

individual choice probabilities, which are then summed to calculate predicted market shares.

In the standard algorithm, the weights placed on individual choice probabilities are exoge-

nous to the model, with the econometrician either weighting each draw equally (“frequency

weights”) or using importance sampling methods to choose weights that improve the perfor-

mance of the estimator. By contrast, the modified algorithm employed here endogenously

updates the weights on each consumer draw, based on the probability that an existing bulb

will fail in each period. In the discussion below, I refer to these consumer draws as consumer

“types” since each draw represents a mass of consumers with certain characteristics.

I begin with an initial distribution of remaining time-to-failure for each consumer type’s

installed base of light bulbs at the start of the study period. Given the assumption that

consumers enter the market to replace failed bulbs, I use this initial distribution to simulate

the share of each consumer type entering the market in the first period. Let wimt denote

the share of consumers of type i entering market m in period t. I then apply the standard

BLP fixed point algorithm in the first period, which allows me to predict individual choice

probabilities for each consumer type. Next, the individual choice probabilities for each

technology are used to update the remaining time-to-failure for the installed base of bulbs

for each consumer type, using engineering data on failure rates and assuming that new bulbs

are installed in the same period that they are purchased. This updated distribution allows
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me to predict the share of each consumer type entering the market in the second period.

I repeat this forward simulation for all periods in my study period, and then follow the

standard BLP approach of using non-linear search methods to solve for the value of θ2 that

sets the gradient of the objective function as close as possible to 0.42 The full details of my

estimation algorithm are provided in the Appendix.

As noted above, my estimation algorithm requires as an input the share of each type of

consumer entering the market in the first period. To solve this initial condition problem,

I simulate the time-to-failure of the installed base of light bulbs at the start of the study

period, using quarterly national shipments indices for CFL, halogen, and incandescent bulbs

over 2001 to 2010.43 In the absence of data on how these earlier market shares vary by

consumer demographics, I adopt the simplifying assumption that these past purchases are

uniform across consumer types. Therefore, I assume that there is an equal share of each

consumer type entering the market in the first period.44

Finally, while my estimation algorithm enables me to predict overall market shares using

endogenous weights across consumer types, I am also able to use these weights to calculate

how the total quantity of bulbs sold evolves over time in each market. Modeling both the

distribution of consumer characteristics represented in the market and the overall number

of consumers is essential for my counterfactual policy simulations. Each of my ns draws

of consumer types represents some number of real-world households, which each has some

number of light bulbs. I use census data on the number of households per county and lighting

market characterization data on the number of bulbs per household to determine the total

number of bulbs (Nim) represented by each of my ns draws.45 The total number of type j

42Note that the gradient of the objective function differs from the standard BLP optimization problem
because I account for endogenous coming-to-market. In the appendix I derive the analytic gradient of the
objective function that incorporates coming-to-market.

43LEDs did not become available until after the start of the study period. To account for the fact that
I observe fewer CFL sales in the Nielsen data during the study period, relative to what is reported in the
national shipment indices, I assume that Nielsen stores account for a consistently lower portion of CFL sales,
and therefore proportionally adjust downwards the market share of CFLs from the national indices during
the pre-period. This step smooths the share of bulbs replaced from the pre-period to the study period.

44For reference, I use wimt = 9.48% in the first period, for all consumer types and all markets.
45I hold Nim constant within each market m over the study period. This approach ignores population
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bulbs purchased in a particular market in a particular period is therefore given by:

Number of bulbs purchasedjmt =
ns∑
i=1

Nimwimtsijmt

While previous research has considered the impact of endogenous coming-to-market with

all the complexity of a dynamic demand model (Lee, 2013; Gowrisankaran and Rysman,

2012), to the best of my knowledge, this paper is the first to integrate evolving consumer

heterogeneity into a BLP-style static demand model in an internally consistent manner.

Before applying this estimation procedure to lighting data, I use simulated demand data to

validate my modified algorithm and examine the impact of evolving consumer heterogeneity

on static demand estimation, following the basic simulation procedure outlined in Conlon

and Gortmaker (2020). These simulations suggest that the bias in estimated coefficients

from ignoring the changing distribution of consumer preferences may be substantial. This

procedure may be used to estimate discrete choice demand systems for other product markets

during periods of new technology adoption, as well as for goods such as performance tickets

where early consumers may differ endogenously from later consumers.

5.4 Estimation and Results

I first present results from logit demand models without consumer heterogeneity, in Table

4. I include several sets of specifications: using price per bulb in levels and in logs; using

linear and quadratic time trends interacted with LED product categories and time dummies

interacted with LED product categories; and using ordinary least squares and instrumental

variables for estimation. I find that coefficients on price and the private label dummy have

the expected negative sign. For the instrumental variables specifications, the F-statistic

ranges from 270 to 436, indicating a strong first stage. The coefficient on operating costs is

growth or shifting demographics within a county over time. However, these variables are strongly correlated
over time during the nine-year study period. For example, the correlation between 2010 county population
and 2018 county population is 0.9984.
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negative in some specifications, as would be expected, but positive in others; in my preferred

logit specification, with prices specified in levels and instrumental variables (Column 2 of

Table 4), this coefficient is not statistically distinguishable from zero. Given the inclusion

of technology by wattage-equivalent dummy variables in all specifications, the coefficient

on operating costs is identified from geographic variation in electricity rates. This variable

likely contains measurement error, since utility territories do not exactly coincide with county

boundaries and I construct a weighted average of local electricity rates within a county, which

is the most granular geographic information provided in the Nielsen scanner data. It is also

likely that these differences in operating costs are not fully salient to consumers.46

Table 5 presents estimates from seven different model specifications with consumer het-

erogeneity. Columns 1 through 4 interact demographic variables with an indicator variable

for whether a bulb is “efficient,” defined as either a CFL or LED. These demographic vari-

ables include expressing a belief in human-caused climate change; being college educated;

being a Democratic voter; or expressing support for Renewable Portfolio Standards. Column

5 allows for a separate interaction between expressing belief in human-caused climate change

and CFL and LED products, respectively, to allow for a more flexible relationship between

demographics and these two types of bulbs. Column 6 uses time dummies rather than time

trends interacted with LED product categories. Column 7 uses prices per bulb in logs rather

than in levels. In my counterfactual simulations, I adopt the specification in Column 1 as

my preferred demand system. In addition to the estimates reported here, I also test the

sensitivity of my results to dropping all counties in California, since this state acted before

the rest of the U.S. in implementing a second set of stricter lighting efficiency standards

46There is a long literature in economics on the salience of operating costs for consumers purchasing
durable appliances, vehicles, and other products. Findings from this literature suggest that consumers do
not always fully internalize operating cost savings from purchasing more efficient products, though there is
heterogeneity across products and consumer characteristics. One explanation is heterogeneity in consumer
discount rates (Newell and Siikamäki, 2015). Another explanation is lack of information or inattention,
though evidence here is mixed (Davis and Metcalf, 2016; Allcott and Knittel, 2019; Allcott and Taubinsky,
2015). As a robustness test in my setting, I examine whether my counterfactual results change when I drop
the operating cost variable from my demand specification. Results are reported in the Appendix; I do not
observe any meaningful changes in results relative to my baseline specification.
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beginning in 2018. I find that the results from my counterfactual simulations do not change

meaningfully from this additional sample restriction, so I retain the full U.S. sample in my

preferred specification; these alternative estimates are provided in the Appendix.

In the specifications with consumer heterogeneity, estimated coefficients on price are

slightly larger in magnitude than either the OLS or IV logit specifications. Estimated own-

price elasticities by technology are presented in Table 6, for both the levels and logs spec-

ifications. I find that estimated elasticities for the specification with prices in logs are less

dispersed across technologies than for the specification in levels. Estimated own-price elas-

ticities are less than -1 for the specification in logs. Halogen, CFL, and LED own-price

elasticities are less than -1 for the specification in levels, but incandescent elasticities are

not. There may be several possible explanations for this result. For one, incandescent bulbs

were a commodity product for which there were few lower-cost substitutes available; recall

that the outside good in this model is purchasing bulbs at non-Nielsen retailers. Second, the

definition of product and market used in this model does not capture all the store-to-store

or week-to-week variation in incandescent prices over which consumers may have been more

responsive. While I use the specification in levels as my primary set of demand estimates, I

also present the core counterfactual results using the specification in logs in the Appendix; I

find that the central conclusions from my counterfactual analysis do not depend on whether

prices are specified in levels or in logs.

6 Counterfactual Simulations

To shed light on how the timing and design of policies affected substitution between the

different efficient lighting technologies, I simulate market outcomes from several counterfac-

tual policy regimes. To understand the impact of federal efficiency standards, I simulate the

development of the general purpose lighting market if the standards were not implemented

beginning in 2012, but instead delayed anywhere from one to six years. To explore the im-
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pact of state and local subsidies, I impose a constant $1 rebate on all CFLs in the market

and then systematically vary the year in which these subsidies end, from prior to the study

period at one extreme to 2018 at the other. I also examine how the simulated impact of

these counterfactual policies would change given alternative lifetimes or externalities associ-

ated with each technology; given counterfactual timing of both standards and subsidies; and

given alternative rates of LED price declines.

I consider two key environmental outcome metrics in evaluating these counterfactual poli-

cies: the total quantity of LEDs sold during the study period and the average discounted

externality per hour of lighting sold during the study period.47 While it is clear why a

welfare-maximizing social planner would care about medium-term reductions in negative

externalities, the total quantity of LEDs sold in the years immediately following commer-

cialization may also matter for longer-term externality reduction potential. For example,

the rate at which LED producers increase quantity sold may influence the rate of learning-

by-doing, and expectations of near-term profits may influence incentives to invest in further

product improvements.48

6.1 Results

6.1.1 Preferred Timing of Standards

In the first set of counterfactual simulations, I ask how the impact of federal efficiency

standards would change if their implementation were delayed to later in the study period. On

47I focus on the externality associated with the emissions of greenhouse gases during electricity generation.
Details of this externality calculation are provided in the Appendix. In choosing my preferred outcome
measure around the environmental externality, I weighed two competing considerations. On the one hand,
simply calculating the average wattage per bulb sold or the total lighting energy consumption during the
study period would likely underestimate the importance of LEDs, which lived longer than their less efficient
counterparts and whose benefits would extend beyond the study period. On the other hand, calculating the
average wattage per hour of lighting sold or the total lighting energy consumption of bulbs sold during the
study period (regardless of when incurred) would likely overestimate the importance of LEDs, whose use
might continue years or decades into future. In balancing these considerations, I use the discounted average
externality per hour of lighting as my preferred outcome metric. Alternative outcome measures are also
possible.

48It is well established that market size or time-to-profitability may influence the extent and direction of
follow-on innovation. See, for example, Acemoglu et al. (2012) and Budish et al. (2015).
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the one hand, later implementation would mean high consumption of inefficient incandescent

bulbs in lieu of slightly more efficient halogens, as well as potentially lower consumption of

CFLs. On the other hand, later implementation would change the distribution and num-

ber of consumers entering the market as LEDs became available. To conduct this set of

counterfactual simulations. I assume that the set of incandescent products (and the limited

set of halogen products) available in the year before the actual standards were implemented

would remain fixed until the counterfactual implementation date. I then shift forward the

set of incandescent and halogen offerings from the first year after the actual standards were

implemented to whatever is the first year after the counterfactual standards, and likewise for

the second year after implementation, third year, and so forth. This approach is grounded

in the assumption that general purpose halogens entered the market to comply with federal

efficiency standards, and they would not have entered the market until later if standards had

been delayed.49 I also assume that the arrival of LEDs in the market was exogenous to the

timing of these efficiency standards, and therefore I hold fixed the set of LED products and

their characteristics in each counterfactual simulation.50,51

49Incandescents could not technologically comply with the first-phase standards, so it is straightforward
to phase them out of the market in line with whatever is the alternative implementation date.

50The assumption that the arrival time of LEDs (and LED product characteristics over the short term) was
exogenous to the timing of these policies is grounded in three key institutional details about the early LEDs
market. First, the discovery that made possible the use of LEDs in general purpose lighting represented a
fundamental scientific breakthrough, winning the Nobel Prize in Physics. Second, rapid reductions in the
cost of LED chips during this period stemmed in large part from spillovers from other product markets:
improvements in manufacturing LEDs for screens and improvements in semiconductor manufacturing gener-
ally. Third, Chinese industrial policy lowered barriers to entry for LED manufacturers, further encouraging
the development of this industry. Note that these institutional details are highly specific to this technology
setting over this period, and the assumption of exogenous product entry may not be appropriate in other
contexts. My counterfactual simulations consider how policy timing affected the initial size of the LED
market because of this potential for endogenous innovation responses in other technology settings or in the
LED market over the longer term. Additionally, in ongoing work, I am endogenizing the prices of LEDs (and
other bulb technologies) in response to alternative policy timing, taking into account the dual pressures of
the threat of entry by new LED manufacturers and changes to market size and the distribution of consumer
heterogeneity over time.

51In my main specification, I also hold fixed the set of CFL products in each counterfactual simulation.
As a robustness check, I vary CFL product offerings in line with the counterfactual standards, such that
the set of CFL products available in the market are held constant from 2011 (or from 2010 in California),
until whatever date the counterfactual standards come into effect. Then I shift forward the post-standards
product offerings accordingly. I find that the results of the counterfactual simulations do not change in an
economically meaningful way from my baseline specification. These results are presented in the Appendix.
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To build intuition for my findings, I first review predicted market shares by technology

and wattage-equivalent for the counterfactual scenario where standards implemented are

implemented beginning in 2016. These simulated market shares are presented in Figures 16a

and 16b; simulated baseline results, where standards are implemented beginning in 2012,

are presented in Figures 14a and 14b. In validating time trend specifications in my demand

model, I required that the simulated counterfactual market shares meet certain criteria. For

one, I required that the model predicts the phase-out of incandescent bulbs during whatever

year counterfactual standards are assumed to be implemented. I also required that the

simulated market shares of bulbs by wattage-equivalent follow a similar pattern as observed

in the actual data, with a temporary increase in the market share of 60W-equivalent and

75W-equivalent bulbs prior to the standards implementation. As illustrated in Figure 16,

both of these requirements are met in my preferred model specification.

Figures 17a and 17b then present the first of my two environmental outcome metrics:

the total quantity of LEDs sold over the study period. The vertical axis specifies the year

in which counterfactual standards were first implemented; the bars along the horizontal axis

present the simulated quantity of LEDs sold (or the difference in the quantity of LEDs sold

relative to the baseline of standards implemented beginning in 2012). I find that the total

quantity of LEDs is maximized when standards are implemented at the end of the study

period, in 2018. In fact, my model predicts that 35.6% fewer LEDs are sold during the study

period when standards are implemented in 2012 relative to 2018.52 Implementing standards

later increases the total market size in the years where LEDs are widely available in the

market, yielding this larger total LED quantity.

Figures 18a and 18b present my second environmental metric: the average discounted

environmental externality per hour of lighting sold during the study period. I find that the

average environmental externality is minimized when standards are implemented beginning

in 2012. However, the average externality is relatively flat across the counterfactual standards

52When CFL product offerings are shifted alongside incandescents and halogens, I find that the total
quantity of LEDs sold drops by 29.0%.
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scenarios; implementing beginning in 2012 reduces the average discounted externality by

1.8% relative to 2015 and by 2.5% relative to 2018.53

Figure 15 highlights the difference in predicted outcomes for standards implemented

beginning in 2012 (i.e., the simulated baseline) using counterfactual simulations that ac-

count for the endogenous evolution of market size and consumer heterogeneity (the “full”

counterfactual) versus simulations that hold these market characteristics fixed (the “naive”

counterfactual). As is evident in the figure, failing to account for the dynamic effects of

changing market size and distribution would vastly overstate the benefits of the lighting

efficiency standards, overestimating total LEDs quantity by 110% and underestimating the

average environmental externality by 19%.

6.1.2 Preferred Timing of Subsidies

In the second set of counterfactual analyses, I impose a constant $1 per bulb rebate on

all CFLs, until some phase-out date. This analysis is complicated by the fact that I do not

observe which specific CFL (or LED) products are already discounted in the data, only the

price paid by the consumer. Therefore, to predict which prices have already been discounted

through manufacturer buydowns, I calculate the maximum price at which each CFL UPC

was sold at each store in a given year, and then identify the store-UPC combinations where

the product was discounted by $1 or more per bulb for at least four consecutive weeks.54

The goal is to identify bulbs with long-term discounts rather than short-term sales, which

might last for only one or two weeks. Next, after identifying this set of bulbs for which I

predict buydown rebates are in place, I replace the “rebated” price with the “non-rebated”

price, defined to be the maximum price at which that UPC is offered in that store in that

year. Finally, I then apply a constant $1 discount (per bulb) across all CFL products in

the dataset, including in counties that did not have active rebate programs in place. For

53When CFLs product offerings are shifted alongside incandescents and halogens, I find that implementing
beginning in 2012 reduces the average externality by 2.4% relative to 2015 and by 3.3% relative to 2018.

54I conduct this exercise only in counties with active manufacturer buydown programs in place, as docu-
mented in the EPA’s annual reports on lighting rebate programs.
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this reason, the results of the counterfactual simulations around alternative rebate programs

should be interpreted as varying a constant $1 per bulb discount for CFLs, not as varying the

actual patchwork of rebate programs in place across the country.55 As an illustration, Figure

19 presents counterfactual market shares when CFL rebates are terminated after 2015. The

sharp decline in CFL sales after rebates are phased out is immediately apparent.56

Figures 20a and 20b illustrate simulated quantities of LEDs sold under alternative timings

of CFL rebates. For this policy, the market size for LEDs is maximized when CFL rebates

are never active during the study period – i.e., are terminated in 2009. This result stems not

only from direct competition between LEDs and CFLs in later years of the study period, but

also from changes to overall market size and to the distribution of consumer preferences for

efficient bulbs from early increases in CFL adoption. Phasing out CFL rebates after 2012

results in 4.0% fewer LEDs sold relative to ending rebates in 2009, and 20.4% more LEDs

sold relative to ending rebates in 2018.

Figures 21a and 21b then show the impact of rebate timing on the average discounted

externality per hour of lighting purchased during the study period. In simulations with my

preferred model specification, the average environmental externality is minimized when CFL

rebates are phased out after 2014. Ending CFL rebates in 2012 results in 3.0% lower average

externality relative to phasing out after 2009, or 2.3% lower externality relative to ending in

2018.

As mentioned above, these counterfactuals vary the timing of a simulated $1 rebate

on all CFL bulbs, not the actual set of rebate policies in place across states and utility

territories, and should be interpreted as such. Nevertheless, it is useful to note that many of

the actual rebate programs did not discontinue their CFL subsidies until later in the study

period. Based on EPA data on lighting rebate programs, 80 of 101 unique programs offering

subsidies for general purpose bulbs to residential consumers in 2015 included some form of

55It is also possible that I fail to identify certain pre-existing rebates less than $1 per bulb. In that case,
the counterfactual simulations will reflect a rebate greater than $1 per bulb on some subset of of CFL bulbs.

56In reviewing these counterfactual simulations, I again validate counterfactual market shares against the
criteria described above. My preferred model specification again fulfills both criteria.
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CFL subsidies. This number fell to 64 out of 98 programs in 2016, 30 of 104 programs in

2017, and 0 of 102 programs in 2018.57

6.1.3 Comparing Policy Instruments

Given these findings on the impact of standards and rebates timing, we can also compare

the two different policy instruments.58 Under both policies, the total quantity of LEDs

sold during the study period is maximized when early policy intervention is minimized –

either by delaying standards implementation or by phasing out CFL rebates as early as

possible. However, the trajectory of the average environmental externality varies under

different policy instruments. For standards, the immediate environmental benefit of early

implementation outweighs any reductions in efficiency later in the study period. For rebates,

some early intervention is beneficial, but the average environmental externality is minimized

when rebates do not remain beyond the first half of the study period.

In this technology setting, the policy timing that minimizes the medium-term average

externality differs significantly from that which maximizes LED market size. This is an

empirical finding, and these two metrics may be more closely aligned in other technology

settings. For this reason, I also compare these two policy instruments in terms of the rel-

ative magnitude of the tradeoff between increasing market size of LEDs and reducing the

externality associated with bulbs purchased in the study period. Figures 22a and 22b plot

the percentage change in the average externality and total quantity of LEDs purchased dur-

ing the study period, relative to the baseline of standards implemented beginning in 2012

(Figure 22a) or CFL subsidies phased out from 2012 (Figure 22b). The surface created by

these counterfactual policy changes represents the frontier facing the policymaker trading off

benefits from near-term externality reductions with longer-term potential innovation bene-

57Here I define a “unique program” as having a unique program administrator; many of these programs
covered a large number of counties. I also do not consider programs offering bulbs to other types of customers,
such as commercial entities or K-12 institutions, or subsidies targeted at specialty bulbs, since these fall
outside my study purview.

58Additional counterfactual simulations also consider the impact of varying the timing of standards im-
plementation or CFL rebate phase-out in tandem. These results are presented in the Appendix.
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fits. Since the regulator would generally prefer to increase LED production and decrease the

average externality, we expect that welfare increases as we move outwards from the bottom

right quadrant. We see immediately, therefore, that there is no “free lunch” for the regulator

considering deviations from 2012 policy implementation, for either standards or rebates, as

there are no points in this quadrant. The three points in the upper left quadrant of Figure

22b suggest, however, that there are some alternative policies that are strictly dominated by

the 2012 baseline. Likewise, we see in Figure 22a that 2015 standards implementation ap-

proximately dominates 2013 standards implementation; in both cases, the dominant policy

achieves a higher total quantity of LEDs for about the same level of average externality. For

other policy comparisons in the upper right quadrant or lower left quadrant, the regulator

faces a tradeoff between greater (or lesser) quantity of LEDs and increased (or reduced)

medium-term externality. The outcome of this tradeoff ultimately depends on how the reg-

ulator weights these outcomes; identifying the efficient weights for the lighting context falls

outside the scope of this paper.

6.2 Endogenous Innovation and Regulator Beliefs

My baseline model does not endogenize innovation responses directly and assumes perfect

certainty about demand parameters and the evolution of products within each technology

category. Relaxing both of these simplifications may be important for understanding the

impact of policy timing in other technology contexts. To begin generalizing my model, I

pose additional counterfactual questions. First, given two alternative policy timings, what

would be the counterfactual rate of LED price declines needed to achieve the same total

quantity of LEDs in one policy scenario as predicted in another? Second, what is the

range of counterfactual LED price declines for which my earlier findings about the average

externality continue to hold? The first of these questions is intended to shed light on how

alternative rates of industry learning might influence findings around the total quantity of

LEDs sold. The second question is designed to examine how sensitive the conclusions about
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average externality are to the rate of LED price declines, around which the regulator may

have considerable ex ante uncertainty.

First, let us consider the alternative rates of LED price declines that produce similar

changes in the market size of LEDs as what I observe in my policy simulations. I find that

delaying standards from 2012 to 2018 is equivalent to LED prices declining by 0.5 percentage

point faster per quarter in terms of the impact on the total quantity of LEDs sold (Figure

23a). By the end of the study period, this differential rate of price decline translates to LED

prices that are approximately 20% higher relative to what I observe in the data. Likewise,

delaying the phase-out of CFL rebates from 2012 to 2018 is equivalent to a comparable

change in the rate of LED price declines, but in the opposite direction (i.e., LED prices

decline by approximately 0.5 percentage point more slowly per quarter) (Figure 23b).

Next, let us consider how robust are the average externality findings to the rate of LED

price declines. For efficiency standards, I find that implementing standards in 2012 minimizes

the average externality for a wide range of alternative LED price declines.59 By contrast, I

find that the impact of CFL rebate phase-out on the average externality is far more sensitive

to alternative rates of LED price decline. Figure 24b suggests that ending CFL rebates

earlier is beneficial given higher rates of LED price decline. With slower rates of LED price

decline, however, retaining CFL rebates for longer is beneficial. Intuitively, the environmental

benefits from immediate adoption of the early efficient technology are less likely to outweigh

the reduced market size available to the later efficient technology when the latter is able to

command a large market share more quickly. As the delay between technology generations

increases, earlier intervention is more likely to be justified from the perspective of reducing

the overall environmental externality.

59As seen in Figure 24a, the predicted average externality plotted against the year of standards implemen-
tation is actually flattest around the rates of LED price decline observed in the data (approximately 6.5%
per quarter). At both faster and slower rates of LED price decline, the average externality curve is steeper,
suggesting greater advantage to implementing standards early.
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6.3 Alternative Lifetimes and Externalities

Lastly, to understand how results depend on key parameters, I examine the predicted

effects of subsidies and standards under alternative technology lifetimes or externality levels.

In particular, I examine how predicted results would differ if CFLs had the same lifetime as

halogens, or vice versa, or if CFLs had the same wattage associated with a given light output

as halogens, or vice versa. I also examine the extent to which shorter than anticipated CFL

lifetimes might have affected outcomes.60 I hold all other estimated parameters fixed in the

demand system.61

Results from this exercise are presented in Figure 25 for standards and Figure 26 for

rebates. Decreasing the lifetime of CFLs increases the total quantity of LEDs, while in-

creasing the lifetime of halogens decreases the total quantity. The latter effect is smaller

in magnitude, as halogens are more distant substitutes for LEDs, and declines to approxi-

mately zero as standards are implemented later and halogens become widely available later.

By construction, changing the externality values of CFLs or halogens has no impact on the

total quantity of LEDs sold.

Impacts on the average environmental externality are more subtle. In the case of stan-

dards, the average environmental externality is strongly minimized with early standards

when halogens produce much lower externality; in this case, the immediate environmental

benefits of replacing incandescent bulbs with halogens are even larger and outweigh any con-

siderations around the later introduction of LEDs. By contrast, the average environmental

60As noted throughout this paper, a typical rated lifetime for a general purpose CFL bulb was 8,000 hours.
However, frequent on-off switching could diminish the actual lifetime of CFL bulbs. In all of my estimation
and counterfactual results presented thus far, I use adjusted CFL lifetimes that account for typical on-
off cycles, based on information presented in DOE (2016). In this final set of counterfactual simulations,
however, I also ask how results would differ if CFL failure rates followed the same overall distribution as the
other technologies, with no adjustments for on-off switching. This change has the effect of increasing average
CFL lifetimes from 4,560 hours (or 57% of 8,000 hours) to the full 8,000-hour rated life.

61Of course, the parameters governing the utility that a consumer derives from purchasing a given bulb
might be expected to change as these product characteristics change. However, the product category fixed
effects in my demand model do not allow me to disentangle the share of utility from a given product derived
from its lifetime, its efficiency, or other characteristics. This exercise should therefore be interpreted as
mechanically changing the lifetime and externality parameters that produce certain counterfactual outcomes
from a given pattern of consumer demand, while holding fixed the determinants of that consumer demand.
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externality is strongly minimized with late standards when halogens are longer lived, as the

reduction in the later market size is larger without a concomitant increase in externality

benefits. Additional impacts from varying CFL parameters are presented in Figure 25.

For rebates, most of these alternative simulations predict that the average externality is

minimized when CFL rebates are phased out sometime in the middle of the study period,

between 2012 and 2015. The externality-minimizing year is shifted later when halogens

are longer lived; in this scenario, there is no longer a tradeoff between shorter lived but

less efficient halogens and longer lived but more efficient CFLs, so there are greater relative

benefits to encouraging CFL adoption. By contrast, the externality-minimizing year is shifted

earlier when CFLs have longer lifetimes, which increases their impact on later LED adoption.

This year is also shifted earlier when halogens produce fewer externalities, which means there

are fewer relative benefits from incentivizing CFLs once the efficiency standards are active

and halogens are widely available. Lastly, when CFLs have higher externality values, the

model suggest that rebates should be phased out as soon as possible, as their impact on the

LED market outweighs even the initial externality benefits relative to incandescents.

7 Conclusion

This paper explores how the design and timing of policies – efficiency standards and

subsidies for efficient products – affects competition between early and later generations of

a clean technology. In modeling consumer demand for general purpose lighting, I find that

the overall externality per hour of lighting is minimized when standards are implemented in

2012 and when subsidies for CFLs are phased out after 2014. This finding trades off imme-

diate externality benefits from switching to early efficient technologies (CFLs and halogens)

with reductions in LED market size later in the study period, when LEDs would result in

even greater externality reduction per hour of lighting. I find that early intervention was

warranted for reducing the average medium-term externality in the case of standards, which
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primarily targeted halogens. Some early intervention was warranted for subsidies, which pri-

marily targeted CFLs, though terminating the subsidies several periods before LEDs were

widely adopted was optimal from an externality reduction perspective. This empirical result

depends fundamentally on the relative externalities and lifetimes across technologies in the

efficient lighting market, as I show in supplemental counterfactual simulations.

Of course, reductions in the initial LED market size might have consequences not only

for the direct impact on the average medium-term externality, but also for endogenous in-

novation in LED technology. Insofar as further improvements in LEDs are sensitive to rates

of learning-by-doing or endogenous investment in technological improvements, policymakers

may be concerned with increasing deployment of this later-generation technology because of

these indirect impacts on the overall externality. Over the long run, the efficient second-best

policy design may require both incentives for early technology deployment and support for

later-generation research and development; this additional technology support must then

be included in the overall cost of the policy. To that end, I show that faster LED price

reductions would have been needed to achieve the same initial LED market size relative to

a counterfactual world with delayed standards or with CFL subsidies retained through the

duration of the study period.

A fruitful direction for future research is investigating this supply-side innovation response

more thoroughly. Here the specific technology characteristics will again have first-order

importance, with the extent of spillovers between early and later products depending on their

technological similarities (or lack thereof). The extent of cross-product spillovers will help to

determine both the magnitude and the direction of early policy impacts on later innovation.

When policymakers are constrained to use second-best policies, understanding inefficiencies

not only in existing technology adoption but also in the development and deployment of

technologies over time is essential for achieving long-run climate mitigation goals as efficiently

as possible.
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A Theory: Derivation of Optimal Policy and Efficient

Second-Best Policies

A.1 Optimal Policy (Proof of Proposition 1)

First, note that the expression for total welfare is given by:

W = sd,d(1 + λ)(−pd) + (1 + λ)

∫
sd,d

νidf(νd)dνd︸ ︷︷ ︸
(Private) Surplus from (D,D)

+ sc1,c1(1 + λ)(−pc1) + (1 + λ)

∫
sc1,c1

νc1if(νc1)dνc1︸ ︷︷ ︸
(Private) Surplus from (C1, C1)

+ sd,c2(−pd − λpc2) +

∫
sd,c2

νidf(νd)dνd + λ

∫
sd,c2

νic2f(νc2)dνc2︸ ︷︷ ︸
(Private) Surplus from (D,C2)

+ s0,c2(−λpc2) + λ

∫
s0,c2

νic2f(νc2)dνc2︸ ︷︷ ︸
(Private) Surplus from (0, C2)

+ sd,d(1 + λ)(−ζd) + sc1,c1(1 + λ)(−ζc1) + sd,c2(−ζd − λζc2) + s0,c2(−λζc2)︸ ︷︷ ︸
Externality

In the absence of policy intervention, recall that individual optimization decisions can

be expressed as a series of thresholds for νid, νic1 , and νic2 that govern whether consumer i

prefers certain consumption bundles over others. That is, consumers will prefer (D,D) to

(0, 0) whenever νid ≥ ν̄d = pd; (C1, C1) to (0, 0) whenever νic1 ≥ ν̄c1 = pc1 ; and {0, C1} to

(0, 0) whenever νic2 ≥ ν̄c2 = pc2 ; all other preference relations can be expressed in terms of

ν̄d, νc1 , and νc2 . Therefore, we can also model the social planner as choosing a (possibly

constrained) price schedule that yields certain values for ν̄d, ν̄c1 , and ν̄c2 , which defines a

certain allocation across consumers.

Therefore, if the social planner is able to impose an unconstrained price schedule, we
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have the social planner’s problem given by:

max
td,tc1 ,tc2

[ max
ν̄d,ν̄c1 ,ν̄c2

{(1 + λ)sd,d(·)(−pd − td) + (1 + λ)

∫
sd,d(·)

νidf(νd)dνd

+ (1 + λ)sc1,c1(·)(−pc1 − tc1) + (1 + λ)

∫
sc1,c1 (·)

νic1f(νc1)dνc1

+ sd,c2(·)(−pd − td − λpc2 − λtc2) +

∫
sd,c2 (·)

νidf(νd)dνd + λ

∫
sd,c2 (·)

νic2f(νc2)dνc2

+ s0,c2(·)(−λpc2 − λtc2) + λ

∫
s0,c2 (·)

νic2f(νc2)dνc2}

− (1 + λ)sd,d(·)ζd − (1 + λ)sc1,c1(·)ζc1 − sd,c2(·)(ζd + λζc2)− s0,c2(·)(λζc2)

+ (1 + λ)sd,d(·)td + (1 + λ)sc1,c1(·)tc1 + sd,c2(td + λtc2) + s0,c2(λtc2)]

Here each sj,j′ is a function of the three thresholds for adoption, which in turn are functions of

the effective tax rates chosen by the regulator: sj,j′(ν̄d(td, tc1 , tc2), ν̄c1(td, tc1 , tc2), ν̄c2(td, tc1 , tc2));

this notation is suppressed in the expression above for simplicity.

As an illustration, I write out the regulator’s full first-order condition with respect to tc1 :

∂W

∂tc1
= (1 + λ)sc1,c1(·)(−1) + (1 + λ)sc1,c1(·)

+ [(1 + λ)
∂sd,d
∂tc1

(−pd − td) + (1 + λ)
∂

∂tc1
(

∫
sd,d(·)

νidf(νd)dνd)

+ (1 + λ)
∂sc1,c1
∂tc1

(−pc1 − tc1) + (1 + λ)
∂

∂tc1
(

∫
sc1

νic1f(νc1)dνc1)

+
∂sd,c2
∂tc1

(−pd − td − λpc2 − λtc2) +
∂

∂tc1
(

∫
sd,c2

νidf(νd)dνd) + λ
∂

∂tc1
(

∫
sd,c2

νic2f(νc2)dνc2)

+
∂s0,c2

∂tc1
(−λpc2 − λtc2) + λ

∂

∂tc1
(

∫
s0,c2

νic2f(νc2)dνc2)]

+ (1 + λ)
∂sd,d
∂tc1

(td − ζd) + (1 + λ)
∂sc1,c1
∂tc1

(tc1 − ζc1)

+
∂sd,c2
∂tc1

(td − ζd + λ(tc2 − ζc2)) + λ
∂s0,c2

∂tc1
(tc2 − ζc2) = 0

The first and second terms cancel with each other. The subsequent set of terms in square

brackets cancel after we substitute the first-order condition from individual optimization.
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The third set of terms remains, and the regulator’s first-order condition can be rewritten as:

∂W

∂tc1
= (1 + λ)

∂sd,d
∂tc1

(td − ζd) + (1 + λ)
∂sc1,c1
∂tc1

(tc1 − ζc1)

+
∂sd,c2
∂tc1

(td − ζd + λ(tc2 − ζc2)) + λ
∂s0,c2

∂tc1
(tc2 − ζc2) = 0

Likewise, the regulator’s FOCs with respect to td and tc2 are given as follows:

∂W

∂td
= (1 + λ)

∂sd,d
∂td

(td − ζd) + (1 + λ)
∂sc1,c1
∂td

(tc1 − ζc1)

+
∂sd,c2
∂td

(td − ζd + λ(tc2 − ζc2)) + λ
∂s0,c2

∂td
(tc2 − ζc2) = 0

∂W

∂tc2
= (1 + λ)

∂sd,d
∂tc2

(td − ζd) + (1 + λ)
∂sc1,c1
∂tc2

(tc1 − ζc1)

+
∂sd,c2
∂tc2

(td − ζd + λ(tc2 − ζc2)) + λ
∂s0,c2

∂tc2
(tc2 − ζc2) = 0

It is immediately apparent that these optimality conditions will be satisfied by setting t∗c1 =

ζc1 , t
∗
d = ζd, and t∗c2 = ζc2 .

A.2 Efficient Second-Best Policies

A.2.1 One Clean Technology (Proof of Proposition 2)

Now we turn to deriving the efficient policy when the regulator may implement only a

single technology-specific policy on C1. First, we consider the case where C1 is the only clean

technology, and the regulatory does not need to account for competition across generations

of the clean technology. Under these conditions, the regulator’s FOC for the efficient pricing

policy on C1 is given by:

∂W

∂tc1
= (1 + λ)(tc1)

∂sc1,c1
∂tc1

+ (1 + λ)(−ζd)
∂sd,d
∂tc1

+ (1 + λ)(−ζc1)
∂sc1,c1
∂tc1

= 0
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Rearranging terms to solve for t̂c1 yields:

t̂c1 = (1/
∂sc1,c1
∂tc1

)[ζd
∂sd,d
∂tc1

+ ζc1
∂sc1,c1
∂tc1

]

Adding and subtracting ζc1
∂sd,d
∂tc1

allows us to rewrite this expression in terms of the C1/D

margin and the C1/no adoption margin, as presented in the main body of the paper:

t̂c1 = (1/
∂sc1,c1
∂tc1

)[ (ζd − ζc1)
∂sd,d
∂tc1︸ ︷︷ ︸

Impact on C1/D margin

+ ζc1(
∂sc1,c1
∂tc1

+
∂sd,d
∂tc1

)︸ ︷︷ ︸
Impact on C1/no adoption margin

]

A.2.2 Multiple Clean Technology Generations (Proof of Proposition 3)

Next, we relax the initial assumption that there is only one clean technology and show

how the regulator’s choice of the efficient pricing policy on C1 changes when competition

across clean technology generations is also a consideration. In this case, the regulator’s FOC

for the efficient pricing policy on C1 is given by:

∂W

∂tc1
= (1 + λ)

∂sd,d
∂tc1

(−ζd) + (1 + λ)
∂sc1,c1
∂tc1

(tc1 − ζc1) +
∂sd,c2
∂tc1

(−ζd− λζc2) + λ
∂s0,c2

∂tc1
(−ζc2) = 0

Rearranging terms to solve for the modified t̂c1 yields:

t̂c1 = (1/
∂sc1,c1
∂tc1

)[
∂sd,d
∂tc1

(ζd) +
∂sc1,c1
∂tc1

(ζc1) +
∂sd,c2
∂tc1

(
ζd + λζc2

1 + λ
) +

∂s0,c2

∂tc1
(
λζc2

1 + λ
)]

Finally, adding and subtracting ζc1
∂sd,d
∂tc1

, ζc1
∂sd,c2
∂tc1

, and ζc1
∂s0,c2
∂tc1

again allows us to rewrite this

expression in terms of the margins of decision-making, as presented in the main body of the
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paper:

t̂c1 = (1/
∂sc1,c1
∂tc1

)[ (ζd − ζc1)
∂sd,d
∂tc1︸ ︷︷ ︸

Impact on C1/D margin

+ ζc1(
∂sc1,c1
∂tc1

+
∂sd,d
∂tc1

+
∂sd,c2
∂tc1

+
∂s0,c2

∂tc1
)︸ ︷︷ ︸

Impact on C1/no adoption margin

+ (
ζd + λζc2

1 + λ
− ζc1)

∂sd,c2
∂tc1

+ (
λζc2

1 + λ
− ζc1)

∂s0,c2

∂tc1︸ ︷︷ ︸
Impact on C1/C2 margin

]

A.3 Policy Updating

Return to the regulator’s first-order optimization conditions for constrained and uncon-

strained instruments. By reordering terms, we can see that these conditions require the

regulator to equate the marginal abatement cost of a given policy with its marginal benefits

from externality reduction. In the case of the optimal Pigouvian tax, the first-order condition

for tj can be rewritten as:

∂W

∂tj
= (1 + λ)(td)

∂sd,d
∂tj

+ (1 + λ)(tc1)
∂sc1,c1
∂tj

+ (td + λtc2)
∂sd,c2
∂tj

+ (λtc2)
∂s0,c2

∂tj︸ ︷︷ ︸
Marginal Abatement Cost

+ (1 + λ)(−ζd)
∂sd,d
∂tj

+ (1 + λ)(−ζc1)
∂sc1,c1
∂tj

+ (−ζd − λζc2)
∂sd,c2
∂tj

+ (−λζc2)
∂s0,c2

∂tj︸ ︷︷ ︸
Marginal Benefit

= 0

Likewise, for the efficient second-best policy when there are two generations of clean tech-

nology, the regulator’s first-order condition for tc1 can be expressed as:

∂W

∂tc1
= (1 + λ)

∂sc1,c1
∂tc1

(tc1)︸ ︷︷ ︸
Marginal Abatement Cost

+ (1 + λ)
∂sd,d
∂tc1

(−ζd) + (1 + λ)
∂sc1,c1
∂tc1

(−ζc1) +
∂sd,c2
∂tc1

(−ζd − λζc2) + λ
∂s0,c2

∂tc1
(−ζc2)︸ ︷︷ ︸

Marginal Benefit

= 0

This formulation allows us to consider the case where the regulator has already imposed

some tc1 and is now considering marginal deviations from the original tax (or subsidy), for
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example in response to new information about a second-generation clean technology that

was not available when the policy was initially developed. We can use the ratio of marginal

benefits to marginal abatement costs to identify the direction in which the current policy

should be updated. For the efficient second-best policy, this ratio should be approximately

equal to 1:

Marginal benefit

Marginal abatement cost
=
ζc1 + (

∂sd,d
∂tc1

/
∂sc1,c1
∂tc1

)ζd + (
∂sd,c2
∂tc1

/
∂sc1,c1
∂tc1

)(
ζd+λζc2

1+λ
) + (

∂s0,c2
∂tc1

/
∂sc1,c1
∂tc1

)(
λζc2
1+λ

)

tc1

A.4 Comparative Statics

Externality Values

Given the assumptions in the text that A = L = 2, we have the following comparative statics

around the relative externality values:

∂t̂c1
∂ζd
∝ −∂sd,d

∂tc1
(1 + λ)− ∂sd,c2

∂tc1
≤ 0

∂t̂c1
∂ζc1

∝ −∂sc1,c1
∂tc1

(1 + λ) ≥ 0

∂t̂c1
∂ζc2

∝ −∂sd,c2
∂tc1

λ− ∂s0,c2

∂tc1
λ ≤ 0

C1 Lifetime and C2 Arrival Rate

With more general timing assumptions, the regulator’s first-order condition for the efficient

price on C1 is given by:

∂W

∂tc1
=
∂sd,d
∂tc1

(
1− λL

1− λ
)(−ζd) +

∂sc1,c1
∂tc1

(
1− λL

1− λ
)(tc1 − ζc1)

+
∂sd,c2
∂tc1

[(
1− λA−1

1− λ
)(−ζd) + (

1− λL−A+1

1− λ
)(−λA−1ζc2)] +

∂s0,c2

∂tc1
(
1− λL−A+1

1− λ
)(−λA−1ζc2) = 0

where A is the arrival time of C2 and L is the lifetime of C1; we assume L ≥ A.
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Comparative statics with respect to A are proportional to:

∂t̂c1
∂A
∝λ

A−1 ln (λ)

(1− λ)
[
∂sd,c2
∂tc1

(ζd − ζc2) +
∂s0,c2

∂tc1
(−ζc2)]

+
∂2sd,d
∂tc1∂A

(
1− λL

1− λ
)(−ζd) +

∂2sc1,c1
∂tc1∂A

(
1− λL

1− λ
)(tc1 − ζc1)

+
∂2sd,c2
∂tc1∂A

[(
1− λA−1

1− λ
)(−ζd) + (

1− λL−A+1

1− λ
)(−λA−1ζc2)]

+
∂2s0,c2

∂tc1∂A
(
1− λL−A+1

1− λ
)(−λA−1ζc2)

Likewise, comparative statics with respect to L are proportional to:

∂t̂c1
∂L
∝−λ

L ln (L)

1− λ
[(
∂sd,d
∂tc1

)(−ζd) + (
∂sc1,c1
∂tc1

)(−ζc1) + (
∂sd,c2
∂tc1

)(−ζc2) + (
∂s0,c2

∂tc1
)(−ζc2)]

+
∂2sd,d
∂tc1∂L

(
1− λL

1− λ
)(−ζd) +

∂2sc1,c1
∂tc1∂L

(
1− λL

1− λ
)(tc1 − ζc1)

+
∂2sd,c2
∂tc1∂L

[(
1− λA−1

1− λ
)(−ζd) + (

1− λL−A+1

1− λ
)(−λA−1ζc2)]

+
∂2s0,c2

∂tc1∂L
(
1− λL−A+1

1− λ
)(−λA−1ζc2)

Note that we can substitute in the original first-order condition to rewrite this expression

as:

∂t̂c1
∂L
∝−λ

L ln (λ)(1− λA−1)

(1− λ)(1− λL)
[
∂sd,c2
∂tc1

(ζd − ζc2) +
∂s0,c2

∂tc1
(−ζc2)]

+
∂2sd,d
∂tc1∂L

(
1− λL

1− λ
)(−ζd) +

∂2sc1,c1
∂tc1∂L

(
1− λL

1− λ
)(tc1 − ζc1)

+
∂2sd,c2
∂tc1∂L

[(
1− λA−1

1− λ
)(−ζd) + (

1− λL−A+1

1− λ
)(−λA−1ζc2)]

+
∂2s0,c2

∂tc1∂L
(
1− λL−A+1

1− λ
)(−λA−1ζc2)

In order to obtain closed-form expressions for the derivatives of
∂sj,j′

∂tc1
with respect to A

and L, we need distributional assumptions for heterogeneous preference parameters. For

analytic tractability, I assume that νc1 , νc2 , and νd are jointly uniform on the unit cube;
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other distributional assumptions are also possible.

Under this distributional assumption, we must consider three ranges of parameter values,

which in turn determine the expressions for share derivatives. To simplify notation, I define

ptc1 = pc1 + tc1 . These cases are presented in the table below:

Condition
1−ptc1
1−pc2

≤ λA−1−λL
1−λL

1−ν̂d+pd−ptc1
1−ν̂d+pd−pc2

= λA−1−λL
1−λL

pd−ptc1
pd−pc2

≥ λA−1−λL
1−λL

for ν̂d ∈ [pd, 1]

∂2sd,d
∂tc1∂A

0 0 0

∂2sd,d
∂tc1∂L

0 0 0

∂2sc1,c1
∂tc1∂A

(1
2

+ pd − ptc1 −
p2d
2

) · a (1−v̂d)(1−v̂d+2pd−2ptc1 )

2
· a 0

−f( ∂v̂d
∂ptc1

, ∂v̂d
∂A
, ∂2v̂d
∂ptc1∂A

)

∂2sc1,c1
∂tc1∂L

(1
2

+ pd − ptc1 −
p2d
2

) · l (1−v̂d)(1−v̂d+2pd−2ptc1 )

2
· l 0

−f( ∂v̂d
∂ptc1

, ∂v̂d
∂L
, ∂2v̂d
∂ptc1∂L

)

∂2sd,c2
∂tc1∂A

−(1−pd)(1+pd−2ptc1 )

2
· a −(1−v̂d)(1−v̂d+2pd−2ptc1 )

2
· a 0

+f( ∂v̂d
∂ptc1

, ∂v̂d
∂A
, ∂2v̂d
∂ptc1∂A

)

∂2sd,c2
∂tc1∂L

−(1−pd)(1+pd−2ptc1 )

2
· l −(1−v̂d)(1−v̂d+2pd−2ptc1 )

2
· l 0

+f( ∂v̂d
∂ptc1

, ∂v̂d
∂L
, ∂2v̂d
∂ptc1∂L

)

∂2s0,c2
∂tc1∂A

−pd(1− ptc1) · a 0 0

∂2s0,c2
∂tc1∂L

−pd(1− ptc1) · l 0 0

where a = (1−λL)(λA−1) ln (λ)
(λA−1−λL)2

and l = (−λL)(1−λA−1) ln (λ)
(λA−1−λL)2

. In the middle column, f(·) captures

the impact of tc1 and A or L on the value of v̂d.

We can substitute these terms into the general expressions above for
∂t̂c1
∂A

and
∂t̂c1
∂L

. The

signs of these comparative statics depend on the parameter values. However, it is easiest to
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gain intuition in the case where
pd−ptc1
pd−pc2

≥ λA−1−λL
1−λL , which yields:

∂t̂c1
∂A
∝ lnλ︸︷︷︸

≤0

[
∂sd,c2
∂tc1

(ζd − ζc2) +
∂s0,c2

∂tc1
(−ζc2)]︸ ︷︷ ︸

≤0 or ≥0

∂t̂c1
∂L
∝ −λL lnλ︸ ︷︷ ︸

≥0

[
∂sd,c2
∂tc1

(ζd − ζc2) +
∂s0,c2

∂tc1
(−ζc2)]︸ ︷︷ ︸

≤0 or ≥0

We see here that the efficient second-best subsidy for C1 moves in opposite directions when

the arrival rate of C2 is increasing versus the lifetime of C1 is increasing. Under this parame-

terization, I find that as long as the advent of C2 induces a sufficiently large shift away from

consuming the dirty product, then the efficient second-best subsidy is increasing (i.e., tc1 be-

comes more negative) in the arrival time of the second-generation technology. That is, as the

arrival rate of the improved efficient technology recedes into the longer term, the near-term

benefits of switching consumers from the dirty technology to the early efficient technology

increasingly outweigh the benefits of waiting. Conversely, as long as C2 induces more suffi-

cient switching from the dirty product instead of the outside option, the efficient second-best

subsidy decreases as the lifetime of the first-generation efficient product lengthens. That is,

the efficient subsidy decreases as early deployment of the first-generation product represents

greater lock-in away from the later technology.

B Data Appendix

B.1 Lighting Sales Data and Product Characteristics

I collected data on UPC product characteristics from several third-party aggregators, in-

cluding Semantics3, Barcode Lookup, and UPCitemdb. In other cases, I looked up UPC

product characteristics using search engines and archived product catalogs. I collected

data on bulb shape (e.g., A, PAR, G), base type (e.g., E12, E17, E26), wattage, wattage-
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equivalent, technology, and light color. As reported in the main text, I filtered the sample

of bulbs to include only the general purpose bulbs subject to the first phase of the federal

efficiency standard. This step entailed dropping directional bulbs (e.g., floodlights or re-

flector bulbs), decorative bulbs (e.g., globe or candle-shaped bulbs), bulbs with candelabra

or intermediate bases, appliance bulbs, and specialty bulbs (e.g., bug lamps, colored bulbs,

rough service bulbs, or three-way bulbs).

I initially sought to collect information on whether a product was Energy Star rated or

dimmable, since these characteristics may also have been important to consumers. However,

I found that reporting of these characteristics was too inconsistent to be included in my

demand model without introducing substantial measurement error.62 These unobserved

characteristics are therefore captured in the ξjmt econometric error. In my final specification,

I also do not include light color directly, since I found that many products were marketed

as “soft white” with a large range in the associated correlated color temperature (CCT).

Because many products reported only the “soft white” label without the accompanying

value of CCT, I determined that there was extensive measurement error in this variable as

well.63

B.2 Demographic Characteristics and Lighting Market Charac-

teristics

Annual demographic information at the county level is taken from the American Com-

munity Survey, including number of households, median household income, share of college

educated individuals. As noted in the main text, in my specification with endogenous coming-

to-market, I hold fixed cross-sectional variation in the demographics of the overall county

population, varying only the demographics of the sub-population entering the market in each

62Energy Star bulbs also had to be approved as such, so a given UPC might be Energy Star-rated in one
period but not in another.

63Light color is expressed in degrees Kelvin; “warm” light has fewer degrees Kelvin while “cool” light has
more; an open flame produces light around 1900K.
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period. I use data on the share of college educated individuals from 2013.

I use estimated county-level data on climate change attitudes from the Yale Project on

Climate Change Communication (Howe et al., 2015). In my primary specification, I use the

estimated percentage who think that global warming is caused mostly by human activities. In

alternative model specifications, I use the estimated percentage who somewhat or strongly

support requiring utilities to produce 20% of electricity from renewable sources. These

variables are intended to capture the share of the population that linked climate change to

human activities such as electricity use and the share that supported contemporary policy

responses. Since these county-level estimates are only available for certain years, I use 2014

data on climate attitudes for my coming-to-market specifications.

Lastly, I use information on the share of Democratic voters from Dave Leip’s Atlas of

Presidential Elections (Leip, 2017). Because party voter registration rules vary by state, I

use the share of Democratic votes cast in a particular election as a proxy for the share of

Democratic voters. I use the 2012 U.S. House of Representatives election since it occurred

in the middle of my study period, had higher turnout from coinciding with a presidential

election, and was arguably more likely to be driven by party affiliations than personalities

or other idiosyncratic factors that may drive presidential or senatorial election results.

I use survey data on the average number of lightbulbs per household, from the DOE’s

regular Lighting Market Characterization Reports, plus information on the number of house-

holds per county to estimate the total potential residential lighting market in a particular

county.

Information on lighting operating costs is taken from the EIA Form 861, which all utilities

are required to complete. Using this data, I calculate the average residential electricity rate

by dividing total revenue in the sector by total sales volume; I follow the procedure outlined

in Borenstein and Bushnell (2018) to estimate the combined energy and delivery charge for

areas with deregulation at the retail level.64

64As noted, this procedure yields estimates of average residential rates for a given utility, where rational
consumers with perfect attention and perfect information would instead optimize based on marginal rates.
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B.3 Light Bulb Failure Rates

I use information on light bulb failure rates from the spreadsheet accompanying the U.S.

DOE’s Technical Support Document for analyzing the impact of lighting efficiency standards

(U.S. Department of Energy, 2016). These failure rates are calculated using data on the

distribution of daily hours-of-use for each light bulb in the residential sector and engineering

data on the rate of bulb failure as a function of elapsed hours of use. Light bulb survival is

assumed to follow a Weibull distribution, expressed as a function of the percentage of rated

lifetime for which the bulb has been used. Failure rates for CFLs are further adjusted by

observed cycles of on-off switching in the residential sector, which resulted in actual lifetimes

that were shorter than rated lifetimes. No adjustments are made for LEDs, in the absence

of evidence to suggest that on-off cycle time affected realized lifetimes.

The DOE’s Technical Support Document provides failure rates for CFLs and LEDs but

not for incandescents and halogens. As such, I assume that the shape of the survival dis-

tribution is the same for incandescents and halogens as for LEDs, again in the absence of

evidence to suggest that on-off switching affected the actual lifetimes for those bulbs. That is,

I assume that the parameters of the Weibull distribution for incandescents and halogens are

the same as for LEDs and simply apply a different technology-specific lifetime (1200 hours

for incandescents and 2000 hours for halogens). Following the notation in DOE’s Technical

Support Document, the probability of survival is given by the following expression:

Psurv(A) = exp [−(
Lcons(A) · 100

λ
)k]

where

Lcons(A) =
n∑
i=1

Fsect(hbi) · hbi · (
365 · A
lrated

)

A gives the age of the bulb in years; k gives the shape parameter of the Weibull distribution

However, marginal rates are often not fully transparent for residential customers, and other research suggests
that average rates may be more salient (Ito, 2014).
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and λ gives the scale parameter; hbi gives daily hours-of-use (binned); Fsect(hbi) gives the

sector-specific frequency rates for each hours-of-use bin; i indexes each hours-of-use bin; and

lrated gives the rated lifetime in hours. In my main specification, I adopt the following Weibull

parameters by technology:

Technology Shape Parameter (k) Scale Parameter (λ) Rated Lifetime (lcons)

LED 1.718 118.1 25,000 hours

Incandescent 1.718 118.1 1,200 hours

Halogen 1.718 118.1 2,000 hours

CFL 1.253 61.0 8,000 hours

The Weibull parameters used in the DOE’s Technical Support Document are originally

estimated from California Public Utilities Commission data on failure rates of CFLs as

a function of average on-cycle time. For residential LEDs, the DOE analysis adopts the

parameters associated with average on-cycle time of 180 minutes, noting that “GSL survival

data is commonly presented using three-hour on-time cycle lengths.” (The final Weibull

parameters adopted for residential CFLs are weighted averages of parameters associated with

various on-cycle lengths, given the average on-cycle length by room type and distribution

of bulbs by room type.) However, using these parameters originally estimated from CFL

failure rates for LEDs (and in my analysis, for incandescents and halogens as well) results in

mean and median effective lifetimes that are considerably longer than the rated lifetime.65

Consequently, I also estimate my demand model using the Weibull parameters associated

with 90-minute average cycle length (shape parameter = 1.805 and scale parameter = 118.1),

since this specification produces mean and median effective lifetimes that are much closer to

the expected service length. These estimates are presented in Column 3 of Table 7.

65Based on the parameterization in the DOE’s Technical Support Document, the effective mean lifetime
for LEDs is 138% of the expected service length and the effective median lifetime is 125% of expected service
length.
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B.4 Externality Calculation

To calculate the average externality per hour of lighting sold during the study period,

I adopt several simplifying assumptions. First, I assume that the externality per kWh of

electricity is constant across the U.S. and over the study period. This assumption ignores the

improvements in the emissions intensity of U.S. electricity generation that occurred during

the study period. This assumption also ignores the heterogeneity of emissions intensity

across the U.S., which means we might overestimate the relative externality reduction from

purchasing efficient lighting technologies, since they were heavily purchased in areas of the

country with cleaner electricity grids (e.g., California and the Northeast). I use data on

the emissions intensity of the U.S. electric grid in 2014 from U.S. Environmental Protection

Agency (2017), reflecting the midpoint of my study period. I convert total CO2 emissions to

dollar values using estimates of the Social Cost of Carbon (SCC) from Interagency Working

Group on the Social Cost of Carbon, U.S. Government (2015), assuming a 2.5% discount rate.

I do not consider the impact of local air pollutants associated with electricity generation.

I then calculate the externality associated with each bulb category (technology by wattage-

equivalent) purchased in a given period. To do so, I must determine in which periods and

for how long a given bulb will be used. Here I make two simplifying assumptions. First,

I assume that all bulbs last for exactly their rated lifetime, with a downward adjustment

for CFLs due to on-off switching in my main specification. Second, I assume that all bulbs

purchased during the study period are used for an average of 5.56 hours per day. Given these

assumptions, the wattages listed in Table 1, and the externality values described above, I

can then calculate the discounted externality associated with each bulb as a function of the

period in which it is sold. I then divide by the total number of lifetime hours to obtain the

average discounted externality per hour of lighting sold during the study period, which is

the outcome metric reported throughout the main text.

A few comments are warranted about my assumptions around bulb lifetime and hours of

use. My assumed average hours of daily use is significantly higher than the average hours of

68



daily use across the installed base of light bulbs in the residential sector (see, for example,

Navigant Consulting (2012, 2017)). This higher value is intended to account for the fact

that the hours-of-use conditional on being replaced is higher than the unconditional hours-

of-use across the entire population of light bulbs, since bulbs that are used more intensively

will fail more frequently. Since I want to capture the average hours-of-use across the set of

new bulbs purchased, rather than across the population of installed bulbs, it is appropriate

to use this conditional mean. I use the distribution of residential hours-of-use provided in

the spreadsheet accompanying the DOE’s Technical Support Document to simulate average

hours of use conditional on bulb failure. Nonetheless, my approach does not account for any

correlations between more intensive lighting use and willingness to invest in energy efficiency

lighting technologies, in the spirit of Dubin and McFadden (1984); I further discuss this issue

in the main text.

B.5 Instruments for Demand Estimation

Data for demand-side instruments is taken from a variety of sources. Price indices for

semiconductors, reflecting the price of manufacturing LED chips, and fluorescent ballasts, a

key component in CFL manufacturing, were both taken from the Bureau of Labor Statistics

(BLS) Import and Export Price Indices. Rare earth prices are taken from the U.S. Geological

Survey’s National Minerals Information Center, which provides annual price indices for a

variety of rare earth minerals; I then computed a weighted average of the relevant mineral

prices, using weights that reflect the composition of rare earths used in CFLs, taken from

the DOE (2016) for the second phase of the lighting efficiency standards. On the retail cost

side, county-level average wage data in the retail sector – including wages specific to food

and beverage stores (NAICS code 445), health and personal care stores (446), and general

merchandise retailers (452) – were taken from the BLS Quarterly Census of Employment and

Wages. Quarterly data on diesel prices, a proxy for retail transportation costs, was collected

from the U.S. EIA by regional Petroleum Administration for Defense Districts (PADDs).
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Finally, data on commercial real estate indices by U.S. region was taken from the Society of

Industrial and Office Realtors (SIOR).

C Coming-to-Market

C.1 Estimation Details

Below I describe my modified estimation algorithm. I describe in detail the steps of the

algorithm applied in the first period of my study period, which are then repeated for all

subsequent periods:

1. I begin with an initial distribution of remaining time-to-failure for each consumer type’s

installed base of light bulbs at the start of the study period. Given the assumption

that consumers enter the market to replace failed bulbs, I use this initial distribution

to simulate the share of each consumer type entering the market in the first period.

Let wimt denote the share of consumers of type i entering market m in period t.

2. For each consumer type, I calculate µijmt(θ2) for all products available in the first

period, given some θ2.

3. Given starting values for the common component of utility δ0
jmt, I use µijmt and δ0

jmt

to predict individual choice probabilities shijmt, again for the first period (t = 1). Here

h indexes each iteration of the algorithm, so h = 1 for this first iteration.

4. Next I predict overall market shares in the first period by calculating the weighted

average of predicted choice probabilities by type, where weights are equal to the share

of a given type that enters the market:

shjmt =

∑ns
i=1w

h
imt · shijmt∑ns

i=1w
h
imt
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5. I use the vector of predicted market shares shmt = {shjmt} to update mean utility levels

using the BLP fixed point algorithm, δh+1
mt , for all products in the first period.

6. I repeat steps 3-5 until fixed point convergence, with h increasing by 1 for each iteration.

(After convergence, I drop h superscripts for the final set of predicted individual choice

probabilities and coming-to-market weights.)

7. I use individual choice probabilities for each technology to update the distribution of

remaining time-to-failure for the installed base of bulbs. I use engineering data on

failure rates by technology and assume that new bulbs are installed in the same period

that they are purchased. The distribution of remaining time-to-failure therefore evolves

heterogeneously by consumer type. I use this updated distribution to determine the

share of each type that enters the market in the next period wim,t+1.

8. I repeat steps 2-7 for period t+ 1, and then for each remaining period.

I follow the standard BLP approach of using non-linear search methods to solve for the value

of θ2 that sets the gradient of the objective function as close as possible to 0. I estimate

the model using one-step GMM; I use W = [Z ′Z]−1 to weight my over-identified moment

conditions, where Z represents a matrix of instrumental variables. To the extent possible,

I follow the best practices for discrete choice demand estimation outlined in Conlon and

Gortmaker (2020). I use a numerical gradient-based optimization routine, with tolerance

for the inner loop set to 10−14 and tolerance for the outer loop set to 10−5. I use multiple

starting values for θ2 in my optimization routine. Standard errors are bootstrapped at the

county level (forthcoming).
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C.2 Analytic Gradient

C.2.1 Analytic Gradient for Standard BLP

In this section, I follow the notation in the main body of the paper, where θ2 represents

non-linear parameters in the demand system; δ represents a vector of the common compo-

nents of indirect utility from choosing each product; and ξ represents a vector of the residuals

in the common component of utility. For standard demand-side-only BLP, the gradient of

the GMM objective function is given by:

∇q(θ2) = 2G(θ2)′Wg(θ2)

where g(θ2) is the moment function, W is a weighting matrix, and G(θ2) is the gradient of

the moment function.

G(θ2) =
1

N
Z ′
∂ξ

∂θ2

where N gives the total number of observations. Because residuals are linear, we can write:

∂ξ

∂θ2

=
∂δ

∂θ2

Noting that shares s, δ, and θ2 are related through the inversion function s(δmt; θ2) = smt

for market m in period t, we can use the implicit function theorem to rewrite this derivative

market-by-market and period-by-period as follows:

∂δmt
∂θ2

(θ2) = −

[
∂smt
∂δmt

(θ2)

]−1[
∂smt
∂θ2

(θ2)

]

Alternatively, to see the elements of these matrices, we index each product by j and
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expand as follows:


∂δ1,mt

∂(θ2)1
... ∂δ1,mt

∂(θ2)L

... ...

∂δJ,mt

∂(θ2)1
...

∂δJ,mt

∂(θ2)L

 = −


∂s1,mt

∂δ1,mt
... ∂s1,mt

∂δJ,mt

... ...

∂sJ,mt

∂δ1,mt
...

∂sJ,mt

∂δJ,mt


−1 

∂s1,mt

∂(θ2)1
... ∂s1,mt

∂(θ2)L

... ...

∂sJ,mt

∂(θ2)1
...

∂sJ,mt

∂(θ2)L


Recall from the main text that the non-linear parameters θ2 consist of parameters on

demographics interacted with product characteristics (πkd) and on unobservable preference

heterogeneity interacted with product characteristics (σk). Following earlier notation, let Did

represent demographic characteristics and let νki represent random preference draws, were k

indexes product characteristics and d indexes demographic characteristics. The elements of

the above matrices are then defined as follows:

∂sjmt
∂δjmt

=
1

ns

ns∑
i=1

∂sijmt
∂δjmt

=
1

ns

ns∑
i=1

sijmt(1− sijmt)

∂sjmt
∂δj′mt

=
1

ns

ns∑
i=1

∂sijmt
∂δj′mt

= − 1

ns

ns∑
i=1

sijmtsij′mt

∂sjmt
∂σk

=
1

ns

ns∑
i=1

∂sijmt
∂σk

=
1

ns

ns∑
i=1

sijmt(x
k
jmtν

k
i −

J∑
j′=1

xkj′mtν
k
i sij′mt)

=
1

ns

ns∑
i=1

νki sijmt(x
k
jmt −

J∑
j′=1

xkj′mtsij′mt)

∂sjmt
∂πkd

=
1

ns

ns∑
i=1

∂sijmt
∂πkd

=
1

ns

ns∑
i=1

sijmt(x
k
jmtDid −

J∑
j′=1

xkj′mtDidsij′mt)

=
1

ns

ns∑
i=1

Didsijmt(x
k
jmt −

J∑
j′=1

xkj′mtsij′mt)

C.2.2 Analytic Gradient for BLP with Coming-to-Market

When we modify the BLP procedure to incorporate coming-to-market, we still have the

same basic expression for the gradient of the GMM objective function, and we still use
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the implicit function theorem to rewrite the derivative of mean utilities with respect to the

nonlinear parameters (as shown above). Now, however, we can only separate these derivatives

market by market – but not period by period. We now have:



∂δ1m1

∂θ21
... ∂δ1m1

∂(θ2)L

... ...

∂δJm1

∂θ21
... ∂δJm1

∂(θ2)L

... ...

∂δ1mT

∂θ21
... ∂δ1mT

∂(θ2)L

... ...

∂δJmT

∂θ21
... ∂δJmT

∂(θ2)L



= −



∂s1m1

∂δ1m1
... ∂s1m1

∂δJm1
... ∂s1m1

∂δ1mT
... ∂s1m1

∂δJmT

... ...

∂sJm1

∂δ1m1
... ∂sJm1

∂δJm1
... ∂sJm1

∂δ1mT
... ∂sJm1

∂δJmT

... ...

∂s1mT

∂δ1m1
... ∂s1mT

∂δJm1
... ∂s1mT

∂δ1mT
... ∂s1mT

∂δJmT

... ...

∂sJmT

∂δ1m1
... ∂sJmT

∂δJm1
... ∂sJmT

∂δ1mT
... ∂sJmT

∂δJmT



−1 

∂s1m1

∂(θ2)1
... ∂s1m1

∂(θ2)L

... ...

∂sJm1

∂(θ2)1
... ∂sJm1

∂(θ2)L

... ...

∂s1mT

∂(θ2)1
... ∂s1mT

∂(θ2)L

... ...

∂sJmT

∂(θ2)1
... ∂sJmT

∂(θ2)L


That is, we must now consider how sjmt depends on changes in mean utility for products

offered in the same period and products offered in previous periods but in the same market.

Letting wimt denote the probability that each of the ns consumer types enters market m and

period t, the individual elements of these Jacobians are now defined as follows:

∂sjmt
∂δjmt

=

∑ns
i=1wimt

∂sijmt

∂δjmt∑ns
i=1wimt

=

∑ns
i=1 wimtsijmt(1− sijmt)∑ns

i=1wimt

∂sjmt
∂δj′mt

=

∑ns
i=1wimt

∂sijmt

∂δj′mt∑ns
i=1wimt

= −
∑ns

i=1 wimtsijmtsij′mt∑ns
i=1wimt

∂sjmt
∂δj′mt′

=

∑ns
i=1 sijmt

∂wimt

∂δj′mt′∑ns
i=1wimt

−
∑ns

i=1 wimtsijmt∑ns
i=1 wimt

·

∑ns
i=1

∂wimt

∂δj′mt′∑ns
i=1wimt

, for t′ < t; 0 otherwise

∂sjmt
∂σk

=

∑ns
i=1wimt

∂sijmt

∂σk∑ns
i=1 wimt

+

∑ns
i=1 sijmt

∂wimt

∂σk∑ns
i=1 wimt

−
∑ns

i=1 wimtsijmt∑ns
i=1 wimt

·
∑ns

i=1
∂wimt

∂σk∑ns
i=1wimt

∂sjmt
∂πkd

=

∑ns
i=1wimt

∂sijmt

∂πkd∑ns
i=1 wimt

+

∑ns
i=1 sijmt

∂wimt

∂πkd∑ns
i=1 wimt

−
∑ns

i=1 wimtsijmt∑ns
i=1 wimt

·
∑ns

i=1
∂wimt

∂πkd∑ns
i=1wimt

A few notes on these expressions. The first two expressions, which capture the effect of
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changing one product’s mean utility on the shares of that product and others offered in the

same market and period, is exactly analogous to the expressions from the standard BLP

model, except now we do not weight each type draw equally but according to the share of

that type in the market in that period. These weights are already calculated as part of the

modified fixed point routine for coming-to-market, and so are straightforward to add to the

calculation of the analytic gradient.

The third expression is new, and captures the effect of changing a past product’s mean

utility on the shares of products offered in that market in future periods. This effect occurs

entirely through the impact on the distribution of types coming to the market in the future

period. We calculate ∂wimt

∂δj′mt′
as follows:

∂wimt
∂δj′mt′

= wimt′

Jt′∑
j=1

∂sijmt′

∂δj′mt′
· Prob(in market in period t | consume j in t′)

The probability of being in the market in period t conditional on having purchased product

j in past period t′ is calculated as follows. Consider a simple example with 3 periods and 2

technologies of different lifetimes. Then perform the following calculations:

• Use engineering lifetimes to calculate: Probability(Product 1 fails in 1 period), Proba-

bility(Product 2 fails in 1 period), Probability(Product 1 fails in 2 periods), Probabil-

ity(Product 2 fails in 2 periods)

• We can then recover directly:

– Probability(In market period 3 | consume product 1 in period 2) = Probabil-

ity(Product 1 fails in 1 period)

– Probability(In market period 3 | consume product 2 in period 2) = Probabil-

ity(Product 2 fails in 1 period)

– Probability(In market period 2 | consume product 1 in period 1) = Probabil-

ity(Product 1 fails in 1 period)
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– Probability(In market period 2 | consume product 2 in period 1) = Probabil-

ity(Product 2 fails in 1 period)

• We then use the demand model to calculate: Probability(Consume product 1 | in

market period 2) and Probability(Consume product 2 | in market period 2)

• We can then recover:

– Probability(In market period 3 | consume product 1 in period 1) = Probabil-

ity(Product 1 fails in 2 periods) + Probability(Product 1 fails in 1 periods) ·

Probability(Consume product 1 | in market period 2) · Probability(Product 1 fails

in 1 periods) + Probability(Product 1 fails in 1 periods) · Probability(Consume

product 2 | in market period 2) · Probability(Product 2 fails in 1 periods)

– And analogously for Probability(In market period 3 | consume product 1 in period

1).

In this simple example, we have now recovered Probability(in market in period t | consume

j in t′) for all j and all t > t′.

For the fourth and fifth terms above, we see that the overall derivative is composed of two

effects, a direct effect of changing σk or πkd on simjk for each i, and an indirect effect on the

distribution of types in the market for period t. The direct effect is calculated in essentially

the same manner as in the original BLP, except that type draws are now weighted according

to their probability of being in the market.

However, the indirect impact of σk or πkd on the distribution of types in period t is more

difficult to calculate. We would essentially use our calculations of
∂sijmt′

∂σk
for all j and all

t′ < t, combined with probabilities of being in the market conditional on choosing some

product in some period, to determine the overall impact on the distribution of type draws.

The dimensionality of this calculation may be quite high, however.
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D Additional Model Specifications

D.1 Additional Demand Estimates

This section presents demand estimates from several additional model specifications in

Table 7.

D.2 Additional Counterfactual Results

This section presents the main counterfactual outcomes using several additional model

specifications; results are presented in Figures 27, 28, 29, and 30.

D.3 Additional Analyses

I also present in Figure 31 the predicted impact on LED quantities and the average

discounted externality from simultaneously varying the timing of standards implementation

and CFL rebates phase-out.
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(a) (b)

(c)

Figure 1: Consumer Optimization Across Consumption Bundles (D,D), (C1, C1), and
(D,C2), Given νid ≥ pd
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(a)

Figure 2: Consumer Optimization Across Consumption Bundles (0, 0), (C1, C1), and (0, C2),
Given νid < pd

(a) Given νid ≥ pd (b) Given νid < pd

Figure 3: Consumer Optimization Under Optimal Pigouvian Tax
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(a) Given νid ≥ pd (b) Given νid < pd

Figure 4: Consumer Optimization Under Subsidy for C1

(a) Incumbent
product: Traditional
Incandescent Light

(b) Efficient product:
Compact Fluorescent

Light (CFL)

(c) Efficient product:
Halogen Incandescent

Light

(d) Efficient product:
Light Emitting Diode

(LED)

Figure 5: Lighting Technologies
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(a) Incandescent Bulbs (b) Halogen Bulbs

(c) CFL Bulbs (d) LED Bulbs

Figure 6: Median Price Per Bulb, By Technology and Wattage-Equivalent. Source: Nielsen
retail scanner data
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Figure 7: A-shape bulb market share by technology. Source: National Electrical Manufac-
turers Association (2018)

(a) Incandescent Market Share, Q1 2014 (b) Incandescent Market Share, Q4 2014

Figure 8: Evolution of Incandescent Market Share (2014). Source: Nielsen retail scanner
data.
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(a) Halogen Market Share, Q1 2014 (b) Halogen Market Share, Q4 2014

Figure 9: Evolution of Halogen Market Share (2014). Source: Nielsen retail scanner data.

(a) CFL Market Share, Q1 2014 (b) CFL Market Share, Q4 2014

Figure 10: Evolution of CFL Market Share (2014). Source: Nielsen retail scanner data.

(a) LED Market Share, Q1 2015 (b) LED Market Share, Q4 2015

Figure 11: Evolution of LED Market Share (2015). Source: Nielsen retail scanner data.
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(a) (b)

Figure 12: A-shape bulb market share by technology and bulb type. Source: Nielsen retail
scanner data.
Notes: Market shares are computed using total quantities observed in Nielsen data.

Figure 13: A-shape bulb market share by technology and bulb type. Source: Nielsen retail
scanner data.
Notes: Market shares are computed using total quantities observed in Nielsen data.
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(a) Technology Market Shares (b) Wattage-Equivalent Market Shares

Figure 14: Simulated Baseline Market Shares
Notes: Aggregate shares are simulated using estimated individual choice probabilities, weighted by the
county-level distribution of demographics and the number of households in each county.

(a) Total LED Quantity, 2010-2018
(b) Average Discounted Environmental External-
ity Per Hour of Lighting

Figure 15: Simulated Baseline Under Full Counterfactual and “Naive” Counterfactual.
Notes: In the “naive counterfactual,” the market size and distribution of consumer heterogeneity are held
fixed at Q1 2010 levels. The “full counterfactual” includes endogenous updating of the market size and
the market-level distribution of consumer heterogeneity, based on the history of past lighting purchases in
each county market. The “full counterfactual” is consistent with the counterfactual simulations I run for
alternative policy environments.
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(a) Technology Market Shares (b) Wattage-Equivalent Market Shares

Figure 16: Simulated Counterfactual Market Shares, for Standards Implemented 2016-2018
Notes: Aggregate shares are again simulated using estimated individual choice probabilities, weighted by the
county-level distribution of demographics and the number of households in each county. For this counter-
factual policy simulation, I also vary the product set to be consistent with efficiency standards implemented
in 2016 (or in 2015 for California).

(a) Differences Relative to 2012 Implementation (b) Levels

Figure 17: Total Quantity of LEDs Sold, by Timing of Standards Implementation
Notes: Total quantities of LEDs sold over the study period are simulated from market-level individual choice
probabilities, weighted by county-level demographics and the number of households in each county. Panel
(a) presents the difference in total LED quantities relative to a baseline of standards implemented beginning
in 2012, the actual policy implementation.
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(a) Differences Relative to 2012 Implementation (b) Levels

Figure 18: Average Discounted Environmental Externality Per Hour of Lighting, by Timing
of Standards Implementation
Notes: The average discounted externality per hour of lighting sold during the study period is simulated from
individual choice probabilities by technology and wattage-equivalent. The externality is calculated assuming
the wattages presented in Table 1 and lifetimes of 1,200 hours for incandescents, 2,000 hours for halogens,
8,000 hours for CFLs (adjusted for on-off switching), and 25,000 hours for LEDs. I assume 1.13 lb CO2 per
kWh of electricity consumed across the U.S. (EPA, 2017) and apply social cost of carbon values from IWG
(2015), assuming 2.5% discount rate. Panel (a) presents the difference in the average discounted externality
relative to a baseline of standards implemented beginning in 2012, the actual policy implementation.

(a) Technology Market Shares (b) Wattage-Equivalent Market Shares

Figure 19: Simulated Counterfactual Market Shares, for CFL Subsidies Ended After 2015
Notes: Aggregate shares are again simulated using estimated individual choice probabilities, weighted by
the county-level distribution of demographics and the number of households in each county. For this coun-
terfactual policy simulation, I also impose a $1 rebate per CFL bulb until the fourth quarter of 2015.
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(a) Differences Relative to 2012 Phase-Out (b) Levels

Figure 20: Total Quantity of LEDs Sold, by Phase-Out of CFL Rebates
Notes: Total LED quantities are simulated as in Figure 17, here with $1 rebates per CFL bulb through some
phase-out year. Panel (a) presents total quantities of LEDs relative to a baseline of the rebates phased out
after 2012.

(a) Differences Relative to 2012 Phase-Out (b) Levels

Figure 21: Average Discounted Environmental Externality Per Hour of Lighting, by Phase-
Out of CFL Rebates
Notes: The average discounted externality per hour of lighting is simulated as in Figure 18, here with $1
rebates per CFL bulb through some phase-out year. Panel (a) presents the average discounted externality
relative to a baseline of the rebates phased out after 2012.
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(a) Standards (b) Rebates

Figure 22: Trade-Off Between LED Quantities and Average Environmental Externality

(a) Standards (b) Rebates

Figure 23: Alternative Rates of LED Price Decline Equivalent to Counterfactual Policy
Timing
Notes: Median observed LED prices decline by approximately 6.5% per quarter. I simulate market outcomes
under alternative rates of LED price declines by multiplying each observed LED price by the ratio of the
counterfactual rate of price decline to the observed rate of price decline, adjusted for the relevant period. I
then compare total LEDs sold under each of these alternative price trajectories to the total LEDs sold under
alternative policy timings.
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(a) Standards (b) Rebates

Figure 24: Sensitivity of Policy Timing to Alternate Rates of LED Price Decline
Notes: Counterfactual simulations use alternative rates of LED quarterly price declines and alternative policy
timings. For each LED price trajectory, the average discounted externality is normalized at 1 for the policy
scenario that implements standards beginning in 2012 (panel a) or phases out CFL rebates after 2009 (panel
b).

(a) Total Quantity of LEDs (b) Average Environmental Externality

Figure 25: Sensitivity of Standards Timing to Alternate Technology Lifetimes or Externality
Values
Notes: Counterfactual scenarios vary key technology parameters (lifetime and externality) and standards
timing, holding fixed estimated demand parameters.
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(a) Total Quantity of LEDs (b) Average Environmental Externality

Figure 26: Sensitivity of Rebates Timing to Alternate Technology Lifetimes or Externality
Values
Notes: Counterfactual scenarios vary key technology parameters (lifetime and externality) and rebates tim-
ing, holding fixed estimated demand parameters.
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(a) Price Specified in Logs
(b) Democratic Voter Interacted with Efficient
Technology

(c) California Counties Dropped (d) No Operating Cost Variable

(e) CFL Product Set Changed Based on Stan-
dards Timing

Figure 27: Impact of Standards Timing on Total LED Quantities, Under Alternative Model
Specifications
Notes: As robustness tests, I simulate total quantities of LEDs purchased over the study period as a function
of the timing of standards implementation, for several different demand model specifications.
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(a) Price Specified in Logs
(b) Democratic Voter Interacted with Efficient
Technology

(c) California Counties Dropped (d) No Operating Cost Variable

(e) CFL Product Set Changed Based on Stan-
dards Timing

Figure 28: Impact of Standards Timing on Average Discounted Externality, Under Alterna-
tive Model Specifications
Notes: As robustness tests, I simulate the average environmental externality per hour of lighting purchased
over the study period as a function of the timing of standards implementation, for several different demand
model specifications.
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(a) Price Specified in Logs
(b) Democratic Voter Interacted with Efficient
Technology

(c) California Counties Dropped (d) No Operating Cost Variable

Figure 29: Impact of Rebates Timing on Total LED Quantities, Under Alternative Model
Specifications
Notes: As robustness tests, I simulate total quantities of LEDs purchased over the study period as a function
of the final year of CFL rebates, for several different demand model specifications.
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(a) Price Specified in Logs
(b) Democratic Voter Interacted with Efficient
Technology

(c) California Counties Dropped (d) No Operating Cost Variable

Figure 30: Impact of Rebates Timing on Average Discounted Externality, Under Alternative
Model Specifications
Notes: As robustness tests, I simulate the average externality per hour of lighting purchased over the study
period as a function of the final year of CFL rebates, for several different demand model specifications.
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(a) (b)

Figure 31: Impact of Altering Timing of Both Standards and Rebates
Notes: Using my baseline model specification (for which estimated demand parameters are presented in
Column 1 of Table 5), I simultaneously vary the timing of standards implementation and the phase-out
of CFL rebates. I then calculate the predicted quantity of LEDs sold and average externality for lighting
purchased during the study period.
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Bulb Type Incandescent Halogen CFL LED
450 lumens 40W 29W 10W 5.5W
800 lumens 60W 43W 13W 8.5W

1,100 lumens 75W 53W 18W 11W
1,600 lumens 100W 72W 23W 14.5W

Table 1: Typical Wattages for General Purpose Bulbs by Technology

Technology Incand. Halogen CFL LED
Share 40W-eq 0.115 0.118 0.122 0.210
Share 60W-eq 0.494 0.399 0.521 0.677
Share 75W-eq 0.222 0.230 0.141 0.0512
Share 100W-eq 0.169 0.254 0.217 0.0625

Share Private Label 0.232 0.200 0.197 0.208

Mean Price $0.54 $1.81 $3.44 $7.35
Median Price $0.48 $1.74 $3.39 $5.91

Std. Dev. Price $0.28 $0.53 $1.30 $5.09
Min Price $0.10 $0.11 $0.10 $0.23
Max Price $5.00 $6.99 $17.99 $52.99

Mean Share 0.0993 0.0349 0.0101 0.0210
Median Share 0.0623 0.0674 0.0168 0.00552

Std. Dev. Share 0.107 0.0785 0.0209 0.0397

Table 2: Descriptive Statistics of Product Characteristics
Notes: I calculate summary statistics for the sample of data used in demand estimation. The share of bulb
characteristics (wattage-equivalent and brand) by technology is calculated using the total quantities of bulbs
sold. Summary statistics for prices and shares by technology are calculated using product-county-quarter
observations.

Instrument Mean Std. Dev. Min. Max. Obs.
Rare earth prices $132.63 $133.65 $27.13 $416.8 9

Semiconductor prices $80.83 $2.90 $76.10 $86.53 36
Fluorescent ballast prices $194.56 $1.38 $191.70 $195.80 14

Retail wages $429.10 $44.77 $327.18 $627.70 90,429
Commercial real estate $96.87 $33.47 $32.10 $184.80 1,836

Diesel prices $3.33 $0.63 $1.97 $4.33 288

Table 3: Descriptive Statistics for Cost Shifters
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(1) (2) (3) (4) (5) (6)
OLS IV Logit IV Logit OLS IV Logit IV Logit

Average Price -0.231 (0.00391) -0.674 (0.0222) -0.241 (0.00436) -0.705 (0.0248)
Log Average Price -2.119 (0.0696) -2.093 (0.0743)
CFL × 100 -1.381 (0.0278) 0.995 (0.0916) 1.100 (0.0924) -1.343 (0.0287) 1.117 (0.100) 1.067 (0.0983)
CFL × 40 -1.812 (0.0280) -0.552 (0.0729) -0.435 (0.0747) -2.017 (0.0240) -0.448 (0.0805) -0.463 (0.0794)
CFL × 60 -0.295 (0.0210) 1.263 (0.0732) 1.466 (0.0788) -0.135 (0.0208) 1.360 (0.0802) 1.438 (0.0839)
CFL × 75 -1.269 (0.0234) 0.455 (0.0849) 0.535 (0.0841) -1.994 (0.0283) 0.574 (0.0937) 0.503 (0.0896)
Halogen × 100 -3.903 (0.0766) 0.913 (0.0795) 0.660 (0.0823) 0.125 (0.0589) 0.969 (0.0802) 0.649 (0.0825)
Halogen × 40 -3.112 (0.0316) 0.365 (0.0500) 0.181 (0.0477) -3.089 (0.0319) 0.419 (0.0523) 0.169 (0.0487)
Halogen × 60 0.936 (0.0366) 1.734 (0.0590) 1.552 (0.0583) 0.953 (0.0369) 1.788 (0.0607) 1.540 (0.0591)
Halogen × 75 -3.876 (0.0487) 1.069 (0.0636) 0.836 (0.0638) 0.307 (0.0427) 1.122 (0.0648) 0.825 (0.0643)
Incandescent × 100 -1.256 (0.0875) -3.291 (0.124) -1.238 (0.0883) -3.270 (0.126)
Incandescent × 40 -0.282 (0.0321) -1.385 (0.0531) -3.041 (0.0695) -0.276 (0.0322) -1.362 (0.0547) -3.027 (0.0707)
Incandescent × 60 1.323 (0.0449) -0.332 (0.0707) -2.267 (0.0879) -0.607 (0.0612) -0.313 (0.0722) -2.249 (0.0896)
Incandescent × 75 -1.189 (0.0625) -0.899 (0.0730) -2.805 (0.0967) 0.705 (0.0547) -0.879 (0.0740) -2.787 (0.0984)
LED × 100 0.194 (0.400) 24.04 (1.522) -1.603 (0.433) 2.757 (0.496) 2.623 (0.137) 2.108 (0.124)
LED × 40 -2.097 (0.207) 13.08 (0.833) -1.609 (0.315) -1.234 (0.148) 1.060 (0.0636) 1.207 (0.0695)
LED × 60 -0.303 (0.352) 21.24 (1.273) -1.804 (0.361) -3.265 (0.686) 2.559 (0.0599) 2.606 (0.0612)
LED × 75 0.321 (0.410) 28.39 (1.512) -1.473 (0.556) -0.984 (0.223) 1.749 (0.124) 1.355 (0.111)
Private Label -1.380 (0.0157) -1.572 (0.0164) -1.680 (0.0181) -1.382 (0.0157) -1.578 (0.0165) -1.676 (0.0186)
Operating Costs -0.0128 (0.00603) -0.00522 (0.00666) 0.0232 (0.00794) -0.0128 (0.00604) -0.00497 (0.00677) 0.0227 (0.00794)
Before/After Stds. Yes Yes Yes Yes Yes Yes
Time Trends x LEDs Yes Yes Yes No No No
Time Dummies x LEDs No No No Yes Yes Yes
F-stat - 270.51 435.06 - 291.04 341.23

N 560098 560098 560098 560098 560098 560098

Standard errors in parentheses (clustered at county level)

Table 4: Demand Estimates from OLS and IV Logit Specifications
Notes: I estimate demand parameters for OLS and IV logit specifications without accounting for consumer
heterogeneity. In IV specifications (Columns 2, 3, 5, and 6), instruments include manufacturer cost shifters,
retailer cost shifters, and differentiation instruments. In all specifications, I interact product category with
an indicator for whether the relevant efficiency standards had taken effect, for all incandescent, halogen, and
CFL products. In Columns 1-3, I interact LED product categories with linear and quadratic time trends; in
Columns 4-6, I instead interact LED product categories with period-specific time dummies. Column 2 most
closely matches my baseline specification that allows for consumer heterogeneity.
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(1) (2) (3) (4) (5) (6) (7)

Average Price -1.070 -0.971 -1.687 -0.790 -1.071 -1.370
Log Average Price -2.938
CFL × 100 -6.773 0.523 -0.768 -3.030 -7.545 -12.371 -6.101
CFL × 40 -8.413 -1.034 -2.640 -4.60 -9.184 -14.424 -7.642
CFL × 60 -6.540 0.843 -0.945 -2.780 -7.311 -11.937 -5.644
CFL × 75 -7.379 -0.013 -1.434 -3.582 -8.150 -12.808 -6.720
Halogen × 100 1.360 1.394 3.380 1.095 1.359 -1.779 0.794
Halogen × 40 0.964 0.879 2.446 0.561 0.965 -0.668 0.477
Halogen × 60 2.280 2.237 3.938 1.924 2.280 -0.298 1.803
Halogen × 75 1.561 1.549 3.313 1.250 1.561 -1.130 1.023
Incandescent × 100 -1.408 -1.182 0.138 -1.232 -1.412 0.748 -4.259
Incandescent × 40 -1.238 -1.190 -0.255 -1.313 -1.239 0.219 -3.620
Incandescent × 60 -0.315 -0.196 0.847 -0.284 -0.317 1.637 -3.057
Incandescent × 75 -0.925 -0.770 0.409 -0.854 -0.927 0.899 -3.622
LED × 100 48.518 38.990 78.799 28.191 48.546 -3.846 5.123
LED × 40 18.707 20.209 40.074 12.641 18.817 -7.253 -5.513
LED × 60 34.841 32.778 64.400 22.914 34.952 -6.164 -3.177
LED × 75 53.568 45.812 89.663 33.000 53.641 -4.773 3.375
Private Label -1.736 -1.720 -2.021 -1.621 -1.737 -1.853 -1.827
Operating Costs 0.0310 0.007 -0.054 -9.72e-05 0.031 0.053 0.0643
CFL, LED × Human 10.789 16.289 9.694
CFL, LED × College 4.446
CFL, LED × Democratic 9.188
CFL, LED × Support RPS 5.285
CFL × Human 11.569
LED × Human 10.690
Before/After Stds. Yes Yes Yes Yes Yes Yes Yes
Time Trends x LEDs Yes Yes Yes Yes Yes No Yes
Time Dummies x LEDs No No No No No Yes No

N 560098 560098 560098 560098 560098 560098 560096

Standard errors are bootstrapped and clustered at county level (in progress)

Table 5: Demand Estimates from Logit Specifications with Consumer Heterogeneity
Notes: I estimate demand parameters for specifications that account for consumer heterogeneity using ob-
served distributions of demographics. Columns 1-4 vary the demographic characteristics included in the
model (expressed belief in human-caused climate change, college educated, Demographic voter, expressed
support for state Renewable Portfolio Standard policies). Column 5 allows for separate interactions between
demographics and CFL and LED bulbs, respectively. Column 6 uses period-specific time dummies interacted
with LED product categories, instead of linear and quadratic time trends. Column 7 specifies prices per
bulb in logs rather than in levels.
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Price Level Price Log

Own-Price Elasticity Mean Median Mean Median
Incandescent -0.52 -0.46 -2.64 -2.75

Halogen -1.80 -1.65 -2.72 -2.82
CFL -3.54 -3.51 -2.82 -2.87
LED -7.68 -6.18 -2.79 -2.90

Table 6: Estimated Own-Price Elasticities by Technology
Notes: I calculate mean and median own-price elasticities by technology using the specifications in Column
1 of Table 5 (prices in levels) and Column 7 of Table 5 (prices in logs).
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(1) (2) (3)
No CA No Oper. Cost Alt. Lifetimes

Average Price -1.070 -0.971 -1.687
CFL × 100 -6.773 0.523 -0.768
CFL × 40 -8.413 -1.034 -2.640
CFL × 60 -6.540 0.843 -0.945
CFL × 75 -7.379 -0.013 -1.434
Halogen × 100 1.360 1.394 3.380
Halogen × 40 0.964 0.879 2.446
Halogen × 60 2.280 2.237 3.938
Halogen × 75 1.561 1.549 3.313
Incandescent × 100 -1.408 -1.182 0.138
Incandescent × 40 -1.238 -1.190 -0.255
Incandescent × 60 -0.315 -0.196 0.847
Incandescent × 75 -0.925 -0.770 0.409
LED × 100 48.518 38.990 78.799
LED × 40 18.707 20.209 40.074
LED × 60 34.841 32.778 64.400
LED × 75 53.568 45.812 89.663
Private Label -1.736 -1.720 -2.021
Operating Costs 0.0310 -0.054
CFL, LED × Human 10.789 10.457 11.001
Before/After Stds. Yes Yes Yes
Time Trends x LEDs Yes Yes Yes
California Incl. No Yes Yes
Alt. Lifetimes No No Yes

N 530893 560098 560098

Standard errors are bootstrapped and clustered at county level (in progress)

Table 7: Demand Estimates from Logit Specifications with Consumer Heterogeneity
Notes: As robustness tests, I estimate demand parameters for additional specifications that account for
consumer heterogeneity using observed distributions of demographics. Column 1 drops all California counties,
since the timing of efficiency standards was different in California relative to the rest of the U.S. Column 2
drops the operating cost variable. Column 3 uses alternative bulb failure rates by technology, varying the
parameters of the Weibull survival distribution from U.S. Department of Energy (2016).
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