
1

1 Supplementary Material / Appendix for Graph Neural
Networks for Soft Semi-Supervised Learning on
Hypergraphs

The appendix is organised as follows:

1. Regularised Wasserstein and the Sinkhorn algorithm
2. Time complexity of the proposed DHN
3. Proofs and more notations used for theoretical analysis
4. Additional experiments (Graph-based soft SSL and Ablation Study)
5. Details of hyperparameters
6. Sources of real-world datasets

2 Regularised Wasserstein and the Sinkhorn Algorithm

The Wasserstein distance can be written as

L =
∑
v∈Vk

Wp

(
Zv, Yv

)

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
M×M

C(x1, x2)pdπ(x1, x2)

) 1
p

.

(1)

For discrete distributions, Wp of Equation 1 is the solution of a linear program:

Wp (z, y)
p

= min

F∑
i=1

F∑
j=1

Cpijπij

s.t. πij ≥ 0,

F∑
j=1

πij = [z]i ,

F∑
i=1

πij = [y]j ∀1 ≤ i, j ≤ F

(2)

where for an arbitrary element q ∈ PF , [q]i stands for the probability mass in
the ith bin.

2.1 Sinkhorn divergence

The expensive linear program 2 can be efficiently solved by entropic regularisa-
tion [3]:

Wλ
p (z, y)p = min

F∑
i=1

F∑
j=1

Cpijπij + λ · Tr

(
π
(

log π − 11T
)T)

(3)

s.t. πij ≥ 0,

F∑
j=1

πij = [z]i ,

F∑
i=1

πij = [y]j ∀1 ≤ i, j ≤ F

2

where log(·) is applied element-wise and λ ≥ 0 is a hyperparameter. The optimal
solution π∗ for λ > 0 takes the following form.

π∗ = diag(r) · exp

(
− Cp

λ

)
· diag(c)

where diag(z) is a diagonal matrix with the components of z in the diagonal
places.

Sinkhorn algorithm [3]: We optimise Equation 3 for r and c via matrix balancing,
i.e., start with an initial K := exp(−C

p

λ) and alternately ensure the marginal
constraints are satisfied until convergence:

r ← z./(Kc) c← y./(KT r)

where ./ is element-wise division. We use the above efficient algorithm in our
experiments.

3 Time complexity of DHN

We consider the problem of predicting probability distributions for the vertices
in H = (V,Ed) given a typically small subset Vk ⊆ V of vertices with known
distributions. In this work, we are concerned with discrete distributions modelled
on a complete separable metric space (M,C). Furthermore, we assume that we
are provided with a feature matrix, XV ∈ Rn×DV , in which each vertex v ∈ V
is represented by a Dv-dimensional feature vector xv (here n = |V |). We are
also provided with a hyperedge feature matrix XE ∈ Rm×DE with xe, e ∈ E
as DE-dimensional feature representations. Let T be the time taken for the
Sinkhorn algorithm on all the vertices with known distributions. Note that T
can be approximated in near-linear time [1]. Further, let T be the total number
of epochs of training. Define

N :=
∑
e∈E
|e|, Nc :=

∑
e∈E

|e|C2

The time complexity oa one-layer DHN is O
(
|Ed| ·DE ·h1 + |E| ·DV ·h2

)
where

h1 is the number of hidden units of the GNN layer and h2 is the number of
output channels.

4 Theoretical analysis: Generalisation error

A key contribution of this chapter is to provide generalisation error bounds for
(hyper)graph-based soft-SSL. Our effort to derive these bounds has lead us to a
more powerful outcome, namely, proving generalisation error bounds for a one-
layer GNN by extending the results of a traditional GCN [12] to the soft SSL

3

setting with Wasserstein loss. The main novelty is to generalise the error bounds
to the learning problem “valued in the Wasserstein space.” The main challenge is
that the Wasserstein space is an abstract metric space without linear structure.

The section is organised as follows. We first introduce all the notations needed
(ego-graph view, semi-supervised learning setting, etc.). We then give single
layer and SGD bounds using the notations. We finally give the main result
(proposition 1) which states that a GNN trained with Wasserstein loss has the
same generalisation error bound as the traditional GCN (trained with cross
entropy).

Let G = (V,E) be a connected graph with |V | = n vertices. We consider
GNN of a single layer

f (X,Θ) = σ (KXΘ) (4)

where X ∈ Rn×d is the feature matrix (n is the number of vertices in a graph, d
is the dimension of the feature vectors), K = g (LG) is a graph filter (typically
symmetrically normalised adjacency with self loops, and LG ∈ Rn×n is the graph
Laplacian), and Θ ∈ Rd×F is the set of parameters. We note that our proposed
DHN falls under this formulation in special circumstances. Specifically if the
non-linearity σ1 in is removed we get the kernel K = IIT (also known as the
clique expansion of the hypergraph [16].) The non-linearity σ in Equation 4 is
the softmax function acting on each row of the product KXΘ ∈ Rn×F ; the
output is of dimension n × F , where each output row is a discrete probability
distribution, i.e.,

f (X,Θ) ≥ 0 and f (X,Θ) 1F = 1n

where 1F = (1, . . . , 1)
F ∈ RF , and similarly for 1n. Without loss of generality,

we assume d = 1. Note that in order for the output to be nontrivial probability
distributions, we must assume F > 1.

We adopt an ego-graph view [12] to simplify our discussion for local behavior
of the soft GCN at a particular vertex. Whenever no confusion arises, we identify
a vertices x and χ in the graph G with their respective D-dimensional feature
vectors. Thus the output of f at x ∈ V is

f (x,Θ) = σ

 ∑
χ∈N (x)

KxχχΘ


= σ

 ∑
χ∈N (x)

Kxχχ

 ·Θ


where N (x) denotes for the one-hop neighborhood of x with respect to the
adjacency relation defined by matrix K, and Kxχ ∈ R stands for the entry in
K ∈ Rn×n that describes the adjacency relation between vertices x and χ. Let
Ex :=

∑
χ∈N (x)Kxχχ ∈ R so that f (x,Θ) = σ (Ex ·Θ) .

4

We consider the supervised learning setting, and learn GNN from the training
set {zi = (xi, yi) , i = 1, . . . ,m} sampled i.i.d. from the product space V × PF
with respect to probability distribution D on this product space, where PF is the
space of discrete probability distributions on F atoms. The output of softmax
lies in PF , which is a convex cone. For any new data z = (x, y) ∼ D, we evaluate
the performance of GNN f using a Wasserstein cost

` (f (·, Θ) , z) = ` (f (·, Θ) , (x, y)) = W (f (x,Θ) , y) .

Here the Wasserstein cost is defined with respect to a cost function penalizing
moving masses across bins. Since we are working only with histograms in GNN,
we shall use a cost function C ∈ RF×F that is defined for pairs of histogram
bins. The transport problem is a linear program with z = f(x,Θ).

4.1 Assumptions/Notations

To avoid unnecessary technical complications, assume the histogram admits a
geometric realisation over the one-dimensional Euclidean space, such that the
ith bin is placed at location bi ∈ R, and set

Cij := |bi − bj | , ∀1 ≤ i, j ≤ F.

Without loss of generality, we assume b1 ≤ b2 ≤ · · · ≤ bF , and write hi :=
bi+1 − bi ≥ 0 for all i = 1, . . . , F − 1. Denote the diameter of the support
by D := max1≤i,j≤F |bi − bj | = bF − b1. We take the Wasserstein cost as the
Wasserstein-1 distance: W (µ, ν) := W1 (µ, ν) . In this particular one-dimensional
setting, we have a particularly simple form for the cost function:

W1 (µ, ν) =

∫ 1

0

∣∣F−1µ (s)− F−1ν (s)
∣∣ds =

∫ ∞
−∞
|Fµ (t)− Fν (t)| dt (5)

where Fµ : R → [0, 1], Fν : R → [0, 1] are the cumulative distribution func-
tions of µ, ν, respectively; F−1µ , F−1ν are the generalized inverses of Fµ and Fν ,
respectively, defined as (similar for F−1ν)

F−1µ (t) := inf {b ∈ R : Fµ (b) > t} , ∀t ∈ [0, 1] . (6)

This characterisation is seen in any standard literature on optimal transport,
e.g., [13].

4.2 Definitions: Generalisation and Empirical Errros

Let the learning algorithm AS on a dataset S be a function from ζm to (Y)X .
where X is the input Hilber space, Y is the output Hilbert space, ζ = X × Y.
The training set of datapoints, labels is S = {z1 = (x1, y1), · · · , zk = (xk, yk))}.
Let the loss function be ` : ζm × ζ → R. Then the generalisation error or risk
R(AS) is deined as

R(AS) := E
[
`(AS , z)

]
=

∫
`(AS , z)p(z)dz

5

where p(z) is the probability of seeing the sample z ∈ S.
The empirical error, on the other hand, is defined as

Remp(AS) :=
1

k

k∑
j=1

`(AS , zj)

4.3 Algorithmic Stability

Denote S ⊂ V × PF for an arbitrary training data set sampled with respect to
distribution D. A learning algorithm for GNN, denoted as A, maps a training
set S to a trained GNN f (·, ΘS) : x 7→ f (x,ΘS). Let S′ be another training
data set that differs from S by exactly one data. Our goal in this section is to
establish a uniform stability

sup
S⊂V×PF

(x,y)∈V×PF

|EA [` (f (·, ΘS) , (x, y))]− EA [` (f (·, ΘS′) , (x, y))]|

= sup
S⊂V×PF

(x,y)∈V×PF

|EA [W1 (f (x,ΘS) , y)]− EA [W1 (f (x,ΘS′) , y)]|

= sup
S⊂V×PF

(x,y)∈V×PF

|EA [W1 (f (x,ΘS) , y)−W1 (f (x,ΘS′) , y)]| ≤ 2βm (7)

with βm = O (1/m), which in turn can be used to establish the generalisation
error bound of the form [12], following the framework [5] for SGD-based learning
algorithms. Following the arguments in [12], this boils down to checking a few
Lipschitz properties for the cost function.

We now derive single layer and SGD bounds.

4.4 Extension to GNNs on hypergraphs

We note that our proposed DHN falls under this formulation in special circum-
stances. In particular, if the non-linearities are removed, our DHN can be seen
as K = IA2 where fGNN (G, XE) is the simple graph convolution operator [15]
and A is the symmetrically normalised adjacency (with self loops) of the graph
G. Also, the analysis can be extended to exisiting hypergraph GNNs such as hy-
pergraph neural network (HGNN [4]) where K = IIT (also known as the clique
expansion [16] of the hypergraph). Hence, our theoretical analysis is quite general
that can be easily appplied to DHN and existing hypergraph neural methods.

4.5 Single layer bound

By the triangle inequality,

|W1 (f (x,ΘS) , y)−W1 (f (x,ΘS′) , y)| ≤W1 (f (x,ΘS) , f (x,ΘS′)) .

6

By [14], recall that the diameter of the support is D, we have

W1 (f (x,ΘS) , f (x,ΘS′)) ≤ D ‖f (x,ΘS)− f (x,ΘS′)‖TV

where ‖·‖TV is the total variation distance, which by definition is

‖f (x,ΘS)− f (x,ΘS′)‖TV =
1

2

F∑
i=1

|[f (x,ΘS)]i − [f (x,ΘS′)]i|

=
1

2
‖σ (Ex ·ΘS)− σ (Ex ·ΘS′)‖1

where ‖·‖1 is the L1-distance on RF . Since the softmax function is Lipschitz
continuous, we have

‖f (x,ΘS)− f (x,ΘS′)‖TV ≤
Lσ
2
|Ex| · ‖ΘS −ΘS′‖1

and thus

|EA [W1 (f (x,ΘS) , y)−W1 (f (x,ΘS′) , y)]| (8)

≤ LσD

2
sup
x∈V
|Ex| · EA ‖ΘS −ΘS′‖1 =

LσD

2
gλEA ‖ΘS −ΘS′‖1 (9)

where we used notation gλ := supx∈V |Ex|, which is known to be upper
bounded by λmax

G , the spectrum of the graph Laplacian LG with largest absolute
value [12].

4.6 SGD bound

It now remains to bound EA ‖ΘS −ΘS′‖1 resulting from the SGD iterations.
The main technical challenge, as noted before, is to generalise the results to the
Wasserstein space which is an abstract metric space without linear structure.
Specifically, we have to modify the “gradient” in the Wasserstein space as the
straightforward version [12] does not satisfy the Lipschitz condition required in
the algorithmic stability framework. To the best of our knowledge this modifica-
tion is not seen in existing literature and can be thought of as a generalisation
of the “gradient clipping” operation [5].

4.7 SGD Bound: Proof

Note that

W1 (µ, ν) =

∫ 1

0

∣∣F−1µ (s)− F−1ν (s)
∣∣ds =

∫ ∞
−∞
|Fµ (t)− Fν (t)| dt (10)

7

and from the single-layer bound

|EA [W1 (f (x,ΘS) , y)−W1 (f (x,ΘS′) , y)]| ≤ LσD

2
sup
x∈V
|Ex| · EA ‖ΘS −ΘS′‖1 =

LσD

2
gλEA ‖ΘS −ΘS′‖1

(11)

Uniform stability:

sup
S⊂V×PF

(x,y)∈V×PF

|EA [` (f (·, ΘS) , (x, y))]− EA [` (f (·, ΘS′) , (x, y))]|

= sup
S⊂V×PF

(x,y)∈V×PF

|EA [W1 (f (x,ΘS) , y)]− EA [W1 (f (x,ΘS′) , y)]|

= sup
S⊂V×PF

(x,y)∈V×PF

|EA [W1 (f (x,ΘS) , y)−W1 (f (x,ΘS′) , y)]| ≤ 2βm (12)

It now remains to bound EA ‖ΘS −ΘS′‖1 resulting from the SGD iterations.
Given training set S, applying SGD to GNN amounts to performing the updates

ΘS,t+1 = ΘS,t − η∇Θ` (f (·, Θ) , (xit , yit)) = ΘS,t − η∇ΘW1 (f (xit , ΘS,t) , yit)

where η > 0 is the learning rate and zit = (xit , yit) are random data i.i.d.
uniformly sampled from the training set. By the simple formulae (10) for one-
dimensional optimal transport, we can explicitly write out for any parameter set
Θ and data z = (x, y)

W1 (f (x,Θ) , y) =

∫ ∞
−∞

∣∣Ff(x,Θ) (t)− Fy (t)
∣∣ dt =

F−1∑
i=1

(xi+1 − xi)

∣∣∣∣∣∣
i∑

j=1

([f (x,Θ)]i − [y]i)

∣∣∣∣∣∣
=

F−1∑
i=1

hi

∣∣∣∣∣∣
i∑

j=1

([σ (Ex ·Θ)]i − [y]i)

∣∣∣∣∣∣
where again we used notation [y]i to denote the probability mass of y ∈ PF

in the ith bin, for all i = 1, . . . , F . Thus

8

∂

∂Θk
W1 (f (x,Θ) , y) =

F−1∑
i=1

hi · sgn


i∑

j=1

(
[σ (Ex ·Θ)]j − [y]j

) ·
i∑

j=1

∂

∂Θk
[σ (Ex ·Θ)]j

=

F−1∑
i=1

hi · sgn


i∑

j=1

(
[σ (Ex ·Θ)]j − [y]j

) · Ex
i∑

j=1

[σ (Ex ·Θ)]j (δjk − [σ (Ex ·Θ)]k)

= Ex · [σ (Ex ·Θ)]k

F−1∑
i=1

hi · sgn


i∑

j=1

(
[σ (Ex ·Θ)]j − [y]j

)
1−

j∑
j=i

[σ (Ex ·Θ)]j


= Ex · [σ (Ex ·Θ)]k

F−1∑
i=1

hi · sgn


i∑

j=1

(
[σ (Ex ·Θ)]j − [y]j

)
 j∑
j=i

(
[y]j − [σ (Ex ·Θ)]j

)
+

F∑
j=i+1

[y]j


= −Ex · [σ (Ex ·Θ)]k ·W1 (σ (Ex ·Θ) , y)

+Ex · [σ (Ex ·Θ)]k

F−1∑
i=1

hi · sgn


i∑

j=1

(
[σ (Ex ·Θ)]j − [y]j

)
F∑

j=i+1

[y]j

where sgn {·} is the sign function, and δik is the Kronecker delta notation. The
second equality used the specific form of the derivative of the softmax function.
Unfortunately, this gradient is not Lipschitz continuous due to the sign function
in the second term. Nevertheless, if we use a “modified gradient” that drops the
second term, i.e., choose to update the parameter Θk in the direction

∂̃

∂Θk
W1 (f (x,Θ) , y) := −Ex · [σ (Ex ·Θ)]k ·W1 (σ (Ex ·Θ) , y) (13)

then obviously this new choice of “descent” direction is certainly Lipschitz
continuous, as

∣∣∣∣∣ ∂̃

∂Θk
W1 (f (x,ΘS) , y)− ∂̃

∂Θk
W1 (f (x,ΘS′) , y)

∣∣∣∣∣
= |Ex| · |[σ (Ex ·ΘS)]k ·W1 (σ (Ex ·ΘS) , y)− [σ (Ex ·ΘS′)]k ·W1 (σ (Ex ·ΘS′) , y)|

≤ |Ex| ·

[
|[σ (Ex ·ΘS)]k − [σ (Ex ·ΘS′)]k| ·W1 (σ (Ex ·ΘS) , y)

+ [σ (Ex ·ΘS′)]k · |W1 (σ (Ex ·ΘS) , y)−W1 (σ (Ex ·ΘS′) , y)|

]
≤ |Ex| · (LσD |Ex| · ‖ΘS −ΘS′‖1 +W1 (σ (Ex ·ΘS) , σ (Ex ·ΘS′)))

≤ |Ex| ·
3

2
LσD · |Ex| · ‖ΘS −ΘS′‖1 ≤

3

2
LσD · g2λ ‖ΘS −ΘS′‖1 .

9

Therefore, if we define

∇̃ΘW1 (f (x,Θ) , y) :=

(
∂̃

∂Θ1
W1 (f (x,Θ) , y) , · · · , ∂̃

∂ΘF
W1 (f (x,Θ) , y)

)>
(14)

then the stochastic update algorithm1

ΘS,t+1 = ΘS,t − η∇̃ΘW1 (f (xit , ΘS,t) , yit) (15)

will still satisfy the generalization bound, due to the Lipschitz continuity

∥∥∥∇̃ΘW1 (f (x,ΘS) , y)− ∇̃ΘW1 (f (x,ΘS′) , y)
∥∥∥
1
≤ 3D

2
Lσg

2
λ ‖ΘS −ΘS′‖1 .

(16)

In fact, (16) is exactly the GNN analogy of [12] which establishes the stability
for the “same sample loss” case. The “different sample loss” analogy, or the
lemma in [12], can be trivially obtained by the definition (13). In fact, noting
that

∣∣∣∣∣ ∂̃

∂Θk
W1 (f (x,Θ) , y)

∣∣∣∣∣ = |Ex · [σ (Ex ·Θ)]k ·W1 (σ (Ex ·Θ) , y)| ≤ gλD,

we easily obtain

∣∣∣∣∣ ∂̃

∂Θk
W1 (f (x,ΘS) , y)− ∂̃

∂Θk
W1 (f (x′, ΘS′) , y

′)

∣∣∣∣∣ ≤ 2gλD

and it follows that

∥∥∥∇̃ΘW1 (f (x,ΘS) , y)− ∇̃ΘW1 (f (x,ΘS′) , y)
∥∥∥
1
≤ 2FgλD. (17)

Putting together (16) and (17), we obtain the following analogy of [12]: Start-
ing with two training data sets S, S′ that differs by exactly one sample, after
each iteration t we have

1 Note that this is not even a stochastic gradient descent algorithm! the “gradient”
involved is a “fake” gradient — this is the counter-intuitive part.

10

EA
[
‖ΘS,t+1 −ΘS′,t+1‖1

]
= EA

[∥∥∥ΘS,t − η∇̃ΘW1 (f (xt, ΘS,t) , yt)−ΘS′,t + η∇̃ΘW1 (f (x′t, ΘS′,t) , y
′
t)
∥∥∥]

≤ EA
[
‖ΘS,t+1 −ΘS′,t+1‖1

]
+

(
1− 1

m

)
· η · 3D

2
Lσg

2
λEA

[
‖ΘS,t −ΘS′,t‖1

]
+

1

m
· η · 2FgλD

≤
(

1 +
3

2
ηDLσg

2
λ

)
EA
[
‖ΘS,t −ΘS′,t‖1

]
+

2ηFgλD

m
.

Solving this first-order recursion gives the stability after T random update
steps:

EA
[
‖ΘS,T −ΘS′,T ‖1

]
≤ 2ηFgλD

m

T∑
t=1

(
1 +

3

2
ηDLσg

2
λ

)t−1
. (18)

Combining (11) and (21) gives us

|EA [W1 (f (x,ΘS) , y)−W1 (f (x,ΘS′) , y)]| ≤ ηFLσg
2
λD

2

m

T∑
t=1

(
1 +

3

2
ηDLσg

2
λ

)t−1
.

(19)

Therefore, we actually have the uniform algorithmic stability (12) holds with

βm =
ηFLσg

2
λD

2

2m

T∑
t=1

(
1 +

3

2
ηDLσg

2
λ

)t−1
. (20)

EA
[
‖ΘS,T −ΘS′,T ‖1

]
≤ 2ηFgλD

m

T∑
t=1

(
1 +

3

2
ηDLσg

2
λ

)t−1
. (21)

Combining (8) and (21) gives us

|EA [W1 (f (x,ΘS) , y)−W1 (f (x,ΘS′) , y)]| (22)

≤ ηFLσg
2
λD

2

m

T∑
t=1

(
1 +

3

2
ηDLσg

2
λ

)t−1
. (23)

Therefore, we actually have the uniform algorithmic stability holds with

βm =
ηFLσg

2
λD

2

2m

T∑
t=1

(
1 +

3

2
ηDLσg

2
λ

)t−1
. (24)

Note that here βm = O(1
m) (needed to obtain a tight generalisation bound).

11

4.8 Putting everything together

Lemma 1. [12]: Let λmaxG be the maximum absolute eigenvalue of LG. Let Gx be
the ego-graph of a vertex x ∈ V with corresponding maximum absolute eigenvalue
λmaxGx

. Then the following eigenvalue (singular value) bound holds ∀x ∈ V ,

λmaxGx
≤ λmaxG (25)

Lemma 2. [12] A uniform stable randomised algorithm (AS , βm) with a bounded
loss function 0 ≤ `(AS ,y) ≤ B, satisfies the following generalisation bound with
probability at least 1− δ, over the random draw of S,y with δ ∈ (0, 1),

EA
[
R(AS)−Remp(AS)

]
≤ 2βm + (4mβm +B)

√
log 1

δ

2m
(26)

where R(AS) is the generalisation error/risk and Remp(AS) is the empirical
error. Finally, Equation 25, and Equation 26 in conjunction with our result i.e.
Equation 24, immediately yield the following proposition:

Proposition 1. Let AS be a one-layer GNN algorithm (of Equation 4) equipped
with the graph convolutional filter g(LG) and trained on a dataset S for T itera-
tions. Let the loss and activation functions be Lipschitz-continuous and smooth.
Then the following expected generalisation gap holds with probability at least 1−δ,
δ ∈ {0, 1}:

ESGD

[
R(AS)−Remp(AS)

]

≤ 1

m
O
(

(λmaxG)2T
)

+

(
O
(

(λmaxG)2T
)

+B

)√
log 1

δ

2m
(27)

where the expectation ESGD is taken over the randomness inherent in SGD,
m is the no. training samples, and B is a constant which depends on the loss
function. Our proposition states that GNN trained with the Wasserstein loss
enjoys the same generalisation error bound as the traditional GCN (trained with
cross entropy). We establish that such models, which use filters with bounded
eigenvalues independent of graph size, can satisfy the strong notion of uniform
stability and thus is generalisable.

The above analysis is quite general and the error bounds can be easily estab-
lished for DHN and existing hypergraph neural methods based on the discussion
in Section 4.1.

5 Additional Experiments

5.1 Ablation Study

In this section, we compared our proposed one-layer DHN against deeper layers
and without exploiting directed hyperedges.

12

Table 1. Statistics of datasets used in the experiments.

Dataset Type |V| |E| |Ed| F Avg. edge size Max. edge size

Cora Co-authorship 2653 2591 12071 7 2.3± 1.9 29
DBLP Co-authorship 22535 43413 117215 5 4.7± 6.1 143
Amazon Recommendation 84893 166994 1081994 5 3.0± 3.0 187
ACM Co-authorship 67057 25511 59884 6 2.4± 1.2 32
arXiv Co-authorship 790790 1354752 6728683 7 4.0± 19.7 2832

Dataset GCN Soft-GCN GAT Soft-GAT Simple-GCN Soft-Simple-GCN

Cora 81.5 81.7 82.8 82.5 81 81.6

Citeseer 70.3 70.1 70.6 70.6 71.8 71.6

Pubmed 79 78.6 78.7 78.4 78.8 78.8
Table 2. Accuracy on traditional graph-based SSL datasets. The experimental setting
is the same as in GCN [7] and GAT [11]. We used 10% of the labelled vertices as
validation data to tune the hyperparameter η.

5.2 Varying Labelled Data and increasing F

Table 4 shows the results on arXiv for varying percentage of labelled data. As
we can see, Soft-DHN achieves the best results across all percentages of labelled
nodes.

We also analysed at what point our proposed methods (KL-DHN and Soft-
DHN) recovered performance on the largest arXiv dataset with all nodes (100%)
labelled. KL-DHN achieved a 100∗MSE of 7.34, and Soft-DHN achieved a 100∗MSE
of 5.87 with all nodes labelled. Moreover, KL-DHN required around 72% labelled
nodes to achieve a 100∗MSE of 7.34 while Soft-DHN required around 79% to
achieve a 100∗MSE of 5.87. As we can observe, KL-DHN plateus earlier (requires
72% of the labelled nodes) than Soft-DHN (79%). But Soft-DHN performs much
better than KL-DHN.

As another experiment we increased the number of research interests for
authors on the largest arXiv dataset from F = 7 to F = 25. The results of our
method and the baselines are shown in Table 5. As we can see our proposed
Soft-DHN achieves the best performance in this setting too.

6 Details of hyperparameters

Inspired by the experimental setups of prior related works [7, 8], we tune hyper-
parameters of all methods including all baselines using the Cora co-authorship
network dataset alone. The optimal hyperparameters are fixed and then used
for all the other datasets. Table 6 shows the list of hyperparameters used in the
datasets. Prior works [7, 8] have extensively performed tuning of hyperparame-
ters such as hidden size, learning rate, etc and we fixed their reported optimal
hyperparameters. We hyperparameterise the cost matrix (base metric of the

13

Table 3. Ablation study of our proposed Soft-DHN.

DHN layers # GNN layers(hops) Cora DBLP

2 2 7.68± 0.24 7.98± 0.27
2 1 7.64± 0.25 7.93± 0.28
2 0 7.69± 0.27 7.98± 0.22
1 0 5.64± 0.32 6.45± 0.38
1 1 5.41± 0.35 6.26± 0.32

1 2 4.87± 0.40 5.65± 0.42

Table 4. Results on arXiv dataset. 100∗ Mean squared error ± standard deviation
(lower is better) over 10 different train-test splits.

Model 1% 3% 5% 10% 20%

Soft-HGNN 8.61± 0.49 8.46± 0.52 8.42± 0.43 8.28± 0.37 8.11± 0.45
Soft-HyperGCN 8.60± 0.47 8.44± 0.43 8.40± 0.41 8.29± 0.40 8.15± 0.41

KL-DHN 9.34± 0.32 9.25± 0.34 9.19± 0.35 9.03± 0.41 8.88± 0.34
Soft-DHN 7.69± 0.36 7.51± 0.37 7.41± 0.34 7.22± 0.39 7.06± 0.32

Wasserstein distance) as follows:

C =


1 η η . . . η η
η 1 η . . . η η
...

...
...

. . .
...

...
η η η . . . η 1



Table 7 shows the best results on the validation split of Cora (with optimal
hyperaparameters). The training set had 140 vertices, the validation set 1000
vertices and the rest of the vertices were used to test the models. The results
reported are after 200 epochs of training with a seed value of 598.

14

Table 5. Increasing the dimension of F . new F = 25

Model 100*MSE

Soft-HGNN 24.7± 3.3
Soft-HyperGCN 24.5± 3.8
Soft-Hyper-SAGNN 23.5± 2.8
Soft-HNHN 23.9± 2.9
Soft-DHGCN 23.3± 2.6
KL-DHN 26.7± 2.5
Soft-DHN 22.3± 2.9

Table 6. List of hyperparameters used in the experiments. A set of values indicates
that the corresponding hyperparameter is tuned from the set (on the validation split).

Hyperparameter Value(s) Hyperparameter Value(s)

hidden size, h {8, 16, 32, 64, 128} ε (Sinkhorn) {0.0001, 0.001, 0.01, 0.1, 1, 10}
Sinkhorn iterations 100 learning rate, r {0.0001, 0.001, 0.01, 0.1, 1, 10}
dropout 0.5 η {0, 1, 2, · · · , 40}
weight decay 5× 10−4 λ {1, 0.5, 0.1, 0.05, 0.01, · · · , 5× 10−7, 10−7}

7 Sources of the real-world datasets

Co-authorship data: All authors co-authoring a paper are in one hyperedge.
We used the author data2to get the co-authorship hypergraph for cora. We
manually constructed the DBLP dataset from Arnetminer3.

7.1 Construction of the DBLP dataset

We downloaded the entire dblp data from https://aminer.org/lab-datasets/citation/DBLP-
citation-Jan8.tar.bz [10]. The steps for constructing the dblp dataset used in the
paper are as follows:

– We defined a set of 5 conference categories (histograms for the SSL task) as
“algorithms”, “database”, “datamining”, “intelligence”, and “vision”

– For a total of 4304 venues in the entire dblp dataset we took papers from only
a subset of venues from Wikipedia corresponding to the above 5 conferences

2 https://people.cs.umass.edu/ mccallum/data.html
3 https://aminer.org/lab-datasets/citation/DBLP-citation-Jan8.tar.bz

15

Table 7. Optimal hyperparameters on the validation set on Cora Co-authorship net-
work. We found that h = 16, r = 0.01, ε = 0.1 were optimal for all methods in the
table.

Method Optimal hyperparameters Best MSE on validation set

KL-MLP - 7.87
OT-MLP η = 31 6.47

KLR-MLP - 7.39
OTR-MLP η = 25, λ = 5× 10−3 4.86

KL-HGNN - 6.98
KL-HyperGCN - 7.03
Soft-HGNN η = 20 3.24
Soft-HyperGCN η = 17 4.02

Soft-Hyper-Atten η = 19 3.16
Soft-Hyper-SAGNN η = 17 3.09
Soft-HNHN η = 17 2.95
Soft-DHGCN η = 18 3.04

KL-DHN - 6.34
Soft-DHN η = 19 2.67

– From the venues of the above 5 conference categories, we got 22535 authors
publishing at least two documents for a total of 43413

– We took the abstracts of all these 43413 documents, constructed a dictionary
of the most frequent words (words with frequency more than 100) and this
gave us a dictionary size of 1425

– We then extracted the 117215 citation links among these documents

7.2 Construction of the Amazon Office Product dataset

We downloaded the entire Amazon data [6, 9]. The steps for constructing the
dataset used in the paper are as follows:

– We downloaded the office product ratings subset from the entire dataset
– We constructed a hypergraph of items with each hyperedge representing a

user connecting all the items that they bought

16

– We removed hyperedges of size 1
– We connected a pair of hyperedges (bi-directional) if they had more than 1

item in common

7.3 Construction of the ACM dataset

We downloaded the entire ACM data from https://lfs.aminer.org/lab-datasets/citation/acm.v9.zip
[10]. The steps for curating the dataset in the paper are as follows:

– Based on the number of papers published, we identified the six most popular
venues: “Journal of Computational Physics”, “IEEE Transactions on Pattern
Analysis and Machine Intelligence”, “Automatica (Journal of IFAC)”, “IEEE
Transactions on Information Theory”, “Expert Systems with Apllications:
An International Journal”, and “IEEE Transactions on Computers”

– We then listed the set of all authors published in these venues (we got a total
of 67057 authors).

– We finally obtained the citation relationships of all the documents co-authored
by these authors (total number of documents is 25511 and total number of
citations is 59884)

7.4 Details of the ArXiv dataset

We downloaded the entire arXiv dataset [2] from https://github.com/mattbierbaum/arxiv-
public-datasets/releases/tag/v0.2.0. The steps for curating the dataset in the
paper are as follows:

– We removed papers without any authors and got a total of 13, 54, 752 edges
– We extracted 67, 28, 683 citation edges among these papers
– The total number of authors in these papers is 7, 90, 790

References

1. Altschuler, J., Weed, J., Rigollet, P.: Near-linear time approximation algorithms
for optimal transport via sinkhorn iteration. In: NIPS. Curran Associates, Inc.
(2017)

2. Clement, C.B., Bierbaum, M., O’Keeffe, K.P., Alemi, A.A.: On the use of arxiv as
a dataset. CoRR, abs/1905.00075 (2019)

3. Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transport. In:
NIPS. Curran Associates, Inc. (2013)

4. Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In:
AAAI (2019)

5. Hardt, M., Recht, B., Singer, Y.: Train faster, generalize better: Stability of stochas-
tic gradient descent. In: ICML (2016)

6. He, R., McAuley, J.: Ups and downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In: WWW (2016)

7. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

17

8. Liao, R., Zhao, Z., Urtasun, R., Zemel, R.S.: Lanczosnet: Multi-scale deep graph
convolutional networks. In: ICLR (2019)

9. McAuley, J., Targett, C., Shi, Q., van den Hengel, A.: Image-based recommenda-
tions on styles and substitutes. In: SIGIR (2015)

10. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: Extraction and
mining of academic social networks. In: KDD (2008)

11. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: ICLR (2018)

12. Verma, S., Zhang, Z.L.: Stability and generalization of graph convolutional neural
networks. In: KDD (2019)

13. Villani, C.: Topics in optimal transportation theory (2003)
14. Villani, C.: Optimal transport – Old and new, vol. 338. Springer-Verlag (2008)
15. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph

convolutional networks. In: ICML (2019)
16. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: Clustering, classi-

fication, and embedding. In: Schölkopf, B., Platt, J.C., Hoffman, T. (eds.) NIPS.
MIT Press (2007)

