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Statistical Mechanics, Spring 2019

Lecture 6: Entropy

1 Introduction

In this lecture, we discuss many ways to think about entropy. The most important and most famous
property of entropy is that it never decreases

�Stot> 0 (1)

Here,�Stot means the change in entropy of a system plus the change in entropy of the surroundings.
This is the second law of thermodynamics that we met in the previous lecture.

There's a great quote from Sir Arthur Eddington from 1927 summarizing the importance of
the second law:

If someone points out to you that your pet theory of the universe is in disagreement
with Maxwell's equations�then so much the worse for Maxwell's equations. If it
is found to be contradicted by observation�well these experimentalists do bungle
things sometimes. But if your theory is found to be against the second law of ther-
modynamics I can give you no hope; there is nothing for it but to collapse in deepest
humiliation.

Another possibly relevant quote, from the introduction to the statistical mechanics book by David
Goodstein:

Ludwig Boltzmann who spent much of his life studying statistical mechanics, died in
1906, by his own hand. Paul Ehrenfest, carrying on the work, died similarly in 1933.
Now it is our turn to study statistical mechanics.

There are many ways to de�ne entropy. All of them are equivalent, although it can be hard
to see. In this lecture we will compare and contrast di�erent de�nitions, building up intuition for
how to think about entropy in di�erent contexts.

The original de�nition of entropy, due to Clausius, was thermodynamic. As we saw in the last
lecture, Clausius noted that entropy is a function of state, we can calculate the entropy di�erence
between two states by connecting them however we like. If we �nd a reversible path to connect
them, then the entropy change is determined simply by the heat absorbed:

�Ssystem=

Z
rev:

dQin

T
(Clausius entropy) (2)

This de�nition of entropy (change) called Clausius entropy. It is a thermodynamic, rather than
statistical-mechanic, de�nition. It says that entropy is generated (or removed) from heating (or
cooling) a system. Clausius entropy is important in that it directly connects to physics. As we
saw in the last lecture, if the total Clausius entropy change were negative, it would be possible to
create a system whose sole function is to turn heat into work.

1



In statistical mechanics, we can de�ne the entropy as

S= kBln
 (Boltzmann entropy) (3)

where 
 is the number of microstates compatible with some macroscopic parameters (E; V ; N).
This form is usually attributed to Boltzmann, although it was Planck who wrote it down in
this form for the �rst time. We'll call this the Boltzmann entropy since it's on Boltzmann's
gravestone. Note that there is no arbitrariness in deciding which states to count in 
 or how to
weight them � we count all states compatible with the macroscopic parmaters equally, with even
weight. That is part of the de�nition of S. From S, we extract the temperature as 1

T
=

@S

@E
and

then integrating over dE = dQ we recover Eq. (2).

De�ning S in terms of microstates is useful in that it lets us compute S from a microscopic
description of a system. For example, we saw that for a monatomic ideal gas, the Boltzmann
entropy is given by

S=NkB

�
lnV +

3

2
ln
�
mE

N

�
+C

�
(4)

for some constant C. This is an example showing that entropy is a state variable: it depends only on
the current state of a system, not how it got there (heat and work are not state variables). Clausius
formula assumed entropy was a state variable. With the Boltzmann formula, we can check.

Another way to compute entropy came from considering the number of ways N particles could
be split into m groups of sizes ni. This number is 
= N !

n1!���nm!
. Expanding for large ni gives

S=¡kBN
X
i

filn fi (5)

where fi =
ni
N
. Since �ni=N then

P
fi= 1 and so fi has the interpretation of a probability: fi

are the probabilities of �nding a particle picked at random in the group labeled i.

With the factor of kB but without the N , the entropy written in terms of probabilities is called
the Gibbs entropy:

S=¡kB
X
i

PilnPi (Gibbs entropy) (6)

If all we do is maximize S at �xed N , the prefactor doesn't matter. However, sometimes we care
about how S depends on N , in which case we need to get the prefactor right. We'll return to this
in Section 3.

All of these ways of thinking about entropy are useful. They are all ways of understanding
entropy as disorder: the more microstates there are, the less organized are the particles. A
solid has lower entropy than a gas because the molecules are more ordered: the constraints on the
positions of the atoms in the solid and limitations on their velocities drastically reduce the number
of possible con�gurations. Entropy as disorder is certainly intuitive, and conforms with common
usage: a child playing with blocks will most certainly leave them more disordered than how she
found them, so we say she has increased the entropy. There are fewer ways for something to be
ordered than disordered.

In the second half of the 20th century, it was realized that a more general and useful way of
thinking about entropy than entropy as disorder is entropy as uncertainty. That is, we associate
entropy with our ignorance of the system, or our lack of information about what microstate it's
in. Entropy as uncertainty makes a lot of unintuitive aspects of the second law of thermodynamics
easier to understand. We have already come across this the connection between entropy and
information when discussing the principle of molecular chaos � the velocities of particles become
correlated when they scatter, but over time the information of their correlations disperses over
phase space and is lost. A solid has lower entropy than a gas because we have more information
about the location of the atoms.
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2 Free expansion

An example that helps elucidate the di�erent de�nitions of entropy is the free expansion of a gas
from a volume V1 to a volume V2.

First, consider the Boltzmann entropy, de�ned as S = kBln
 with 
 the number of accessible
microstates. Using Eq. (4) which follows from the Boltzmann entropy de�nition, in going from a
volume V1 to a volume V2, the gas gains an amount of entropy equal to �S =NkBln

V2
V1
. That the

Boltzmann entropy increases makes sense because there are more accessible microstates in the
larger volume, 
2>
1.

What about the Gibbs entropy? If Pi is the probability of �nding the system in microstate i,
then Pi=

1


1
when the gas is at a volume V1. When it expands to V2, each microstate of the gas in

V1 corresponds to exactly one microstate of the gas in V2, so we should have Pi=
1


1
also at volume

V2, and therefore the Gibbs entropy is unchanged! Although there are more possible microstates
in V2, we know that, since the gas came from V1, that only a small fraction of these could possibly
be populated. That is, the state after expansion is in a subset Msub �M of the full set M2 of
microstates in V2. The microstates in Msub are exactly those for which if we reverse time, they
would go back to V1. The size 
1 of the set M1 of microstates in V1 is the same as the size 
sub
of Msub.

So in the free expansion of a gas, Boltmann entropy increases but Gibbs entropy does not. How
do we reconcile these two concepts?

The origin to this inconsistency is that Boltzmann entropy is de�ned in terms of the number
of states 
 consistent with some macroscopic parameters, V , E, N , etc.. In contrast �the set of
states that when time reversed to back to V1� used for Gibbs entropy depends on more than just
these parameters. So we are computing the di�erent entropies using di�erent criteria. If we de�ne
the probabilities Pi for the Gibbs entropy the same way as we de�ne 
 for the Boltzmann entropy,
that is, as the probability for �nding a state with given values of V ;E;N , the two de�nitions will

agree. Indeed, the number of new states is 
1

2
= exp(�S) =

�
V2
V1

�NkB
. Including these new states

makes the Gibbs entropy go up by �S=NkBln
V2
V1
; removing them makes the Boltzmann entropy

go down by the same amount. So if we are consistent with our criterion for computing entropy,
the di�erent de�nitions agree.

Now, you may be wondering why we choose to de�ne entropy using V ;E;N and not using the
information about where the particles originated from. As an extreme example, we could even say
that the gas starts in exactly one phase space point, (q~i; p~ i). So 
=1 and the probability being in
this state is P = 1 with P = 0 for other states. We can then evolve the gas forward in time using
Newton's laws, which are deterministic and reversible, so that in the future there is still only one
state P =1 or P =0. If we do so, S=0 for all time. While we could choose to de�ne entropy this
way, it would clearly not be a useful concept. Entropy, and statistical mechanics, more broadly, is
useful only if we coarse grain. Entropy is de�ned in terms of the number of states or probabilities
compatible with macroscopic parameters. Coarse graining is part of the de�nition. Remember,
in statistical mechanics, we are not in the business of predicting what will happen, but what is
overwhelmingly likely to happen. De�ning entropy in terms of coarse grained probabilities is the
trick to making statistical mechanics a powerful tool for physics.

To justify why we must coarse grain from another perspective, recall the arguments from
Lecture 3. Say we have a minimum experimental or theoretical phase space volume �q�p that
can be distinguished. Due to molecular chaos, the trajectory of a �q�p phase space region quickly
fragments into multiple disconnected regions in phase space that are smaller than �q�p (since
phase space volume is preserved under time evolution by Louiville's theorem). Then we coarse
grain to increase the phase space volume of each disconnected region to a size �q�p. In this way,
the phase-space volume of Msub grows with time. By ergodicity, every point inM2 will eventually
get within �q�p of a point in Msub, so if we wait long enough, Msub, through coarse graining,
will agree with M2.
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It may be helpful to see that if we use Gibbs entropy de�nition that entropy does in fact increase
during di�usion. For simplicity consider a di�using gas in 1 dimension, with number density n(x; t).
By the postulate of equal-a-priori probabilities, the probability of �nding a gas molecule at x; t is
proportional to the number density P (x; t)/n(x; t). Then the Gibbs entropy is S=¡c

R
dxn lnn

for some normalization constant c. Now, the di�using gas satis�es the di�usion equation @n

@t
=D

@2n

@x2
.

Using this we �nd

dS
dt

=¡c
Z
dx

@
@t
[n lnn] =¡c

Z
dx [1+ lnn]

dn
dt

=¡cD
Z
dx [1+ lnn]

@
@x

@
@x
n (7)

Next, we integrate the �rst @

@x
by parts and drop the boundary terms at x=�1 by assuming that

the density has �nite support. This leads to

dS
dt

=¡cD(1+ lnn)
@
@x
n

�
¡1

1
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=0

+ cD

Z
dx

1
n

�
@n
@x

�2
> 0 (8)

We conclude that during di�usion the entropy strictly grows with time. It stops growing when
@n

@x
=0, i.e. when the density is constant, which is the state of maximum entropy.

This calculation illustrates that the problem from the beginning of this section was not that the
Gibbs entropy wouldn't increase, but rather that imposing constraints on the probabilities based
on inaccessible information about past con�gurations is inconsistent with the postulate of equal a
priori probabilities.

3 Entropy of mixing

Although entropy is a theoretical construction � it cannot be directly measured � it is nevertheless
extremely useful. In fact, entropy can be used to do work. One way to do so is though the entropy
of mixing.

Say we have a volume V of helium with N molecules and another volume V of xenon also with
N molecules (both monatomic gases) at the same temperature. If we let the gases mix, then each
expands from V to 2V . The energy of each is constant so the entropy change of each is (from
integrating the discussion of free expansion before or directly from Eq. (4)):

�S=NkBln
2V

V
=NkBln 2 (9)

So we get a total entropy change of

�S=2NkBln2 (10)

This increase is called the entropy of mixing.
The entropy of mixing is a real thing, and can be used to do work. For example, say we had a

vessel with xenon on one side and helium on the other, separated by a semi-permeable membrane
that lets helium pass through and not xenon. Say the sides start at the same temperature and
pressure. As the helium inevitably di�uses through the membrane, it dilutes the helium side
lowering its pressure and adds to the pressure on the xenon side. The net e�ect is that there is
pressure on the membrane. This pressure can be used to do work.

The pressure when there is a mixed solution (like salt water) in which the solute (e.g. salt)
cannot penetrate a semi-permeable barrier (e.g. skin) is is called osmotic pressure. For example,
when you eat a lot of salt, your veins increase salt concentration and pull more water in from your
body to compensate, giving you high blood pressure.
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In chemistry and biology, concentration gradients are very important. A concentration
gradient means the concentration of some ion, like Na+ or K+ is not constant in space. When there
is a concentration gradient, the system is not completely homogeneous, so entropy can be increased
by entropy of mixing. Only when the concentrations are constant is there no way to increase the
entropy more. Concentration gradients are critical for life. Neurons �re when the concentration
of certain chemicals or ions passes a threshold. If systems always work to eliminate concentration
gradients, by maximizing entropy, how do the concentration gradients develop? The answer is
work! Cells use energy to produce concentration gradients. There are proteins in the cell wall that
work to pump sodium and potassium (or other ions) from areas of low concentration to areas of
high concentration.

Figure 1. A cellular pump, present in practically every cell of every living thing. It uses energy in the form
of ATP to establish concentration gradients

Another familiar e�ect due the entropy of mixing is how salt is able to melt ice. The salt draws
water out of the ice (i.e. melts it) because saltwater has higher entropy than salt and ice separately.

In order to study these physical processes in quantitative detail, we need �rst to understand
entropy better (this lecture), as well as free energy, chemical potentials, and phase transitions,
which are topics for the next few lectures. We'll quantify osmotic pressure and temperature changes
due to mixing (like in saltwater) in Lectures 8 and 9.

3.1 Gibbs paradox
So entropy of mixing is a real thing, and is very important in physics, chemistry and biology. But
it is still a little puzzling. Say instead of two di�erent ideal gases, we just have helium. Again we
start with two volumes V , N and E each, and remove a partition between them to let them mix.
The calculation is identical to the calculation for helium and xenon and we still �nd�S=2NkBln2.

What happens if we put the partition back in. We start with helium gas with volume 2V number
2N and energy 2E. Its initial entropy, by Eq. (4) is

Sinit=2NkB

�
ln 2V +

3
2
ln
�
mE
N

�
+ c

�
(11)

Now put a partition right down the middle of the gas, splitting it into two equal halves, each with
V ;N and E. Then the entropy of the sum of the entropies of the two halves:

S�nal=2

�
NkB

�
ln V +

3
2
ln
�
mE
N

�
+ c

��
=Sinit¡ 2NkBln 2 (12)

Thus the entropy has gone down, by exactly the entropy of mixing. If we mix the gases entropy
goes, up, if we split them entropy goes down. That entropy could go down by simply sticking a
partition in a gas seems very strange, and apparently violates the second law of thermodynamics.
This is called the Gibbs paradox.

There are two parts to resolving the Gibbs paradox. First, we will argue that the states we had
been counting were not states of identical molecules like helium, but assumed indistinguishability.
So we'll have to correct for this. Second, we should understand why the counting that we have
been using, which is indeed counting something, would have entropy apparently go down. The �rst
question we address now, the second in Section 6.1.
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3.2 Distinguishable microstates

To resolve the Gibbs paradox, let's think about why the entropy is changing from the viewpoint of
Boltzmann entropy and ergodicity. Again, we start with xenon on the left and helium on the right
each in a volume V . At a time t0 we let them mix. The number of microstates for each gas increases
by �S=NkBln

2V

V
, so the net entropy of mixing is �S=2NkBln2 (as we have seen). The entropy

increases because there are now new microstates with xenon on the right or helium on the left that
weren't there before. By ergodicity, we coarse grain and add these the microstates to 
. The new
microstates we include are not the ones actually populated by the expanding gas, but rather ones
exponentially close to those microstates that we can't tell apart. If we imagine our system is truly
isolated then the actual microstates populated trace back (in principle) to the separated states at
time t0. The new microstates we add when traced back in time are still mixed at t0.

Now let's do the same thing for two volumes of helium that are allowed to mix starting at
time t0. As they mix, the entropy change is �S =NkBln2 just as for the xenon/helium mixture.
This entropy increase comes because we are adding to the original microstates new microstates
that, when traced back to t0 have the molecules from the two original volumes still distributed
throughout the whole system. But for the helium/helium mixing, these states do correspond to
states we started with: half helium and the other half helium. So we already had these states and
we are including them again and overcounting. This is clearly wrong, so we must undo it.

Figure 2. When xenon and helium mix, the new microstates we add don't look like the old ones. When
helium mixes with helium, the new microstates are indistinguishable from the old ones.

In our original counting of states, we said that in a length L, with some minimal size �q for
discretizing the box, the number of states was L

�q
. Each particle could be anywhere, and for�q�L

the chance of �nding two particles in the same place is negligle. This lead to 
=
�

L

�q

�N
.

Let's take L=2�q �rst, so there are two possible states. If there are N helium molecules, then
there are 
=2N con�gurations and S=NkBln2. Now say we partition the system into two halves,
with N

2
particles in each half. For each half, there is only one possible place for each particle, so

the system is �xed, 
=1 and S =0. Thus entropy has decreased! What went wrong? The catch

is that there were 
split=

�
N
N /2

�
=

N !
N

2
!
N

2
!
� 2N di�erent ways to split the molecules, and we only

considered one of them. If each molecule were di�erent, say we had N di�erent colored balls, then
we could tell which of the states we ended up with. In that case, entropy of the system would into
go down �Ssys< 0, however it would take a lot of work to count all the balls and entropy of the
surroundings would increase from doing all this counting. It's easier just to say we do not know
which colored ball went where and include the 
split combinatoric factor. For helium, maybe we
can tell them apart, or maybe not, but if we're not planning to try, then we need to account for
the Wsplit possibilities. We can do this by saying that all the 
split partitionings of the particles
are the same microstate. See section 3.4 for a detailed calculation of these cases.
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It's actually easier to account for the combinatoric factor in a large volume than with L=2�q.
In a large volume, there are many more positions than there are particles so we can assume no two
particles are in the same state. In fact we have to make this assumption classically, since if there is
a reasonable chance that two particles are in the same state we need to know if they are fermions
or bosons and use the appropriate quantum statistics (Lecture 10). In a large volume with every
particle in a di�erent position, we can simply divide by the N ! for permuting those positions. This
leads to


(q; p)= 2e
3

2
N 1
N !

�
V

(�q�p)3

�N�
4�mE
3N

�3N
2

(13)

This is the same as our old formula but has an extra 1

N !
in front. The extra factor of N ! was

introduced by Gibbs. After using Stirling's approximation the entropy S= kBln
 is

S=NkB

�
ln
V
N
+
3
2
ln
�
4�mE
3Nh2

�
+
5
2

�
(14)

We have used �q�p = h (as will be explained in Lecture 10). This is the Sackur-Tetrode
equation.

Does the extra N ! solve Gibbs paradox? For the gas with 2V ; 2N and 2E , Eq. (11) becomes

Sinit=2NkB

�
ln
V

N
+
3

2
ln
�
mE

N

�
+ c

�
(15)

After splitting into two halves, Eq. (12) becomes

S�nal=2

�
NkB

�
ln
V
N
+
3
2
ln
�
mE
N

�
+ c

��
=Sinit (16)

So the entropy is unchanged by adding, or removing the partition.
What about the xenon/helium mixture? The gases are independent and do not interact, so each

one separately acts just like helium alone. Thus inserting a partition in a helium/xenon mixture
has a net e�ect of �S=0 on each separately and therefore �S=0 total as well.

What about the entropy of mixing? Let's start with two separate gases. Using our new formula,
the initial entropy is the sum of the two gases' entropies. Each one has volume V , energy E and
N . So,

Sinit=2

�
NkB

�
ln
V
N
+
3
2
ln
�
mE
N

�
+ c

��
(17)

After letting the gasses mix, each gas goes from V ! 2V but N and E are the same, so we have

S�nal=2

�
NkB

�
ln
2V
N

+
3
2
ln
�
mE
N

�
+ c

��
=Sinit+2NkBln2 (18)

So now, with the N ! factor added, we get a result that makes sense: there is only entropy of mixing
if the two gases are di�erent. Inserting a partition never changes the entropy.

Removing a factor of N ! from 
 also conveniently changes the general formula for Boltzmann
entropy in Eq. (5) to the Gibbs one in Eq. (6):

S=¡kB
X

PilnPi (19)

where Pi=
ni
N

are the number of particles with the properties of group i.

3.3 Entropy is extensive
Note that with the extra factor N ! in Eq. (13) entropy has become an extensive quantity.
Extensive quantities are those that double when you have twice as much of the same thing. For
example, energy E is extensive, as are N and V . The ratio of two extensive, quantities is an
intensive property: one that characterizes the stu� itself, independent of how much you have.
Temperature and pressure and the heat capacity CV are intensive. We also use extrinsic as a
synonym for extensive and intrinsic as a synonym for intensive.
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To see that entropy is extensive, note from the Sackur-Tetrode formula that doubling V ; N
and E makes S double. This makes sense from the original de�niton � if you have two isolated
systems with 
1 microstates in one (entropy S1=kBln
1) and 
2 microstates in the other (entropy
S2= kBln
2) then the total number of microstates is 
=
1
2. So

S12=S1+S2 (20)

This is true if the systems are truly isolated, whether or not we have the extra factor of N in the
formula. It the systems are not isolated, Eq. (20) only works if we specify whether the particles
are distinguishable � so that we know if we need to add new states (by coarse graining) � or if they
are indistinguishable � so that coarse graining would not add anything new. Getting entropy to
be extensive both for distinguishable and indistinguishable particles was what motivated Gibbs to
add the N ! to 
. The N ! is associated with indistinguishable particles.

We can also see the extensive property from the de�nition of Gibbs entropy in terms of prob-
abilities, in Eq. (6). Say we have two systems A and B with probabilities PiA and PjB. Then the
Gibbs entropy of the combined system is

SAB=¡kB
X
i;j

Pi
APj

Bln(PiAPjB) (21)

=¡kB
�X

i

Pi
A
�X

j

Pj
Bln(PjB)¡

 X
j

Pj
B

!X
i

Pi
Aln(PiA) (22)

=SA+SB (23)

So Gibbs entropy is an extensive quantity. If we had used the formula with the extra factor of N ,
Eq. (5), we would have found SAB=/ SA+SB.

To be clear, indistinguishability just means we can't think of any way to tell them apart.
There is a quantum de�nition of indistinguishability for identical particles. We're not talking about
that. We're just talking about whether we can think up a device to distinguish all of the N� 1024

helium molecules from each other. Recall that to do work using the entropy of mixing, we need
something like a semipermeable membrane that lets one type of thing through and no the other.
Perhaps we could tell a He4 isotope from a He3 isotope. An entropy de�nition that can tell them
apart would di�er from one that says they are distinguishable by 2!, which hardly matters. You
are never going to be able to pick out each of the 1024 individual He atoms in a gas, so the N ! is
essential classically or quantum mechanically. In a metal, on the other hand, you can tell where
each atom is, so the atoms in a solid should be treated as distinguishable, even if they are identical
elements (like in solid gold). We'll talk about metals in Lecture 13.

It's worth adding that extensivity is a convenient property for entropy to have, but it is not
guaranteed by any of the de�nitions of entropy. Indeed, in some systems, such as stars, entropy
is not extensive due to long-range forces (gravity). With long-range interactions when you double
the amount of stu�, the system can be qualitatively di�erent (a star not much smaller than the
sun would not be hot enough to burn hydrogen, see Lecture 15). With that caveat in mind, for
the vast majority of systems we consider, where interactions are local (nearest neighbor or contact
interactions), entropy will be extensive and we can exploit that property to simplify many formulae
and calculations.

3.4 Mixing example details
Since distinguishability is an important and confusing topic, let's do an example of mixing and
unmixing in full detail, with three di�erent assumptions

1. N colored balls + N more colored balls, all distinguishable

2. N molecules helium + N more molecules helium, all indistinguishable

3. N molecules helium + N molecules xenon

In all cases, we star with a volume V of each, then let them mix, then put a partition in to separate
them.
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For the �rst case we have something like this

So it looks like the entropy goes up by �S = 2Nln2 when the two are mixed and then down
by �S = ¡2N ln 2 when they are split. However, note that there are 
split =

�
2N
N

�
� 22N

ways to split them. So in enumerating the �nal states, we should include this factor, writing

00 = 
1
2
split = V NV N22N so that �S = 0 upon the split. If we actually look in the box and
enumerate which balls are where, we lose 
split, but the entropy of the surroundings must go up
due to the counting, as we explain in Section 6.1.

We can contrast this to the pure helium case when

Here, we add the 1

N !
factors for identical particles. When the two sets are merged, then the number

of states is


0=
1

(2N)!
(2V )2N =
1
2

N !N !
(2N)!

22N�
1
2
NNNN

(2N)2N
22N =
1
2 (24)

So �S=0 upon merging. Similarly, 
00=
1
2=
0, so �S=0 upon splitting.1

When we mix helium and xenon we have

In this case, after mixing, each set of N molecules occupy the volume 2V , so the entropy of
mixing is �S = 2Nln 2, just as in the colored balls case. When we split them, since the particles
are identical, there is no way to tell apart one splitting from the other. Each half has N

2
of each

species in a volume V

2
. So the total number of states in this case is


00=

24 1�
N

2

�
!
V N/2

354=
1
2
N !N !�
N

2
!
�4 �
1
2NNNN�

N

2

�2N =
1
22
2N =
0 (25)

And therefore �S=0 for the splitting case.
So we see that in the distinguishable case (colored balls) or the helium/xenon mixture case,

there is a 2Nln2 entropy of mixing � each of the 2N molecules now has an extra binary choice of
where to be, so we get 2Nln 2. In no situation does entropy go down when we split the volume
back into two halves.

1. You might be bothered the fact that we had to take the thermodynamic limit N!1, which lets us use that
the most probable con�guration is the only con�guration, i.e. that there are always N particles in each side after
the splitting. At �nite N then indeed 
0>
1
2, so entropy goes up on merging. After splitting, we must allow for
m particles on one side and N ¡m on the other. Then 
00=

P
m=0
2N 1

(2N ¡m)!V
(2N¡m) 1

m!
V m=

(2V )2N

2N!
=
0 exactly,

so entropy still does not go down upon splitting.
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4 Information entropy
Next, we introduce the concept of information entropy, as proposed by Claude Shannon in 1948.
We'll start by discussing information entropy in the context of computation, as it was originally
introduced, and then connect it back to physics once we understand what it is.

Consider the problem of data compression: we have a certain type of data and want to compress
it into as small a �le as possible. How good is a compression algorithm? Of course if we have two
algorithms, say .jpg and .gif, and some data, say a picture of a cat, then can just compress the data
with the algorithms and see which is smaller. But it may turn out that for one picture of a cat the
jpeg comes out smaller, and for another, the gif is smaller. Then which is better? Is it possible to
make an algorithm better than either? What is the absolute best an algorithm can do?

If you want lossless compression, so that the data can always be restored exactly from the
compressed �le, then it is impossible for any algorithm to compress all data. This follows from the
�pigeonhole principle�: you can't put m pigeons in n holes if n<m without some hole having more
than one pigeon.

So you can't compress every data �le. But that's ok. Most data �les have some structure. For
example, images often have similar colors next to each other. This leads to the idea of run-length-
encoding: instead of giving all the colors as separate bytes, encode the information in pairs of byes:
the �rst byte in the pair gives the color and the second byte gives the number of pixels of that
color. Run-length-encoding was used in early versions of .gif compression. It will compress almost
all pictures. But if you give it white noise, where neighboring pixels are uncorrelated, then the
compressed �le will be bigger than the original.

Another feature in image data is that it often has smooth features separated by relatively sharp
edges. Thus taking a discrete Fourier transform becomes e�cient, since high frequency modes are
often absent in images. jpeg compression is based on discrete Fourier transforms. Again, white noise
images will not compress because their Fourier transforms are not simpler than the original images.

4.1 Text
For data that is text, the information is a sequence of letters. Di�erent letters appear in a typical
text with di�erent frequencies. The standard way to write uncompressed text as numbers is with
the ASCII code (American Standard Code for Information Interchange). In ASCII every letter is
assigned a number from 0 to 127 which takes up 7 bits. For example, the ASCII code for �e� is 101
and the ASCII code for �&� is 38. There is an extended ASCII code as well, with 8 bits, allowing
for letters such as �ä� which is 228. Since �e� is much more common than �&� it should be possible
to e�ciently compress text, allowing for random sequences of symbols not to compress well.

Here is a table of the probability of getting a given letter in some English text:

Figure 3. Probabilities of �nding di�erent letters in English text.

For example, if you open a book and pick a letter at random, 12.7% of the time the letter you pick
will be �e� and only 0.1% of the time it will be �q�. Exploiting these frequencies, a good compression
algorithm would �nd a way to use fewer bits for �e� and more bits for �q�.

What is the minimal number of bits you need to encode a given type of data? Shannon's answer
was

H =minimial#bits=¡
X
i

Pilog2Pi (26)

This quantity H is called the Shannon entropy or information entropy. (You may recognize
this H as the same as Boltzmann's H with loge replaced by log2.) Shannon proved that you
can't ever encode data with fewer than H bits, on average. This is known as the source coding
theorem.
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For example, with the letter sequences above we �nd

H =¡[0.127 log2 0.127+ 0.091 log20.091+ ���+ 0.001 log20.001] = 4.17 (27)

This means the best we can possibly do is to represent each letter with 4.17 bits, on average.
Having a non-integer number of bits it is not a problem; it just means that you could encode 100
characters with 417 bits and so on (see coin example below).

Note that 4.17 is better than the 7 bits in ASCII. Of course, we don't need 7 bits to represent
26 letters, but a naive encoding would use 5 bits (so 25= 32 characters), so since H = 4.17<5 this
says you can do than better than 5 bits. Since we are considering non-integer bits, you might say
we should use log226= 4.7 bits. Indeed, the 4.7 bits is exactly what Shannon entropy would say is
the best encoding if the probabilities of �nding each letter were equal: Pi=

1

26 . That is

Hequal=¡
X
i=1

26
1

26
log2

1

26
= log226= 4.7 (28)

That reason that we can use only 4.17 bits on average instead of 4.7 is because the probabilities
are not equal. A better algorithm uses this extra information.

Shannon also noted that in text, letters aren't randomly distributed with probabilities but form
words. Using words rather than letters, in his 1948 paper Shannon estimated that H�2.62/ letter
for the entropy of English text. That is, it only takes 2.62 bits/letter to encode words. If a letter
is given one byte (8 bits) in extended ASCII, this says that the maximal compression you could
get is a compression factor of 8

2.62 = 3.05.
The Hutter prize is a 50,000¿ competition to compress a 100MB snapshot of Wikipedia. The

current record is 16 MB. For each 1% improvement you get 1,000¿. Note that already the compres-
sion factor is 100

16 = 6.25 so that each character is represented by 8bits
6.25 = 1.28 bits. This is already

much better than Shannon's original estimate. The improvement implies that Shannon's estimate
of H is o�, probably because he did not use all the information about the regularity of English
text (for example, sentence structure); perhaps also Wikipedia articles are not typical text.

4.2 Algorithms
The source coding theorem doesn't tell you how to maximally compress the data, just what the
maximal compression rate is. Let's think a little about what an optimal compression algorithm
might look like. This should give us a better feel for Shannon entropy.

Frist, we'll take some limits. If all the probabilities are equal with Pi=
1

N
then

H =¡
X
i

1

N
log2

1

N
= log2N (29)

This is just the number of bits to encode N letters. I.e. if N =32, it takes 5 bits, if N =64 it takes
6 bits and so on.

If one of the probabilities is zero, then the e�ect on H is limP!0P lnP =0. So adding something
else to the data that never occurs does not a�ect the entropy. Conversely, if the data is completely
uniform, so P = 1 for some character, then H = ¡1 log21 = 0. So it takes zero bits to encode a
completely determined sequence.

Say we have a fair coin with 50% heads and 50% tails probabilities. Then

H =¡
�
1
2
log2

1
2
+
1
2
log2

1
2

�
=1 (30)

So it takes one bit to encode each �ip. This is the best we can do. If the coin has 2 heads and no
tails, then H =0: we know it will always be heads.

Now let's look at a more complicated example. Say the coin is weighted so it is 90% likely to
get heads and 10% likely to get tails. Then we �nd that

H =¡(0.9log20.9+ 0.1log20.1)= 0.468 (31)
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So it is ine�cient to encode each coin �ip with just 0 or 1. What we really want is a code that
uses less than a bit for heads and more than a bit for tails. How could we do this? One way is to
say 0 means two heads in a row, 10 means heads and 11 means tails:

0 HH 00 HHHH
10 H 11 T

(32)

This lets us represent a sequence of two �ips with one bit if it's HH, and with 4 bits otherwise.
Thus for example, the sequence HHHHHHHHTHHH, with 12 digits, becomes 000011100, with 9
digits. For all possible 2 �ip sequences, we �nd:

Sequence HH HT TH TT
Probability 81% 9% 9% 1%
Code 0 1011 1110 1111

(33)

The expected number of bits needed to encode a 2 �ip sequence is the number of bits in the code
(1 or 4) times the probabilities, namely #bits=1� 0.81+4� 0.09+4� 0.09+4� 0.01= 1.57. So
instead of 2 bits, we are using 1.57 on average, corresponding to an entropy per bit of 1.57

2
= 0.785.

This is not as good as 0.468, but it is better than 1. In other words, our algorithm compresses the
data, but not optimally. Can you think of a better compression algorithm?

4.3 Uniqueness
You might like to know that Shannon's formula for information entropy is not as arbitrary as it
might seem. This formula is the unique function of the probabilities satisfying three criteria

1. It does not change if something with Pi=0 is added.

2. It is maximized when Pi are all the same.

3. It is additive on uncorrelated probabilities.

This last criteria needs a little explanation. First, let's check it. Say we have two sets of probabilities
Pi and Qj for di�erent things. For example, Pi could be the probability of having a certain color
hair and Qj the probability for wearing a certain size shoe. If these are uncorrelated, then the
probability of measuring i and j is PiQj. So the total entropy is

HPQ=¡
X
i;j

PiQjlog2(PiQj) =¡
X
i

X
j

QjPilog2(Pi)¡
X
j

X
i

PiQjlog2(Qj) (34)

Doing the sum over j in the �rst term or i in the second term gives 1 since Qj and Pi are normalized
probabilities. Thus

HPQ=¡
X
i

Pilog2(Pi)¡
X
j

Qjlog2(Qj) =HP +HQ (35)

In other words, entropy is extensive. This is the same criterion Gibbs insisted on. So Gibbs entropy
is also unique according to these criteria.

By the way, there are other measures of information entropy other than Shannon entropy, such
as the collision entropy, Renyi entropy and Hartley entropy. These measures do not satisfy the
conditions 1-3 above. Instead, they satisfy some other conditions. Consequently they have di�erent
applications and interpretations. When we discuss information entropy, we will mean only the
Shannon entropy.

5 Information entropy to thermodynamic entropy
One way to connect the information picture to thermodynamics is to say that entropy measures
uncertainty. For example, suppose you have gas in a box. In reality, all of the molecules have some
velocities and positions (classically). If you knew all of these, there would be only one microstate
compatible with it and the entropy would be zero. But the entropy of the gas is not zero. It is
nonzero because we don't know the positions and velocities of the molecules, even though we could
in principle. So entropy is not a property of the gas itself but of our knowledge of the gas.
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In information theory, the Shannon entropy is 0 if the coins are always heads. That is because
we know exactly what will come next � a head � so our uncertainty is zero. If the coin is fair and
half the time gives heads and half the time tails, then H=1: we are maximally ignorant. We know
nothing about what happens next. If the coin is unfair, 90% chance of heads, then we have a pretty
good sense of what will happen next, but are still a little uncertain. If we know the data ahead of
time (or the sequence of �ips), we can write a simple code to compress it: 1 = the data. So there
is no ignorance in that case, as with knowing the position of the gas molecules.

With the uncertainty idea in mind, we can make more direct connections between information
theory and thermodynamics.

5.1 Gibbs = Shannon entropy
The easiest way to connect information entropy to thermodynamic entropy is simply by inter-
preting microstates, and their associated probabilities, as the data. In general, suppose that the
probability of �nding a system in a given microstate is Pi. Then we can compute a thermodynamic
entropy by multiplying the information entropy by a constant (recalling the relation lnx

ln 2 = log2x)

kB(ln2)H =¡kBln2
X
i

Pilog2Pi=¡kB
X
i

PilnPi=S (36)

This is the Gibbs entropy from Eq. (6). Note that from the information theory point of view, the
bits are necessarily indistinguishable (if a bit had a label, it would take more than one bit!), so it
makes sense that the information entropy leads to Gibbs entropy.

What values of Pi will maximize S? Given no other information of constraints on Pi, the
postulate of equal a priori probabilities (or the principle of maximum entropy) gives that the
probability of a microstate i is Pi =

1



with 
 the total number of microstates. In terms of

information theory, if the Pi are equal, it means that the data is totally random: there is equal
probability of �nding any symbol. Thus there should be no way to compress the data at all. The
data can be compressed only if there is some more information in the probabilities. So the minimal
information leads to the maximum entropy. With Pi=

1



the entropy is

S=¡
X
j=1




kB

�
1


ln
1



�
= kBln
 (37)

which is of course the original Boltzmann entropy formula in Eq. (3).
For another connection, consider the free expansion of a gas from a volume V to a volume

2V . The change in entropy is �S= kBN ln 2 or equivalently, �H =
1

kBln2
�S=N . So the number

of bits we need to specify the system has gone up by N . But that's exactly what we should have
expected: each bit says which of the 2V volumes each particle is in, so we need N more bits to
specify the system.

5.2 Irreversibility of information storage
We made an abstract connection between Gibbs entropy and information entropy. Actually, the
connection is not just formal, they are actually the same thing. To see this, we need a little bit of
the physics of computation.

A key observation was made by Landauer in 1961. Landauer was interested in making powerful
computers that used as little energy as possible. How little energy could they use? He considered
a model of a bit with a (classical) double well. A ball on the left was 0 and a ball on the right was 1.

Figure 4. A model of information storage where a ball on the left is 0 and a ball on the right is 1.
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The �rst question is whether we can change the bit from 0 to 1 without using any energy.
It seems that the answer is yes. For example, we could hook a line to the ball and tie it to a
counterweight ball rolling down a hill with the opposite potential energy so that no work is done:

Figure 5. Hooking a pulley to the bit, we can move it from 1 to 0 without doing any work.

We just have to give the ball an in�nitesimal nudge and it will roll across, then another in�nitesimal
nudge will stop it. So no energy is needed to �ip this bit. This action is adiabatic and reversible,
and can be also used to set 0 to 1 by running in reverse.

So if the bit is 0 it takes no energy to set it to 0 and if the bit is 1 it takes no energy to set it
to 0. But what if we don't know what state the bit is in? Here's where it gets interesting. Suppose
you had some automated mechanism for �SetToZero� to take the bit from 1 or 0 to 0. This is the
kind of operation computers need to do all the time. Can we use our pulley gizmo to do it? The
answer is no. In fact, the answer is no for any gizmo and any way of representing a bit. The reason
as that we are just using Newton's laws, which are time-reversible. So if whatever action we do
must be some some kind of 1-to-1 invertible function F acting on the position and momenta of
the stu� in the bit. If phase space point (q~i0; p~ i0) represents 0 and point (q~i1; p~ i1) represents 1, then
we want F (q~i0; p~ i0)= (q~i1; p~ i1) and F (q~i0; p~ i0)= (q~i0; p~ i0). But this is impossible if F is invertible. This
argument is very rigorous and holds even in quantum mechanics, since the Schrödinger equation
can also be run backwards in time.

Now, computers are very good at SetToZero. How do they do it? If we are allowed to dissipate
energy, it's easy. For example, if there is friction in our double well system, then SetToZero could
be �swing a mallet on the 1 side with enough energy to knock a ball over the hill.� If there is no ball
on the 1 side, the this does nothing 0! 0. If there is a ball on the 1 side, it will go over to 0 and
then settle down to the minimum due to friction, 1! 0. Note that without friction this wouldn't
work, since the ball would come back to 1. In a real computer, the information might be stored in
the spin of a magnet on a magnetic tape. Applying a �eld to �ip the bit would release energy if it
�ips which would then dissipate as heat. No matter how you cut it, we �nd

� Landauer's principle: erasing information requires energy be dissipated as heat.

Erasing information is an essential step in computation. Every time we store information, we erase
the information that was previously there. But is the erasing, the throwing out of information,
that dissipates heat, not the storing of information. That was Landauer's critical insight.

The key element to showing that SetToZero on an unknown bit is impossible without dissipation
was reversibility of the laws of physics. Erasing information cannot be done with a reversible
process. Thus thermodynamic entropy increases when information is thrown out.

To be absolutely clear, strictly speaking the information is not really lost. The laws of physics
are still reversible, even with friction, so the �nal state could be run backwards to get the initial
state. The �nal state however requires not just knowing the bit we are interested in, but all the
positions and momenta of all the particles carrying o� the heat. If we only record the bit, we
are averaging over all possible states of the other stu�. It is in that averaging, that purposeful
forgetting, where the information is actually lost. Dissipation into thermal energy implies this
purposeful forgetting. Coarse graining erases information.
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5.3 Energy from information
The connection between information entropy and thermodynamics was pushed further by Charles
Bennett in the 1980s. Bennett was very intersted in how much energy computers require, in
principle. That is, what are the fundamental limits on computing determined by thermodynamics?

The �rst relevant observation is that information itself can be used to do work. The setup
Bennett considered was a digital tape where the information is stored in the position of gas
molecules. We say the tape is made up of little cells with gas molecules either in the bottom of
the cell, which we call 0, or in the top of the cell which we call 1. Imagine there is a thin dividing
membrane between the top and bottom keeping the molecule from moving from top to bottom.

Figure 6. Information is stored in the position of gas molecules.

Let us keep this molecular tape in thermal contact with a heat bath so that the molecules are always
at constant temperature. By �xing the temperature, we �x the molecule's momentum. Conversely,
if we had allowed the temperature to vary, then the momentum would be variable too, and there
would be more degrees of freedom that just the single bit represented by position.

Now, for an individual cell, if we know whether it's 0 or 1, we can use that information to do
work. Bennett proposed putting pistons on both the top and bottom of each cell. Say the molecule
is on the bottom. If so, we lower the top piston to isolate the molecule on the bottom half (like
in Jezzball). This doesn't cost any energy. Then we remove the dividing membrane and let the
thermal motion of the molecule will slowly push the piston up, drawing heat from the heat bath
and doing useful work:

Figure 7. Extracting work from information.

If the molecule were in the top, we would move the bottom piston to the middle, remove the
membrane, and let the system do work pushing it back down. Either way, the �nal state of the
system has the gas molecule bouncing around the whole cell so we have lost the information � we
don't know if it is 0 or 1 � but we have done work. This way of getting work out of information is
known as Szilard's engine.

Once the piston is open and the molecule is free to bounce around the whole container, we
have lost the information. We can then set the bit to 0 (or 1) by pushing down (up) on the gas
with the piston. The work we do during this compression goes o� into the thermal bath as heat.
This is the SetToZero operation again that we discussed in Section 5.2. Just like there, acting on
an unknown bit SetToZero dissipates energy. Once the bit is set, we can then use it to do work.
But the work we get out is the same as the work we put in to set the bit. So we cannot do useful
work if we do not know the state.

The entropy cost of losing the information, and of not being able to do work, is the entropy
increase in doubling the volume available to the molecule

�SGibbs= kBln2 (38)
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or equivalently
�H =1 (39)

The information entropy goes up by one bit because we have lost one bit of information � the
position of the molecule.

6 Maxwell's demon
We're now ready to tackle the most famous paradox about entropy, invented by Maxwell in 1867.
Suppose we have a gas of helium and xenon, all mixed together in a box. Now say a little demon
is sitting by a little shutter between the two sides of the box. When he sees a helium molecule
come in from the right, he opens a little door and lets it go left. But when it's a xenon molecule
coming in from the right, he doesn't open the door.

Figure 8. Fig 2: Maxwell's demon lets helium through, but not xenon

After a while, enough helium will be on the left that it will increase the pressure and this can be
used to do work. The demon has made the system more ordered and the entropy has gone down.

Your �rst thought might be that the resolution to this puzzle has to do with identical particles.
But this is not true. The paradox holds for pure helium. If the demon lets helium molecules go left
and not right, the entropy would go down. Moving the door up and down doesn't take any work (it
can be moved with an arbitrarily small push, and moreover the work can be completely recovered by
stopping it), yet when the helium gets concentrated on one side it will exert a pressure on the barrier
that can be used to do work. So this little demon is converting heat directly into work at constant
temperature. In Maxwell's original formulation, the demon would only let the fastest molecules
through one way and the slow ones the other way, so that the temperature di�erence of the two sides
would increase. These are all di�erent ways of saying the second law of thermodynamics is violated.

The demon doesn't have to be alive either. A robot could do his job, governed by the laws of
physics. You just have to program him to tell xenon from helium or fast from slow. So conscious-
ness doesn't have anything to do with it (although people sometimes like to say it does). For a
mechanical example, say you had a little door with a very weak spring on it that only opens one
way. If a molecule hits it from the left it will open and let the molecule through, but will not open
when hit form the right (do you think this would really work?).

Maxwell's demon has exasperated generations of physicists, for over 100 years. In the 1920s
the great physicists Szilard and Brillouin argued that it must take the robot some energy to �nd
out which way the gas is going. The robot must shine light at least one photon of light on the
molecule or something equivalent. The energy of this photon will then dissipate as heat increasing
the entropy, so the total entropy of the demon/gas system would not go down. While it is true
that doing the measurement with light does use energy and increase the entropy, it is possible to
make a measurement using an arbitrarily small amount of energy, for example with an arbitrarily
low frequency photon.

The correct resolution to Maxwell's demon is that somewhere in the process of letting the
molecules pass through from left to right, the robot has to ask: is the molecule on the left? He
must store the answer to this question in some variable in his program, somewhere. So he must
set a bit, using the �SetToZero� operation. This operation takes work, at least as much work as
we get out from moving the molecule to the right side. In terms of information, we gain one bit of
information by identifying the particle as left/right, xenon/helium or fast/slow. But we also erase
one bit of information by using SetToZero, sending heat into the surrounds. So the net e�ect is
�S=0. Entropy does not go down and there is no contradiction with the second law.
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You might instead suppose that we knew the bit on our tape was 0 to begin with. Then
recording the position of the molecule with 0! 0 or 0! 1 does not require heat dissipation. In
this case, it seems that Maxwell's demon does violate the second law. Note, however, that as we
write the (random) locations of the molecules to our tape, our tape randomizes. So we are just
moving the disorder from our gas into the disorder of the tape. In other words, �Sgas=¡�Stape
so the net entropy increase is still zero. Moreover. if we only have a �nite sized tape then after a
�nite number of measurements we must start irreversibly erasing information. As soon as we do
this, work is done, heat is dissipated, and the entropy of the surroundings increases.

This thought experiment also clari�es why information entropy really is entropy. If we had a
�nite size tape of 0's, then Maxwell's demon could indeed make a �nite amount of heat �ow from
a hot bath to cold bath. As Bennett puts it, a tape of 0's has �fuel value� that can be used to do
work. So we must include the speci�cation of this tape as part of the de�nition of the system.
If we do so, then the entropy never decreases at any step, it just moves from the disorder of the
molecules in the box to the disorder of the information on the tape. Thus the entropy for which
�S> 0 is strictly true should include both thermodynamic and information theoretic entropy.

In this way Maxwell's demon was resolved by Bennett in 1982. after 115 years of confusion. As
Feynman says in his Lectures on Computation (p. 150)

This realization that it is the erasure of information, and not measurement, that is the
source of entropy generation in the computational process, was a major breakthrough
in the study of reversible computation.

6.1 Distinguishable particles
Having understood Maxwell's demon, we are now prepared to return to the Gibbs paradox for
distinguishable particles. If we have a gas of entirely di�erently colored balls and partition it, as
discussed in Section 3.4, the entropy does not go down because there are

�
2N
N

�
ways of picking

which half of the balls end up on the right and which half on the left. An objection to this is that
once we partition the set, we can just look and see which half went where. If only one of the

�
2N
N

�
choices is made, then the entropy would go down by �Ssys=¡NkBln 2, an apparent contradiction
with the second law. Now that we understand information entropy, we know to ask how we knew
which balls were on which side? To �nd out, we have to look at the color of each ball. Equivalently,
we have to measure for each ball which side it's on. Each such measurement must SetToZero some
bit in whatever we're using to do the measurement. The entropy consumed by this measurement
is exactly the entropy lost by the system. This con�rms that a system of distinguishable particles
is perfectly consistent and does not lead to violations of the second law of thermodynamics.

7 Quantum mechanical entropy (optional)

This section requires some advanced appreciation of quantum mechanics. It's not a required part
of the course, but some students might �nd this discussion interesting.

In quantum mechanics, distinguishability takes a more fundamental role, as does measurement.
Thus, naturally, there are additional ways to quantify entropy in quantum mechanics. These all
involve the density matrix �. Recall that in quantum mechanics, the states of the system are linear
combinations of elements j i of a Hilbert space. You may know exactly what state a system is in,
in which case we say that the system is in a pure state j i. Alternatively, you may only know the
probabilities Pi that the system is in the state j ii. In such situations, we say that the system is
in a mixed state (technically, a mixed ensemble of states). The density matrix is de�ned as

�=
X

Pj j jih j j (40)

The von Neumann entropy is de�ned as

S=¡kBTr[�ln�] (41)
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Because S is de�ned from a trace, it is basis independent. Of course, we can always work in the
basis for which � is diagonal, �=

P
Pij iih ij, then �ln� is diagonal too and

S=¡kB
X
j

h j j�ln�j ji=¡kB
X
j

PjlnPj (42)

In agreement with the Gibbs entropy. Thus, in a pure state, where Pj=1 for some j and Pj=0 for
everything else, S=0. That is, in a pure state we have no ignorance. The von Neumann entropy
therefore gives a basis-independent way of determining how pure a state is.

For example, say we start with a pure state j i= j!i= 1

2
p (j"i+ j#i). This has P1=1 and so

S=0. Now say we measure the spin along the z axis, but don't record the result. Then the system
is either in the state j 1i = j"i with probability P1 =

1

2
or the state j i = j#i with P2 = 1

2
. The

density matrix is therefore

�=

0@ 1

2
0

0
1

2

1A (43)

and the entropy is S = kBln 2. The entropy has gone up since the measurement has collapsed the
wavefunction from a pure state to a mixed state. We no longer know what the state is exactly, so
our ignorance has gone up.

The von Neumann entropy also gives a useful way to quantify correlations. In quantum
mechanics correlations among di�erent particles are encoded through entanglement. For example,
if there are two electrons, possible states have their spins aligned j i = j""i, anti-aligned j i =
j"#i, or entangled, j i = j"#i + j#"i. To quantify entanglement in general, let us suppose our
Hilbert space has two subspaces A and B, so HAB =HA
HB. Then we can compute a reduced
density matrix for a subspace A by tracing over B, and for B by tracing over A

�A=TrB[�]; �B=TrA[�] (44)

The von Neumann entropies of the reduced density matrices

SA=¡kBTr[�Aln�A]; SB=¡kBTr[�Bln�B] (45)

are called the entanglement entropies of the subspaces.
For example, consider the system in pure state

 =
1

2
(j"iA+ j#iA)
 (j"iB+ j#iB)=

1

2

h
j""i+ j"#i+ j#"i+ j##i

i
(46)

Because the state is pure, the density matrix � = j ih j has zero von Neumann entropy. The
density matrix for A is

�A=TrB(�)= h"jB �j"iB+ h#jB �j#iB (47)

=(j"iA+ j#iA)(h"jA+ h#jA) (48)

=j"ih"j+ j"ih#j+ j#ih"j+ j#ih#j (49)

This is the density matrix for a pure state, j i= j"iA+ j#iA, so SA=0. Similarly, SB=0. There
is no entanglement entropy.

Now consider the system in an entangled pure state

 =
1

2
p
h
j"iA
 j#iB+ j#iA
 j"iB

i
=

1

2
p
h
j"#i+ j#"i

i
(50)

Then, S=0 since �= j ih j is still based on a pure state. Now the reduced density matrix is

�A=TrB(�)=
1

2

h
j"iAh"jA+ j#iAh#jA

i
=

0@ 1

2
0

0
1

2

1A (51)

This is is now a mixed state P1 =
1

2
and P2 =

1

2
. Thus SA = kBln 2. So the entangled state has

entanglement entropy. Tracing over B amounts to throwing out any chance of measuring B. By
doing so, we cannot exploit the entanglement anymore, so the information is lost and entropy goes
up.
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We can think of the whole universe as being described by a single wavefunction evolving in time.
It's a pure state with entropy zero. Everything is entangled with everything else. As it becomes
practically impossible to exploit that entanglement, exactly like it was impossible to exploit the
correlations among scattered molecules classically, we coarse grain. Coarse graining in quantum
mechanics means tracing over unmeasurable components. This increases the entropy and moreover
turns a pure state into a mixed state. In this way, classical probabilities emerge from a completely
deterministic quantum system.

In summary, von Neumann entropy lets us understand both the information loss by measure-
ment and by losing entanglement. Entanglement is the quantum analog of correlations in a classical
system. Discarding this information is the reason quantum systems become non-deterministic and
entropy increases. We don't have to discard the information though. In fact, �guring out how to
exploit the information stored in entanglement is critical to the function of quantum computers.

8 Black hole entropy (optional)

This section will be hard to follow if you don't know any general relativity. It's not a required part
of the course, but some students might �nd this discussion interesting.

Using general relativity, you can prove some interesting results about black holes. General
relativity is described by Einstein's equations, which are like a non-linear version of Maxwell's
equations. Instead of @�F��= J� we have

R�� ¡
1
2
Rg��=T�� (52)

The right-hand side of this equation, T�� is the energy-momentum tensor, which is the source for
gravitational radiation like the current J� is the source for electromagnetic radiation. The object
R�� is called the Ricci curvature, it is constructed by taking 2 derivatives on the metric g�� in
various combinations: R�� = @�@�g�� + @�g��@�g�
 + ���. So g�� plays the role that the vector
potential A� plays in Maxwell's equations where F��= @�A� ¡ @�A�.

If we set J�= 0, there is a spherically-symmetric static solution to Maxwell's equations, A0=
e

4��0r
and A~ = 0. This is the Coulomb potential. It has one free parameter e. The Coulomb

potential is singular at r = 0 indicating that there is some charge localized there. In fact, this
solution corresponds to a current which is zero everywhere but the origin: J~=0 and J0= e�(x~ ). In
Newtonian gravity, the spherically-symmetric static solution is the Newtonian potential �=¡GM

r
.

with G Newton's constant.
In general relativity, the spherically-symmetric static solution to Einestin's equations is

g00=
�
1¡ rs

r

�
c2; grr=

1

1¡ rs
r

; g��= r
2; g��= r

2sin2� (53)

and gij=0 for i=/ j. This solution, called the Schwarzschild solution, describes a black hole. This
solution is unique up to a single parameter rs called the Schwarzschild radius. Its uniqueness
implies black holes have no �hair�, meaning that every black hole is identical to an external observer
(up to possible conserved charges like electric charge which can be seen through electric �eld lines
ending at the black hole). Note that the solution is singular not only at r=0 but also at r= rs.

In the non-relativistic limit, general relativity reduces to Newtonian gravity. The precise cor-
respondance is that g00=1+2�. Matching on to �=¡GM

r
lets us relate the parameter rs in the

solution to the black hole mass M :

rs=2
MG

c2
(54)

The sphere at r = rs called the event horizon. It turns out that nothing inside the event horizon
can ever escape. The size (surface area) of the event horizon is

A=4�rs
2= 16�

M2G2

c4
(55)
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Classically, things only fall in to a black hole, so their energy only goes up, and therefore the area
of the event horizon only increases.

Because the potential is singular on the event horizon, unusual things can happen. One such
thing is that due to quantum �eld theory the in�nite potential energy can be turned into kinetic
energy, with photons produced that radiate inwards and outwards. Stephen Hawking showed that
the spectrum of these photons is identical to a hot gas (a blackbody, to be covered in Lecture 12)
at temperature

T =
~c3

8�GMkB
(56)

This Hawking temperature is inversely proportional to the mass: very small black holes are very
hot, and very large black holes are cold. This unusual behavior is associated with a negative heat
capacity. Indeed, the speci�c heat of a black hole is

cS=
1
M
@M
@T

=¡1
T
=¡8�GkB~c3 M < 0 (57)

As things fall into a black hole, its mass goes up and its temperature goes down. A solar mass
black hole has a temperature T = 10¡8K. A supermassive black hole, like Sagittarius A? in the
center of our galaxy is about 1 million solar masses and has T = 10¡14K.

If nothing falls into a black hole, the black hole will completely evaporate due to Hawking
radiation in �nite time

tevap= 5120�
G2M3

~c4 (58)

As a black hole evaporates, its mass goes down and its temperature goes up. The bigger the black
hole, the longer it takes to evaporate. A solar-mass black hole would take 1074 years to evaporate.
An atom-mass black hole would evaporate in 10¡98 seconds.

You probably know that the universe is �lled with cosmic microwave background (CMB) radi-
ation at a temperature of 3K. A black hole radiating at this temperature has mass M3K=1022kg,
around the mass of the moon. So black holes less massive than M3K will be hotter than the CMB
and therefore radiate more energy than they absorb, eventually evaporating. Black holes more
massive thanM3K will be colder than the CMB; these will absorb CMB radiation slowly increasing
their mass. But as they increase in mass, their temperature drops further. Thus, although it is
possible for a black hole to be in equilibrium with the CMB if it has exactly the right mass, this
equilibrium is unstable. This is the typical behavior of systems with negative heat capacity.

Black holes also have entropy. Since @S

@E
=

1

T
, taking the energy of a black hole as its rest mass,

E=Mc2 the entropy is

S=

Z
dE
T
=
8�G
~c

Z
MdM =

4�G
~c M

2=
c3

4~GA (59)

Note that black holes have entropy proportional to their surface area. String theory even provides
a way of counting microstates for certain supersymmetric black holes that agrees with this formula.

So black holes have entropy, but no hair, and they evaporate in �nite time into pure uncorrelated
heat. This means that if some data falls into a black hole, it is lost forever. In this way, black
holes destroy information and radiate it out as heat, much like Landauer or Bennett's SetToZero
operation. There is one important di�erence though. When we �SetToZero� a bit, the information
is not destroyed, just lost by being embedded irretrievably in correlations in the heat. We know
this because the law of physics are reversible. When a black hole destroys information it really
destroys it � it cannot be stored in correlations of the outgoing radiation because nothing can get
out of a black hole, including information. This is the black hole information paradox.

To see this another way, information can fall into a black hole well before the radiation is
emitted. Since black holes have no hair, that information cannot be accessed in any way by an
external observer. For example, suppose we just through bits of information into a black hole, one
by one, at such a rate that the energy input exactly equals the thermal radiation rate. Then the
black hole's horizon stays constant so the information must be going out in the radiation. However,
this is impossible since once something passes the black hole horizon, it can never a�ect anything
outside the horizon. Thus the information really seems to be lost as it falls into the black hole.
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The basic con�ict is that the laws of gravity and quantum mechanics are deterministic and
reversible � if we know the exact starting state, we should be able to predict the exact �nal state.
The precise statement is that in quantum mechanics and gravity, as well as in string theory, time
evolution is unitary. Information cannot be lost in a closed, reversible, unitary theory.

The con�ict between unitarity and black hole evaporation can be understood clearly with von
Neumann entropy. Say the initial state is a wavefunction describing two electrons moving towards
each other at super high energy. This is a pure state. They then collide to form a black hole. The
black hole then evaporates and the information leaves as heat. The entropy goes up, so the outgoing
state is mixed. Thus black holes mediate the evolution from a pure state into a mixed state. This
is in con�ict with Schrodinger's equation, or more generally, any theory with unitary evolution
(such as string theory). If unitarity can be violated by black holes, then it would contribute through
virtual e�ects in quantum �eld theory to unitarity violation in every other process, in con�ict with
observation.

9 Summary

We have seen a lot of di�erent ways of thinking about entropy this lecture. The Gibbs entropy is

S=¡kB
X

PilnPi (60)

Here Pi is the probability of �nding the system in a microstate i and the sum is over all possible
microstates i consistent with some macroscopic parameters (volume pressure etc.). In equilibrium,
this de�nition is equivalent to S = kBln
 with 
 the number of microstates, but Eq. (60) can
be used in any situation where the probabilities are well-de�ned, including time-dependent non-
equilibrium systems.

This Gibbs entropy is proportional to the (Shannon) information entropy:

H =¡
X

Pilog2Pi (61)

In this equation, Pi is the probability of certain data showing up. H has the interpretation as the
minimal number of bits needed to encode the data, on average. Information entropy quanti�es our
ignorance of the system. The more entropy, the less information we have.

An important result from information theory is Landauer's principle: erasing information dis-
sipates heat. This connects information to thermodynamics. When 1 bit of information is erased,
the information entropy goes up by 1 bit. Doing so is necessarily accompanied by the release of
heat which increases the thermodynamic entropy by the same amount. While the information is
technically somewhere encoded in the heated-up molecules, we accept that we will never recover
this information and forget about it. Thus we increase our ignorance of the state of the whole
system and the entropy goes up.

The broader lesson from this lecture is the modern view of entropy is not as a measure of
disorder but as a measure of ignorance. Indeed, the information-theoretic point of view uni�es
all the di�erent forms of entropy and is the cleanest way to resolve the various entropy-related
paradoxes (Gibbs paradox, Maxwell's demon, etc.). It's not that there are two kinds of entropy
that we must add: counting microstates and information, but rather that all entropy measures the
lack of information. When we count the number of microstates 
 these are the states that give
the same macroscopic parameters. Thus, given only the information E;V ;N etc, 
 measures the
things we don't know, namely which microstate we have, consistent with our information. The
Gibbs and Shannon entropy formulas are equivalent and therefore both measure ignorance as well.
Thus, if you get one thing out of this lecture it should be that entropy = ignorance.
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