Graph Neural Networks for Soft
Semi-Supervised Learning on Hypergraphs

Naganand Yadati', Tingran Gao?, Shahab Asoodeh?®, Partha Talukdar', and
Anand Louis!

! Indian Institute of Science, Bangalore, Karnataka 560012, India
2 University of Chicago, IL 60637, United States,
tingrangao@galton.uchicago.edu
3 Harvard University, Cambridge, MA 02138, United States,
shahab@seas.harvard.edu
{naganand,ppt,anandl}@iisc.ac.in

Abstract. Graph-based semi-supervised learning (SSL) assigns labels
to initially unlabelled vertices in a graph. Graph neural networks (GNNs),
esp. graph convolutional networks (GCNs), are at the core of the current-
state-of-the art models for graph-based SSL problems. GCNs have re-
cently been extended to undirected hypergraphs in which relationships
go beyond pairwise associations. There is a need to extend GCNs to di-
rected hypergraphs which represent more expressively many real-world
data sets such as co-authorship networks and recommendation networks.
Furthermore, labels of interest in these applications are most naturally
represented by probability distributions. Motivated by these needs, in
this paper, we propose a novel GNN-based method for directed hyper-
graphs, called Directed Hypergraph Network (DHN) for semi-supervised
learning of probability distributions (Soft SSL). A key contribution of
this paper is to establish generalisation error bounds for GNN-based soft
SSL. In fact, our theoretical analysis is quite general and has straight-
forward applicability to DHN as well as to existing hypergraph methods.
We demonstrate the effectiveness of our method through detailed exper-
imentation on real-world datasets. We have made the code available.

1 Introduction

In the last decade, deep learning models have been successfully embraced in
many different fields and have been shown to achieve excellent performance on
a vast range of applications. Graph Convolutional Networks (GCNs) [16] have
been recently proposed as an adaptation of a particular deep learning model
(i.e., convolutional neural networks) to enable handling of graph-structured data.
GCN has been shown to be effective especially in semi-supervised learning on
attributed graphs. GCNs have inspired the current state-of-the art models for
graph-based SSL [28/24].

While graphs are powerful data representations for pairwise relationships,
hypergraphs provide more flexible data representations for relationships beyond
pairwise associations. A hypergraph relaxes the notion of an edge (commonly
called hyperedge) to contain more than two vertices. Real-world datasets such

2 N. Yadati et al.

as co-authorship networks, recommendation networks, email communication net-
works, protein-protein interaction networks, etc. can be flexibly modelled by
hypergraphs. For example, in a co-authoship network, a document (hyperedge)
can be be co-authored by more than two authors (vertices). The existence of
such relationships naturally motivates the problem of hypergraph-based semi-
supervised learning (SSL).

1. co-authorship network 2. recommendation network
s~ "
y faT =
ﬂ b ﬂ > (B s /] \D
—— —+—
y y /
@ “ @ o J:”%i;\ v/
&/ & & =
U B L».k'w ",l‘ e)) N
T N
1l.a. directed hypergraph 1.b. undirected hypergraph 2.a. directed hypergraph 2.b. undirected hypergraph

Fig.1. (Best seen in colour) Examples of real-world networks modelled as directed
hypergraphs and undirected hypergraphs. To the left is 1. co-authorship network in
which vertices are authors, and hyperedges are collaborations (documents). 1.a. shows
the network modelled as a directed hypergraph in which directions are citations among
documents. 1.b. shows the undirected version in which the citation relationships are
absent. To the right is 2. recommendation network in which vertices are products, and
each hyperedge contains all products bought by a user. 2.a. shows the directed hy-
pergraph in which directions represent user similarity (two-way) and 2.b. shows the
undirected version. We are interested in semi-supervised vertex classification of prob-
ability distributions in these networks. The vertex labels in the examples are research
topic interests for co-authorship and product ratings for recommendation networks.

There exist GNN-based methods for semi-supervised vertex classification on
undirected hypergraphs [7I29]. However, these methods do not work for directed
hypergraphs. Directed hypergraphs encode additional relationships as illustrated
in Figure [l For example, in a co-authorship network, documents (hyperedges)
are related by directed citation relationships. Motivated by this, our focus in this
paper is on semi-supervised vertex classification on the more powerful directed
hypergraphs which encode an additional layer of relationships (Figure |1]).

Furthermore, vertex labels in these applications involving directed hyper-
graphs e.g. research interests of authors in co-authorship networks, product
ratings of products in recommendation networks, etc. are most naturally rep-
resented by probability distributions (soft labels). Following up on a prior work
[20] that generalised label propagation to graph-based SSL of probability distri-
butions (graph-based soft SSL) and motivated by the fact that directed hyper-
graphs and soft-labels occur simultaneously in real-world, we make the following
contributions.

— We explore GNNs for (hyper)graph-based soft SSL. We propose DHN (Di-
rected Hypergraph Network), a novel GNN-based method for directed hyper-
graphs. DHN can be applied for soft SSL using existing tools from optimal
transportation.

Graph Neural Networks for Soft Semi-Supervised Learning on Hypergraphs 3

— Our second contribution is to provide generalisation error bounds for GNN-
based soft SSL. Our effort in this direction has lead to deriving generalisa-
tion error bounds for GNNs within the framework of algorithmic stability.
We establish that such models, which use filters with bounded eigenvalues
independent of graph size, can satisfy the strong notion of uniform stability
and thus are generalisable. In particular, the algorithmic stability of GNNs
depends on the largest absolute eigenvalue of the graph convolution filter .
Our analysis is quite general and the error bounds can be easily established
for DHN and existing hypergraph neural methods.

— We demonstrate DHN'’s effectiveness through detailed experimentation on
real-world data. In particular, we demonstrate superiority over state-of-the-
art hypergraph-based neural networks such as HGNN [7] and HyperGCN
[29]. We provide new empirical benchmarks for soft-SSL. We have made the
code available to foster reproducible research.

We have made the code and supplementary pdf available at [this link

2 Related work

Geometric deep learning is an umbrella phrase for emerging techniques attempt-
ing to generalise (structured) deep neural networks to non-Euclidean domains
such as graphs and manifolds. GCN [I6] and their various extensions are the
current state-of-the art for graph-based SSL [28] and graph-based unsupervised
learning [12] problems. The reader is referred to recent books [I3II8] on this
topic. Recently, graph-based deep models (also message-passing neural networks
[11]) have been analysed theoretically [25].

Learning on hypergraphs: Hypergraph is a combinatorial structure consisting
of vertices and hyperedges, where each hyperedge is allowed to connect any
number of vertices, thus generalizing graphs. This additional flexibility facilitates
the capture of higher order interactions among objects; applications have been
found in many fields such as computer vision, network clustering , folksonomies,
cellular networks, and community detection.

The seminal work on hypergraphs [32] introduced the popular clique expan-
sion [7] of a hypergraph. Hypergraph neural networks (HGNN) [7] use the clique
expansion while HyperGCN [29] uses the mediator-based Laplacian to extend
GCNs to hypergraphs. Another line of work uses the mathematically appealing
tensor methods but they are limited to uniform hypergraphs. Recent develop-
ments work for arbitrary hypergraphs and fully exploit the hypergraph structure
[15U3012].

Graph-based soft SSL: Researchers have shown that using unlabelled data during
training can improve label prediction significantly [22]. While most methods
assume that labels of interest are numerical or categorical variables, other works
“soften” this assumption and handle “soft labels” such as histograms [4123].
One way of propagating histograms is to minimise the Kullback-Leibler (KL)

https://drive.google.com/file/d/1DNJXIqKdpWqrimLQU3yZxUtYUYBXh1Oe/view?usp=sharing

4 N. Yadati et al.

divergence [21]. Recent studies have replaced the metric-agnostic KL divergence
with metric-aware Wasserstein distance (interactions between histogram bins)
for graphs [20] and hypergraphs [10].

Embeddings in Wasserstein space: There exist at least a couple of recent works
that embed Gaussian distributions in the Wasserstein space [19]. Inspired by a
recent work [8], in this work, we focus on embedding input data as a discrete
probability distrirbution on a fixed support set. The Wasserstein distance and its
gradient require the solution of a linear program [27] and are costly to compute.
A popular efficient approximation is the Sinkhorn divergence [5] in which the
underlying problem is regularised and is computed efficiently by a fixed-point
iteration.

In all the papers that we have discussed above, the proposed methods are
either restricted to graphs or undirected hypergraphs and do not work for di-
rected hypergraphs. Also, none of the GNN-based methods discusses soft SSL.
Our contributions are precisely to address these limitations.

3 Method

In this section, we first describe soft SSL on directed hypergraphs and then
propose DHN (Directed Hypergraph Network) for the problem.

3.1 Directed hypergraph

A directed hypergraph [9] is an ordered pair H = (V, E4) where V = {vy, -+ ,v,}

is a set of n vertices and Eg = {(t1,h1), , (tm, hm)} €2V x 2V is a set of m

directed hyperedges. Each element in Ey is an ordered pair (¢, h) where t C V is

the tail and h C V is the head with t # (), h # (). Denote the set of all undirected

hyperedges by F ie., E = J tuU h). Denote I € {0,1}VIXIEl to be the
(t,h)EEq

incidence matrix of E i.e. I(v,e) =1 if v € e and 0 otherwise.

3.2 Soft SSL on directed hypergraphs

We consider the problem of predicting probability distributions for the vertices
in H = (V, Ey) given a typically small subset V}, C V of vertices with known
distributions. In this work, we are concerned with discrete distributions modelled
on a metric space i.e. an ordered pair (M,C) in which M is a set and C :
M x M — R is the cost function (metric) associated with the set. Furthermore,
we assume that we are provided with a feature matrix, Xy € R"*PV in which
each vertex v € V is represented by a Dy-dimensional feature vector x, (here
n = |V]). We are also provided with a hyperedge feature matrix Xz € Rm*P=
with z.,e € E as Dg-dimensional feature representations (here m = |Ey]).

Our objective is to learn a labelling function Z = ¢(7—[, Xv, XE) that maps
each vertex to a probability distribution in the space of discrete probability

Graph Neural Networks for Soft Semi-Supervised Learning on Hypergraphs 5

distributions Pr(M) on F atoms (F is number of histogram bins) defined on
the metric space (M,C). The cost function C' can be represented by a non-
negative symmetric matrix of size ' x F. Note that each row of Z € [0, 1]"*F
maps each vertex v € V to a probability distribution Z, € [0,1]¥". The function
h is going to be trained on a supervised loss, L ,w.r.t to the vertices in Vj so that
the trained h can be used to predict distributions of all the vertices in V'\ Vi.. We
now give an example application and then the details of the labelling function h
followed by the supervised loss L.

Ezample application: Predicting topic distributions of authors in co-authorship
networks can be posed as a soft SSL problem on directed hypergraphs. V' rep-
resents the set of authors, E the set of all collaborations (documents), E4 the
citation relationships among the documents, F' the number of possible research
interests of authors (Machine Learning, Theoretical Computer Science, etc.), Xy
and Xg any available features on the authors and documents respectively (e.g.
text attributes).

3.3 Directed Hypergraph Network (DHN)

Hypergraphs contain hyperedges in which relationships can go beyond pairwise
and hence are challenging to deal with. A flexible way to embed vertices of a
hypergraph is to “approximate” the hypergraph by a suitable graph and then
apply traditional graph-based methods on the vertices. Two notable candidates
of ¢ are Hypergraph neural network (HGNN) [7] and Hypergraph Convolutional
Network (HyperGCN) [29]. HGNN uses the clique expansion of the hypergraph
[32] while HyperGCN uses the mediator-based Laplacian [2] to approximate the
input hypergraph. However, they are restricted to undirected hyperedges and
also cannot exploit the hyperedge feature matrix Xpg.

A key idea of our approach is to treat each hyperedge e € E as a vertex
of the graph G = (FE, E;). We then pass G through a graph neural network to
obtain Hg = fenn(G, Xg) so that the initial features, Xp, are refined to Hg.
We then propose the layer-wise propagation rule of DHN as:

H(vt“):a<[H$), I.H,(;)-@“)D, t=0,,7—1 (1)
where [, -] denotes concatenation, ¢ is the time step, I is the incidence matrix,

H](;J’l) = 0 (ITH‘(/t)) fort =1,--- 7 —1, HSJ) = fonn(G,XE), o and oy
are non-linear activation functions, and 7 is the total number of propagation
steps with H‘(/O) = Xy. Note that the labelling function Z = ¢(H, Xy, Xg) =

softmax (H @) where softmax is applied row-wise.

3.4 The supervised loss L

A crucial observation here is that because of the softmax layer, the output of
h is (already) inherently a probability distribution. For each vertex v € Vj, the

6 N. Yadati et al.

predicted distribution Z, and the (known) true distribution Y, must be “close”
to each other. A natural way to compare probability distributions is to use the
KL-divergence between Y, and Z,. However, KL-divergence cannot exploit the
metric space (M, C) and suffers from stability issues [3]. In this work, we use the
more stable Wasserstein distance to exploit the metric space [10].

L= Z Wp(ZU,Yv), Wy(p,v) = (inf /M MC’(m,@)”dﬂ(m,m)) ’
X

I
vev, mEI (p,v)

For discrete distributions, W), is the solution of a linear program. For practical
purposes, we compute the regularised distance using the Sinkhorn algorithm.
Please see the supplementary material for more details.

Optimisation: We call DHN optimised with the Wasserstein loss as Soft-DHN.
All parameters are learned using stochastic gradient descent (SGD). Please see
the supplementary material for time complexity.

4 Theoretical analysis: Generalisation error

A key contribution of this chapter is to provide generalisation error bounds for
(hyper)graph-based soft-SSL. Our effort to derive these bounds has lead us to a
more powerful outcome, namely, proving generalisation error bounds for a one-
layer GNN by extending the results of a traditional GCN [25] to the soft SSL
setting with Wasserstein loss. The main novelty is to generalise the error bounds
to the learning problem “valued in the Wasserstein space.” The main challenge is
that the Wasserstein space is an abstract metric space without linear structure.

The section is organised as follows. We first introduce all the notations needed
(ego-graph view, semi-supervised learning setting, etc.). We then give single
layer and SGD bounds using the notations. We finally give the main result
(proposition 1) which states that a GNN trained with Wasserstein loss has the
same generalisation error bound as the traditional GCN (trained with cross
entropy).

Let G = (V, E) be a graph with |V| = n. We consider a one-layer GNN

f(X,0) =0 (KXO) (2)

where X € R"*? is the feature matrix (n is the number of vertices in a
graph, d is the dimension of the feature vectors), K = ¢g(L¢) is a graph filter
(typically symmetrically normalised adjacency with self loops, and Lg € R™*™ is
the graph Laplacian), and @ € R%*¥" is the set of parameters. We note that our
proposed DHN falls under this formulation in special circumstances. Specifically
if the non-linearity o1 in Equation [1] is removed we get the kernel K = II7
(also known as the clique expansion of the hypergraph [32].) The non-linearity
o in Equation [2| is the softmax function acting on each row of the product
KX6 € R™ 7 the output is of dimension n x F, where each output row is

Graph Neural Networks for Soft Semi-Supervised Learning on Hypergraphs 7

a discrete probability distribution, i.e., f(X,0) >0 and f(X,0)1p =1,
where 15 = (1,..., 1)F € RF', and similarly for 1,. Without loss of generality,
we assume d = 1. Note that in order for the output to be nontrivial probability
distributions, we must assume F' > 1.

We adopt an ego-graph view [25] to simplify our discussion for local behavior
of the soft GCN at a particular vertex. Whenever no confusion arises, we identify
a vertices and x in the graph G with their respective D-dimensional feature

vectors. Thus the output of f at x € Vis f (2,0) = o (er/\/(m) KJ:)(X@) =

o ((er./\f(x) wax) . 9) where N (z) denotes for the one-hop neighborhood of

x with respect to the adjacency relation defined by matrix K, and K, € R
stands for the entry in K € R™*" that describes the adjacency relation between
vertices x and x. Let E, := er/\/(w) K.x € Rso that f (2,0) =0 (E, - 0).

We consider the supervised learning setting, and learn GNN from the training
set {z; = (z4,v:),i=1,...,m} sampled ii.d. from the product space V x Pp
with respect to probability distribution D on this product space, where Pr is the
space of discrete probability distributions on F' atoms. The output of softmax
lies in Pg, which is a convex cone. For any new data z = (z,y) ~ D, we
evaluate the performance of GNN f using a Wasserstein cost £(f (-,0),z) =
((f(0),(@.y) = W (f (2,6).1).

Here the Wasserstein cost is defined with respect to a cost function penalizing
moving masses across bins. Since we are working only with histograms in GNN,
we shall use a cost function C' € RF*F that is defined for pairs of histogram
bins. The transport problem is a linear program with z = f(z, ©).

4.1 Assumptions/Notations

To avoid unnecessary technical complications, assume the histogram admits a
geometric realisation over the one-dimensional Euclidean space, such that the
ith bin is placed at location b; € R, and set C;; := |b; —b;|, V1 <i,j < F.
Without loss of generality, we assume b < by < --- < bp, and write h; =
biy1 —b; > 0 for all « = 1,...,F — 1. Denote the diameter of the support
by D = maxi<; j<r |b; — bj| = bp — b1. We take the Wasserstein cost as the
Wasserstein-1 distance: W (u, v) := W7 (u, v) . In this particular one-dimensional
setting, we have a particularly simple form for the cost function:

o0

Wi = [@ -F @lds= [R -Roa @

— 0o

where F,, : R — [0,1], F, : R — [0,1] are the cumulative distribution func-
tions of u, v, respectively; Fﬂ_l, F 1 are the generalized inverses of F, and I,
respectively, defined as (similar for F, 1)

F '(t):=inf{beR:F,(b)>t}, Vtel0,1]. (4)

This characterisation is seen in any standard literature on optimal transport,
e.g., [26].

8 N. Yadati et al.

4.2 Definitions: Generalisation and Empirical Errros

Let the learning algorithm Ag on a dataset S be a function from ¢™ to (J)X.
where X is the input Hilber space,) is the output Hilbert space, (= X x).
The training set of datapoints, labels is S = {z1 = (x1,91), - , 2k = (Tk,Yx))}-
Let the loss function be ¢ : ("™ x (— R. Then the generalisation error or risk
R(Ag) is deined as R(Ag) := E{K(Ag,z)} = [U(Ag, z)p(z)dz where p(z) is the
probability of seeing the sample z € S. The empirical error, on the other hand,
i5 Remp(As) = 1 32521 ((As, 7))

4.3 Extension to GNNs on hypergraphs

We note that our proposed DHN falls under this formulation in special circum-
stances. In particular, if the non-linearities in Equation [I|are removed, our DHN
can be seen as K = IA? where fonn(G, Xg) is the simple graph convolution
operator [28] and A is the symmetrically normalised adjacency (with self loops)
of the graph G. Also, the analysis can be extended to exisiting hypergraph GNNs
such as hypergraph neural network (HGNN [7]) where K = IIT (also known as
the clique expansion [32] of the hypergraph). Hence, our theoretical analysis is
quite general that can be easily appplied to DHN and existing hypergraph neural
methods. The full proof is given in the supplementary material.

Theorem 1. Let Ag be a one-layer GNN algorithm (of Equation@ equipped
with the graph convolutional filter g(Lg) and trained on a dataset S for T itera-
tions. Let the loss and activation functions be Lipschitz-continuous and smooth.
Then the following expected generalisation gap holds with probability at least 1—9,
0 €{0,1}:

1
s [R(45) - Remp(45)] < 20(0)") + (0(0™)") + B)| 552 5)
where the expectation Eggp is taken over the randomness inherent in SGD,
m is the no. training samples, and B is a constant which depends on the loss
function. Our theorem states that GNN trained with the Wasserstein loss en-
joys the same generalisation error bound as the traditional GCN (trained with
cross entropy). We establish that such models, which use filters with bounded
eigenvalues independent of graph size, can satisfy the strong notion of uniform

stability and thus is generalisable.

5 Experiments

We conducted experiments on 5 real-world directed hypergraphs (four are co-
authorship datasets and one is a recommendation dataset). Statistics of the
datasets are in the supplementary. We labelled 1% of the nodes in each dataset.
Vertex labels in all our datasets are discrete distributions seen in the real world
(not semi-synthetic). For example, in a co-authorship dataset, an author that has

Graph Neural Networks for Soft Semi-Supervised Learning on Hypergraphs 9

Table 1. Results on real-world directed hypergraphs. We report 100X mean squared
errors (lower is better) over 10 different train-test splits. All reported numbers are to
be multiplied by 0.01 to get the actual numbers. Please see section [5| for details.

Method Cora | DBLP | ACM | Amazon | arXiv
KL-MLP 894 4+0.16|7.724+0.14 | 8.47 +0.15|6.81 =0.16 |10.87 £ 0.25
OT-MLP 7.45+0.35|7.53+0.18 | 7.85 +£0.26 | 6.78 == 0.24 {10.01 £ 0.23
KLR-MLP 8.054+0.22|7.354+0.18[7.824+0.29|6.74 +0.15 —
OTR-MLP 6.57+0.43|7.244+0.18(6.77+0.32|6.72+0.23 -
KL-HGNN 7.864+0.25|7.17+£0.12|7.234+0.19]6.71 £0.19| 9.95 + 0.25
KL-HyperGCN |7.954+0.27|7.15+£0.17|7.53 £0.21 | 6.69 + 0.17 | 9.99 4+ 0.23
Soft-HGNN 5974+ 0.37]6.18 £0.37|6.02+0.37 | 6.63 £0.39 | 8.61 +0.49
Soft-HyperGCN | 6.02 + 0.32 | 6.21 + 0.35 | 6.04 + 0.32 |6.61 + 0.30| 8.60 + 0.47
Soft-HGAT 5.834+0.39|6.05+0.33]5.94+0.39|6.62+0.45| 8.47 £ 0.46
Soft-SAGNN 5.69 +£0.32]6.07+0.47 | 5.82 4+ 0.41 {6.59 + 0.32| 8.29 + 0.27
Soft-HNHN 5.644+0.376.11 £0.39|5.88 & 0.27 | 6.64 +0.36 | 8.34 & 0.35
Soft-DHGCN 5.62+0.35|6.06 £0.45|5.84 +0.39|6.67 £0.33 | 8.31 £0.29
KL-DHN (ours) |7.04+0.24|6.97+0.22|7.16 £0.24 | 6.65 £ 0.17 | 9.34 & 0.32
Soft-DHN (ours)|4.87 + 0.40|5.65 + 0.42|5.12 + 0.34|6.55 + 0.33|7.69 + 0.36

published 7 papers in vision conferences, and 3 in NLP conferences, is assigned
the soft label [0.7, 0.3] (this is neither multi-label nor single label). In fact, more
than 80% vertices in all our datasets have such proper soft labels. For more details
on dataset construction, please see Section 6 of the supplementary material. Our
focus is on predicting true probability distributions. Existing hypergraph neural
methods such as HGNN [7], and HyperGCN [29] were originally designed for
multi-class SSL (Hard SSL). However, we adapted them for soft SSL by training
them with KL and Wasserstein losses.

5.1 Experimental setup

We take extensive measures to ensure fairness of comparison with baselines.
Inspired by the experimental setups of prior related works [T6/I7], we tune hy-
perparameters using the Cora citation network dataset alone and use the opti-
mal hyperparameters for all the other datasets. We hyperparameterise the cost
matrix (base metric of the Wasserstein distance) as C;; = 1,4 = 1,--- , F and
Cij = m,i # j. The cost matrix C' is an F' x F' matrix (F is the number of

10 N. Yadati et al.

histogram bins) with ones on the diagonal and a hyperparameter 7 elsewhere.
We could have used a matrix of all ns. But it is no different from a matrix of
all ones from the optimisation perspective and so we used the above more gen-
eral matrix. Details of hyperparameter tuning and optimal hyperparameters of
all methods (including baselines) are in the suplementary material. We use the
mean squared error (MSE) between true and predicted distributions on the test
set of vertices. Table [1| shows MSEs on the test split for all the five datasets.

5.2 Baselines

We used both Wasserstein distance and KL divergence to train different models.
As already noted, we used the Sinkhorn algorithm to compute the (regularised)
Wasserstein distance. We compared DHN with the following baselines:

— KL-MLP: We used a simple multi-layer perceptron (MLP) on the features
of the vertices and trained it using KL-divergence

— OT-MLP: We trained another MLP with the Wasserstein distance as the
loss function. Note that this baseline and the previous baseline do not use
the structure (graph / hypergraph)

— KLR-MLP: We regularised an MLP with explicit KL-divergence-based reg-
ularisation that uses the structure (graph / hypergraph) [21].

— OTR-MLP: We regularised an MLP with explicit Wasserestein-distance-
based regularisation that uses the structure (graph / hypergraph) [20]. For
hypergraphs we used the clique expansion of the hypergraph [10].

— KL-HGNN / KL-HyperGCN: We trained the different GCN-based meth-
ods on hypergraphs with KL divergence loss function on the labelled vertices.

— Soft-HGNN / Soft-HyperGCN: We trained the different GCN-based
methods on hypergraphs with the Wasserstein distance as the loss function.

— Soft-Hyper-Atten: This model is a generalisation of graph attention to
hypergraphs [1I] We trained it with the Wasserstein distance

— Soft-Hyper-SAGNN: We trained the recently proposed self-attention hypergraph-
based method [31] with the Wasserstein distance loss.

— Soft-HNHN: We also used this very recent model [6] as a baseline (with
Wasserstein loss). HNHN uses hypereges as neurons and computes hyperedge
representations.

— Soft-DHGCN: This baselines [14] uses separate incidence matrices for tail
and head. We trained it with Wasserstein loss.

5.3 Discussion

We used a simple one-layer architecture for our proposed DHN and a 2-hop
simplified GCN [28] as the GNN model on the graph G = (E, Ey) i.e.

Z =softmax(l-Hg-601), Hg= A’ X O,

where A is the symmetically normalised adjacency (with self loops) of the graph
G. We demonstrate that this simple model is effective enough through an ablation

Graph Neural Networks for Soft Semi-Supervised Learning on Hypergraphs 11

study in Section 5.1 of the supplementary. Please see Section 5 of the supplemen-
tary for more experiments on arXiv. Our results on real-world datasets demon-
strate strong performances across all the datasets esp. on the co-authorships net-
works. Specifically, we observe that Soft models (that use the Wasserstein loss)
are almost always superior to their counterparts that use the KL divergence as
the loss function. This is because the Soft models can exploit the distance ma-
trix C' while KL-divergence does not. Moreover, our proposed DHN outperforms
several hypergraph baselines. This is because they do not exploit the rich struc-
tural information in the directed hyperedges (connections among hyperedges)
while our DHN does exploit them. Though baselines such as HNHN [6] compute
representations for hyperedges, they do not exploit dependencies between them.
The DHGCN baseline [I4] does exploit such relationships. However, it does not
treat the relationships between hyperedges as separate edges. The benefits of
doing so of a separate graph are evident in the table where we report 2 hops
of a GNN run on this graph. We also experimented on standard graph node-
classification datasets such as Cora, Citeseer, and Pubmed by treating the class
label as one-hot distribution. We used the Soft variants of GCN [16], Simple
GCN [28], and GAT [24]. We achieved competitive results as in Section 5 (Table
3) of the supplementary.

6 Conclusion

We have proposed DHN, a novel method for soft SSL on directed hypergraphs.
DHN can effectively propagate histograms to unknown vertices by integrating
vertex features, directed hyperedges and undirected hypergraph structure. We
have established generalisation bounds for DHN within the framework of algo-
rithmic stability. Specifically we modified the “gradient” in Wasserstein space to
satisfy Lipschitz condition required in the stability framework. DHN is effective
compared to SOTA baselines.

References

1. Bai, S., Zhang, F., Torr, P.H.S.: Hypergraph convolution and hypergraph attention.
Pattern Recognition 110, 107637 (2021)

2. Chan, T.H., Liang, Z.: Generalizing the hypergraph laplacian via a diffusion process
with mediators. In: COCOON (2018)

3. Chen, Y., Ye, J., Li, J.: A distance for hmms based on aggregated wasserstein
metric and state registration. In: ECCV. pp. 451-466 (2016)

4. Corduneanu, A., Jaakkola, T.S.: Distributed information regularization on graphs.
In: NIPS, pp. 297-304. MIT Press (2005)

5. Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transport. In:
NIPS. Curran Associates, Inc. (2013)

6. Dong, Y., Sawin, W., Bengio, Y.: HNHN: hypergraph networks with hyperedge
neurons. CoRR abs/2006.12278 (2020)

7. Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In:
AAAT (2019)

8. Frogner, C., Mirzazadeh, F., Solomon, J.: Learning entropic wasserstein embed-
dings. In: ICLR (2019)

12

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

30.

31.

32.

N. Yadati et al.

Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and appli-
cations. Discrete Appl. Math. (1993)

Gao, T., Asoodeh, S., Huang, Y., Evans, J.: Wasserstein soft label propagation on
hypergraphs: Algorithm and generalization error bounds. In: AAAT (2019)
Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: ICML (2017)

Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NIPS. Curran Associates, Inc. (2017)

Hamilton, W.L.: Graph representation learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning 14(3), 1-159 (2020)

Han, J., Cheng, B., Wang, X.: Two-phase hypergraph based reasoning with dy-
namic relations for multi-hop kbga. In: Proceedings of the Twenty-Ninth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). pp. 3615-3621 (2020)
Hein, M., Setzer, S., Jost, L., Rangapuram, S.S.: The total variation on hypergraphs
- learning on hypergraphs revisited. In: NIPS. Curran Associates, Inc. (2013)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

Liao, R., Zhao, Z., Urtasun, R., Zemel, R.S.: Lanczosnet: Multi-scale deep graph
convolutional networks. In: ICLR (2019)

Ma, Y., Tang, J.: Deep Learning on Graphs. Cambridge University Press (2020)
Muzellec, B., Cuturi, M.: Generalizing point embeddings using the wasserstein
space of elliptical distributions. In: NeurIPS. Curran Associates, Inc. (2018)
Solomon, J., Rustamov, R., Guibas, L., Butscher, A.: Wasserstein propagation for
semi-supervised learning. In: ICML (2014)

Subramanya, A., Bilmes, J.: Semi-supervised learning with measure propagation.
J. Mach. Learn. Res. 12, 3311-3370 (2011)

Subramanya, A., Talukdar, P.P.: Graph-Based Semi-Supervised Learning. Morgan
& Claypool Publishers (2014)

Tsuda, K.: Propagating distributions on a hypergraph by dual information regu-
larization. In: ICML (2005)

Velickovié¢, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. In: ICLR (2018)

Verma, S., Zhang, Z.L.: Stability and generalization of graph convolutional neural
networks. In: KDD (2019)

. Villani, C.: Topics in optimal transportation theory (2003)

Villani, C.: Optimal transport — Old and new, vol. 338. Springer-Verlag (2008)

. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph

convolutional networks. In: ICML (2019)

. Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis, A., Talukdar, P.: Hyper-

GCN: A new method of training graph convolutional networks on hypergraphs. In:
NeurIPS. Curran Associates, Inc. (2019)

Zhang, C., Hu, S., Tang, Z.G., Chan, T.H.H.: Re-revisiting learning on hyper-
graphs: Confidence interval and subgradient method. In: ICML (2017)

Zhang, R., Zou, Y., Ma, J.: Hyper-sagnn: a self-attention based graph neural net-
work for hypergraphs. In: International Conference on Learning Representations
(ICLR) (2020)

Zhou, D., Huang, J., Scholkopf, B.: Learning with hypergraphs: Clustering, classi-
fication, and embedding. In: Scholkopf, B., Platt, J.C., Hoffman, T. (eds.) NIPS.
MIT Press (2007)

	Graph Neural Networks for Soft Semi-Supervised Learning on Hypergraphs

