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Abstract—We propose a new technique for deriving the differ-
ential privacy parameters in federated learning (FL). We consider
the setting where a machine learning model is iteratively trained
using stochastic gradient descent (SGD) and only the last update
is publicly released. In this approach, we interpret each training
iteration as a Markov kernel. We then quantify the impact of the
kernel on privacy parameters via the contraction coefficient of
the Eγ-divergence that underlies differential privacy. To do so,
we generalize the well-known Dobrushin’s ergodicity coefficient,
originally defined in terms of total variation distance, to a family
of f -divergences. We then analyze the convergence rate of SGD
under the proposed private FL framework.

I. INTRODUCTION

Federated Learning (FL) [1] is a distributed method for
training machine learning models. In the prototypical setting,
users compute gradients on their local data and send them to
a server referred to as the central aggregator (uplink update).
The local gradients are then aggregated into an update by the
server, which is then sent back to users (downlink update).
This iterative distributed algorithm has recently gained atten-
tion due to its inherit parallelization, storage, and communi-
cation efficiency. Although users never share their local data
directly during each iteration — only gradients are transmitted
— FL can still compromise user privacy [2, 3].

In this paper, we derive privacy guarantees for FL. We adopt
differential privacy (DP) as our privacy metric of choice, since
DP has become the standard for large-scale model fitting (e.g.,
[4–14]). We make two key assumptions. First, we assume that
users communicate over encrypted channels with a trusted
aggregator. Second, we assume that the aggregator releases
the model parameters publicly only after a certain number of
iterations and hides all intermediate updates. Augenstein et al.
[15] recently studied the same setting where, after T iterations,
the last model parameters are used to generate synthetic data
for data inspection purposes. This assumption is also in line
with the recent works [16, 17] where the privacy amplification
resulting from hiding intermediate updates was quantified.
However, these works differ from ours in that we allow for
subsampling and adopt the approximate DP as the measure
of privacy. In contrast, in [16, 17] noise at each iteration is
the only source of randomness (i.e., no subsampling) and the
privacy was given in terms of Rényi differential privacy.1

1We note that Rényi differential privacy can be converted into (ε, δ)-DP,
according to [18]. However, as shown in [19], the resulting privacy guarantees
are weaker than what would be obtained by directly computing ε and δ.

To characterize the privacy-utility trade-off, we analyze the
convergence rate of stochastic gradient descent (SGD) under
the proposed privacy-preserving FL framework. We consider
two common data generation scenarios. First, we let each
local sample be generated i.i.d. according to an unknown
source PX . In this case, we show that the convergence rate
is degraded by an additive term C0σ

2/n, where σ is the
variance of the noise added in each iteration. Second, we
consider heterogeneous data and make no assumption on the
underlying distribution. Due to the one-pass nature of the
proposed FL algorithm, the standard SGD analysis fails in
this regime since the local gradient obtained at each step is no
longer unbiased. To overcome this, we generalize the results
on without-replacement SGD [20], proving a similar upper
bound on the convergence rate. Our results specify the relation
between convergence rate, noise level as well as sample and
batch size. Moreover, it sheds light on how to select these
hyper-parameters to achieve better privacy and utility trade-
off.
Notation. For any set A, we denote by P(A) the set of all
probability distributions on A. Given two sets Y and Z , a
Markov kernel (i.e., channel) K is a mapping from Y to P(Z)
given by y 7→ K(y). Given P ∈ P(Y) and a Markov kernel
K : Y → P(Z), we let PK denote the output distribution of
K when the input distribution is P , i.e., PK =

∫
K(y)P (dy).

II. PRELIMINARIES

A. Differential Privacy

Let Xn be the set of all possible datasets of size n, where
each entry takes values in X . A pair of datasets x ∈ Xn and
x′ ∈ Xn are neighboring (denoted by x ∼ x′) if they differ in
exactly one entry. A randomized mechanism M acts on each
x ∈ Xn and generates a random variable with distribution
Mx. A mechanism M is said to be (ε, δ)-DP [21], for ε ≥ 0
and δ ∈ [0, 1], if we have

sup
x∼x′

sup
A

[Mx(A)− eεMx′(A)] ≤ δ, (1)

where the first supremum is taken over all measurable sets A.

B. Information Theory

Given a convex function f : [0,∞) → R with f(1) = 0, the
f -divergence [22, 23] between two probability measures µ and
ν is defined as Df (µ‖ν) := Eν

[
f
( dµ

dν

)]
. This includes several

popular measures: KL-divergence, χ2-divergence, and total



variation distance TV are f -divergences for f(t) = t log(t),
f(t) = (t− 1)2, and f(t) = 1

2 |t− 1|, respectively.
Given ε ≥ 0, consider the convex function fε(t) :=

(t − eε)+, where (a)+ := max{0, a}. The corresponding
f -divergence, denoted by Eε(P‖Q), is called Eε-divergence
(or sometimes hockey-stick divergence [24]) and is explicitly
defined as

Eε(µ‖ν) =
∫
Y

(
d(µ− eεν)(y)

)
+
. (2)

This divergence appeared in [25] for proving converse channel
coding results. From the Neyman-Pearson lemma we can
obtain an alternative formula for Eε(µ‖ν) as Eε(µ‖ν) =
supA [µ(A)− eεν(A)] , implying that the DP constraint (1)
can be equivalently expressed in terms of Eε-divergence [26]:
M is (ε, δ)-DP if and only if

sup
x∼x′

Eε(Mx‖Mx′) ≤ δ. (3)

This Eε-divergence representation of DP was used in [27–31]
to prove new privacy results or simplify the proofs of existing
results.

The following properties of Eε-divergence can be readily
proved:

• 0 ≤ Eε(µ‖ν) ≤ TV(µ, ν) for any ε > 0. The upper
bound is equality if and only if ε = 0,

• ε 7→ Eε(µ‖ν) is continuous and strictly decreasing on
(0,TV(µ, ν)],

• (µ, ν) 7→ Eε(µ‖ν) is convex,
• Eε(µ‖ν) decreases by post-processing (data-processing

inequality). That is, Eε(µK‖νK) ≤ Eε(µ‖ν) for any
Markov kernel (or a channel) K.

Data Processing inequality is typically strict for non-trivial
kernels. To account for this, it is customary to consider the
contraction coefficient [32] ηε(K) of K under Eε-divergence
as

ηε(K) := sup
µ,ν:

Eε(µ∥ν)̸=0

Eε(µK‖νK)
Eε(µ‖ν)

. (4)

This quantity has been recently in details in [19]. In particular,
it was shown that ηε(K) enjoys a remarkably simple two-point
characterization.

Theorem 1 ([19]). For any ε ≥ 0 and K : Y → P(Z), we
have

ηε(K) = sup
y1,y2∈Y

Eε(K(y1)‖K(y2)). (5)

When ε = 0, this theorem reduces to the well-known
Dobrushin’s theorem [33] that has been an instrumental result
in several statistical problems, see, e.g, [33–36].

In this paper, we are concerned with the Gaussian Markov
kernel specified by K(y) = N (y, σ2I) for some y ∈ Rd and
σ > 0. To compute the contraction coefficient of such kernels,
we need the following lemma, whose proof is essentially the
same as [27, Lemma 6].

Lemma 1. For m1,m2 ∈ Rd and σ > 0, we have

Eε(N (m1, σ
2I)‖N (m2, σ

2I)) = θε

(‖m1 −m2‖
σ

)
,

where θε : [0,∞) → [0, 1] is given by

θε(r) := Q
(ε
r
− r

2

)
− eεQ

(ε
r
+

r

2

)
, (6)

and Q(t) = 1√
2π

∫∞
t

e−u2/2du.

In light of Theorem 1 and Lemma 1, it follows that Gaussian
kernels has a trivial contraction coefficient, i.e., ηε(K) = 1
(for instance by choosing m1 = 0 and m2 with ‖m‖2 → ∞).
However, if the input is assumed to be restricted to a bounded
subset of Rd, then ηε(K) < 1.

Lemma 2 ([19]). Let Y ⊂ Rd be a bounded set. For the
Markov kernel specified by K(y) = N (y, σ2I) for y ∈ Y and
σ > 0, we have

ηε(K) = θε

(‖Y‖
σ

)
,

where ‖Y‖ := maxy1,y2∈Y ‖y1 − y2‖.

The constraint that the input of Gaussian kernels must be
bounded is not restrictive in machine learning and is satisfied
in many practical algorithms. For instance, each iteration of
the projected noisy stochastic gradient descent with Gaussian
noise (see e.g., [4, 5, 7, 8, 11, 30]) can be viewed as a Gaussian
kernel whose input (and output) are values from a compact set.
Such kernels are called projected Gaussian kernels. We focus
on this particular kernel in the next section.

III. FEDERATED LEARNING

In our federated learning model, n distributed users send
their updates of a shared model to a trusted aggregator.
At each iteration, m number of users are chosen uniformly
without replacement. Then, each of users selected computes
a local update, randomizes it via a Gaussian kernel, and then
sends it to the aggregator. The aggregator aggregates all these
local updates, projects it onto ℓ2-ball of fixed radius ρ and
then sends the global update back to users. For notational
simplicity, we assume m = qn and since the subsampling is
performed without replacement, the total number of iteration is
T = n

m = 1
q . This procedure is described in Algorithm 1. The

model we investigate differs from the typical settings studied
in literature in that here the aggregator is expected to publicly
display the model parameters only after the T th iteration. This
model is conceptually similar to the recent work of Augenstein
et al. [15] where the final model parameters were used to
generate the synthetic data for the purpose of data inspection
under privacy constraint.

A. Warm-Up: Batches of Size 1

Suppose n users, each with local data xi, i ∈ [n] :=
{1, . . . , n}, are to communicate over an encrypted commu-
nication channel to a trusted party and send their local update
to shared model one at a time, i.e., m = 1. Although this



setting may not be practical, it illuminates the proof technique
employed for the general setting (i.e., m ≥ 1).

Let π ∈ Sn be a random permutation map and Sn is the
symmetric group on [n]. The federated learning algorithm
iterates as follows:

• The aggregator samples the initial parameter W0 in
ball(ρ), the ℓ2 ball of radius ρ in Rd, according to a
distribution µ0 and sends it to user π(1).

• User π(1) uses W0 and her local data xπ(1) to compute
the update W̃1 := η1∇ℓ(W0, xπ(1)) + η1σ1Z1, where
Z1 ∼ N (0, I). This update is then sent back to the
aggregator.

• Upon receipt of W̃1, the aggregator computes W1 =
projρ(W0 − W̃1), where projρ(·) denotes the projection
operator onto ball(ρ). Then W1 is sent to user π(2).

• Continue the above procedure until all n users send the
aggregator their updates (i.e., T = n is the number of
iterations). The aggregator releases WT .

To obtain the privacy guarantee of this algorithm, we model
each iteration as a projected Gaussian Markov kernel. Let
Kt be the Markov kernel associated with the map w 7→
projρ (Ψt(w)− ηtσtZt) for t ∈ [T ], where

Ψt(w) := w − ηt∇ℓ(w, xπ(t)), (7)

and Zt is a random vector sampled from N (0, I). More
precisely, Kt(w) = projρ(N (Ψt(w), η

2
t σ

2
t I)). It is clear from

Lemma 2 that ηε(Kt) < 1 for all ε ≥ 0 and ρ < ∞.
Notice that the tth iteration can be equivalently expressed
by Kt whose input is Wt−1 and output is Wt (see Fig 1).
Letting µt−1 denote the distribution of Wt−1, we therefore
have Wt ∼ µt−1Kt.

Fig. 1. Iteration t can be viewed as a Markov kernel that is composed
of Ψt defined in (7), Gaussian noise addition and then projection
operator onto ball(ρ).

Now consider a pair of neighboring datasets x and x′ that
differ in the ith entry (i.e., xi 6= x′

i and xj = x′
j for j ∈

[n]\{i}) and let µt and µ′
t be the distributions of the Wt when

algorithm runs on x and x′, respectively. Let t = π−1(i) (or
equivalently π(t) = i). Clearly, µj = µ′

j for all j ∈ [t − 1].
Also, µt = µt−1Kt and µ′

t = µt−1K
′
t where K′

t is the Markov
kernel associated with the map w 7→ projρ (Ψ

′
t(w)− ηtσtZt),

where
Ψ′

t(w) := w − ηt∇ℓ(w, x′
i).

In light of (3), one concludes the algorithm is (ε, δ)-DP if
Eε(µT ‖µ′

T ) ≤ δ, for all i ∈ [n]. By definition, we have

Eε(µT ‖µ′
T ) ≤ Eε(µT−1‖µ′

T−1)ηε(KT )

Algorithm 1 Federated learning with a trusted aggregator

1: Input: Dataset {x1, . . . , xn} ∈ Rnd, learning rate {ηt},
batch size m, noise variance {σ2

t }, initial distribution µ0

2: Choose W0 ∼ µ0

3: for t = 1 to T do
4: Take batch Bt ⊂ [n] of size m uniformly without

replacement
5: Local update: W j

t−1 = ηt
[
∇ℓ(Wt−1, xj) + σtZ

j
t

]
,

∀j ∈ Bt and Zj
t ∼ N (0, I)

6: Upload: W j
t−1 is sent to aggregator

7: Model aggregation: aggregator updates the model pa-
rameter as Wt = projρ(Wt−1 − 1

m

∑
j∈Bt

W j
t )

8: end for
9: Output: WT

≤ Eε(µT−2‖µ′
T−2)ηε(KT )ηε(KT−1).

Applying this for T − t times, we obtain

Eε(µT ‖µ′
T ) ≤ Eε(µt‖µ′

t)

T∏
j=t+1

ηε(Kj)

= Eε(µt−1Kt‖µt−1K
′
t)

T∏
j=t+1

ηε(Kj) (8)

Consequently, the computation of δ boils down to computing
the contraction coefficient of projected Gaussian kernels and
Eε-divergence between mixture of projected Gaussian distribu-
tions with the same variance. The former can be tackled via
Lemma 2. The latter, however, involves Jensen’s inequality
(recall that (µ, ν) 7→ Eε(µ‖ν) is convex), the data processing
inequality (to get rid of the projection operator) and Lemma 1.
We will elaborate further in the next section where we prove
the main result.

B. Batch of size m

Here we assume at each iteration, the aggregator shares the
global update with m users. In this setting, T = n

m and, in
lieu of permutation, we define a mapping which assigns each
i ∈ [n] to a single batch.

Theorem 2. Let the loss function w 7→ ℓ(w, x) be convex, L-
Lipschitz and β-smooth for all x ∈ X and also η ≤ 2

β . Then
Algorithm 1 is (ε, δ)-DP for ε ≥ 0 and

δ =
m

n

T∑
t=1

θε

(
2L√
mσt

) T∏
j=t+1

θε

(
2ρ

√
m

ηjσj

)
,

where θε is defined in (6). In particular, if ηt = η and σt = σ
for all t ∈ [T ], we have

δ =
m

n
θε

( 2L√
mσ

)1− θε

(
2ρ

√
m

ησ

) n
m

1− θε

(
2ρ

√
m

ησ

) .

The proof of this theorem (and other results) are give in [37].
Note that the convexity and smoothness of ℓ(·, x) are used in



the proof of Theorem 2 only to obtain an upper bound for
‖Ψt(ball(ρ))‖. This was shown via standard results in convex
analysis (e.g., Prop 18 in [16]) that state w 7→ w− η∇ℓ(w, x)
is contractive for η ≤ 2

β if ℓ(·, x) is convex, L-Lipschitz,
and β-smooth; thus ‖Ψt(ball(ρ))‖ ≤ 2ρ. However, one can
easily show that in the absence of convexity and smoothness,
‖Ψt(ball(ρ))‖ ≤ 2(ρ + ηtL). Therefore, the convexity and
smoothness can be relaxed in Theorem 2 at the price of
looser and more tedious bound. On the other hand, if the cost
function is strongly convex, then Theorem 2 can be improved
as, in this case, w 7→ w − η∇ℓ(w, x) is contractive with
Lipschitz constant strictly smaller than 1 (see, e.g., Theorem
3.12 in [38]). In Fig. 2, we demonstrate the privacy parameters
obtained from Theorem 2 for ηt = 0.5, σt = 1.5, and different
sub-sampling rates q = 0.1, 0.2, 0.3. As illustrated in this
figure, the more users are involved in each iteration, the higher
the privacy guarantee is.

Fig. 2. Differential privacy parameters of Algorithm 1 for different
sub-sampling rates according to Theorem 2. The parameters of
algorithm are as follows: η = 0.5, L = 1, ρ = 1, σ = 1.5, n = 100.

IV. PRIVACY-UTILITY TRADE-OFF

In this section, we apply the technique in Section III to study
the convergence rate of private SGD (Algorithm 1), which
is the main utility function we concerned. In particular, we
consider two canonical data generation scenarios.

• Distributional SGD (stochastic optimization): each local
sample Xi is drawn identically and independently from
an unknown source PX , and the goal is to minimize

F (W ) ≜ EPX
[ℓ(W,X)] + r(W ), (9)

for some loss function ℓ(·) and regularization r(·).
• Distribution-free SGD: each Xi ∈ X , and the goal is to

minimize

F (W ) ≜ 1

n

n∑
i=1

ℓ(W,Xi) + r(W ). (10)

Note that in the standard SGD setting, the sever observes a lo-
cal unbiased estimate of gradient vector ∇F (Wt) at each itera-
tion t and updates the global model Wt accordingly, so as long
as we select user uniformly at random it

i.i.d.∼ uniform(n), there
is no difference between distributional or distribution-free
SGD. However, due to the privacy constraint, in Algorithm 1

each user i is picked randomly but without-replacement, so
the updates are no longer (conditional) unbiased, making the
traditional analysis on SGD failed.

A. Distributional SGD

By applying standard SGD convergence results (for instance
Theorem 1 in [39]), we obtain the following utility guarantee:

Corollary 1. Suppose W ⊆ B (ℓ2, ρ) and that F (W ) ≜
EPX

[ℓ(W,X)] is λ strongly convex and β smooth on W ,
with ‖∇F (W )‖22 ≤ D2 and VarPX

(∇ℓ(W,X)) ≤ G2. Let
T ≜ n

m and WT be the output of Algorithm 1. Then by
choosing ηt =

1
λt and σt = σ, we have

E [F (WT )]− inf
W∈W

F (W ) ≤
2β
(
D2 + G2+σ2

m

)
λ2T

=
2β
(
mD2 +G2 + σ2

)
λ2n

.

Moreover, by Theorem 2, Algorithm 1 satisfies (ε, δ)-DP
with

δ =
m

n

T∑
t=1

θε

(
2L√
mσ

) T∏
j=t+1

θε

(
2ρ

√
λmj

σ

)

≤ m

n
θε

( 2L√
mσ

)1− θε

(
2ρλn√
mσ

) n
m

1− θε

(
2ρnλ√
mσ

) , (11)

where the inequality is due to ηj ≤ ηT and the monotonicity
of r 7→ θε(r). Therefore we see that the price of privacy is
an additive term σ2/n in the convergence rate. Notice that
a straightforward upper bound on (11) is θε

(
2L√
mσ

)
, so this

implies one can get stronger privacy guarantee by increasing
either noise level σ or batch size m.

B. Distribution-free SGD

In general, the local data at each local device is typically
highly heterogeneous, so the distribution-free setting captures
the feature of federate learning better. However, since in
Algorithm 1 each user is selected without replacement at each
iteration, the resulting local gradient vector is no longer an
unbiased estimate of the global gradient, making the traditional
SGD convergence analysis fail. Nevertheless, borrowing the
idea from [20], we show that sampling each user without
replacement does no harm on the convergence rate compared
to the classic SGD (i.e. with-replacement SGD).

a) Utility guarantee: We start with the following con-
vergence result:

Corollary 2. Suppose W ⊆ B (ℓ2, ρ) and that F (·) ≜
1
n

∑
i fi(·) is λ strongly convex on W . Assume fi(W ) =

ℓ (〈W,xi〉) + r(W ) where ‖xi‖ ≤ 1, r(·) is possibly
some regularization term, and ℓ is L-Lipschitz and β-smooth
on {z : z = 〈W,x〉,W ∈ W, ‖x‖ ≤ 1}. Furthermore, suppose
supW∈W ‖∇fi(W )‖ ≤ G. Then choose ηt =

1
λt , m = 1 and



let Wt be the model after t-th round in Algorithm 1, we have
(for a universal constant c)

E

[
1

n

n∑
t=1

F (Wt)

]
− inf

W∈W
F (W )

≤c

(
(L+ µB)

2
+G2

)
log(T )

λn
+

∑
t ηtσ

2
t

n
.

Remark 1. Note that Theorem 2 is essentially the result of
Theorem 3 in [20], except that now we replace the update
rule Wt+1 = Projρ

(
Wt − ηt∇fσ(t) (Wt)

)
with Wt+1 =

Projρ
(
Wt − ηt

(
∇fσ(t) (Wt) + σtZt

))
.

To extend Corollary 2 to batch-size m, simply rewrite

F (·) = 1

n

∑
i

fi(·) =
1

T

T∑
t=1

(
1

m

∑
i∈Bt

fi(·)

)
≜ 1

T

T∑
t=1

gt(·),

where T ≜ n
m and Bt is a random size-m batch selected

without replacement. Then the update rule in Algorithm 1 can
be viewed as

Wt+1 = Projρ

Wt − ηt

∇gσ(t) (Wt) +
1

m

∑
j∈Bt

σtZ
j
t

 ,

and applying Corollary 2 yields

E

[
1

T

T∑
t=1

F (Wt)

]
− inf

W∈W
F (W )

≤c

(
(L+ µB)

2
+G2

)
log(T )

λT
+

∑
t ηtσ

2
t

mT

=c
m
(
(L+ µB)

2
+G2

)
log(n/m)

λn
+

∑
t ηtσ

2
t

n
.

b) Privacy guarantee: Corollary 2 only ensures the
convergence of 1

T

∑T
t=1 F (Wt) instead of the output WT .

Notice that if we replace the output of Algorithm 1 with
W̄ ≜ 1

T

∑T
t=1 Wt, the privacy guarantee in Theorem 2 will

no longer hold. To address this issue, we consider a randomly
stopped version of Algorithm 1 as in [19], where after running
τ ∼ uniform(T ) rounds of update, we stop and return Wτ . I
this case, the output satisfies E [Wτ ] =

1
T

∑T
t=1 Wt, so the

convergence result in Corollary 2 holds.

Motivated by the [19, Theorem 5], we give the following
privacy guarantee for the randomly stopped version of Algo-
rithm 1:

Corollary 3. Let T ≜ n
m and τ ∼ uniform(T ). If we run

Algorithm 1 for τ rounds and return Wτ , then Wτ satisfies
(ε, δ)-DP with

δ =
1

T 2

T∑
τ=1

τ∑
t=1

θε

(
2L√
mσt

) τ∏
j=t+1

θε

(
2ρ

√
m

ηjσj

)
.

Moreover, if η∗ ≜ mint∈[T ] ηt and σ∗ ≜ mint∈[T ] σt, then we

can also pick δ as

δ =
1

T 2
θε

(
2L√
mσ∗

) T∑
τ=1

1− θτε

(
2ρ

√
m

η∗σ∗

)
1− θε

(
2ρ

√
m

η∗σ∗

) . (12)

For the parameters given in Corollary 2, we have η∗ = 1
λT ,

so if we pick σ2
t =

√
n and plug into (12), we obtain

δ =
1

T 2
θε

(
2L√
mσ∗

) T∑
τ=1

1− θτε

(
2λρn√
mσ∗

)
1− θε

(
2λρn√
mσ∗

)

≤ 1

T 2
θε

(
2L√
m 4
√
n

) T∑
τ=1

1− θτε

(
2λρn

3
4√

m

)
1− θε

(
2λρn

3
4√

m

)
and by Corollary 2, the convergence rate is Õ

(
1√
n
∨ m

n

)
.

We close this section with a few remarks in order. In
Corollary 1 and Corollary 2, we assume the loss function
to be strongly convex (which generally holds if we add a
regularization term r(W )). One can remove this assumption,
as in standard SGD convergence analysis (e.g. Chapter 14 in
[40]), and obtain O

(
1√
T

)
rate (instead of Õ

(
1
T

)
). Secondly,

comparing Corollary 1 with Corollary 2, we see that the
advantage of having i.i.d. property on local samples includes
1) we no longer need to randomly stop Algorithm 1 to
obtain the averaging 1

T

∑
t F (Wt), and 2) the loss function

ℓ(·, xi) does not need to take the form ℓ(〈·, xi〉). Finally, the
randomly stopped version of Algorithm 1 can be replaced
with α-suffix averaging [39], that is, the stopping time τ is
chosen τ ∼ uniform (αT : T ) for some α ∈ (0, 1). This can
potentially improve the privacy guarantee (12) in Corollary 3
by a constant factor.

V. CONCLUSION

In this work, we introduce a new approach for computing
differential privacy (DP) parameters via contraction coefficient
of Markov kernels under a certain f -divergence, namely Eε-
divergence. In this approach, we interpret federated learning
algorithm as a composition of several Markov kernels and
express the DP privacy parameters as the product of contrac-
tion coefficients of such kernels. The main assumption is that
the algorithm releases the model update only after a certain
number of iterations are passed; thus no composition theorems
are required. The proof technique relies on a technical theorem
that establishes a close-form expression for the contraction
coefficient of general Markov kernels under Eε-divergence.

This approach can be adapted to study the the more typical
scenario where the model updates get released after each
iteration. The privacy analysis in this case amounts to deriving
the contraction coefficient of a Markov kernel that is obtained
by tensor product of all T kernels, i.e., a kernel with T -tuple
input and output, under Eε-divergence.
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APPENDIX

Proof of Theorem 1. This result was originally proved in [19]. Nev-
ertheless, we provide the proof here for the convenience.

Given two probability measures µ and ν defined on Y , define
ϕ(y) = (µ(y)− eεν(y))+ and ϕ′(y) = (−µ(y) + eεν(y))+ for any
y ∈ Y . Note that since 1

2
‖µ − eεν‖1 = Eε(µ‖ν) + 1

2
(eε − 1) and

‖ϕ‖1 = Eε(µ‖ν), it follows that ‖ϕ′‖1 = Eε(µ‖ν)+ eε−1. Letting
Eε denote Eε(µ‖ν) for brevity, we can write

‖µK− eενK‖1 = ‖(µ(dy)− eεν(dy))K‖1

=

∫
Y

∣∣∣∣∫
X
(µ(dy)− eεν(dy))K(y)

∣∣∣∣
=

∫
Y

∣∣∣∣∫
X
ϕ(dy)K(y)−

∫
X
ϕ′(dy′)K(y′)

∣∣∣∣
=

∫
Y

∣∣∣∣‖ϕ‖∫
X

ϕ(dy)
‖ϕ‖ K(y)− ‖ϕ′‖

∫
X

ϕ′(dy′)

‖ϕ′‖ K(y′)

∣∣∣∣
=

∫
Y

∣∣∣‖ϕ‖(∫ ϕ′(dy′)

‖ϕ′‖

)∫
X

ϕ(dy)
‖ϕ‖ K(y)

− ‖ϕ′‖
(∫

ϕ(dy)
‖ϕ‖ dy

)∫
X

ϕ′(dx′)

‖ϕ′‖ K(y′)
∣∣∣

≤ max
x,x′

∫
Y

∣∣∣‖ϕ‖K(y)− ‖ϕ′‖K(y′)
∣∣∣ (13)

= max
x,x′

∫
Y

∣∣∣EεK(y)− (Eε + eε − 1)K(y′)
∣∣∣

≤ Eε max
x,x′

∫
Y

∣∣∣K(y)− eεK(y′)
∣∣∣+ (eε − 1)(1− Eε). (14)

Notice that it follows from the definition of Eε-divergence that

Eε(µK‖νK) =
1

2

∫
|d(µK− eενK)| − 1

2
(eε − 1).

Consequently, we obtain from (14) that

Eε(µK‖νK) ≤ Eε(µ‖ν)max
y,y′

Eε(K(y)‖K(y′)),

and hence ηε(K) ≤ maxy,y′ Eε(K(y)‖K(y′)). Now we show that
this inequality is indeed an equality. Fix y1 6= y2 ∈ Y and δ ∈ (0, 1).
Define µδ = δ̄I{y0}+δI{y1} and νδ = (δ̄e−ε)I{y0}+(1−δ̄e−ε)I{y2}
where δ̄ := 1− δ, y0 /∈ {y1, y2} and I{·} is the indicator function. It
is easy to verify that Eε(µδ‖νδ) = δ. We also have µδK = δ̄K(y0)+
δK(y1) and νδK = (δ̄/eε)K(y0)+ (1− δ̄/eε)K(y2). Hence, by (2),

Eε(µδK‖νδK) = δ

∫
Y

[
d(K(y1)− eε̃K(y2))(y)

]
+

= δEε̃(K(y1)‖K(y2)),

where ε̃ := log(1 + eε−1
δ

). Therefore, we obtain that

ηε(K) ≥
Eε(µδK‖νδK)
Eε(µδ‖νδ)

= Eε̃(K(y1)‖K(y2)).

By continuity of ε 7→ Eε(µ||ν), we obtain from above

ηε(K) ≥ lim
δ→1

Eε̃(K(y1)‖K(y2)) = Eε(K(y1)‖K(y2)).

Since y1 and y2 are arbitrary, the desired result follows.

Proof of Theorem 2. Consider two neighboring datasets x =
{x1, . . . , xn} and x′ = {x1, . . . , xi−1, x

′
i, xi+1, . . . , xn}. Let µt

and µ′
t be the distribution of Wt the output of the tth iteration

when running on x and x′, respectively. To derive δ for any given
ε, we need to compute Eε(µT ‖µ′

T ). Let π : [n] → [T ] specifies an
assignment of users to each batch, i.e., π(i) = t if i ∈ Bt. Note

that µt = µ′
t for t < π(i). We now identify each iteration with a

projected Markov kernel. At iteration t, the aggregator generates

Wt = projρ

(
Wt−1 −

ηt
m

∑
j∈Bt

∇ℓ(Wt−1, xj)− σ̃tZt

)
,

where Zt is now standard Gaussian random variable and σ̃2
t :=

η2
t σ

2
t

m
.

Hence, iteration t can be realized by Kt a projected Markov kernel
associated with the mapping w 7→ projρ(Ψt(w)− σ̃tZt) where

Ψt(w) = w − ηt
m

∑
j∈Bt

∇ℓ(w, xj).

Notice that Kt receives Wt−1 and generates Wt both taking values
in ball(ρ). Due to the strong data processing inequality (see (8)) and
convexity of (µ, ν) 7→ Eε(µ‖ν) for any ε ≥ 0, we can write

Eε(µT ‖µ′
T ) ≤

T∑
t=1

Pr(π(i) = t)Eε(µt‖µ′
t)

T∏
j=t+1

ηε(Kj)

= q
T∑

t=1

Eε(µt‖µ′
t)

T∏
j=t+1

ηε(Kj) (15)

To compute a bound for δ, it thus suffices to compute ηε(Kj) for
j ∈ [T ] and Eε(µt‖µ′

t) for t ∈ [T ]. We begin by computing ηε(Kj)
for j ∈ [T ] as follows

ηε(Kj) = sup
w1,w2∈ball(ρ)

Eε(Kj(w1)‖Kj(w2))

≤ sup
w1,w2∈ball(ρ)

Eε(N (Ψj(w1), σ̃
2
j I)‖N (Ψj(w2), σ̃

2
j I))

(16)

= sup
w1,w2∈Ψj(ball(ρ))

Eε(N (w1, σ̃
2
j I)‖N (w2, σ̃

2
j I))

= θε
(Ψj(ball(ρ))

σ̃j

)
(17)

≤ θε
(2ρ
σ̃j

)
(18)

= θε
(2ρ√m

ηjσj

)
(19)

where the equality in (17) follows from Lemma 1 and (6), the
inequality in (16) is due to the data processing inequality:

Eε(projρ(N (Ψj(w1), σ̃
2
j I))‖projρ(N (Ψj(w2), σ̃

2
j I)))

≤ Eε(N (Ψj(w1), σ̃
2
j I)‖N (Ψj(w2), σ̃

2
j I)),

and finally, the inequality in (18) follows from the following two
facts: (1) Since the loss functions w 7→ ℓ(w, x) is convex and β-
smooth for all x ∈ X , then w 7→ w − ∇ℓ(w, x) is contractive for
η ≤ 2

β
(see e.g., Prop 18 in [16]) and so is w 7→ Ψj(w); and (2)

The map r 7→ θε(r) is increasing.

Next, we compute Eε(µt‖µ′
t). Note that

µt =

∫
ball(ρ)

µt−1(dy)Kt(y).

Since π(i) = t, data point x′
i ∈ Bt. For this batch, we define

Ψ′
t(w) := w − η

m

[
∇ℓ(w, x′

i) +
∑

j∈Bt\{i}

∇ℓ(w, xj)
]
,

and the corresponding Markov kernel K′
t associated with w 7→

projρ(Ψ
′
t(w)− σ̃Zt). It follows that

µ′
t =

∫
ball(ρ)

µt−1(dy)K′
t(y).



The convexity of (µ, ν) 7→ Eε(µ‖ν) implies

Eε(µt‖µ′
t) ≤

∫
Eε(Kt(y)‖K′

t(y))µt−1(dy) (20)

≤
∫

Eε(N (Ψt(y), σ̃
2
t I)‖N (Ψ′

t(y), σ̃
2
t I)µt−1(dy) (21)

=

∫
θε
(‖Ψt(y)−Ψ′

t(y)‖
σ̃t

)
µt−1(dy) (22)

≤ θε
(2Lηt
mσ̃t

)
(23)

≤ θε
( 2L√

mσt

)
(24)

where (20) follows from Jensen’s inequality, (21) follows from the
data processing inequality, (22) follows from Lemma 1, and finally
(23) is due to Lemma 2 as follows: for any y ∈ ball(ρ)

‖Ψt(y)−Ψ′
t(y)‖ = ‖ηt

m
(∇ℓ(y, xi)−∇ℓ(y, x′

i))‖

≤ 2Lηt
m

where the inequality is due to the fact that w 7→ ℓ(w, x) is L-
Lipschitz for all x ∈ X and hence ‖∇ℓ(w, x)‖ ≤ 2L.

Plugging (19) and (24) into (15), we obtain

Eε(µT ‖µ′
T ) ≤ q

T∑
t=1

θε

(
2L√
mσt

) T∏
j=t+1

θε

(
2ρ

√
m

ηjσj

)
.

Assuming ηt = η and σt = σ for t ∈ [T ], the above upper-bound
can be simplified as

Eε(µT ‖µ′
T ) ≤ qθε

(2L√m

σ

) T∑
t=1

θT−t
ε

(2ρ√m

ησ

)

= qθε
(2L√m

σ

)1− θε
(

2ρ
√
m

ησ

) n
m

1− θε
(

2ρ
√
m

ησ

) .

The desired result then follows by invoking (3).

Proof of Corollary 2. Observe that

E
[
‖Wt+1‖22

]
=E

[∥∥Projρ (Wt − ηt
(
∇fσ(t) (Wt) + σtZt

))∥∥2
2

]
≤E

[∥∥Wt − ηt
(
∇fσ(t) (Wt) + σtZt

)∥∥2
2

]
≤E

[∥∥Wt − ηt∇fσ(t) (Wt)
∥∥2
2

]
+ η2

tE
[
‖σtZt‖22

]
≤E

[
‖Wt‖2

]
− 2ηtE

[
〈∇fσ(t) (Wt) ,Wt〉

]
+ η2

t

(
G2 + σ2

t

)
.

Follow the rest of the proof in Theorem 3 of [20], we obtain the
desired result.

Proof of Corollary 3. Following the analysis in Theorem 2, let µτ

and µ′
τ be the distributions of Wτ with two respect to two neighbor-

ing datasets x and x′ which differ at the i-th item. Then we have

Eε(µτ‖µ′
τ )

= Eε

(
1

T

T∑
τ=1

µτ‖
1

T

T∑
τ=1

µ′
τ

)
≤ 1

T

T∑
τ=1

Eε(µτ‖µ′
τ )

(a)
≤ 1

T

T∑
τ=1

T∑
t=1

1{t≤τ} Pr(π(i) = t)Eε(µt‖µ′
t)

τ∏
j=t+1

ηε(Kj)

=
1

T 2

T∑
τ=1

τ∑
t=1

Eε(µt‖µ′
t)

τ∏
j=t+1

ηε(Kj)

(b)
≤ 1

T 2

T∑
τ=1

τ∑
t=1

θε

(
2L√
mσt

) τ∏
j=t+1

θε

(
2ρ

√
m

ηjσj

)
where (a) follows from Jensen’s inequality and the convexity of Eε,
and (b) is from (19) and (24). If we set η∗ ≜ mint∈[T ] ηt and σ∗ ≜
mint∈[T ] σt, then Eε(µτ‖µ′

τ ) can be further bounded by

1

T 2

T∑
τ=1

τ∑
t=1

θε

(
2L√
mσt

) τ∏
j=t+1

θε

(
2ρ

√
m

ηjσj

)

≤ 1

T 2
θε

(
2L√
mσ∗

) T∑
τ=1

τ∑
t=1

θτ−t
ε

(
2ρ

√
m

η∗σ∗

)

=
1

T 2
θε

(
2L√
mσ∗

) T∑
τ=1

1− θτε

(
2ρ

√
m

η∗σ∗

)
1− θε

(
2ρ

√
m

η∗σ∗

)
=

1

T 2
θε

(
2L√
mσ∗

) T∑
τ=1

1− θτε

(
2ρ

√
m

η∗σ∗

)
1− θε

(
2ρ

√
m

η∗σ∗

) .
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