An Intraoperative Brain Shift Monitor Using Shear Mode Transcranial Ultrasound
Preliminary Results

P. Jason White, PhD, Stephen Whalen, BS, Sai Chun Tang, PhD, Greg T. Clement, PhD, Ferenc Jolesz, MD, Alexandra J. Golby, MD

Objective. Various methods of intraoperative structural monitoring during neurosurgery are used to localize lesions after brain shift and to guide surgically introduced probes such as biopsy needles or stimulation electrodes. With its high temporal resolution, portability, and nonionizing mode of radiation, ultrasound has potential advantages over other existing imaging modalities for intraoperative monitoring, yet ultrasound is rarely used during neurosurgery largely because of the craniotomy requirement to achieve sufficiently useful signals.

Methods. Prompted by results from recent studies on transcranial ultrasound, a prototype device that aims to use the shear mode of transcranial ultrasound transmission for intraoperative monitoring was designed, constructed, and tested with 10 human participants. Magnetic resonance images were then obtained with the device spatially registered to the magnetic resonance imaging (MRI) reference coordinates. Peaks in both the ultrasound and MRI signals were identified and analyzed for both spatial localization and signal-to-noise ratio (SNR).

Results. The first results aimed toward validating the prototype device with MRI showed an excellent correlation (n = 38; $R^2 = 0.9962$) between the structural localization abilities of the two modalities. In addition, the overall SNR of the ultrasound backscatter signals (n = 38; SNR = 25.4 ± 5.2 dB, mean ± SD) was statistically equivalent to that of the MRI data (n = 38; SNR = 22.5 ± 4.8 dB).

Conclusions. A statistically significant correlation of localized intracranial structures between intraoperative transcranial ultrasound monitoring and MRI data was achieved with 10 human participants. We have shown and validated a prototype device incorporating transcranial shear mode ultrasound for clinical monitoring applications. Key words: brain shift; monitor; neurosurgery; transcranial; ultrasound.

Abbreviations
FOV, field of view; FSPGR, fast spoiled gradient echo; ICSF, insular cortex/sylvian fissure; ITUM, intraoperative transcranial ultrasound monitor; MRT, magnetic resonance imaging; SE, spin echo; SNR, signal-to-noise ratio; TE, echo time; 3D, 3-dimensional; TR, repetition time

Received July 29, 2008, from the Departments of Radiology (P.J.W., S.C.T., G.T.C., F.J.) and Neurosurgery (S.W., A.J.G.), Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts USA. Revision requested September 2, 2008. Revised manuscript accepted for publication September 8, 2008.
This work was funded by National Institutes of Health grants P01CA067165, 1U41RR019703-01A2, R25 CA089017-06A2, and R21EB004353. Dr Clement is an original inventor on patent 7175599. He has no current financial interest in this intellectual property.
Address correspondence to P. Jason White, PhD, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, EBRC 521, Boston, MA 02115 USA.
E-mail: white@bwh.harvard.edu

Article includes CME test
resonance imaging (MRI) and computed tomography. Intraoperative ultrasound has been used to successfully track brain shift,4–7 guide needle biopsies,8 assist in brain mass resections,8–10 assist in the treatment of vascular malformations,9,10 guide cystic evacuations,11 and guide endoscopic procedures.11 Hyperechoic structures such as biopsy needles and most intraparenchymal mass lesions can be localized in real time and with sufficiently high spatial resolution. Vascular structures can also be readily and accurately characterized with power Doppler ultrasound, which is useful not only for operations involving vascular malformations but also to identify and track major vessels in the vicinity of targeted lesions.8,10 However, the cumbersome nature of existing devices, lack of an established registration method, and craniotomy requirement for an acoustic window (when the craniotomy site is used for ultrasound guidance, the surgeon has to stop surgery, position the probe, image, and resume the procedure after the probe has been removed from the surgical field) have limited the applicability of intraoperative ultrasound as a standard tool.8–11

A new device, the intraoperative transcranial ultrasound monitor (ITUM), operating transcranially as a real-time monitor during neurosurgical procedures, was designed, constructed, and tested with a series of 10 healthy human participants. The ITUM was developed to have the capability to noninvasively assess, at a high temporal resolution and a sufficient spatial resolution, intracranial deformations of major brain structures. As a low-profile device mounted outside the surgical field, the ITUM would only require a 1-time spatial registration and would scan continuously without interfering with surgical activities. In addition, because the device scans transcranially, a craniotomy acoustic window would no longer be requisite.

In this preliminary study to validate the ITUM with a reference standard, the prototype device was first characterized with benchtop measurements and evaluated for safety. Then 10 healthy adult participants were scanned by MRI in conjunction with the spatially registered ITUM, and the results were analyzed to correlate anatomic structures as defined by both modalities.

Transcranial Ultrasound

Since the first attempts to use ultrasound for medical imaging, scientists have sought a way to image brain tissue with sound waves.12 However, the transmission of ultrasound transcranially to produce backscatter signals with sufficiently useful information has been a severe technical obstacle for the field of neurosonography. Because the skull bone attenuates ultrasound roughly in proportion to the frequency of the signal, there exists a trade-off between the signal-to-noise ratio (SNR) and the resolution of traditional B-mode transcranial ultrasound imaging. In addition, distortions caused by irregularities in the skull’s shape, density, and sound speed collectively contribute to destroying the integrity of an ultrasound beam.

However, it has been observed that under certain conditions it is possible to propagate ultrasound through the skull with reduced distortion and higher signal amplitudes by using high angles of incidence.13 Recent studies on shear mode transcranial ultrasound have suggested that ultrasound beams can be harnessed to image through cranial bone by the intentional induction of a shear mode ultrasound wave within the skull bone.13–15 The method prevents skull surface backscatter from interfering with echoes originating from intracranial regions of interest and makes diagnostic information easier to analyze than traditional approaches to neurosonography. The method also minimizes refraction of the ultrasound wave as it passes through bone, making it possible to effectively focus the beam in tissues beyond the bone. In contrast, attempts to use traditional ultrasound are plagued by difficulties resulting from refraction of the ultrasound beam.16

Both numeric and experimental investigations indicate that ultrasound transmission enhancement at high angles of incidence is due to the behavior of shear modes induced in the skull bone. When the angle of incidence is beyond the Snell critical angle for the longitudinal pressure wave, ultrasound propagation in the bone becomes purely a result of a shear wave. Contrary to the common belief that transcranial shear modes are of negligible application because of distortion17 and attenuation,18 it has been shown that the conversion from a longitudinal wave (in the
epicranial tissue) to a shear wave (within the skull bone) and back to a longitudinal wave (in the brain parenchyma) does not necessarily produce a highly distorted or small-amplitude wave.13

In addition to using shear mode transcranial propagation, the ITUM incorporates 3 other application-specific design aspects: (1) a focused ultrasound transducer with a pressure field profile that selectively monitors specific intracranial regions; (2) a lowered effective ultrasound frequency ($f_c = 0.96$ MHz) to overcome attenuation stemming from the skull bone; and (3) a low ultrasound duty cycle for time-extended applications. This study shows application of the transcranial shear mode for ultrasound imaging in human participants.

Materials and Methods

Transducer Design and Characterization

The ITUM is composed of a lead zirconate titanate piezoelectric transduction element mounted in a polyvinyl chloride housing (Figure 1). The source element is spherically focused with a 30-mm radius of curvature and a 25.4-mm-diameter circular aperture and is electrically poled to operate in the thickness mode ($f_0 = 0.96$ MHz). The 30-mm radius of curvature was selected to specifically focus on the insular cortex/sylvian fissure (ICSF), which typically lies between 20 and 50 mm from the temporal acoustic window. A backing layer consisting of tungsten powder embedded within a polymer matrix is applied to the nontransmitting face of the crystal to increase the radiation bandwidth. A polymer standoff layer at the transmitting aperture is designed to ensure shear angles of incidence between the ultrasound propagation vector and the contact surface. The entire assembly is MRI compatible, and 2 cylindrical MRI fiduciary markers are mounted on the transducer casing to provide spatial registration with MRI data.

The spatial distribution and spectral content of the ITUM’s sonication field were characterized by benchtop measurements. The ITUM was submerged in degassed and deionized water within a rubber-padded tank at room temperature. As it was actuated with a broadband pulser-receiver,19 the radiated field was raster scanned by a pressure-sensitive polyvinylidene difluoride hydrophone (aperture diameter, 0.2 mm; Precision Acoustics Ltd, Dorchester, England) mounted to a computer-controlled positioning system (Velmex, Inc, Bloomfield, NY). Propagated waveforms were recorded (10,000 points sampled over 100 microseconds with 4× averaging) at a spatial resolution of 0.5 mm throughout a 20 × 60-mm area coplanar with the propagation axis of the ITUM, beginning 20 mm from the transducer aperture. The geometry of the standoff material prohibited scanning of the field within 20 mm of the transducer aperture.

To determine the spectral properties of the ITUM’s performance, Fourier analysis was performed with MATLAB (The MathWorks, Natick, MA) on the recorded waveform at the focus of the radiated field. The subsequent reconstruction of the spatial distribution of the ultrasound intensity was based on the results of the spectral analysis.

Transcranial Shear Mode Backscatter Signal Analysis

Previous studies have established the enhancement of ultrasound propagation through the skull at high angles of incidence using a 1-way through-transmission method.13 For this study, measurements were performed to determine whether similar results could be achieved by using the ITUM under a pulse-receive backscatter analysis scenario.
Intraoperative Brain Shift Monitor Using Transcranial Ultrasound

The ITUM was again submerged in degassed and deionized water within a rubber-padded tank at room temperature (Figure 2). The actuating pulser-receiver in this and all subsequent experiments was a customized system designed specifically for transcranial ultrasound applications. The system delivered controlled 3-cycle high-voltage pulses at a frequency of 1 MHz with a pulse repetition frequency of 6 Hz and then detected and amplified the backscattered echoes received at the transducer face. A spherical steel backscatter target (diameter = 3.1 mm) was mounted via a thin rigid steel needle onto a computer-controlled positioning system (Velmax, Inc) and positioned within the propagation field of the ITUM such that the needle mount was parallel to the propagation axis (Figure 2).

Then an ex vivo human skull fixed in 10% buffered formalin (formalin-fixed human skulls have been shown to have the same ultrasound characteristics as nonfixed skull bone20 was mounted to a rotary positioning system and positioned between the ITUM and the steel target such that ultrasound was propagated through the thickness dimension of the left temporal bone (=30 mm superior to the external auditory meatus). The right half of the skull was excised for this experiment. The skull was positioned such that the angle of incidence could be varied from 0° to 35°; the rotation was such that increasing the angle of incidence directed the ultrasound beam path more toward the posterior of the cranial vault (Figure 2). A 50-mm distance between the ITUM and the skull was geometrically necessary to achieve these angles of incidence. For each angle of incidence between 0° and 35° in step sizes of 5°, a 20 × 20-mm scan (scan resolution = 0.5 mm) of the backscatter field was performed by raster scanning the steel target and recording the backscattered signal as received by the ITUM, pulser-receiver, and oscilloscope system (Tektronix, Inc, Beaverton, OR) at each grid location (Figure 2). The recorded waveforms were then analyzed with MATLAB to yield backscatter field reconstructions.

Validation With Human Participants and MRI

Ten healthy adult participants were recruited for measurements to validate ITUM results against MRI data. The Partner’s Institutional Review Board approved the protocol, and all participants gave written informed consent. Safety studies (benchtop and animal) had been performed to assess thermal effects, the mechanical index, and current leakage associated with the ITUM. The system delivered controlled 3-cycle high-voltage pulses at a frequency of 1 MHz with a pulse repetition frequency of 6 Hz and then detected and amplified backscattered echoes received at the transducer face. These excitation parameters (3-microsecond pulse trains at 6 Hz gives a duty cycle of <0.002%) were designed to yield a sufficiently low time-averaged power for extended application in the operating room. Even under the worst-case scenario of perfect energy absorption in the tissue, the applied time-averaged power of approximately 1.4 mW over 1 second would raise a 1-g tissue mass (specific heat = 3500 J/kg/°C) by 0.0004°C. The peak rarefactive pressure for the ITUM was measured to be on the order of 0.1 MPa in water.

The ITUM was mounted onto an MRI-compatible adjustable arm, which was then attached to an MRI head coil. Each participant was positioned in a head-first supine position on the scanner bed, and the ITUM was placed in contact against the right temple (≈50 mm posterior to the lateral canthus of the eye), aligned to pro-

Figure 2. Schematic of the experimental setup for investigating the effects of the angle of incidence on transcranial backscatter detection. In this view, the ultrasound incident angle (θi) was increased by rotating the skull in a clockwise fashion, with the posterior aspect of the skull (P) moving toward the right and the anterior aspect of the skull (A) moving toward the left. The image is not drawn to scale. CH1 indicates channel 1, and CLK, clock.
ject in a posteromedial trajectory within the cranial vault (Figure 3). Ultrasound gel (Parker Laboratories, Inc, Fairfield, NJ) was applied on both the scalp and the ITUM contact surface to ensure adequate ultrasound coupling.

The ITUM was then actuated with the parameters as specified above, and a time trace of the received backscattered signal was recorded (10,000 points sampled over 200 microseconds with 8× averaging). The same sequence was acquired without the participant (ITUM radiating into air) to be used as a baseline time trace. The participants were then placed in the scanner (3-T MRI scanner; GE Healthcare, Milwaukee, WI), and a series of MRI scans were performed with the ITUM in place (but not actuated). First, 3-dimensional (3D) fast spoiled gradient echo (FSPGR) scanning (repetition time [TR] = 7.5 milliseconds; echo time [TE] = 3 milliseconds; number of excitations = 1; field of view [FOV] = 25.6 × 25.6 cm; slice thickness = 1 mm) was performed, taking care to include the ITUM fiduciary markers within the FOV. The images from this scan were used to plan the second scan, which was a T1-weighted spin echo (SE) coronosagittal oblique scan (TR = 650 milliseconds; TE = 10 milliseconds; number of excitations = 0.75; variable FOV; slice thickness = 4 mm) that was aligned to be coplanar with the propagation axis of the ITUM, as identified by the fiduciary markers (Figure 3).

Signal Processing and Data Analysis
Statistical analysis was performed on the two sets of data (ITUM and MRI) to establish a correlation between the observed locations of intracranial anatomic structures. First, the path of ultrasound propagation was identified in the MRI oblique scan, and the pixel values along this path were extracted for analysis. To make a meaningful comparison between the MRI pixel value and the ultrasound backscatter vector, the absolute value of the first derivative with respect to the path was performed on the MRI data, ie,

\[MR = \left| \frac{d}{dx}(PV) \right|, \]

where \(PV \) is the pixel value, and \(x \) is the path of ultrasound propagation. The rationale was that a change in structure composition (an anatomic boundary) is related to a change in the characteristic acoustic impedance, which is the source of a backscattered signal. A local peak in this value should then correspond to a local peak in backscattered ultrasound data.

Next, the recorded ITUM backscatter signal was subtracted from the recorded baseline time trace, and the time segment of interest was extracted for comparison with the processed MRI data. Sound speeds of 1562 m/s for the brain parenchyma and 1500 m/s for the skull bone.

Figure 3. Diagram showing the registration of MR images with the ITUM in a healthy human participant. An axial section (left, 3D FSPGR; TR = 7.5 milliseconds; TE = 3.0 milliseconds; FOV = 25.6 × 25.6 cm; slice thickness = 1 mm) containing the fiduciary markers (FM1 and FM2) of the ITUM was used to prescribe the oblique section (center, T1-weighted SE; TR = 650 milliseconds; TE = 10 milliseconds; number of excitations = 0.75; variable FOV; slice thickness = 4 mm) that was aligned to be coplanar with the propagation axis of the ITUM, as identified by the fiduciary markers (Figure 3).
shear mode were used to accurately convert the time sequences into propagation distances. The ITUM signal was processed according to

\[US_{NA} = H\left\{ \left[I(t) - I_b(t) \right] \ast e^{-\alpha d} \sin(2\pi ft) \right\} , \]

where \(I(t) \) is the ITUM backscatter data; \(I_b(t) \) is the ITUM baseline data; \(t \) is the time vector corresponding to the recorded data; \(\ast \) represents a cross-correlation performed in Fourier space; \(H \) is the Hilbert transform; and \(US_{NA} \) represents the nonattenuated processed ultrasound signal. Cross-correlation of a gaussian-enveloped sinusoid with the backscattered signal was performed in accordance with a method previously developed for improving ultrasound resolution and signal strength through highly attenuating media. A propagation distance–dependent attenuation factor was also applied to the resulting backscatter A-line signal to compensate for signal loss due to attenuation within the brain. This was done according to

\[US = US_{NA} \cdot e^{-\alpha d} , \]

where \(\alpha \) is the attenuation coefficient (0.87 dB/cm/MHz); \(f \) is the ultrasound frequency (0.96 MHz); \(d \) is the propagation distance; and \(US_{NA} \) is the nonattenuated result from Equation 2 (\(US \) represents the processed ultrasound data both here and in the figures).

Signal peaks in both the MRI and ultrasound data were identified and analyzed for correlation in the localization of intracranial structures. To exclude data that did not originate from intracranial structures, signal peaks between 0 and 20 mm were not included in the analysis. During data acquisition, a slight oscillation of approximately 1 Hz in signal arrival time could be observed for each participant but only for signals originating from intracranial structures. This oscillatory motion was most likely due to cardiac-induced pulsatile motion and therefore was also used qualitatively to confirm that the signal was of intracranial origin.

To compare the observed distance from the device from ITUM backscatter signal peaks and MRI pixel intensity gradients, linear regression analysis was used (ie, calculation of the slope, y-intercept, and correlation coefficient). A paired Student \(t \) test confirmed zero bias between comparisons. The Bland-Altman technique was also used to evaluate the agreement between the measurements, with the limits of agreement defined as the mean difference ± 1.96 SDs. Specific to the design of this study was the observation and localization of the ICSF (Figure 3), this being a prominent hyperechoic structure because of its extensive cerebrospinal fluid–cortex structural boundaries. The ICSF was clearly identifiable in all MRI scans by visual inspection. A signal peak from each of the ITUM and the MRI series was identified as originating from the ICSF, and a separate statistical analysis was performed on this set of measurements.

Finally, SNR calculations and statistical analyses (participant mean, participant SD, overall mean, and overall SD) were performed independently on the series of ITUM and MRI data. The SNR was defined as

\[SNR (dB) = 20 \log_{10} \left(\frac{A_s}{A_N} \right) , \]

where \(A_s \) is the signal amplitude, and \(A_N \) is the mean noise amplitude. The mean noise amplitude, \(A_N \), was obtained by selecting a series of temporospatial points beyond the signal and applying the formula

\[A_N = \frac{1}{n} \sum_{i=1}^{n} \left| A_n - \bar{A} \right| , \]

where \(n \) is the number of points sampled; \(A_n \) is the value of the point \(n \) as obtained by Equations 1–3; and \(\bar{A} \) is the mean values of all \(n \) points. The overall statistical analyses were also independently performed on the SNR as measured from signals arising from the ICSF.

Results

Transducer Design and Characterization

The radiated pressure field of the prototype ITUM was spatially scanned. Fourier analysis of the recorded waveform at the focus of the radiated pressure field revealed a peak at 0.96 MHz with a –3-dB bandwidth of 260 kHz (Figure 4).
The intensity field reconstruction was then performed at this frequency, yielding a spatial full-width half-maximum (FWHM) intensity profile of 4.8 mm (orthogonal to the propagation vector) at a distance of 30 mm from the aperture (Figure 4). A slight standing wave effect undulation in the intensity along the propagation direction was observed in the focal area of the field. This pattern was most likely due to wave interaction with the ultrasound signal reflected from the hydrophone mount.

Transcranial Shear Mode Backscatter Signal Analysis

The results from the transcranial backscatter field scans corroborated earlier studies on the enhancement of ultrasound transmission through the skull bone at high angles of incidence. In our study, the reduced distortion of the shear mode was made evident by the detection of a backscattered signal from a pointlike target. It was observed that the backscattered signal from a steel sphere as transmitted and received by the ITUM decreased in amplitude as an intervening ex vivo skull was rotated to increase the ultrasound beam's angle of incidence (Figure 5). This reduction in backscattered amplitude continued as the angle of incidence was increase to approximately 30°, at which point the signal was observed to increase in amplitude with an increasing angle of incidence. The backscattered amplitude continued to increase until the geometry of the experimental setup would not allow further rotation (θi ≈ 35°). At this angle of incidence, the peak intensity was 84% of the original peak intensity at normal incidence (Figure 6). At its lowest (θi = 20°), the backscattered peak intensity was 4% of the original peak intensity at normal incidence.

It was also observed that beyond a critical angle of incidence (≈30°), the backscattered signal from the target became less distorted and more clearly isolated from spurious signals. A double backscattered signal as received by the ITUM from the target was evident when the skull was aligned at normal incidence (Figure 5). As the angle of incidence was increased beyond 10°, the signal that arrived at an earlier time (≈165 microseconds) disappeared, leaving only a single signal (arriving at ≈177 microseconds), which was the peak intensity at normal incidence.
was then enhanced as the angle of incidence was increased beyond 30°. A qualitative assessment of the scanned backscattered intensity fields (Figure 6) revealed an incident angle–dependent increase in distortion of the spatial distribution of backscattered intensity as \(\theta_i \) was increased from 0° to 25°. The scanned fields for \(\theta_i = 30° \) and \(\theta_i = 35° \) were markedly less distorted than those at \(\theta_i = 20° \) and \(\theta_i = 25° \) and somewhat less distorted than the angles of incidence between 0° and 15°.

Validation With Human Participants and MRI

The ICSF was identifiable in both the MRI and ITUM data for each of the 10 healthy adult participants (Figure 7). In addition to the ICSF, 28 other structures (eg, outer cortex, superior temporal sulcus, and lateral ventricle) were identified as correlative for both series of data, from as many as 7 intracranial structures for 1 participant to only 1 structure (the ICSF) for 1 participant (Figure 8). Most of these structures were in the vicinity of the ICSF (between 20 and 60 mm from the scalp), but 5 backscattered signals originating from structures beyond 80 mm were identified on the MR image as the margins of the ipsilateral lateral ventricles. Statistical analysis was performed for both the complete set of signals arising from all intracranial structures (\(n = 38 \)) and those signals arising from the ICSF (\(n = 10 \)).

Linear regression analysis confirmed a high level of correlation between MRI localization and localization of the same structures with the ITUM (slope = 1.02; y-intercept = −0.06; \(R^2 = 0.9962 \) for all structures; slope = 1.05; y-intercept = −0.2; \(R^2 = 0.9922 \) for the ICSF). Confirmation of a significant correlation between the two series of measurements was also achieved with the Bland-Altman technique of analysis, using the mean of the two measured values as the independent variable and the difference between the two measured values as the dependent variable. For the case of all identified structures, only 2 measurements fell beyond ±1.96 SDs; for the case of the ICSF measurements, no data points fell outside ±1.96 SDs.

The SNR for each signal peak was also measured for both the MRI data and the ITUM signals in 2 categories (Figure 9): all identifiable structures (\(n = 38 \)) and ICSF only (\(n = 10 \)). Overall, the SNR levels of the ITUM signals were statistically equivalent to those of the MRI signals. The mean SNRs for the ITUM backscattered signals were 25.4 ± 5.2 dB for all structures and 28.5 ± 8.2 dB for the ICSF. For the MRI signal peaks, the mean SNRs were 22.5 ± 4.8 dB for all structures and 25.3 ± 5.6 dB for the ICSF. As would be expected, the mean SNR values for signals arising from the ICSF were higher than the corresponding mean SNR values when all other structures were considered. The lowest and highest SNR values obtained by MRI were 14.8 and 36 dB, respectively. The lowest and highest SNR values obtained by the ITUM were 14.4 and 36.8 dB.

Discussion

The clinical impetus for intraoperative navigational aid stems from the need to visualize anatomic structural changes and surgical tool placements that are not readily observable directly from the surgical field. These include localization of lesions after brain shift,\(^24\) identification of acute iatrogenic conditions such as intracranial hemorrhage,\(^25\) and guidance of surgically introduced probes such as biopsy needles\(^26\) and stimulation electrodes.\(^27\)
Although MRI is effective in the spatial localization of such targets, it lacks efficacy as a real-time monitor during surgery because real-time scanning cannot take place during surgical activities (e.g., dural opening, lesion resection, and biopsy). The typical protocol for MRI-guided surgery requires cessation of surgical procedures and clearing of metallic tools from the surgical field to minimize image artifacts. The time added to the overall duration of a procedure and to the time during which a patient is under general anesthesia increases the chance of surgical complications. Also, standard MRI pulse sequences have insufficient time resolutions to monitor acute status changes during a procedure. Emergent surgical complications that require immediate attention (e.g., acute hemorrhage, aneurysm rupture, and excessive brain shift) occur on a time scale of seconds, whereas MRI can give feedback only at a temporal resolution of minutes. Because of these inherent MRI deficiencies, surgeons are required to weigh the benefit of scanning time with the diagnostic potential before ordering an intraoperative scan. In addition, intraoperative MRI is very resource intensive, and its availability is limited to a few dedicated centers. These shortcomings of MRI-guided neurosurgery prompted the design and investigation of the ITUM, which has the potential to be deployed in any operating room for intraoperative monitoring.

The discovery that a focused ultrasound beam, traveling as a shear wave through the skull, may emerge less distorted than a longitudinal one13,14 became a key design aspect for incorporation into the ITUM. In contrast with shear wave imaging in soft tissue, the ITUM was designed to incorporate a traditional compression wave backscatter imaging modality with an interposed shear conversion within the osseous tissue of the skull bone. By directing a longitudinal wave onto the skull surface at angles beyond 30°, a generated shear wave travels through the thickness dimension of the skull bone in a direction nearly identical to the initial direction of propagation. When the shear wave reaches the interior surface of the skull, the energy is converted back into a longitudinal wave. Backscatter signals from intracranial structures undergo the same mode conversion as they travel along the same path back to the transducer.

This backscatter detection mode of operation was shown to be effective by benchtop experiments (see “Results,” “Transcranial Shear Mode Backscatter Signal Analysis”). At near-normal angles of ultrasound incidence, a double backscattered signal originating from the same target was observed, most likely due to the combined effects of modal bifurcation at the skull interfaces. With a longitudinal mode phase speed of approximately 2800 m/s14,20 and a shear mode phase speed of approximately 1500 m/s,14 actuation of both modes at the skull surface (generation of only a longitudinal component with no shear component within an ex vivo skull is not possible in an experimental setting) resulted in 2 detectable signals with different arrival times. The double backscatter signals obscured and distorted the definition of the single pointlike target. The signal stemming

\textbf{Figure 6.} Spatial distributions of backscatter intensities from a 3.1-mm-diameter steel sphere as received by the ITUM after transcranial signal propagation. A, Each plot represents the backscatter intensity measured on a 20 x 20-mm grid lying orthogonal to the propagation axis of the ITUM (10% contour lines, scanning resolution of 0.5 mm). The plots range from a normal incident angle (0°; top left) to an incident angle of 35° (bottom right). B, Peak measured backscattered intensity (normalized) for each of the fields in A.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure6.png}
\caption{Spatial distributions of backscatter intensities from a 3.1-mm-diameter steel sphere as received by the ITUM after transcranial signal propagation. A, Each plot represents the backscatter intensity measured on a 20 x 20-mm grid lying orthogonal to the propagation axis of the ITUM (10% contour lines, scanning resolution of 0.5 mm). The plots range from a normal incident angle (0°; top left) to an incident angle of 35° (bottom right). B, Peak measured backscattered intensity (normalized) for each of the fields in A.}
\end{figure}
from the longitudinal mode actuation decreased as the ultrasound incident angle at the skull surface was increased. After the critical angle for longitudinal transmission was reached, as defined by

\[\theta_c = \sin^{-1} \left(\frac{c_1}{c_2} \right), \]

where \(c_1 \) is the sound speed of the first medium, and \(c_2 \) is the longitudinal sound speed of the second medium (in the case of an ex vivo human skull in water, \(c_1 \approx 1500 \text{ m/s} \), and \(c_2 \approx 2800 \text{ m/s} \); so \(\theta_c \approx 32^\circ \)), it was observed that only 1 backscatter signal remained. This result gave strong support to the incorporation of shear mode transcranial ultrasound into the design of the ITUM. Together with the lowered frequency of operation, the transcranial shear mode of operation was a substantial contributor to the high SNR and the precision of localization exhibited by the ITUM.

The high level of correlation between MRI and ITUM localization of intracranial structures (\(R^2 = 0.9962 \)) was shown predominantly by backscattered signals within the spatial range of 2 to 6 cm from the ITUM aperture. Because this study focused on signals originating from the ICSF, the observation of 5 signals emanating from the margins of the lateral ventricles (beyond 8 cm from the aperture of the ITUM) was incidental. The inclusion of these data points in the overall analysis may have reduced the correlation results (this is most notable in the Bland-Altman plot) or the SNR values, but a substantially high correlation was maintained nonetheless, and no significant difference was evident in the SNR analysis. Future studies are being designed that will focus on localization and motion tracking of the lateral ventricles and other deeper-set structures, including the midline falx, basal ganglia, and brain stem structures. It is anticipated that subarachnoid hemorrhage could also have a considerable impact on backscatter distortion and the SNR and, as such, may be investigated for use as a monitoring method for intraoperative subarachnoid hemorrhage.
Figure 8. Results of the statistical analysis to validate the ability of the ITUM to localize intracranial structures against the reference standard of MRI. **A**, Location of intracranial structures as measured by the ITUM plotted against the same measurement performed by MRI. **B**, Same as **A** but with analysis performed on only those signal peaks originating from the ICSF. In **A** and **B**, the solid line indicates linear regression; and dotted line, perfect correlation. **C**, Results of a Bland-Altman analysis comparing the mean of the two series of measurements (MRI and ultrasound) with the difference between the same measurements. **D**, Same as **C** but with Bland-Altman analysis performed on only those signal peaks originating from the ICSF. In **C** and **D**, the solid line indicates perfect correlation; and dotted line, ±1.96 SDs. In **A–D**, black squares indicate signal peaks originating from the ICSF, and white squares, signal peaks originating from all other intracranial structures.
Intraoperative Brain Shift Monitor Using Transcranial Ultrasound

Figure 9. Signal-to-noise ratios for the identified signal peaks in both the MRI (A and C) and ITUM (B and D) data. A and B, Signal-to-noise ratios for all identified signal peaks. C and D, Signal-to-noise ratios for signal peaks identified as originating from the ICSF. In A–D, the solid line indicates the mean value; dotted line, SDs; squares, MRI data points; triangles, ultrasound data points; black squares and triangles, signal peaks originating from the ICSF; and white squares and triangles, signal peaks originating from all other intracranial structures.

References

