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Lecture 2: Di�usion

1 Introduction
If you we put a drop of red dye in water, it will slowly di�use throughout the water. Why does
this happen? How fast does it happen? What is going on microscopically?

The microscopic mechanism of di�usion is very simple: the dye molecules start densely concen-
trated near one point. Then they get bumped by neighboring molecules until they are spread out
all over. To model this process, we can suppose that the dye molecule moves a distance ` between
collisions and after each collision its direction is completely randomized. This approximation is
called a random walk. Although the distance ` between collisions has some variation and the
direction of scattering is somewhat correlated with the initial direction, because molecules collide
billions of times per second, the law of large numbers applies to their net displacement and random
walks provide an excellent approximation to real di�usion.

Random walks are actually quite common. They can be used to model any stochastic process.
For another example, say you're playing blackjack with a friend. You are both expert players and
evenly matched. Sometimes you win, sometimes she wins. Each time you play, you bet 1 dollar.
This is a 1-D random walk. Say you play N games. Although we can't say who will be winning
after N games, we can predict how by much they would be winning.

The 2-dimensional random walk is sometimes called the drunkard's walk. The idea is that
a drunkard leaves a party late at night, takes a step in one direction, then gets totally disoriented
and takes a step in another direction. How far will she get after N steps?

2 1D random walk
Let's work out the blackjack problem. We'll make it a little more interesting. Say you have a
probability a of winning and your opponent has a probability b=1¡ a of winning. If you play N
times, the chance of you winning m of them is

BN(m) = ambN¡m
�
N
m

�
(1)

This is known as the binomial distribution. The factor�
N
m

�
=

N !
m!(N ¡m)! (2)

is known as the binomial coe�cient. It is the number of ways of picking m of the games for you
to have won out of the N total games.

Binomial coe�cients come up in the expansion of powers of sums. Namely
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So the binomial distribution is simply the mth term in this sum. In fact, this relationship makes
it easy to see that the probabilities sum to 1:X
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since b=1¡ a.
How much can you expect to be winning after N games? This is determined by the number of

games you win, namely the expected value of m:
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Although b = 1 ¡ a we can compute the sum on the right most easily if we allow a and b to be
unrelated. Then, we note that this sum is the same as the sum in Eq. (4) if we di�erentiate with
respect to a, then multiply by a. So we have

X
m=0

N

mambN¡m
�
N
m

�
= a@a

" X
m=0

N

ambN¡m
�
N
m

�#
= a@a(a+ b)N=Na(a+ b)N¡1 (6)

Now that we can compute the sum for any a and b we can take the case of interest where b=1¡a
and get

hmi=Na (7)

Similarly, the standard deviation is

�= Nab
p

(8)

As N!1 the binomial distribution approaches a Gaussian, by the central limit theorem. Thus
knowing the mean and standard deviation, we know the whole answer:

BN(m)!
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2�Nab
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We can derive this by studying the fallo� of ln BN(m) at large N , but using the central limit
theorem is easier.

For the blackjack game, you expect to win Na times and lose Nb times, so that

hwinningsi=N(a¡ b) (10)

and the standard deviation is

�winnings=2 Nab
p

(11)

For a fair match a= b= 1

2
and so the expected winnings are hwinningsi=0 with standard deviation

�= N
p

(12)

That � grows as N
p

is exactly what we expect for the sum of random values by the central limit
theorem. The a= b=

1

2
case is sometimes called an unbiased 1D random walk.

For example, if you play 100 games for $1 each and are evenly matched, then hwinningsi = 0
and �winnings= $10. This means that after 100 games, we don't know who's winning but there is
a 32% chance someone is up by at least $10.

For an unbiased 1D random walk, the mean displacement is 0. In this case, the typical scale for
displacement is better described by the RMS �uctuation, which reduces to the standard deviation
when the mean is zero. That is, the RMS �uctuation is xrms=�= N

p
. Typically, RMS �uctuations

are used for quantities that average to zero (as in a unbiased random walk), but there is no hard
and fast rule about when to use the mean displacement and when to use the RMS �uctuation.

Let us compare the binomial distribution to the Poisson distribution. The binomial distribution
BN(m) is de�ned for discrete N and m, in contrast to the Poisson distribution Pm(t)=

(�t)m

m!
e¡�t

which has discrete m but continuous t. For a binomial distribution, the smallest interval is one
discrete step, with probability of occurrence a. For Poisson, we can take an arbitrarily small
timestep�t with probability dP =��t. If we identify the interval for the binomial distribution with
that of the Poisson distribution by setting a=��t=�

t

N
, and then take the limit N!1 we �nd
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which formally recovers the Poisson distribution from the binomial distribution. Note that this
requires taking N !1 holding �t=Na �xed, and therefore a! 0 and b! 1. In other words, a
Poisson process is like a random walk that always goes in one direction but you don't know when
the step will be taken.
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Although they can be related, as we have seen, you should really think of binomial and Poisson
distributions as being relevant in di�erent contexts: binomial is used when the steps are discrete
and incoherent (random directions) and Poisson is used when time is continuous but the steps are
coherent (counts always increase). If we are �ipping coins, then a= 1

2
is �xed, and so the Poisson

distribution is not relevant since it needs a= 0. For a decay process, a decay can happen at any
time t and so the binomial distribution is not appropriate. After a given time t, a Poisson process
can have potentially an in�nite number of events. With a binomial process the time is the number
of steps N , so the number of possible events is always bounded.

2.1 Random walks in 2D and 3D
For the 2D case, a popular picture of the random walk is a drunkard stumbling around. In each
time step she moves a distance L in some random direction. In 3D you can imagine a dye molecule
di�using in water and in each time step it bumps into something, and then gets bu�eted into a
di�erent direction. For simplicity, we'll assume in the 2D and 3D cases that the distance is the same
each step and the angle totally random. Where will the drunkard or molecule be after N steps?

Let us say that in the jth step she moves by a displacement ~̀j. The vectors ~̀j all have length
`. The dot product of two vectors is

~̀
j �~̀k= `2cos�jk (14)

where �jk is the angle between the two steps. Since we are assuming the angle is random, then the
expectation value of this dot product is zero:

h~̀j �~̀ki= `2
1
�

Z
0

�

d� cos�=0 (15)

Now let s~N be the total displacement from the origin after N timesteps.

s~N =
X
j=1

N

~̀
j (16)

Then

hs~N2 i= h
¡
s~N¡1+~̀N

�2i= hs~N¡12 i+2hs~N¡1 �~̀N i+ h~̀N2 i (17)

Now, the angle between ~̀N and s~N¡1 is totally random, so hs~N¡1 �~̀N i=0, and h~̀N2 i= `2. So we �nd

hs~N2 i= hs~N¡12 i+ `2 (18)
Therefore

hs~N2 i=N`2 (19)

and the RMS distance moved is N
p

`, just like in the 1D case.

3 Di�usion from random walks
Di�usion refers to the net spreading of the distribution of molecules due to random molecular
motion. Think about an individual molecule in a gas, say some CO molecule coming out of a
car's exhaust. It leaves the exhaust and moves in a straight line until it hits another molecule, in
which case it is bu�eted essentially randomly in a di�erent direction. As all the CO molecules are
doing the same thing, on average, the net e�ect is a di�usion of the CO gas. We want to compute
the probability distribution Pt(x) for where a CO molecule is after a time t and then use this to
determine the equation of motion of the density of the gas.

3.1 Collisions in a gas
It's helpful to discuss random walks for gases in terms of a set of convenient physical quantities.
An important one is

� � = the collision time is the average time a molecule goes before colliding with another
molecule
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The number of collisions in a time t is then

N =
t

�
(20)

A related quantity is

� ` = the mean free path is the average distance a molecule goes between collisions

The mean free path is related to the collision time by

`= v�� (21)

where

� v� = the average molecular velocity, v�= hjv~ ji.

Sometimes a more useful quantity is the root-mean-square velocity vrms = hv~2i
p

. We can also
use the speed of sound cs in a gas, which is of course limited by the speed by which the molecules
move. All three of these, v�; vrms and cs are related by coe�cients of order one, as we will see once
we understand gases in more detail in future lectures. For example, in air at room temperature,
v�= 467m

s
, vrms= 507m

s
and cs= 346m

s
.

The mean free path is related to the density and size of the molecules. Treating molecules a
spheres of radius R, two molecules will hit if their centers are within 2R of each other. Thus you can
think of a moving molecule as having an e�ective cross sectional area of �=�(2R)2. This e�ective
cross sectional area is also called the collisional cross section. After N collisions a molecule will
have swept out a volume V =N`�. The number of molecules it hits during this sweeping is N =Vn
with

� n = the number density = number of molecules per unit volume

We will use number density a lot in statistical mechanics. It is interchangeable with the

� � = the mass density.

as �=mn wherem is the mass of a molecule (or the average mass of a molecule if the gas is mixed).
Thus,

`=
1

n�
(22)

Bigger molecules have bigger cross sectional areas so they will have smaller mean free paths. Since
liquids are more dense than gases, generally they will have smaller mean free paths.

For example, the radius of a typical atom is around the Bohr radius a0 = 0.05 nm. So an air
molecule, such as N2 or O2, has a radius of around R�2a0�0.1nm. Thus ���(2R)2=0.14nm2 in
air. Air has a density of �=1.3 kg

m3 and an average mass of m=4.81�10¡26 kg
molecule , so its number

density is n= �

m
= 2.6� 1025 1

m3 . Note that n¡1/3= 3.3nm so air molecules are around 3nm apart
on average. The mean free path is `= 1

n�
= 0.26�m. The collision time is then � = `

v�
= 0.57ns.

These are useful numbers to have in your head: in air at room temperature, molecules have
velocities around v�500 m

s
, are around R�0.1nm big and n¡1/3�1nm apart. They collide around

once every nanosecond (one billion times per second) after having moved around `� 100nm (one
thousand molecule lengths).

3.2 Di�usion from random walks
Let's now consider the probability distribution Pt(x) for where a CO molecule is after a time t.
We'll start in one dimension. Treating molecular interactions as a random walk, we take a= b=

1

2

since the molecule should be equally likely to be knocked left as right. Such a random walk is
unbiased. For an unbiased random walk, the mean displacement is x� = 0 and therefore does not
tell us much about how fast the molecules are di�using. Instead, the RMS displacement is more
useful. The RMS displacement after a time t is, from Eq. (12)

xrms= N
p

`=
t
�

r
`= `v�t
p

(23)
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This x� t
p

behavior is the key characteristic of a random walk. Note that this is going to be a
much smaller distance than an unhindered molecule would move on average, �x� vt.

Knowing the mean (x� = 0) and the standard deviation (� = `v�t
p

) we can immediately write
down the full probability distribution for large times (t� �) using the central limit theorem:

Pt(x)=
1

2�`v�t

r
exp

�
¡ x2

2t`v�

�
(24)

Note that probability distribution satis�es the di�erential equation

@Pt(x)
@t

=D
@2Pt(x)
@x2

(25)

where D=
1

2
`v�. This is the 1D di�usion equation. You can easily check by plugging Eq. (24) into

Eq. (25).
We de�ned Pt(x) as a probability distribution for one particular CO molecule in a gas. But

the same probability distribution holds for any molecule. Since there are usually an enormous
number N � 1024 of gas molecules, if each one has a probability Pt(x) of being at the the point x
then number density will be simply

n(x; t)=NPt(x) (26)

To be precise, the number density is not exactly the same as the probability distribution since,
classically, a particle is either at a particular position or not. So we should think of n(x; t)=NPt(x)
as referring to the number density averaged over time. (We'll return to this averaging in the next
lecture, in the context of ergodicity.)

Thus we �nd
@n(x; t)
@t

=D
@2n(x; t)
@x2

(27)

In 2 or 3 dimensions, the resulting equation is the rotationally symmetric version of this:

@n(x~ ; t)
@t

=Dr~ 2n(x~ ; t) (28)

This is known as the di�usion equation. It describes how substances move due to random motion.
The coe�cient is

D=
1

2
`v�=

1

2

`2

�
(29)

This coe�cient D is called the di�usion constant and the relation D =
1

2

`2

�
is known as the

Einstein-Smoluchowski equation.
Just because the di�usion equation looks simple does not mean it has trivial consequences! For

example, it is mathematically identical to the Schrödinger equation, which accounts for a great
variety of interesting physics.

The di�usion equation is linear, so that if n1(x~ ; t) and n2(x~ ; t) are solutions, then so is their
sum. In particular if we start with a bunch of particles at some positions xi, then they will di�use
independently of each other. This gives us a way to solve the di�usion equation in general. For one
particle, starting at x~ =0, the solution is given by Eq. (24). Note that at t=0, this solution really
does represent a localized source. In fact, the limit as t! 0 of this solution is one of the possible
de�nitions of a �-function:

lim
t!0

1
4�Dt

r
exp

�
¡ x~ 2

4Dt

�
= �3(x~ ) (30)

where �3(x~ ) = �(x)�(y)�(z). Thus Eq. (24) is a solution to the di�usion equation with boundary
condition n(x~ ; t) = �3(x~ ) at time t= 0: it describes the di�usion away from a point source. Since
any function can be described as a set of points, we can construct any solution to the di�usion
equation by combining the solutions as in Eq. (24). More precisely, if n0(x~ ;0) is the number density
at time 0, then the solution for all times is

n(x~ ; t)=

Z
d3y

1

2�`v�t

r
exp

�
¡(x~ ¡ y~)2

2t`v�

�
n0(y~ ; 0) (31)
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To check this, we note that the right-hand side satis�es the di�usion equation and Eq. (30) veri�es
the boundary condition at t=0. Solving di�erential equations in this way is known as theGreen's
function method.1 It converts solving a di�cult di�erential equation to doing an integral.

Eq. (31) has a simple physical interpretation: the number of molecules at a point x~ are those
that have walked there randomly from any other point y~ over the time t.

4 Fick's laws of di�usion

The approach to di�usion we discussed was based on a microscopic picture of random walks
of individual molecules. We can also approach di�usion from the continuum perspective. Let
us continue to denote the number density by n(x~ ; t) and let us also denote the velocity of the
distribution as the vector �eld v~(x~ ; t). For simplicity, lets assume that n and v~ are constant in the
y and z directions, so they only depend on x, n=n(x; t), v~=(vx(x; t);0;0). Now, the total number
of molecules between x1 and x2 can only change if particles �ow in or out of that region. So

d
dt

Z
x1

x2

dxn(x; t) =n(x1; t)vx(x1; t)¡n(x2; t)vx(x2; t) (32)

=¡
Z
x1

x2

dx@x[n(x; t)vx(x; t)] (33)

Pulling the d

dt
on the left into the integral, and using that x1 and x2 are arbitrary, we get

@

@t
n(x; t)=¡@xJx(x; t) (34)

where

Jx(x; t)=n(x; t)vx(x; t) (35)

The 3D version of this equation is called the continuity equation

@n
@t

+r~ � J~=0 (36)

and J~(x~ ; t) is called the �ux. The �ux is the density times velocity. It gives the number of particles
passing by a given point per unit area per unit time. Note that the velocity �eld itself does not
depend on how many particles there are, only their speed. It is the �ux that depends on density.

What do we know about the �ux other than continuity? Well, if the density is constant in
position, then nothing should move and J~ should vanish. If the density changes, then J~ should
be nonzero. Thus, the leading order thing we could imagine is that J~ is proportional to the
concentration gradient:

J~=¡Dr~ n (37)

with D a proportionality constant. This is known as Fick's �rst law. It's a law because we didn't
derive it � Fick observed a common relationship phenomenologically and just wrote down Eq.
(37). We put in the minus sign so that D would be a positive number (if @xn> 0, so the gradient
increases to the right, then particles �ow to the left .)

Once we have Eq. (37) we can plug into the continuity equation, Eq. (36) to get

@n(x~ ; t)
@t

=Dr~ 2n(x~ ; t) (38)

This is also known as Fick's second law. It is none other than the di�usion equation. Since
Fick's second law follows from Fick's �rst law, in fact, we have justi�ed Fick's �rst law through
our analysis of random walks. Moreover, through our analysis of random walks, we have related
D to properties of the gas, D=

1

2
`v� as in Eq. (29).

1. In general, a Green's function satis�es OG(x; t) = �(x)�(t) for some di�erential operator O. In our case, the

Green's function is G(x~ ; t) =P (x~ ; t)�(t)=
1

4�Dt

q
exp

h
¡ x~2

4Dt

i
�(t) which satis�es

�
@t¡Dr~ 2

�
G(x~ ; t)= �3(x~ )�(t).
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For example, say we have some lemmings that come out of a hole, walk down a slope of length
a, then fall o� a cli�. The density of lemmings at the hole at z= a is n1. They spread out as they
walk down, so the density lowers down the slope to a density n0 at the top of the cli�. A solution
to the di�usion equation is that the density in between is linear, n(z) = n0 +

z

a
(n1 ¡ n0). Then

Jz=¡D

a
(n1¡n0). This is a constant �ux of lemmings going from high density to low. The density

is not changing with time, since @n

@t
=¡D@z2n=0. The nonzero �ux Jz=¡D

a
(n1¡n0) tells us both

the number of lemmings coming out of the hole and number falling of the cli� per unit time per
unit area. Note that Jz is constant, so @zJz=0 and the continuity equation is satis�ed.

To get a feel for how fast di�usion is, the di�usion constant in water for nitrogen molecules is
D= 2� 10¡9m

2

s
. Recalling from Eq. (22) that `= 1

n�
, so D=

1

2

v�

n�
, bigger molecules should have

smaller di�usion rates. Indeed, benzene molecules C6H6 in water have D=1� 10¡9 m
2

s
. For large

molecules like proteins in water the di�usion constant is even smaller D � 10¡11m
2

s
. In gases,

densities n are smaller so ` is larger and the di�usion constants are generally larger. For example,

CO molecules in air at room temperature and pressure have D=2� 10¡5m
2

s
.

To use the di�usion contant, we can either plug in the exponential solution, Eq. (24), or more
simply use Eq. (23):

xrms= 2Dt
p

(39)

For example, taking a dye molecule in water with D � 10¡9m
2

s
, to move �x = 1m would take

(�x)2

2D
= 31 years. So clearly di�usion is not the main mechanism by which dyes move around in

water.
By the way, thermal conduction is very much like di�usion. Instead of the di�usion equation,

temperature satis�es the heat equation:

@T (x; y; z; t)
@t

=�r~ 2T (x; y; z; t) (40)

where � is called the coe�cient of thermal di�usivity. This equation describes di�usion of temper-
ature, rather than di�usion of particle number. The derivation of the heat equation is identical to
the derivation of Fick's second law, with conservation of energy replacing conservation of particle
number. The analog of Fick's �rst law for thermal conduction is called Fourier's law. Fourier's law
is an empirical observation that the rate of heat �ow is proportional to the temperature di�erence.
We'll return to thermal conduction when we talk about temperature and heat in future lectures.

4.1 Convection (optional)
Di�usion refers to the motion of a molecule through random collisions. Think of a liquid in equilib-
rium and just try to follow one molecule. Convection occurs when the system is not in equilibrium
to begin with. In such situations, there can be coherent convective currents, like a hot or cold
wind, that move the dye much faster than through a random walk. Or if you dropped the dye into
the water with a dropper it hits with some force and has some inertia; then it takes a while for
the system to equilibrate and the dye molecules are for a while moving much faster than due to
di�usion.

If there is some external e�ect causing the medium to �ow with velocity v~conv(x~ ; t), then there
will be �ux even if there is no concentration gradient. We can introdude the convective �ux

J~conv(x~ ; t)= v~convn(x~ ; t) (41)

to describe this situation. Adding this convective �ux to the di�usive �ux, we get a new term:

@n(x~ ; t)
@t

=Dr~ 2n(x~ ; t)+ v~conv�rn(x~ ; t) (42)

This is called the generalized di�usion equation and describes situations where di�usion and
convection are both important. Unfortunately, it is usually impossible to determine J~conv(x~ ; t),
since when there is convection usually molecules are all moving around in di�erent directions and
it is a horribly non-linear process. Think about this next time you pour milk into your co�ee � all
those little eddy currents and funny shapes are convective. Good luck describing them analytically!
Convection is almost always studied with numerical simulations.
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So for di�usion to actually be visible, a system has to be very calm � no temperature, density
or chemical gradients. A place where di�usion is more important than convection is in biology.
In biological systems, temperature is often very constant, convection is small, and molecules do
not have to move very far. Di�usion of heat (thermal conduction) is the dominant mechanism of
heat transfer in solids, for example as you heat up a pan on the stove. However, when you heat a
room, convection dominates and the heat equation, Eq. (40) is not relevant.

5 Brownian motion

An important application of the di�usion equation is to study Brownian motion. In 1827, a botanist
named Robert Brown collected some pollen one Spring afternoon and put it in some water in a
Petri dish in his lab, then went to bed. When he woke up, he found that the pollen grain had
moved a signi�cant distance. �It's alive!� he concluded. In fact, the pollen moved not because it is
alive, but rather because it underwent a random walk due to the water molecules surrounding it
constantly giving it little kicks. This movement is called Brownian motion, after Robert Brown.

Brownian motion refers to the random walk of a large particle due to stochastic collisions
with smaller particles. Although each hit from a small particle does very little, the hits add
up to a macroscopically observable displacement. You can see Brownian motion easily with a
microscope, where a dust particle or a bacterium will move a �nite distance in a reasonable time.
What is fascinating about this migration is that you cannot resolve the small molecules, like water
molecules, in the microscope, so it looks like the big particle is moving by magic. Of course, it is
not magic, and indeed we can deduce the existence of �invisible� molecules from Brownian motion
of something visible. Einstein used this insight to measure Avogadro's number, as we will now see.

The molecular collisions have another e�ect too � they slow down a moving particle, through
a drag force. Indeed, drag, that you experience running your hand through the air or in water is
a collective e�ect of many small molecules impeding the motion. Drag forces are macroscopic and
can be measured without ever talking about molecules. For example we could rub the particle to
make it electrically charged, then pull it with the electric force and measure the resistance. Or we
could tie a tether to it, add a weight, and pull it with gravity. A drag force, by de�nition, slows
down a particle, so if v~ =0 it should vanish. Thus, the leading e�ect in an expansion around v~ =0
of any drag force is that it is linear in the velocity. Calling the mass of the particle m and the
external force F~ext, the drag force we can then write

m
d2x~

dt2
+ �

dx~

dt
=F~ext+F~B (43)

where x~ is the position of the particle, � is the drag coe�cient (also called called mobility),
and F~B is the force due to Brownian motion. That is, F~B is a rapidly varying function of time,
representing the small forces that the molecules give from whatever direction they come in at.
Generally, when F~ext is nonzero then F~B can be neglected. So we turn F~ext on to measure �, then
turn F~ext o�.

Once � is measured and F~ext turned o� we can look at the distance the dust particle moves due
to Brownian motion alone. Of course, the expected value is hx~ i=0, by symmetry, so we want to
look at the RMS displacement xrms= hx~ 2i

p
. We want to know how x~ 2 changes with time:

d

dt
x~ 2=2x~ � d x~

dt
=2x~ � v~ (44)

First note that Eq. (43) implies
d
dt
v~ =¡ �

m
v~ +

1
m
F~B (45)

So then we have

d
dt
x~ � v~ =

�
d
dt
x~

�
� v~ +x~ �

�
d
dt
v~

�
= v~ � v~ ¡ �

m
x~ � v~ + 1

m
x~ �F~B (46)
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Now let's take the average of all the quantities in this equation over very many molecular collisions.
Since the force F~B due to molecular collisions is in a random direction, on average it is totally
uncorrelated to the current position of the particle, so hx~ � F~Bi= 0 as in Eq. (15). Then we have
simply

d
dt
hx~ � v~ i= hv~2i¡ �

m
hx~ � v~ i (47)

The general solution of this equation starting at x~ =0 is

hx~ � v~ i= m
�
hv~2i

�
1¡ e¡

�t

m

�
(48)

For late times t� m

�
, the exponential is very small and we see that hx~ � v~ i= m

�
hv~2i is constant in

time. Then, from Eq. (44) we get
d
dt
hx~ 2i= 2m

�
hv~2i (49)

So that

hx~ 2i= 2m
�
hv~2i t (50)

The RMS displacement is therefore

xrms= hx~ 2i
p

= vrms
2m
�

r
t

p
(51)

where vrms= hv~2i
p

. Comparing to Eq. (39) we have

D=
1
�
hmv~2i (52)

This is known as the Einstein relation.
Since � is the macroscopic drag coe�cient and xrms and t are measurable, this equation lets us

determine the average kinetic energy of each molecule. Using also the total energy in a system, we
can then determine the number of molecules. More precisely, we can derive an explicit formula for
NA if we borrow a result from Lecture 4, that the average kinetic energy per particle is h1

2
mv~2i=

3R

2NA
T with R the ideal gas constant and T the temperature. (It should not be obvious to you that

the average kinetic energy is determined by the temperature, but it's true as we'll show in Lecture
4.) Then Eq. (52) implies

NA=
3RT
�D

(53)

So by measuring the temperature (with a thermometer), the drag coe�cient (with an external
force) and the rate of di�usion (from Brownian motion), the number of water molecules NA can
be determined. This is how Albert Einstein proposed to measure Avogadro's number NA using
Brownian motion in 1905.

5.1 Viscosity
Drag is closely related to viscosity. Viscosity is another physical e�ect whose microscopic origin
is in the stochastic collision of molecules. The more precise name for viscosity is dynamic shear
viscosity. It measures how a �uid responds to shear forces: you push the top layer and ask how
much the bottom layer moves. Intuitively, viscosity is a measure of how well a �uid �ows.

A shear force is applied to an area. Think of �oating a block of wood on water and applying a
force F~ to move it parallel to the surface. The bigger the area of the block, the more force it puts
on the water. The water then responds by picking up some velocity v~ , in the same direction as the
force. The deeper you go into the water, the slower it will go. So we might expect

F~

A
==================
?
�
v~
z

(54)

with z the depth. This isn't quite right, because we don't know that the z dependence is exactly 1

z
.
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The right way to think about this shear force is that we apply it only to the top of the water.
When the top of the water moves, it pulls along the layer below that (by layer we mean layer of
molecules, or just some abstract in�nitesimal thickness of the �uid), and so on. So we write

F~

A
= �

@v~
@z

(55)

The parameter � is this equation is called the viscosity.
You don't need to apply the shear force externally. For example, imagine a sphere falling

through a viscous �uid. It has a downward force due to gravity. As it moves down, it displaces
the molecules.

Figure 1. A ball falling through a viscous �uid has a downward force due to gravity and a drag force due
to viscosity

The de�nition of viscosity tells us that the sphere induces a velocity of the �uid

@v~
@z

=
F~g

4��R2
(56)

where 4�R2 is the surface area of the sphere. At the surface of the sphere, the �uid velocity is the
same as the sphere velocity. Thus we can solve this equation to see how the �uid velocity changes
with distance. The faster the sphere is falling, the faster the �uid will go. Eventually, all the energy
used by gravity to accelerate the sphere will be taken up by the work done to move the water, and
the sphere will stop accelerating. Thus, there will be some e�ective drag force. Working out all
the factors (an annoyingly tedious calculation), the result is

F~drag=6��R v~ (57)

This is known as the Stokes drag force. Note that it is linear in R.
Note that we de�ned mobility as the drag coe�cient in Eq. (43). So

�=6��R (58)

This is known as the Stokes relation. Plugging it into the Einstein relation in Eq. (52) gives

D=
1

6��R
hmv~2i (59)

This is known as the Einstein-Stokes relation. Note that it scales inversely with the radius (not
the radius squared, as you might have guessed).

5.2 Summary
We have seen that drag force, mobility, di�usion, viscosity and random walks are all related. I
don't expect you to remember all these formulas, and I certainly don't want you to memorize them.
Just try to have the basic ideas straight. Viscosity is a macroscopically measurable property of a
material. When a large particle moves in a viscous material, it undergoes a random walk called
Brownian motion. The bigger the particle, the smaller the di�usion constant, and the slower it
moves. The higher the viscosity, the larger the drag force, and the slower the particle moves.
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Small molecules moving in a �uid also undergo random walks. For small molecules, of around
the same size as the molecules in the �uid, the di�usion constant is D=

1

2
`v� with ` the mean free

path. In this case, it is not useful to think in terms of drag forces and viscosity since the di�using
particle has essentially no inertia. Instead, the random walk di�usion picture is of a molecule
bouncing randomly like a pinball among the �uid molecules.

Brownian motion 11
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