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Machine learning is poised to transform health 
care. For example, to diagnose certain diabetic 
complications, ophthalmologists must visual-
ize patients’ retinae, looking for subtle signs of 
damage. A Google team built a deep learning 
algorithm that could look at digitized retinal 
photographs and diagnose as accurately, if not 
more, than physicians (Gulshan et al. 2016).

These efforts, though, are expanding in 
scope, from automating routine tasks to aid-
ing in complex decisions. Tailored diagnostics 
help doctors decide whom to test and treat. 
Algorithms predict adverse outcomes (say 
stroke or heart disease) for early warning sys-
tems that target resources and attention to high-
risk patients.

These health policy applications raise their 
own econometric concerns. One is well under-
stood—the conflation of causation and pre-
diction. We suggest another important, yet 
underappreciated, challenge: mismeasurement. 
Machine learning algorithms excel at predict-
ing outcomes ​y​ based on inputs ​x​. In automa-
tion tasks, measuring ​y​ , e.g., majority opinion 
of ophthalmologists, is straightforward. In 
health policy applications, we rely on elec-
tronic health records or claims data to measure ​
y​ and ​x​. The very construction of these data 
induces large and systematic mismeasurement. 
These in turn can bias algorithmic predictions; 
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in some cases, these biases can automate pol-
icies that magnify existing clinical errors and 
moral hazard.

I.  Example Application

Patients in the emergency department (ED) 
can be difficult to diagnose. Subtle symptoms 
can often overlap between diseases of differ-
ing severity: nausea could reflect heart attack, 
or acid reflux. Take the case of patients who 
are either having a stroke, or are at high risk of 
impending stroke in the days after ED visits. 
These patients can be hard to distinguish from 
more benign presentations. Yet if they could 
be identified, one could target more effective 
interventions in the ED, or arrange for close fol-
low-up and expedited additional testing (e.g., to 
identify treatable causes of potential stroke) if 
they are sent home.

This seems like a perfect example of a “pre-
diction problem” (Kleinberg et al. 2015). This 
decision does not require a causally valid 
estimate of a coefficient ​​​β ̂ ​​x​​​ , i.e., how a particular 
treatment affects stroke risk. Instead, we require 
an accurate prediction ​​y ̂ ​​ of stroke risk ​y​ in order 
to allocate interventions to highest risk patients. 
Moreover, the richness of electronic health 
records (EHRs) give us many variables ​x​ with 
which to make these predictions.

A. Empirical Results

To illustrate this, we use data from a large aca-
demic hospital and its ED to predict short-term 
stroke risk, focusing on a diagnosis of stroke in 
the week of the ED visit. As predictors, we use 
demographic data as well as any prior diagnoses 
present in the EHR system over the year before 
the ED visit, grouped into clinically-relevant 
categories. To illustrate our point simply, we 
use a logistic regression; surely more complex 
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predictors would find even more structure than 
we present.1

Table 1 presents the top predictors of future 
stroke in terms of coefficient magnitude. 
Somewhat intuitively, prior stroke has the stron-
gest association with future stroke. The next five 
largest predictors of stroke are also shown. Like 
prior stroke, history of cardiovascular disease also 
makes sense as a known risk factor for stroke. The 
other four predictors—accidental injury, benign 
breast lump, colonoscopy, and sinusitis—are 
somewhat more mysterious. Have we discovered 
novel biomedical risk factors for stroke? 

B. Measurement

To understand what might be happening, 
we must understand the measurement process 
underlying these data. We have spoken as if we 
are predicting “stroke.” Yet our measures are 
several layers removed from the biological sig-
nature of blood flow restriction to brain cells. 
Instead we see the presence of a billing code or 
a note recorded by a doctor. Moreover, unless 
the stroke is discovered during the ED visit, the 
patient must have either decided to return, or 
mentioned new symptoms to her doctors during 
hospital admission that provoked new testing. 
In other words, measured stroke is (at least) the 
compound of: having stroke-like symptoms, 
deciding to seek medical care, and being tested 
and diagnosed by a doctor.

Medical data are as much behavioral as bio-
logical; whether a person decides to seek care 
can be as pivotal as actual stroke in determining 
whether they are diagnosed with stroke. Many 
decisions and judgments intervene in the assign-
ment of a diagnosis code—or indeed, any piece 
of medical data, including obtaining and inter-
preting test results, admission and re-admission 
of a patient to the hospital, etc.

Viewed in this light, the findings in Table 1 
are intuitive. We are just as much predicting 
heavy utilization (the propensity of people to 
seek care) as we are biological stroke. For exam-
ple, evaluation for minor injury implies that the 
patient came into her doctor’s clinic or the ED 
for minor injuries; a recorded abnormal breast 

1 Even this simple model does fairly well. A standard 
measure of performance is AUC, the area under the receiver 
operating characteristic curve—formally, ​Pr( ​​y ˆ ​​i​​ > ​​y ˆ ​​j​​ | ​y​i​​ = 1, ​
y​j​​ = 0)​ , which is 0.84 here. 

finding indicates that she noticed an irregular-
ity, worried about it enough to schedule a visit, 
and came in to be checked out. Variables which 
proxy for heavy utilization could in fact appear 
to predict any medical condition, including 
stroke.

This can be seen by looking at a variable 
far less prone to mismeasurement: mortality. 
Column 2 shows coefficients for a similar regres-
sion in which mortality (ascertained from Social 
Security Administration records) is substituted 
for stroke as the dependent variable. All coeffi-
cients have decreased in magnitude. We can see 
that prior stroke remains associated with mortal-
ity, but the two significant predictors of stroke 
(injury and breast lump) no longer predict mor-
tality; screening for colon cancer has switched 
signs and become a strong negative predictor of 
mortality. All in all, we can see that the variables 
that were so effective at predicting a ​y​ measured 
through the lens of human decision making no 
longer perform so well in predicting a ​y​ mea-
sured with less error.

II.  Measurement Error in Medical Prediction 
Problems

A simple framework can help understand how 
mismeasurement might bias prediction. We can 
write this as the difference between ​​y​i​​​ , e.g., mea-
sured stroke from medical records, and actual 
stroke, ​​y​ i​ 

∗​​:

	​​ y​i​​  = ​ y​ i​ 
⁎​ + ​Δ​i​​.​

Table 1—Predicting and Mispredicting 

Stroke 30-day 
mortality

Prior stroke 0.302 0.041
(0.012) (0.014)

Prior accidental injury 0.285 0.007
(0.095) (0.101)

Abnormal breast finding 0.224 0.162
(0.092) (0.110)

Cardiovascular disease history 0.218 −0.017
(0.029) (0.034)

Colon cancer screening 0.242 −0.475
(0.178) (0.222)

Acute sinusitis 0.220 0.056
(0.155) (0.166)

Notes: Logistic regression on demographics and prior diag-
noses in EHR data. Sample: 177,825 ED visits in 2010–2012 
to a large academic hospital.
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In a causal inference task, we have some intu-
ition about how mismeasurement can be prob-
lematic: if ​​Δ​i​​​ is correlated with a predictor 
variable, its coefficient will be biased. How will 
it matter for prediction tasks?

A good predictor will produce predictions 
that are close to expected values:

	​​​ y ˆ ​​i​​ ≈ E [ ​y​i​​ | ​x​i​​ ] = E [ ​y​ i​ 
⁎​ | ​x​i​​ ]  + E [ ​Δ​i​​ | ​x​i​​ ]​.

Since we care about the prediction as a whole, 
in principle we are no longer concerned that 
​​Δ​i​​​ is correlated with specific ​​x​i​​​ variables but 
with any predictor. Two scenarios are possible 
here. The best case is that the error ​​Δ​i​​​ is noise 
uncorrelated with ​​x​i​​​:

	​​​ y ˆ ​​i​​​ ≈ E[​​ ​​ y​ i​ 
⁎​   ⏟
 ​​ 

Signal

​​​| ​​x​i​​​] + ​​​    
 E[​ ​​Δ​i​​   ⏟

 ​​ 
Noise

​​ | ​x​i​​]​​​ 
→0

  ​​ .

The resulting prediction will be purely fitted to 
the predictable part of underlying risk, rather 
than the error. Here, prediction will effectively 
be a “de-noised” version of the raw ​​y​i​​​ drawn 
from medical records.

A less optimistic scenario arises when both 
error and actual risk are predictable:

​​​y ̂ ​​i​​  ≈ ​​ E [ ​y​ i​ 
⁎​ | ​x​i​​ ]  
 

⏟
​​ 

Signal

​ ​  + ​ ​​ 
 
 

⏞
 E [ ​Δ​i​​ | ​x​i​​ ]​  

 
⏟

​​ 
Predictable error

​ 

≠0

 ​​ .

By writing ​​  ​y​ i​ 
⁎​​ = E [ ​y​ i​ 

⁎​ | ​x​i​​ ]​ and ​​​  Δ​​i​​ = E [ ​Δ​i​​ | ​x​i​​ ]​ , 
prediction variability can be decomposed in to  
the predictable variance of the signal and the 
noise:

​var(​​y ̂ ​​i​​ ) = var(​̂   ​y​ i​ 
⁎​​ ) + var( ​​  Δ​​i​​) + 2 cov ( ​  ​y​ i​ 

⁎​​, ​​  Δ​​i​​ )​.

How much our decisions are based on predicted 
risk, ​​y ˆ ​​ , versus how much they are based on mis-
measurement depends on the relative predict-
ability of ​​y​ i​ 

⁎​​ and ​​Δ​i​​​.
This simple framework helps makes sense of 

our empirical example. In this case:

	​​ ​​  y​i​​   ⏟
 ​​ 

Measured stroke

​​  =  ​ ​​  y​ i​ 
⁎​   ⏟
 ​​ 

Stroke

​​ + ​ ​​ Δ​i​​   ⏟
 ​​ 

Heavy utilizer

​​;

	​ ​​  x​i​​   ⏟
 ​​ 

Measured injury

​​  =  ​ ​​  x​ i​ 
⁎​   ⏟
 ​​ 

Injury

​​ + ​ ​​ Δ​ i​ 
x​   ⏟
​​ 

Heavy utilizer

​​​.

Measured injury predicts measured stroke 
because both are proxies for heavy utilization 
patients. Our (measured) stroke predictor is 
actually a combination of a stroke predictor and 
a utilization predictor.

In fact, given the nature of the data, it is 
entirely plausible that utilization, ​​Δ​i​​​ , is more 
predictable than ​​y​ i​ 

⁎​​ , true stroke outcome. After 
all, most of our predictors are highly dependent 
on patients’ tendency to utilize. In this sense, an 
early warning system based on predicted stroke 
risk might magnify moral hazard by diverting 
resources even further to patients most likely to 
seek out care.

A. Consequences for Decisions

In most machine learning applications, ​​y ˆ ​​ 
feeds into some decision. In the stroke example 
above, the decision is whether or not to allocate 
high-cost diagnostic or therapeutic technology 
to a patient with a given level of predicted risk.

Predictability of error alone does not imply a 
problem for decision making. For example, the 
misprediction may not distort the rank order-
ing of individuals in terms of ​​​y ˆ ​​i​​​. In these cases 
any decision that allocates according to rank, 
such as ​​D​i​​ = 1​ if ​​​y ˆ ​​i​​ > (c / b)​ (based on costs 
and benefits of ​D​) will not be affected. The 
decision can simply be scaled back to a new 
threshold ​​​y ˆ ​​i​​ > (c / b) + k​ , where ​k​ is an approx-
imation of ​E [ ​Δ​i​​ | ​x​i​​ ]​. As an example, if the only 
error in ​​y​i​​​ was that moral hazard led doctors to 
over-diagnose stroke, but ​​​y ˆ ​​i​​​ still consistently 
ranked patients by true risk, we could simply 
scale back decisions (e.g., allocate ​D​ to the top 
5 percent instead of the top 10 percent as the 
original prediction would have suggested).

In many cases, however, mismeasurement 
distorts rank ordering as well. The stroke predic-
tor above did not simply rank according to true 
stroke risk: patients could have higher predicted 
“stroke risk” simply by being heavy utilizers. In 
these cases, predictors will create decision and 
allocation biases. The severity of these biases—
and whether they lead to worse outcomes—
depends on how predictable mismeasurement is, 
relative to the underlying outcome. As we have 
seen, in health data, mismeasurement is plau-
sibly even more predictable than true risk. An 
important corollary is that simply quantifying 
how well algorithms predict measured ​y​ is not 
enough to gauge its quality: we might prefer a 
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worse-looking predictor that tracks true risk and 
does not fit to mismeasurement.

B. How Widespread Are These Problems?

Measurement error is often ignored in the 
machine learning literature because it is largely 
unimportant in traditional applications. The 
image algorithms that underlie the self-driving 
car, for example, are trained on data where it is 
easy to objectively label the presence of road 
boundaries, pedestrians, trees, and other obsta-
cles. In the large image datasets on which vision 
algorithms are trained, the judgment of human 
observers who label images defines the truth that 
algorithm designers seek to predict.

In health data, on the other hand, 
mismeasurement is the rule, and the exam-
ple of stroke prediction is hardly the excep-
tion. We identify three major categories of 
mismeasurement.

First, measurement is subjective. A diagno-
sis is not an objective assessment, but rather an 
opinion that has been assigned and billed, often 
for the purpose of justifying further testing or 
treatment. Even symptoms are not unfiltered 
reports from patients, but rather those symptoms 
elicited in the course of an interview, redacted, 
and set down in a note.

Second, it is selective. Diagnostic test results 
reflect the decision to test. Patients “set the 
agenda” and select which complaints to focus 
on during a visit.

Finally, it is event-based. We only record 
data when there is some precipitating medical 
event, such as a clinic visit or hospitalization.2 
We have seen how patient decisions play a major 
role here.

These measurement issues, in turn, can bias 
machine learning applications. First, as we 
saw above, they can further concentrate health 
spending in high utilizers. Many early warning 
systems are built on predictors not unlike our 
simple stroke predictor. These efforts to target 
testing, screening, or simply extra attention may 
simply end up targeting the patients who already 
tend to seek out care at high levels.

2 This even affects measurement of death, which we typ-
ically assume is measured reliably. In fact, most databases 
record only death during some event, most often hospitaliza-
tion. In our application, to resolve this, we linked to Social 
Security data, but this is not the norm. 

Second, automated diagnoses could reinforce 
physicians’ judgmental biases (Blumenthal-
Barby and Krieger 2015). For example, if 
psychologically salient or available diseases 
are over-diagnosed, algorithms trained on 
these diagnoses might simply replicate them 
(Mamede, van Gog, and van den Berge 2010). 
These biases might also reinforce disadvantage. 
Physicians are 40 percent less likely to refer 
female or black patients with chest pain for cath-
eterization (Schulman et al. 1999). Minorities 
receive less aggressive cancer treatment (Bach 
et al. 1999). Algorithms that mine EHR data 
to automate diagnoses or make personalized 
cancer treatment recommendations (e.g., IBM 
Watson’s) could perpetuate these biases.

In summary, measurement error can feed 
through prediction algorithms. The biases inher-
ent in human decisions that generate the data 
could be automated or even magnified. Done 
naively, algorithmic prediction could then mag-
nify or perpetuate some of policy problems we 
see in the health system, rather than fix them.

III.  Solutions

Ultimately, just as for causal inference in 
observational data, we are unlikely to find a one 
size fits all solution to measurement problems in 
prediction tasks. But we can start to think about 
several categories of ways to mitigate or solve 
them.

One avenue is better measurement: in many 
cases, at some cost, better measure ​y​. Because 
these measures are time consuming and expen-
sive, it limits sample size to the point where 
machine learning is often impractical. One solu-
tion would be to use these on a small sample for 
validation. They could be taken after predictions 
are made using a potentially mismeasured ​y​.3  
These studies could even be combined with ran-
domized trials of interventions, which would 
allow for both prediction of ​​y​​ ⁎​​ and estimation of 
treatment effect by ​​y ˆ ​​.

The ideal solution could be to hold machine 
learning tools to the same standard as any other 
new diagnostic technology in medicine, such 

3 This has a slight parallel with using instruments to 
manage measurement error in coefficient estimation. Just 
as instruments isolate a fraction of ​x​ to purge measurement 
error from estimated coefficients here we might only need a 
small fraction of ​​y​i​​​ data measured well. 
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as a new laboratory or imaging test. Their pre-
dictions ought to be compared to gold standard 
measures and rely on long-term, high-quality 
follow-up data for validation.

IV.  Conclusion

Machine learning relies on the availability 
of large, high-quality datasets (Halevy, Norvig, 
and Pereira 2009). Health policy is a particu-
larly attractive area exactly because large data 
are increasingly becoming available. Yet, if we 
do not take the measurement process generating 
those data seriously, predictive algorithms risk 
doing less good than they otherwise might; in 
some cases, they could possibly even do harm.
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