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Abstract—We study the problem of finding the element within
a convex set of conditional distributions with the smallest f -
divergence to a reference distribution. Motivated by applications
in machine learning, we refer to this problem as model projection
since any probabilistic classification model can be viewed as a
conditional distribution. We provide conditions under which the
existence and uniqueness of the optimal model can be guaranteed
and establish strong duality results. Strong duality, in turn, allows
the model projection problem to be reduced to a tractable
finite-dimensional optimization. Our application of interest is
fair machine learning: the model projection formulation can
be directly used to design fair models according to different
group fairness metrics. Moreover, this information-theoretic for-
mulation generalizes existing approaches within the fair machine
learning literature. We give explicit formulas for the optimal fair
model and a systematic procedure for computing it.

I. INTRODUCTION

Information projection [1–3] is a fundamental formulation in
several applications of information theory. Given a set of prob-
ability measures C and a reference measure P , a distribution
Q ∈ C is said to be the projection of P onto C if it uniquely
achieves the smallest KL-divergence Dkl(Q‖P ) among all
distributions in C [2]. Both the minimizing distribution Q
and the minimum divergence value are central quantities in
large deviation theory [4], universal source compression [5],
hypothesis testing [6], and beyond. Existence and uniqueness
of the optimal distribution have been studied in [2, 3]. In
particular, the optimal distribution has a simple closed-form
given by an exponential tilting of the reference distribution P
when the set C is determined by linear inequalities [2]. Even
though the information projection is most commonly defined
with “distance” measured by the KL-divergence [3, 6–10],
it has also been extended to Rényi divergences [11–13] and
f -divergences [14, 15].

We study a natural generalization of information projection:
finding the “closest” conditional distribution (in a prescribed
subset F of all possible conditional distributions) to a refer-
ence conditional distribution, where “distance” is measured
by averaged (i.e., conditional) f -divergences. Motivated by
applications in machine learning, we refer to this setting as
model projection, since probabilistic classification models (e.g.,
logistic regression, neural networks with a softmax output
layers) which map an input onto a probability distribution over
predicted classes can be viewed as a conditional distribution.
Analogous to the treatment of information projection, we

start by proving the existence and uniqueness of the optimal
conditional distribution. We then establish strong duality, which,
in turn, leads to an equivalent formulation for obtaining
the optimal conditional distribution. This dual formulation
is easier to deal with since it converts an optimization with
possibly infinitely many primal variables into a tractable, finite-
dimensional optimization in Euclidean space. The optimal dual
variables, in turn, allow the minimizing conditional distribution
to be computed via a generalization of exponential “tilting:”
For a general f -divergence, one obtains the optimal conditional
distribution by tilting the reference distribution by the inverse of
the derivative of f . Naturally, this approach reduces to the usual
exponential tilting when KL-divergence is the f -divergence of
choice.

We provide an application of the model projection theory
to fair machine learning. A critical concern when applying
probabilistic classifiers to individual-level data is if the classifier
may discriminate (e.g., by having a higher error rate) in terms of
a (legally) sensitive attribute, such as race, gender, or ethnicity.
This concern has recently led to a plethora of research focusing
on two questions: (a) how does one “quantify” and “understand”
discrimination in typical machine learning algorithms? [16–22]
and (b) given a notion of fairness, how does one learn an
“optimal” fair model? [23–31]. We refer the reader to a recent
survey [32] and the references therein for a more detailed
literature review.

We focus on the problem of “projecting” a reference
probabilistic classifier to the set of classifiers that satisfy a
collection of fairness criteria. When the fairness criteria are
given in terms of linear constraints on the classifier—which
is the case for several commonly used fairness metrics [see
e.g., 27, 28]—this problem can be directly formulated as an
optimization via the model projection formulation. We derive
both explicit formulas for the optimal fair classifier and a
practical pipeline for the design process, thereby generalizing
recent methods [see e.g., 29, 30] for fairness assurance.

Strikingly, the model projection formulation implies that the
optimal correction for an “unfair” model can be given by a
post-processing1 of the model’s output. This follows directly
from the fact that the projection of a conditional distribution is

1Broadly speaking, methods that correct a classifier for discrimination can
be categorized as pre-processing (changing the input to a model) [25, 33, 34],
in-processing (changing the model itself) [17, 24, 35], and post-processing
(modifying a model’s output) [18, 23] .



an f -divergence-dependent tilting. The optimal post-processor
only depends on a combination of well-calibrated probabilistic
classifiers that predict both an outcome class as well as
membership in a protected group. Thus, the model projection
theory dictates that the problem of achieving a good fairness-
accuracy trade-off can be directly mapped to a task that data
scientists should do well: training accurate and well-calibrated
prediction models. With these models in hand, an unfair
classifier can be corrected by solving the model projection
optimization.

All proofs can be found in the extended version of this paper
at [36].
Notation. We denote [c] , {1, · · · , c} and use lowercase and
uppercase bold letters to represent vectors (e.g., v) and matrices
(e.g., G), respectively. We denote by 0 the vector with all
entries equal to 0. The i-th coordinate of a vector v is denoted
by vi, and the (i, j)-th entry of a matrix G by Gi,j . The j-th
column of G is denoted by G:,j . For two vectors a,b ∈ Rc,
we write a ≤ b to indicate that ai ≤ bi for all i ∈ c. Lists of
functions are indicated by superscripts. The set of all probability
measures definable on a measurable space (Y,Σ) is denoted by
∆Y . When Y = [c] is a finite alphabet, ∆[c] is the probability
simplex and we denote it by ∆c for short.

II. MODEL PROJECTION FORMULATION

In this section, we first recall the definition of information
projection and some of its properties. Then we formally
introduce model projection, which can be viewed as an
extension of information projection. We prove the existence and
uniqueness of the optimal model and establish strong duality.

A. Information Projection

For a given reference probability distribution and a set of
distributions, information projection seeks to find the “closest”
distribution within this set to the reference one. Fix a probability
space (Ω,Σ, P ). For any subset C ⊂∆Ω, let

Df (C ‖P ) , inf
Q∈C

Df (Q‖P ). (1)

Here for a convex f : (0,∞)→ R the f -divergence [37, 38]
is given by

Df (Q‖P ) , EP
[
f

(
dQ
dP

)]
− f(1) (2)

whenever Q is absolutely continuous with respect to (w.r.t.) P.
We say that a Q ∈ C is the Df -projection of P onto C if

Df (Q‖P ) = Df (C ‖P ) (3)

and Df (R‖P ) > Df (C ‖P ) whenever Q 6= R ∈ C . The
existence and uniqueness of the Df -projection has been
established under certain assumptions [14, 15]. Furthermore,
an explicit formula for the Dkl-projection (also termed I-
projection) under linear constraints is proved [38].

B. Model Projection: Problem Setup

We introduce next the definition of model projection.

Definition 1. Consider a fixed random variable X and a prob-
ability space (X ,Σ1, PX) such that X ∼ PX . Moreover, fix
both a measurable space (Y,Σ2) and a conditional distribution
PY |X from X to Y. For a given convex set F of conditional
distributions from X to Y, the model projection of PY |X onto
F is given by the unique minimizer (if it exists) of

inf
WY |X∈F

EX
[
Df

(
WY |X(·|X)‖PY |X(·|X)

)]
. (4)

The model projection is the “closest” model to the prescribed
model PY |X , where we use the f -divergence to measure the
“closeness”. The choice of the f -divergence is determined by
the application at hand.

In what follows, let X = Rm and Y = [c]. In this setting,
conditional distributions from X to Y become simply vector-
valued functions. We reserve the letter y : X →∆c for PY |X

y(x) , (PY |X(1|x), · · · , PY |X(c|x)), x ∈ X (5)

and denote an arbitrary conditional distribution from X to Y
by a vector-valued function h : X →∆c. Then, (4) becomes

inf
h∈F

EX [Df (h(X)‖y(X))] . (6)

The choice of the constraint set F is usually application-
dependent. Throughout this paper, we consider a special
case in which the constraint set is constructed via linear
inequalities. In other words, for some given matrix-valued
function G : X → Rc×k the constraint set is in the form

F =
{
h : X →∆c | E

[
h(X)TG(X)

]
≤ 0

}
. (7)

C. Connection between Information and Model Projection
We connect model projection (4) with information projec-

tion (1) next. Keeping the notation before equation (1), suppose
Ω = X ×Y and that PX,Y ∈∆Ω is a probability measure that
disintegrates into PX and PY |X . Let P ⊂∆Ω be the subset
of all probability measures that marginalize to PX on X , i.e.,

P , {Q ∈∆Ω | Q(A× Y) = PX(A) for all A× Y ⊂ Σ} .

Then the model projection (4) is information projection onto
a subset of P. In other words, for a set F of conditional
distributions, the model projection of PY |X onto F is exactly
information projection of PX,Y onto

C , {PXWY |X | WY |X ∈ F} ⊂P. (8)

It is important to note that P cannot be described by finitely
many linear constraints, precisely because a distribution may
not be determined by finitely many of its moments. Hence,
the results on information projection subject to finitely many
linear constraints do not seem applicable to model projection.

On the other direction, observe that model projection
subsumes information projection. This fact is rather trivial,
since for a singleton X = {x} the set Ω = X × Y can be
identified with Y via (x, y)↔ y. Then, PX is a trivial atom
PX = δx (and P = ∆Ω) so the averaging in (4) collapses into
only one term, whose minimization is precisely the problem
of information projection.



III. MODEL PROJECTION THEORY

In this section, we first prove the existence and uniqueness
of the model projection onto a linear subset under the general
f -divergence setting. For the information projection framework
with f -divergence measuring “distance”, this problem has been
studied [14] under the condition f ′(0+) = −∞ to ensure that
the projection onto the linear set belongs to the interior of ∆c.
This condition also appears in our result. Then we compute the
model projection by establishing strong duality for a functional
optimization over the Banach space C(X ,∆c) of continuous
conditional distributions2.

To start with, we introduce four assumptions, which will be
the premises of our main theorems. These assumptions restrict
the behavior of the f -divergence, the linear constraints (see
(7)), the feasibility set, and the given conditional distribution
y, respectively. Our optimization is carried over the “interior"

C+(X ,∆c) ,

{
h ∈ C(X ,∆c) | inf

j,x
hj(x) > 0

}
. (9)

Assumption I:
(a) The function f : (0,∞) → R is twice continuously-

differentiable, f(1) = 0, f ′(0+) = −∞, and f ′′(t) > 0
for every t > 0.

(b) The functions Gi,j : X → R (for (i, j) ∈ [k] × [c]) are
bounded, differentiable, and have bounded gradients.

(c) There exists at least one conditional distribution h ∈
C+(X ,∆c) satisfying E

[
h(X)TG(X)

]
< 0.

(d) The conditional distribution y belongs to C+(X ,∆c), and
each yj has bounded partial derivatives.

Under Assumption I-(a), the derivative f ′ is strictly increas-
ing, so one can define its inverse φ : (−∞,M) → (0,∞),
φ(u) , (f ′)

−1
(u), where M = supt>0 f

′(t).

Theorem 1. Under Assumption I, there exists a unique hopt ∈
C+(X ,∆c) solving the model projection problem

min
h∈C+(X ,∆c)

E [Df (h(X)‖y(X))] ,

s.t. E
[
h(X)TG(X)

]
≤ 0.

(10)

Theorem 1 guarantees the existence and uniqueness of the
optimal model hopt. In fact, this optimal model owns an explicit
formula utilizing the convex conjugate of the f -divergence.
Recall that the convex conjugate Dconj

f is defined as

Dconj
f (v,p) , sup

q∈∆c

vTq−Df (q‖p). (11)

The formula of the optimal model shows that the model
projection onto a set constructed by linear constraints can
be obtained by tilting the reference model, where the tilting is
expressible in terms of v : X × Rk → Rc defined by

v(x;λλλ) , −G(x)λλλ. (12)

2We endow X = Rm with the standard topology, and ∆c ⊂ Rc with the
subspace topology, so continuity of h : X →∆c refers to the usual definition
of continuous functions between Euclidean spaces. Then, endowing C(X ,∆c)
with the sup-norm, ‖h‖∞ = supx∈X ‖h(x)‖, turns it into a Banach space.

Theorem 2. Under Assumption I, we have the formula

hopt
j (x) = yj(x)φ(γ(x) +vj(x;λλλ∗)), (j, x) ∈ [c]×X (13)

where the function γ : X → R is uniquely defined by

Ej∼y(x)φ(γ(x) + vj(x;λλλ∗)) = 1, x ∈ X , (14)

and λλλ∗ ≥ 0 is any solution to the convex optimization problem

min
λλλ≥0

E
[
Dconj
f (v(X;λλλ),y(X))

]
. (15)

Remark 1. If X is finite, then Theorems 1 and 2 hold without
the differentiability assumptions on the Gi,j and on the yj .

The duality approach reduces the infinite-dimensional op-
timization (10) into a tractable finite-dimensional one (15).
Note that in our setting, a simple application of duality is
inaccessible. The primal optimization (10) is equivalent to

inf
h∈C+(X ,∆c)

sup
λλλ≥0

E
[
Df (h(X)‖y(X)) + h(X)TG(X)λλλ

]
,

(16)
which is not necessarily equal to the dual optimization

sup
λλλ≥0

inf
h∈C+(X ,∆c)

E
[
Df (h(X)‖y(X)) + h(X)TG(X)λλλ

]
.

(17)
The difficulty here is that the space C+(X ,∆c) is not pre-
compact. The minimax property does not hold in general if
neither of the two optimization spaces is precompact. Our
approach shows that, nevertheless, one may carve a precompact
subset of C+(X ,∆c) that is guaranteed to contain the sought
optimizer. Note that strict convexity of f implies that the
unique solution of the inner minimization in the dual (17) at
any outer maximizer λλλ∗ is in fact the unique solution to the
primal problem (16) (i.e., it is the sought model projection of
y onto F ∩ C+(X ,∆c), see (7) and (9)).

Remark 2. Notably, for the KL-divergence, the model pro-
jection formula closely resembles that of the information
projection. Analogous to the information projection formula
under linear constraints, the model projection formula (13) for
a fixed x ∈ X is an exponential tilt since for f(t) = t log t we
have φ(u) = eu−1. The difference between the two projections
is how the tilt is computed (i.e., in the value of the parameters
λλλ∗) where its value under the model projection setting reflects
the fact that we are penalizing the average distance. The optimal
parameters λλλ∗ for the Dkl-projection over C are exactly the
minimizers of (writing gi(x, y) , Gi,y(x))

min
λλλ≥0

logE

E
exp

∑
i∈[k]

λλλigi(X,Y )

∣∣∣∣∣∣X
 . (18)

On the other hand, by plugging

Dconj
kl (v,p) = log

∑
j∈[c]

pje
vj

into (15) the optimal parameters for the model projection



problem are solutions to

min
λλλ≥0

E

logE

exp
∑
i∈[k]

λλλigi(X,Y )

∣∣∣∣∣∣X
 . (19)

We note that formula (13) is valid for f -divergences beyond
KL-divergence. To the best of our knowledge, an analogous
formula for the information projection (i.e., for general f -
divergences) does not appear in the literature.

IV. APPLICATION TO FAIR MACHINE LEARNING

In this section, we aim at designing a fairness-aware classifier.
We formalize an optimization for this purpose which coincides
with the model projection framework explored in the last
section. Prior works attempt to design fair classifiers by
implicitly solving a model projection problem, where accuracy
is measured by, for example, KL-divergence [29] and cross-
entropy [30]. Here we provide a general framework in the
setting of multiclass classification, and this approach allows
the usage of any f -divergence. In what follows, we formally
introduce our formulation.

We consider a (multiclass) classification problem where the
goal is to use an X -valued input variable X (e.g., criminal
history) to predict a target variable Y (e.g., criminal recidivism)
taking values in [c], with c denoting the number of classes.
We denote a probabilistic classifier, which can be viewed as
a conditional distribution, by h : X → ∆c. Hence, for each
x ∈ X , the classifier h assigns a probability vector h(x) that
corresponds to a “belief” of the true value of Y given an
observation X = x. The predicted output of the classifier h
given X is denoted by Ŷ . In other words, Ŷ is a [c]-valued
random variable distributed according to

Pr
(
Ŷ = j | X = x

)
= hj(x), (j, x) ∈ [c]×X . (20)

As a measure of fairness, we evaluate the performance
disparity w.r.t. a sensitive [d]-valued attribute S (e.g., race or
gender) which correlates with X but not used as an input for
the classification task. Nonetheless, we assume S is accessible
when designing the classifier. Our goal is to design a classifier
hopt : X →∆c that satisfies certain fairness criteria without
compromising accuracy.

We assume that we have in hand a well-calibrated classifier
that approximates PY,S|X , i.e. that predicts both group mem-
bership S and the true label Y from input variables X . This
classifier can be directly marginalized into the following d+ 2
models:

• a label classifier y : X →∆c that predicts true label from
input variables,

y(x) , (PY |X(1|x), · · · , PY |X(c|x)) for x ∈ X , (21)

• a group membership classifier s : X →∆d that uses input
variables to predict group membership,

s(x) , (PS|X(1|x), · · · , PS|X(d|x)) for x ∈ X , (22)

FAIRNESS CRITERION EXPRESSION

Statistical parity

∣∣∣∣∣Pr(Ŷ = ŷ|S = s)

Pr(Ŷ = ŷ)
− 1

∣∣∣∣∣ ≤ α
Equalized odds

∣∣∣∣∣Pr(Ŷ = ŷ|Y = y, S = s)

Pr(Ŷ = ŷ|Y = y)
− 1

∣∣∣∣∣ ≤ α
Overall accuracy equality

∣∣∣∣∣Pr(Ŷ = Y |S = s)

Pr(Ŷ = Y )
− 1

∣∣∣∣∣ ≤ α
Table 1: Fairness criteria and their corresponding expressions. Here α > 0 is
a prescribed constant, and having a metric be satisfied amounts to having the
corresponding inequalities hold for every s ∈ [d] and y, ŷ ∈ [c].

• a set of disparate treatment classifiers y(s) : X →∆c that
predict true label from input variables for each group s ∈ [d],

y(s)(x) , (PY |X,S=s(1|x), · · · , PY |X,S=s(c|x)) (23)

for every (s, x) ∈ [d]×X .
In practice, the distribution PY,S can be reliably estimated as its
support size cd is usually small. The classifier that approximates
PY,S|X (and thus y, s, and y(s)) can be produced by training,
e.g., a logistic regression. This may lead to a discrepancy
between the underlying and the approximated classifiers. How
this discrepancy impacts the design of the optimal classifier is
still an open question that deserves future work.

A. Fairness Criteria

Many fairness criteria can be written as linear inequalities
[see e.g., 27, 28] in terms of the classifier h. Consequently,
these fairness criteria can be mapped directly to the constraints
in our model projection framework. We focus on three
commonly-used fairness metrics (see Table 1) and provide
their equivalent expressions in linear form in the following
lemma.

Lemma 1. Every fairness criterion listed in Table 1 can be
written in the form

E
[
〈δa(i)(X)− αb(i)(X),h(X)〉

]
≤ 0, (i, δ) ∈ [`]× {±1}

for a positive integer ` and functions a(i) : X → Rc and
b(i) : X → Rc≥0 that are completely determined by the
the classifiers {y, s,y(1), · · · ,y(d)} and the distributions PS ,
PS|Y , and where the expectation is taken w.r.t. PX .

We briefly go over the forms of the a(i) and b(i) for the
fairness metrics in Table 1. We let e(1), · · · , e(c) denote the
standard basis vectors of Rc.

a) Statistical parity [21]: measures whether the predicted
outcome Ŷ is independent of the sensitive attribute S. For
statistical parity, the functions a(i) and b(i) have the forms

a(s,ŷ)(x) =

(
ss(x)

PS(s)
− 1

)
e(ŷ) and b(s,ŷ)(x) = e(ŷ).

There are 2d · c constraints since (s, ŷ) ∈ [d]× [c].



b) Equalized odds [18]: requires the predicted outcome
Ŷ and the sensitive attribute S to be independent conditioned
on the true label Y . When the classification task is binary, the
equalized odds becomes the equality of false positive rate and
false negative rate [20] over all sensitive groups. For equalized
odds,

a(s,ŷ,y)(x) =

(
ss(x)y

(s)
y (x)

PS|Y (s|y)
− yy(x)

)
e(ŷ),

b(s,ŷ,y)(x) = yy(x)e(ŷ).

There are 2d · c2 constraints.
c) Overall accuracy equality [21]: requires the accuracy

of the predictive model to be the same across all sensitive
groups. In this case,

a(s)(x) =
ss(x)

PS(s)
y(s)(x)− y(x) and b(s)(x) = y(x).

There are 2d constraints.

B. Discrimination Correction

Here we consider designing a fair classifier via a
discrimination-correction optimization that is a special instance
of the model projection problem. Equipped with Lemma 1, we
formulate the discrimination-correction optimization problem
using f -divergence as a measure of “closeness”:

min
h∈C+(X ,∆c)

E [Df (h(X)‖y(X))] ,

s.t. E
[
〈δa(i)(X)− αb(i)(X),h(X)〉

]
≤ 0,

(24)

where α > 0 and the functions a(i) and b(i) (for i ∈ [`]) are
all determined by the pre-specified fairness requirements, and
δ ∈ {±1}. Recall that G is a matrix with 2` columns encoding
the constraints, i.e.,

G =
(
δa(i) − αb(i)

)
(δ,i)∈{±1}×[`]

, (25)

and v(x;λλλ) = −G(x)λλλ (see (12)). Consequently, Theorems 1
and 2 together guarantee the existence and uniqueness of the
optimal classifier and they also give a way for designing such
classifier (see (13)). For the sake of illustration, we give the
following formula for the optimal classifier when accuracy is
measured in terms of the KL-divergence. It is worth noting
that this formula also appears in [29], but no explicit formula
for the optimal dual parameter λλλ∗ is presented therein.

Corollary 1. Assume the KL-divergence is used in (24). Then,
under Assumption I, the optimal fair classifier is given by

hopt
j (x) ∝ yj(x)evj(x;λλλ∗) (26)

where λλλ∗ is any solution to the convex optimization problem

min
λλλ≥0

E
[
logEj∼y(X)

[
evj(X;λλλ)

]]
. (27)

Remark 3. Assumption I is satisfied for the fairness criteria
considered in this paper as soon as mins,y PS|Y (s|y) > 0, and
y, s, and the y(s) satisfy Assumption I-(d). This is true since

Assumption I-(a) is satisfied for the KL-divergence, Assumption
I-(b) will also be satisfied in view of the formulas for the
fairness constraints given in Section IV-A, and Assumption
I-(c) is satisfied as the uniform classifier is strictly feasible.

The way we design the fair classifier falls into the post-
processing category. This is because the optimal fair classifier
is a tilting of the label classifier (see Theorem 2 and Corollary
1). Notably, the formulation (24) does not a priori assume a
post-processing design procedure. Nevertheless, the optimal
classifier turns out to own an optimality guarantee among all
classifiers.

We point out that the formulation in [30] presents a special
case of the model projection theory using cross-entropy as the
f -divergence of choice and assuming Y and S are binary. While
computationally lightweight, the experiments in [30, Section 6]
demonstrate that the model projection formulation may perform
favorably compared to state-of-the-art fairness intervention
mechanisms. Here, we provide a general theoretical work that
allows usage of a wide class of f -divergences. We refer the
reader to [30, Section 6] for numerical results and comparisons,
and omit further experiments due to space constraints.

C. Finite-Sample Considerations

The model projection framework gives an explicit way
for designing a fairness-aware classifier by first training a
classifier PY,S|X , and then solving a convex program to obtain
the dual parameter. Therefore, there are only two challenges
for a complete design process of a discrimination-correction
classifier: 1) obtaining a well-calibrated classifier PY,S|X , and
2) solving the dual convex program (15). This subsection
tackles the second challenge, under the assumption that the
first challenge is addressed.

The convex program relies on the underlying data distribution.
In practice, with finitely-many samples, one can solve the dual
convex program using an empirical objective function. Keeping
the assumption that the classifier PY,S|X is known, and letting
{Xi}i∈[n] be i.i.d. samples drawn from PX , we show the
following generalization bound for the dual problem (15).

Theorem 3. Let G be given by equation (25), U be a [c]-
valued random variable such that U |X = x is uniform for
every x, and denote

θ ,
cDf (PXPU |X‖PX,Y )

−maxj∈[2`] E [1TG:,j(X)]
, (28)

L , supx∈X ‖G(x)‖1, and ζ , L/θ. Let λλλn be the unique
solution to

min
λλλ≥0
‖λλλ‖1≤θ

1

n

∑
i∈[n]

Dconj
f (v(Xi;λλλ),y(Xi)) +

ζ√
n
‖λλλ‖22.

Then, with probability at least 1− δ,

E
[
Dconj
f (v(X;λλλn),y(X))

]
≤ min

λλλ≥0
E
[
Dconj
f (v(X;λλλ),y(X))

]
+

10Lθ

δ
√
n
.

(29)
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APPENDIX

We consider a more general statement here which will naturally imply Theorems 1 and 2. Then, we prove Lemma 1, and we
end with a proof of Theorem 3.

A. Notation

For the starting points below, we assume only that X is a topological space (i.e., we do not assume X = Rm yet). Let C(X )
denote the Banach space of continuous and bounded functions

C(X ) ,

{
h : X → Rc | h continuous and sup

x∈X
‖h(x)‖1 <∞

}
, (30)

which is Banach when equipped with the sup norm, i.e., for h ∈ C(X )

‖h‖∞ , sup
x∈X
‖h(x)‖1. (31)

Consider the following optimization problem

min
h∈C(X )

E [F (X,h(X))] ,

s.t. E [Gi(X,h(X))] ≤ 0, i ∈ [k].
(32)

where F and G1, · · · , Gk are functions defined on X × Rc and taking values in R ∪ {∞}. We denote by C(X ,Z) ⊂ C(X ),
for Z ⊂ Rc, the subset of functions taking values in Z, i.e.,

C(X ,Z) , {h ∈ C(X ) | h(x) ∈ Z for every x ∈ X}. (33)

Note that C(X ,Z) is closed or convex if Z is closed (in Rc) or convex, respectively. Therefore, C(X ,∆c) is a convex Banach
space (for any X ). However, it is not compact in general. Therefore, it might not be straightforward to tackle restricted
optimization problem (32) even when restricted to only C(X ,∆c). Therefore, we tackle (32) indirectly via solving a much
more restricted problem of the form

min
h∈K

E [F (X,h(X))] ,

s.t. E [Gi(X,h(X))] ≤ 0, i ∈ [k]
(34)

for a compact subset K ⊂ C(X ,∆c) then showing that the problem (34) produces a global optimizer. We also consider
ε-truncations of the simplex

∆ε
c , ∆c ∩ [ε, 1]c (35)

and the corresponding space
C+(X ,∆c) ,

⋃
ε>0

C(X ,∆ε
c). (36)

We set
∆+
c , ∆c ∩ (0, 1]c. (37)

We let F denote the feasibility region in (32), i.e.,

F ,

{
h ∈ C(X ) | max

i∈[k]
E [Gi(X,h(X))] ≤ 0

}
. (38)

We denote by S the strict-feasibilitiy region, i.e.,

S ,

{
h ∈ C(X ) | max

i∈[k]
E [Gi(X,h(X))] < 0

}
. (39)

We let D be the set of functions in C(X ) at which the objective function and the constraints are integrable3

D ,

{
h ∈ C(X ) | max

(
E [|F (X,h(X))|] ,max

i∈[k]
E [|Gi(X,h(X))|]

)
<∞

}
. (40)

For a function ψ : V → R ∪ {∞}, the domain of ψ is the set of points at which ψ is defined and finite

dom ψ , {v ∈ V | ψ(v) <∞}. (41)

3We say that a function V : X → R ∪ {∞} is integrable if E [|V (X)|] <∞.



We define the intersection of domains

D ,
⋂
x∈X
{p ∈ Rc | max(F (x, p), G1(x, p), · · · , Gk(x, p)) <∞} . (42)

We also consider the domain

D′ ,
⋂
x∈X
{p ∈ [0, 1]c | max(G1(x, p), · · · , Gk(x, p)) <∞} (43)

and the intersection of domains

D′ , {h ∈ C(X , [0, 1]c) | max(E [|G1(X,h(X))|] , · · · ,E [|Gk(X,h(X))|]) <∞} . (44)

We denote the convex hull and closure of a set A by co(A) and A, respectively. Abusing notation, we will also denote
R = R ∪ {∞}. We denote the indicator function of a set U ⊂ C(X ) by IU

IU (h) ,

{
0 if h ∈ U ,
∞ otherwise. (45)

We define extended functionals A,B1, · · · ,Bk : C(X )→ R by

A(h) , E [F (X,h(X))] + ID(h), (46)

Bi(h) , E [Gi(X,h(X))] + ID(h), i ∈ [k]. (47)

In these definitions, it is understood that the value ∞ is assigned outside the set D regardless of whether the original function
is defined and regardless of its value if it is defined there, e.g., if h ∈ C(X ) is such that F (·, h(·)) is not integrable or if its
integral is −∞ then A(h) is defined to be ∞ because h 6∈ D.

For a function ψ : V → Wn, we let ψi : V → W denote its i-th part, i.e., ψ(v) = (ψ1(v), · · · , ψn(v)). Furthermore, if
W = Zm, we let ψi,j(v) ∈ Z denote the j-th coordinate of ψi(v), i.e., ψi(v) = (ψi,1(v), · · · , ψi,m(v)). For β : Rn → R and
` ∈ [n], the notation ∂`β will refer to the partial derivative of β with respect to its `-th input.

Recall the definition of the convex conjugate (see equation (11)).

Definition 2 (Convex Conjugate). The convex conjugate of a proper4 function W : ∆c → R is the function W conj : Rc → R
defined by

W conj(v) , sup
p∈∆c

〈v,p〉 −W (p). (48)

For a fixed x ∈ X , we denote the convex conjugate of F (x, ·)|∆c
at v by F conj(x,v).

We will prove results under some subset of assumptions that we introduce here and in the beginning of the following section.
The first set of assumptions has to do with the well-definededness of our optimization problem, and it will be sufficient to
develop the general theory.
Assumption I’.

(a) The set D is nonempty.
(b) For each J ∈ {F,G1, · · · , Gk}, the function infh∈D J(·, h(·)) is lower bounded by an integrable function.
(c) For each J ∈ {F,G1, · · · , Gk} and x ∈ X , the function J(x, ·) is lower-semicontinuous.
(d) For each x ∈ X , the function F (x, ·) is strictly convex. For each (i, x) ∈ [k]×X , the function Gi(x, ·) is convex.

Note that the Assumption I’.b is satisfied if, e.g., the functions F,G1, · · · , Gk, are lower bounded by a constant.
Under Assumption 1, the optimization problem (34), over a nonempty convex and compact K, has a unique solution. We

state this result here, and relegate the proof to Appendix C.

Lemma 2. Suppose Assumption I’.a-c holds. For a nonempty compact set K ⊂ D, the following optimization problem has a
minimizer

min
h∈K

A(h),

s.t. Bi(h) ≤ 0, i ∈ [k].
(49)

If, in addition, K is convex and Assumption 1.d holds, then the minimizer is unique.

4We say W is proper if dom W is nonempty.



Next, we show how a unique minimizer of (34) can be obtained from the dual problem. This procedure is possible thanks to
Sion’s minimax theorem. It will be useful to introduce the following quantities. First, the following term will bound the norm
of optimal dual variables corresponding to the dual of the optimization problem (32).

Definition 3. For q ∈ S ∩ D, we define

θq ,
A(q)− infh∈DA(h)

−maxi∈[k] Bi(q)
. (50)

Next, we define the Lagrangian of the optimization problem (32).

Definition 4. Define the Lagrangian function L : D × Rk≥0 → R by

L(h,λλλ) , E

F (X,h(X)) +
∑
i∈[k]

λiGi(X,h(X))

 = A(h) +
∑
i∈[k]

λiBi(h). (51)

We use the following notation for what will be shown to be a class of models that contains the optimal model.

Definition 5. For fixed λλλ ∈ Rk≥0 and Z ⊂ D, define qZλλλ : X → Z by

qZλλλ (x) , argmin
p∈Z

F (x, p) +
∑
i∈[k]

λiGi(x, p), x ∈ X , (52)

if the minimization in (52) has a unique solution5 for every x ∈ X .

B. Proof of Theorems 1 and 2

The main theorem underlying our results is as follows.

Theorem 4. Suppose Assumption I’ holds. Let Z ⊂ D be convex and compact such that C(X ,Z) ∩ S is nonempty, say
v ∈ C(X ,Z) ∩ S, and set Λ = {λλλ ∈ Rk≥0 | ‖λλλ‖1 ≤ θv}. If

Q = {qZλλλ | λλλ ∈ Λ} (53)

is precompact and Q ⊂ C(X ,Z) ⊂ D, then the problem

min
h∈C(X ,Z)

E [F (X,h(X))] ,

s.t. E [Gi(X,h(X))] ≤ 0, i ∈ [k]
(54)

has a unique solution, and this solution is qZλλλ∗ where λλλ∗ is any solution of

sup
λλλ∈Λ
L(qZλλλ ,λλλ). (55)

We apply Theorem 4 to the problem of model projection. An intermediary step is that in which separability of the objective
function F and linearity of the constraining functions Gi are assumed. More precisely, we introduce the following assumptions.
Assumption II’.
(a) For each x ∈ X , the function F (x, ·) is separable and can be written as

F (x, p) =
∑
j∈[c]

fj(x, pj) (56)

for continuously differentiable strictly convex functions fj(x, ·) satisfying limt0→0+
∂fj
∂t (x, t0) = −∞.

(b) For each fixed (i, x) ∈ [k]×X the function Gi(x, ·) is linear, i.e.,

Gi(x, q) = qTg(i)(x). (57)

Further, for each i ∈ [k] the function g(i) : X → Rc is continuous. We denote

G =
(
g(1), · · · ,g(k)

)
. (58)

Note that Assumption 2.a implies that t0 7→ (∂fj/∂t)(x, t0) is strictly increasing for fixed (j, x) ∈ [c] × X . We let ϕj
denote its inverse, and we formally introduce the constants γ next. Suppose that, for each fixed (j, x) ∈ [c]×X , the function

5One way to guarantee the well-definededness of qZλλλ , for any fixed λλλ ∈ Rk≥0, is to ensure Z is a nonempty convex and compact set, each F (x, ·)
be lower-semicontinuous and strictly convex, and each Gi(x, ·) be lower-semicontinuous and convex. Indeed, under such assumptions, each mapping
p 7→ F (x, p) +

∑
i∈[k] λiGi(x, p) is lower-semicontinuous and strictly convex, which is then uniquely minimized over the convex and compact set Z.



fj(x, ·) : (0, 1) → R is strictly convex and continuously differentiable, and that ∂m+1fj(x, 0
+) = −∞. Then the range of

∂m+1fj(x, ·) over (0, 1) takes the form (−∞, rj,x) for some rj,x ∈ (−∞,∞]. Therefore, ∂m+1fj(x, ·) is invertible and its
inverse ϕj(x, ·) : (−∞, rj,x) → (0, 1) is continuous, strictly increasing, and satisfies ϕj(x,−∞) = 0 and ϕj(x, r

−
j,x) = 1.

Therefore, for any a ∈ Rc the mapping
γ 7→

∑
j∈[c]

ϕj (x, γ + aj) (59)

is a strictly increasing continuous bijection from an interval I1 = (−∞, τ1) to another I2 = (0, τ2) where τ2 > 1. We define
γ : X × Rk → R implicitly by ∑

j∈[c]

ϕj (x, γ(x,λλλ) + vj(x;λλλ)) = 1. (60)

Note that we allow λλλ with negative coordinates in the definition of γ(x,λλλ). Recall that we set v(x;λλλ) = −G(x)λλλ.
In the remainder of the appendices, we will take the fj to be the following functions. For any (j, x, t) ∈ [c]×X × [0, 1],

fj(x, t) , yj(x)f

(
t

yj(x)

)
. (61)

Then, F (x,p) =
∑
j∈[c] fj(x,pj) satisfies

F (x,p) = Df (p‖y(x)). (62)

We will repeatedly make use of the following bound on the values of ϕj .

Lemma 3. Fix y ∈ ∆+
c , and let f : [0,∞) → R be strictly convex and continuously differentiable over (0,∞) such that

f ′(0+) = −∞ and denote the inverse of its derivative by φ. For each j ∈ [c], define fj : [0, 1] → R by fj(t) = yjf(t/yj),
and let ϕj : (−∞, f ′(1/yj)]→ (0, 1] be the inverse of f ′j . Let w ∈ Rc and U ∈ R≥0 be such that ‖w‖∞ ≤ U, and let η ∈ R
be the unique real such that

∑
j∈[c] ϕj(η + wj) = 1. Then,

min
j∈[c]

ϕj(η + wj) ≥ φ
(
f ′
(

1

c

)
− 2U

)
min
j∈[c]

yj . (63)

Proof. For each j ∈ [c], let βj = η + wj . Then, |βi − βj | ≤ 2U for every (i, j) ∈ [c]2. We must have that, for some a ∈ [c],

ϕa(βa) ≥ 1/c. (64)

Therefore, βa ≥ f ′a(1/c). But, f ′a(1/c) = f ′(1/(cyj)) ≥ f ′(1/c). Then,

min
j∈[c]

βj ≥ f ′
(

1

c

)
− 2U. (65)

Finally, as ϕj(v) = yjφ(v),

min
j∈[c]

ϕj(βj) ≥ min
j∈[c]

ϕj

(
min
i∈[c]

βi

)
≥ min
j∈[c]

ϕj

(
f ′
(

1

c

)
− 2U

)
= min
j∈[c]

yjφ

(
f ′
(

1

c

)
− 2U

)
, (66)

as desired.

In view of this result, we will employ the following notation. Write

ymin , inf
x,j

yj(x), (67)

and, for θ > 0, let

tmin(θ) , φ

(
f ′
(

1

c

)
− 2θ − 1

)
ymin (68)

and
umin(θ) , f ′

(
1

c

)
− 2θ − 1. (69)

We use 2θ + 1 instead of 2θ to obtain a strict inequality

ϕj(x, γ(x,λλλ) + vj(x;λλλ)) > tmin(‖λλλ‖) (70)

The following regularity conditions guarantee that an optimizer over a compact set K ⊂ C(Rm,∆c) is also a global optimizer.
Note that we introduce the following definition only for the case X = Rm.



Definition 6. Assume X = Rm. We call the functions fj and G regular if

(a) every function fj(x, ·) is twice continuously differentiable and, for every ε > 0,

inf
(j,x,t)∈[c]×Rm×(ε,1)

∂2
m+1fj(x, t) > 0, (71)

(b) the partial derivatives ∂`∂m+1fj(x, t) and ∂`Gi,j(x) exist and are continuous, and for every ε > 0,

sup
(`,i,j,x,t)∈[m]×[k]×[c]×Rm×(ε,1)

max (|∂`∂m+1fj(x, t)|, |Gi,j(x)|, |∂`Gi,j(x)|) <∞, (72)

(c) the functions ∂m+1fj(·, t) are continuous for every t ∈ (0, 1].

We show that the regularity conditions on the fj and G yield Lipschitzness of ϕj and local Lipschitzness of the γj . This in
turn will yield precompactness the set Q given in equation (53) in Theorem 4. The key tool we employ is utilizing a simplified
version of the implicit function theorem, where the simplicity is due to the triviality of gluing. The proof of the following
precompactness result is given in Appendix E.

Theorem 5. Under Assumption I and II’, for any θ ∈ R≥0 the set

Q =
{
q∆c

λλλ | λλλ ∈ Rk≥0, ‖λλλ‖1 ≤ θ
}

(73)

is a precompact subset of C(Rm,∆c).

The explicit formula for hopt is a direct consequence of the formula for q∆c

λλλ , which we give next and prove in Appendix F

Lemma 4. Let f : [0,∞)→ R be a strictly convex continuously differentiable function over6 (0,∞) such that f(1) = 0 and
f ′(0+) = −∞, and let φ be the inverse of f ′. Fix q ∈∆+

c , and define F : [0, 1]c → R by

F (p) = Ei∼q

[
f

(
pi
qi

)]
. (74)

Then, the convex conjugate of F is defined over all of Rc and satisfies

F conj(v) = Ei∼q [viφ(γ(v) + vi)− f(φ(γ(v) + vi))] (75)

where γ : Rc → R is the unique function satisfying

Ei∼qφ(γ(v) + vi) = 1, v ∈ Rc. (76)

Further, for any v ∈ Rc and j ∈ [c]
qconj
j (v) = φ(γ(v) + vi). (77)

Corollary 2. Under Assumption I and II’, the j-th coordinate of q∆c

λλλ (x) (see (52)) is ϕj (x, γ(x,λλλ) + vj(x;λλλ)) .

Note that
ϕj(x, u) = yj(x)φ(u). (78)

The final ingredient in the proof is a direct consequence of Lemma 3.

Corollary 3. Under Assumption I and II’, for any λλλ ≥ 0 and ε ∈ [0, tmin(‖λλλ‖))

q
∆ε

c

λλλ = q∆c

λλλ . (79)

Now, we are ready to finish the proof of both Theorems 1 and 2. We operate under Assumption I, and note that the model
projection problem we consider, then, satisfies Assumption II’. We apply the general results with Z = ∆ε

c for all small enough
ε.

By continuity of f,
D ⊃∆+

c . (80)

Further, for any ε ∈ (0, 1),
D ⊃ C(X ,∆ε

c), (81)

6It is assumed that f(0) = f(0+).



so D ⊃ C+(X ,∆c). Fix h̃ ∈ C+(X ,∆c) such that E
[
h̃(X)TG(X)

]
< 0, i.e., h̃ ∈ S. Let ε be small enough that

h̃ ∈ C(X ,∆ε
c). Denote θ̃ = θh̃. Fix θ ≥ θ̃. Decrease, if necessary, the value of ε so that ε < tmin(θ). Then, by Corollary 3,

q
∆ε

c

λλλ = q∆c

λλλ (82)

for all λλλ with ‖λλλ‖ ≤ θ.
By Theorem 5, we have precompactness of the set

Q , {q∆c

λλλ | λλλ ≥ 0, ‖λλλ‖1 ≤ θ} (83)

and that Q ⊂ C(Rm,∆c). But, by (82),
Q = {q∆ε

c

λλλ | λλλ ≥ 0, ‖λλλ‖1 ≤ θ}. (84)

Then, Q ⊂ C(Rm,∆ε
c). Precompactness of Q, then, implies by Theorem 4 (using Z = ∆ε

c) that the problem

min
h∈C(X ,∆ε

c)
E [Df (h(X)‖y(X))] ,

s.t. E
[
h(X)TG(X)

]
≤ 0

(85)

has the unique solution q∆c

λλλ∗ for any λλλ∗ solving

inf
λλλ≥0,‖λλλ‖≤θ̃

E
[
Dconj
f (v(X;λλλ),y(X))

]
(86)

where we used the fact that
L(q∆c

λλλ ,λλλ) = −E
[
Dconj
f (v(X;λλλ),y(X))

]
. (87)

By Corollary 4, we may remove the condition ‖λλλ| ≤ θ̃. As the solution q∆c

λλλ∗ does not depend on ε, and as ε is arbitrary, we
may extend the optimization to be over all of C+(X ,∆c). Finally, the proof is complete in view of the equation of q∆c

λλλ∗ as
given by Corollary 2.

C. Proof of Lemma 2
We prove the existence of a minimizer first. Then we treat uniqueness.

Existence of a minimizer. Suppose that Assumption 1.a-c holds, and fix a compact set K ⊂ D. We show that the objective
function is lower-semicontinuous on K and that the feasibility set K ∩ F is compact, which together yield via the extreme
value theorem the existence of a minimizer. Thus, let us show that the mappings A,B1, · · · ,Bk are lower-semicontinuous on
K. Lower-semicontinuity of the Bi will yield that the feasibility set K ∩ F of (49) is compact.

Fix J ∈ {F,G1, · · · , Gk}, and we will show that the mapping h 7→ E [J(X,h(X))] + ID(h) is lower-semicontinuous
when restricted to K. As K ⊂ D by assumption, this mapping is just h 7→ E [J(X,h(X))] . As K is a metric space, lower-
semincontinuity on K is equivalent to sequential-lower-semicontinuity [39, Theorem 7.1.2]. Fix a convergent sequence hn → h
in K (i.e., supx∈X ‖hn(x)− h(x)‖1 → 0 as n→∞). By Assumption 1.b, we may apply Fatou’s lemma to obtain

lim inf
n→∞

E [J(X,hn(X))] ≥ E
[
lim inf
n→∞

J(X,hn(X))
]
. (88)

Uniform convergence hn → h implies, in particular, pointwise convergence: hn(x)→ h(x) for every x ∈ X . Therefore, by
lower-semicontinuity of each J(x, ·) (Assumption 1.c)

E
[
lim inf
n→∞

J(X,hn(X))
]
≥ E [J(X,h(X))] . (89)

Therefore,
lim inf
n→∞

E [J(X,hn(X))] ≥ E [J(X,h(X))] , (90)

and lower-semicontinuity of A,B1, · · · ,Bk on K follows. In particular, the lower-level sets

Vi , {h ∈ K | E [Gi(X,h(X))] ≤ 0} (91)

are closed7 [39, Theorem 7.1.1]. Therefore, the feasibility set F ∩K =
⋂
i∈[k] Vi is closed. By compactness of K, the feasibility

set F ∩ K is compact too. Finally, lower-semicontinuity of A on K and compactness of the feasibility set F ∩ K yield the
existence of a minimizer [39, Theorem 7.3.1].
Uniqueness of the minimizer. Now, suppose that K is also convex, and that Assumption 1.d holds too. Since expectation is
a linear operator, h 7→ E [F (X,h(X))] is strictly convex, and each h 7→ E [Gi(X,h(X))] is convex. Hence, the lower-level

7The Vi are closed both in K and in C(X ), as the compact set K is closed in the Hausdorff space C(X ).



sets (91) are convex which implies that the feasibility set K ∩ F is convex. Thus, the optimization problem (49) has a unique
minimizer.

D. Proving Theorem 4

Definition 7. For a given λλλ ∈ Rk≥0 and a subset K ⊂ D, define the function in K that achieves the minimal value of the
Lagrangian by

hKλλλ , argmin
h∈K

L(h,λλλ), (92)

if there is such a unique function.

Theorem 6. Suppose Assumption 1.a-d holds, and fix a nonempty compact and convex K ⊂ D. For every λλλ ∈ Rk≥0, the function
L(·,λλλ) has a unique minimizer over K, i.e., hKλλλ in (92) is well-defined. In addition, if λλλ∗ satisfies

inf
h∈K
L(h,λλλ∗) = sup

λλλ∈Rk
≥0

inf
h∈K
L(h,λλλ), (93)

then hKλλλ∗ is the unique solution for problem (34).

Proof. Since K is compact and h 7→ L(h,λλλ) is strictly convex and lower-semicontinuous for any fixed λλλ ∈ Rk≥0, there is a
unique minimizer of L(h,λλλ) over K. Hence, hKλλλ is well-defined and satisfies

L(hKλλλ ,λλλ) = inf
h∈K
L(h,λλλ). (94)

Next, we prove strong duality for (34). Again, the mapping h 7→ L(h,λλλ) is strictly convex and lower-semicontinuous for
each fixed λλλ. Also, λλλ 7→ L(h,λλλ) is concave for each fixed h (as it is affine). Therefore, by Sion’s minimax theorem and the
compactness of K,

inf
h∈K

sup
λλλ∈Rk

≥0

L(h,λλλ) = sup
λλλ∈Rk

≥0

inf
h∈K
L(h,λλλ). (95)

Let h∗ denote the unique solution of (34), whose existence and uniqueness are guaranteed by Lemma 2. We have that

sup
λλλ∈Rk

≥0

L(h∗,λλλ) = inf
h∈K

sup
λλλ∈Rk

≥0

L(h,λλλ). (96)

Combining (96), (95), and (93) together, we have

sup
λλλ∈Rk

≥0

L(h∗,λλλ) = inf
h∈K

sup
λλλ∈Rk

≥0

L(h,λλλ) = sup
λλλ∈Rk

≥0

inf
h∈K
L(h,λλλ) = inf

h∈K
L(h,λλλ∗). (97)

Furthermore, since

L(h∗,λλλ∗) ≤ sup
λλλ∈Rk

≥0

L(h∗,λλλ) and inf
h∈K
L(h,λλλ∗) ≤ L(h∗,λλλ∗), (98)

then we have

L(h∗,λλλ∗) ≤ inf
h∈K
L(h,λλλ∗) ≤ L(h∗,λλλ∗) (99)

which implies L(h∗,λλλ∗) = infh∈K L(h,λλλ∗). Therefore, by strict convexity of h 7→ L(h,λλλ∗), h∗ = hKλλλ∗ .

Next, we prove the existence of a λλλ∗ satisfying (93) in Theorem 6 whenever K ∩ S 6= ∅. It will be convenient to introduce
the following quantity, which will be used to bound the searching space of dual variable.

Definition 8. For a subset K ⊂ D, we define

θ(K) , inf
q∈K∩S

A(q)− infh∈KA(h)

−maxi∈[k] Bi(q)
. (100)

We note that under Assumption 1.a-b, if K ⊂ D is such that K ∩ S is nonempty, then θ(K) ∈ R≥0. Indeed, fix an integrable
L : X → R such that

L(x) ≤ inf
h∈D

F (x, h(x)) (101)

for every x ∈ X . Then, for any q ∈ K ∩ S

−∞ < E [L(X)] ≤ inf
h∈D
A(h) ≤ inf

h∈K
A(h) ≤ A(q) <∞. (102)



Thus, infh∈KA(h) ∈ R. Hence, by definition of D and because K ∩ S ⊂ D, we obtain θ(K) ∈ R≥0.

Theorem 7. Suppose Assumption 1.a-b holds, and fix K ⊂ D. If K ∩ S is nonempty, then

sup
λλλ∈Rk

≥0

inf
h∈K
L(h,λλλ) = sup

λλλ∈Rk
≥0

‖λλλ‖1≤θ(K)

inf
h∈K
L(h,λλλ), (103)

there exists a λλλ∗ that achieves the supremum in the left-hand-side in (103), and any such maximizer satisfies ‖λλλ∗‖1 ≤ θ(K).

Proof. If the equality
inf
h∈K
L(h,0) = sup

λλλ∈Rk
≥0

inf
h∈K
L(h,λλλ) (104)

holds, then the desired equality (103) also holds and λλλ = 0 achieves the supremum. Thus, for the remainder of the proof, we
assume that (104) does not hold, i.e.,

inf
h∈K
L(h,0) < sup

λλλ∈Rk
≥0

inf
h∈K
L(h,λλλ). (105)

For any λλλ ∈ Rk≥0 and q ∈ S, by the definition of S (see (39)), E [Gi(X, q(X))] < 0 for all i ∈ [k]. Then, for any q ∈ K ∩ S

inf
h∈K
L(h,λλλ) ≤ inf

h∈K∩S
L(h,λλλ) ≤ L(q,λλλ) = A(q) +

∑
i∈[k]

λiBi(q) ≤ A(q) + ‖λλλ‖1 max
i∈[k]
Bi(q) (106)

where we used the fact that q ∈ K ∩ S ⊂ K ⊂ D. Thus, we have

‖λλλ‖1 ≤
A(q)− infh∈K L(h,λλλ)

−maxi∈[k] Bi(q)
. (107)

Now, if λλλ ∈ Rk≥0 satisfies both ‖λλλ‖1 > θ(K) and infh∈K L(h,λλλ) ≥ infh∈K L(h,0), then, we must have (because L(h,0) =
E [F (X,h(X)] = A(h) for h ∈ D)

θ(K) < ‖λλλ‖1 ≤
A(q)− infh∈K L(h,λλλ)

−maxi∈[k] Bi(q)
≤ A(q)− infh∈KA(h)

−maxi∈[k] Bi(q)
(108)

for every q ∈ K ∩ S. Taking the infimum over all q ∈ K ∩ S, we obtain

θ(K) < ‖λλλ‖1 ≤ θ(K), (109)

which is absurd. Thus, every λλλ that satisfies ‖λλλ‖1 > θ(K) must have infh∈K L(h,λλλ) < infh∈K L(h,0). Taking the supremum
over all such λλλ implies

sup
λλλ∈Rk

≥0

‖λλλ‖1>θ(K)

inf
h∈K
L(h,λλλ) ≤ inf

h∈K
L(h,0) < sup

λλλ∈Rk
≥0

inf
h∈K
L(h,λλλ). (110)

In particular, the desired equality (103) holds.
Finally, being the pointwise infimum of linear (in particular, upper-semicontinuous) functions in λλλ, infh∈K L(h,λλλ) is upper-

semicontinuous. Hence, having θ(K) <∞ would imply that at least one λλλ∗ maximizing the dual optimization problem (103)
exists. By inequality (110), ‖λλλ∗‖1 ≤ θ(K) for any such maximizer λλλ∗.

Though this theorem gives a way to bound the value of the dual parameter λλλ, the upper bound θ(K) might not be computable.
In particular, computing θ(K) requires global information about K. Nevertheless, note that removing the outer infimum in the
definition of θ(K) still yields a finite upper bound. Further, relaxing the inner infimum to be over the domain D also gives a
finite upper bound (under Assumption 1.b).

Under Assumption 1.b, θq is always finite. Also, θ(K) ≤ θq whenever K ⊂ D and q ∈ K∩S. Thus, Theorem 7 immediately
implies the following result.

Corollary 4. Suppose Assumption 1.a-b holds, and fix K ⊂ D. If K ∩ S is nonempty and q ∈ K ∩ S, then

sup
λλλ∈Rk

≥0

inf
h∈K
L(h,λλλ) = sup

λλλ∈Rk
≥0

‖λλλ‖1≤θq

inf
h∈K
L(h,λλλ), (111)

and the supremum is achievable. Furthermore, all maximizers have 1-norm at most θq.

Next, we give a more tractable way of expressing hKλλλ . It will be useful to introduce the following class of functions.



Theorem 8. Suppose Assumption 1.a-d holds. Fix a nonempty convex and compact subset Z ⊂ D, and a nonempty convex and
compact subset K ⊂ C(X ,Z) ∩ D. For any λλλ ∈ Rk≥0, if qZλλλ ∈ K, then hKλλλ = qZλλλ .

Proof. For each x ∈ X , let Rx ⊂ Rc denote the image of K under the mapping h 7→ h(x), i.e.,

Rx , {h(x) | h ∈ K}. (112)

We have, by assumption,
⋃
x∈X Rx ⊂ Z. Fix λλλ ∈ Rk≥0, and write

L(x, q) = F (X, q) +
∑
i∈[k]

λiGi(X, q) (113)

for short. Then, for any (x, h) ∈ X ×K

L(x, h(x)) ≥ inf
p∈K

L(x, p(x)) ≥ inf
r∈Rx

L(x, r) ≥ inf
q∈Z

L(x, q) = L(x, qZλλλ (x)). (114)

Assume that qZλλλ ∈ K. Then, taking the expectation of the two far ends of (114) then the infimum for h ∈ K we get

inf
h∈K
L(h,λλλ) ≥ L(qZλλλ ,λλλ). (115)

However, it is also true that
inf
h∈K
L(h,λλλ) ≤ L(qZλλλ ,λλλ). (116)

Therefore, we get the equality
inf
h∈K
L(h,λλλ) = L(qZλλλ ,λλλ). (117)

By strict convexity of h 7→ L(h,λλλ), and by definition of hKλλλ , we have hKλλλ = qZλλλ .

Proof of Theorem 4. Write θ = θv, and note that θ ∈ R≥0. Let u ∈ C(X ,Z) ∩ F be arbitrary. Consider the two sets

K = co(H ∪ {v}), (118)

K′ = co(H ∪ {u, v}). (119)

The sets K and K′ are convex and compact, and they satisfy K,K′ ⊂ C(X ,Z) because C(X ,Z) is convex and closed and
H ⊂ C(X ,Z) by assumption. If λλλ ∈ Λ, then by definition qZλλλ is an element in both K and K′, hence by Theorem 8

hKλλλ = qZλλλ = hK
′

λλλ . (120)

By Corollary 4,
sup
λλλ∈Rk

≥0

inf
h∈K
L(h,λλλ) = sup

λλλ∈Rk
≥0

‖λλλ‖1≤θ

inf
h∈K
L(h,λλλ), (121)

and the same is true for K′
sup
λλλ∈Rk

≥0

inf
h∈K′

L(h,λλλ) = sup
λλλ∈Rk

≥0

‖λλλ‖1≤θ

inf
h∈K′

L(h,λλλ). (122)

By definition, infh∈K L(h,λλλ) = L(hKλλλ ,λλλ) and infh∈K′ L(h,λλλ) = L(hK
′

λλλ ,λλλ).

Therefore, for any λλλ ∈ Λ
inf
h∈K
L(h,λλλ) = L(qZλλλ ,λλλ) = inf

h∈K′
L(h,λλλ). (123)

Thus, the problems (121) and (122) are equivalent to each other, and they are equivalent to

sup
λλλ∈Rk

≥0

‖λλλ‖1≤θ

L(qZλλλ ,λλλ). (124)

Furthermore, there is a λλλ∗ achieving this supremum. In addition, by Theorem 6, for any such λλλ∗ we have that qZλλλ∗ is the unique
solution to both infh∈K∩F E [F (X,h(X))] and infh∈K′∩F E [F (X,h(X))] . Now,

E
[
F (X, qZλλλ∗(X))

]
= inf
h∈K′∩F

E [F (X,h(X))] ≤ E [F (X,u(X))] . (125)



Therefore, by arbitrariness of u,

E
[
F (X, qZλλλ∗(X))

]
= inf
u∈C(X ,Z)∩F

E [F (X,u(X))] . (126)

Finally, uniqueness follows by convexity of the set F and strict convexity of the function A|C(X ,Z).

E. Proof of Theorem 5

We note that Assumption I implies regularity of fj(x, t) = yj(x)f(t/yj(x)) and G. To see this, note that ∂2
m+1fj(x, t) =

f ′′(t/yj(x))/yj(x). By continuity of f ′′, condition (a) is satisfied. Also,

∂`∂m+1fj(x, t) =
−t∂`yj(x)

yj(x)2
f ′′
(

t

yj(x)

)
(127)

and again continuity of f ′′ implies that condition (b) is also satisfied.
We employ the following version of the implicit function theorem.

Theorem 9 (Implicit Function Theorem). Let Ω ⊂ Re × R be an open set, denote by U ⊂ Re and V ⊂ R its projections,
and let C : Ω → R be a differentiable function. If there exists a unique function c : U → V satisfying both (a, c(a)) ∈ Ω
and C(a, c(a)) = 0 for every a ∈ U, and if ∂e+1C(a, c(a)) 6= 0 for every a ∈ U, then c is differentiable and ∂ic(a) =
(−∂iC/∂e+1C)|(a,c(a)) for every (i, a) ∈ [e]× U.

We begin by deriving upper bounds on the partial derivatives of the ϕj and γ. Then, we conclude from Lipshcitzness of
the ϕj and γ total boundedness of Q via compactness of ∆c. As a by-product, it will follow that Q consists of continuous
functions, i.e., that Q ⊂ C(Rm,∆c). For convenience of notation, we will show precompactness when ‖λλλ‖1 is restricted to be
at most θ − 1 for some θ > 1.

Fix j ∈ [c], and we will show an upper bound on the partial derivatives of ϕj . Set

Ωj ,
{

(x, u) ∈ Rm × R | umin(θ) < u < ∂m+1fj(x, 1
−)
}
. (128)

By the assumption of continuity of ∂m+1fj(·, 1−), the set Ωj is open; indeed, Ωj is the intersection of the preimage of
the open set (0,∞) under the continuous map (x, u) 7→ ∂m+1fj(x, 1

−) − u with the open set Rm × (umin(θ),∞). Define
ρj : Ωj × (0, 1)→ R by

ρj(x, u, t) = ∂m+1fj(x, t)− u. (129)

For any (x, u) ∈ Ω, there exists a unique t ∈ (0, 1) such that ρj(x, u, t) = 0, namely, t = ϕj(x, u). In other words, ϕj(x, u) is
defined via

ρj(x, u, ϕj(x, u)) = 0. (130)

By assumption on fj , all partial derivative of ρj exist and are continuous. Therefore, ρj is differentiable. Further, by regularity
of fj , ∂m+2ρj(x, u, t) 6= 0. Hence, by the implicit function theorem, ϕj is differentiable and its partial derivatives are given by

∂m+1ϕj(x, u) = −∂m+1ρj(x, u, ϕj(x, u))

∂m+2ρj(x, u, ϕj(x, u))
=

1

∂2
m+1fj(x, ϕj(x, u))

, (131)

∂`ϕj(x, u) = − ∂`ρj(x, u, ϕj(x, u))

∂m+2ρj(x, u, ϕj(x, u))
=
−∂`,m+1fj(x, ϕj(x, u))

∂2
m+1fj(x, ϕj(x, u))

, (132)

for every (x, u) ∈ Ωj , where ` ≤ m. Because ϕj is differentiable it is also continuous. Further, by assumption of regularity, we
have the bound

max
r∈[m+1]

max
j∈[c]

sup
(x,u)∈Ωj

|∂rϕj(x, u)| ≤ A (133)

for some positive constants A.
Next, we show an upper bound on partial derivative of γ. Let ε < tmin(θ) be small enough so that

inf
x,‖λλλ‖1≤θ

min
j∈[c]

∂m+1fj(x, 1
−) +

∑
i∈[k]

λigi,j(x)

−max
j∈[c]

∂m+1fj(x, ε) +
∑
i∈[k]

λigi,j(x)

 > 0, (134)

and set

Ω =

(x,λλλ, u) ∈ Rm × Rk × R | max
j∈[c]

∂m+1fj(x, ε) +
∑
i∈[k]

λigi,j(x)

 < u < min
j∈[c]

∂m+1fj(x, 1
−) +

∑
i∈[k]

λigi,j(x)

 .

(135)



Similarly to the Ωj , the set Ω is open. Note that for any (x,λλλ) ∈ Rm × Rk with ‖λλλ‖1 ≤ θ, we have (x,λλλ, γ(x,λλλ)) ∈ Ω. For
each j ∈ [c], define ψj : Ω→ (0, 1) by

ψj(x,λλλ, u) = ϕj

x, u−∑
i∈[k]

λigi,j(x)

 . (136)

Define η : Ω→ (−1, c) by
η(x,λλλ, u) = −1 +

∑
j∈[c]

ψj(x,λλλ, u). (137)

Then, γ(x,λλλ) is defined by
η(x,λλλ, γ(x,λλλ)) = 0. (138)

As we have shown that each ϕj is differentiable, and as each partial derivative ∂`gi,j is assumed to exist and be continuous,
the function η is differentiable. Further, we may compute the partial derivatives of η by the chain rule

∂m+k+1η(x,λλλ, u) =
∑
j

∂m+k+1ψj(x,λλλ, u) =
∑
j

∂m+1ϕj

(
x, u−

∑
i

λigi,j(x)

)
(139)

=
∑
j

1

∂2
m+1fj (x, ϕ (x, u−

∑
i λigi,j(x)))

, (140)

∂`η(x,λλλ, u)
`≤m
=
∑
j

(
∂`ϕj

(
x, u−

∑
i

λigi,j(x)

)
−

(∑
i

λi∂`gi,j(x)

)
∂m+1ϕj

(
x, u−

∑
i

λigi,j(x)

))
(141)

= −
∑
j

∂`,m+1fj (x, ϕj (x, u−
∑
i λigi,j(x))) +

∑
i λi∂`gi,j(x)

∂2
m+1fj (x, ϕ (x, u−

∑
i λigi,j(x)))

, (142)

∂m+`η(x,λλλ, u)
1≤`≤k

=
∑
j

−g`,j(x)∂m+1ϕj

(
x, u−

∑
i

λigi,j(x)

)
=
∑
j

−g`,j(x)

∂2
m+1fj (x, ϕ (x, u−

∑
i λigi,j(x)))

. (143)

Therefore, by the implicit function theorem, we have that γ is differentiable and

∂`γ(x,λλλ)
`≤m
=

−∂`η(x,λλλ, γ(x,λλλ))

∂m+k+1η(x,λλλ, γ(x,λλλ))
=

∑
j

∂`,m+1fj(x,ϕj(x,γ(x,λλλ)−
∑

i λigi,j(x)))+
∑

i λi∂`gi,j(x)

∂2
m+1fj(x,ϕ(x,γ(x,λλλ)−

∑
i λigi,j(x)))∑

j
1

∂2
m+1fj(x,ϕ(x,γ(x,λλλ)−

∑
i λigi,j(x)))

, (144)

∂m+`γ(x,λλλ)
1≤`≤k

=

∑
j

g`,j(x)

∂2
m+1fj(x,ϕ(x,γ(x,λλλ)−

∑
i λigi,j(x)))∑

j
1

∂2
m+1fj(x,ϕ(x,γ(x,λλλ)−

∑
i λigi,j(x)))

. (145)

Thus, by assumption of regularity

sup
r,x
|∂rγ(x,λλλ)| ≤ B(2 + ‖λλλ‖1) (146)

for some positive constant B.
Define functions pλλλ ∈ C(Rm,∆c), one for each λλλ ∈ Rk, as follows. For each (x,λλλ) ∈ Rm × Rk, let pλλλ(x) ∈∆c be the

probability vector whose j-th coordinate is

ϕj

x, γ(x,λλλ)−
∑
i∈[k]

λigi,j(x)

 . (147)

When λλλ ≥ 0, we get q∆c

λλλ = pλλλ. Let Q′ = {pλλλ | ‖λλλ‖1 ≤ θ}.
We have the Lipshitz conditions

|ϕj(x, u)− ϕj(x, u′)| ≤ A
√
m+ 1|u− u′| (148)

|γ(x,λλλ)− γ(x,λλλ′)| ≤ B(2 + θ)
√
m+ k‖λλλ− λλλ′‖21 (149)

for every x ∈ Rm, u, u′ such that (x, u), (x, u′) ∈ Ωj , and λλλ,λλλ′ ∈ B1(0, θ). Let

L = max
(
A
√
m+ 1, B(2 + θ)

√
m+ k

)
. (150)



Fix ν > 0, and set δ = min(1, ν/(Lc(L+A))). Let N ∈ N and λλλ1, · · · ,λλλN ∈ B1(0, θ) be such that the balls B1(λλλr, δ) cover
B1(0, θ). Fix pλλλ ∈ Q′. Let r ∈ [N ] be such that ‖λλλ− λλλr‖1 ≤ δ. Then, for every x ∈ Rm,

‖pλλλ(x)− pλλλr
(x)‖1 =

∑
j∈[c]

∣∣∣∣∣∣ϕj
x, γ(x,λλλ)−

∑
i∈[k]

λigi,j(x)

− ϕj
x, γ(x,λλλr)−

∑
i∈[k]

λr,igi,j(x)

∣∣∣∣∣∣ (151)

≤ L
∑
j∈[c]

∣∣∣∣∣∣γ(x,λλλ)− γ(x,λλλr) +
∑
i∈[k]

(λr,i − λi)gi,j(x)

∣∣∣∣∣∣ (152)

≤ Lc (|γ(x,λλλ)− γ(x,λλλr)|+A‖λλλ− λλλr‖1) (153)

≤ Lc(Lδ2 +Aδ) ≤ ε. (154)

Therefore, Q′ is totally bounded. Hence, Q is totally bounded too. As C(Rm,∆c) is a complete metric space, Q is precompact.

F. The convex conjugate: Proof of Lemma 4

By definition of the convex conjugate (Definition 2), for any v ∈ Rc

F conj(v) = sup
p∈∆c

vTp− F (p) = − inf{F (p)− vTp | p ∈ [0, 1]c,1Tp = 1}. (155)

Fix v. Let ηv , minj∈[c] f
′(1/qj)− vj . For any γ ∈ (−∞, ηv), define p(γ) ∈∆+

c by

pj(γ) , qjφ(γ + vj). (156)

Note that both f ′ and φ are strictly increasing, continuous functions so for any γ ∈ (−∞, ηv)

0 = lim
t→−∞

pj(t) < pj(γ) < qjφ(ηv + vj) ≤ qjφ(f ′(1/qj)) = 1 (157)

for every j ∈ [c]. Let a ∈ [c] be such that ηv = f ′(1/qa)− va. We have that

lim
γ→ηv

pa(γ) = qa lim
u→f ′(1/qa)

φ(u) = 1, (158)

so
lim
γ→ηv

∑
j∈[c]

pj(γ) > 1. (159)

On the other hand,
lim

γ→−∞

∑
j∈[c]

pj(γ) = 0. (160)

The intermediate value theorem implies that γ(v) as given in (76) is well-defined.

Introducing a Lagrange multiplier η

F conj(v) = − inf
p∈[0,1]c

sup
η∈R

F (p)− vTp− η(1Tp− 1). (161)

Define gv : R→ R ∪ {±∞} by
gv(η) , inf

p∈[0,1]c
F (p)− vTp− η(1Tp− 1). (162)

Note that
gv(γ(v)) = F (p(v))− vTp(v). (163)

Indeed, we have (0, 1]c ⊂ dom F and

∇
(
F (p)− vTp− γ(v)(1Tp− 1)

)∣∣
p=p(γ(v))

=

(
f ′
(
pj(γ(v))

qj

)
− vj − γ(v)

)
j∈[c]

= 0, (164)



so (163) follows by convexity of F. Then,

F conj(v) = − inf
p∈[0,1]c

sup
η∈R

F (p)− vTp− η(1Tp− 1) (165)

≤ − sup
η∈R

inf
p∈[0,1]c

F (p)− vTp− η(1Tp− 1) (166)

= − sup
η∈R

gv(η) (167)

≤ −gv(γ(v)) (168)

= vTp(v)− F (p(v)). (169)

Therefore, formula (75) holds.

Further, by strict convexity of F, p(v) is the unique minimizer of F (h)−vTh for h ∈∆+
c . We show that qconj(v) = p(v).

If f(0+) = ∞, then F takes the value ∞ on the relative boundary ∆c \∆+
c of ∆c, so p(v) is the unique minimizer of

F (h)−vTh over h ∈∆c, i.e., qconj(v) = p(v). Assume f(0+) <∞. Then, F is convex over ∆c. Let G(h) = F (h)−vTh.
For h ∈∆c such that G(h) ≤ G(p(v)), the point 1

2 (p(v) + h) lies in ∆+
c and satisfies

G

(
1

2
(p(v) + h)

)
≤ 1

2
(G(p(v)) +G(h)) ≤ G(p(v)), (170)

so by uniqueness of p(v), we must have h = p(v). Therefore, p(v) is the unique minimizer of G over ∆c when f(0+) <∞
too, and qconj(v) = p(v), completing the proof of equation (77) and the lemma.

G. Proof of Lemma 1

Recall that (S,X, Y, Ŷ ) form a Markov chain in the order (S, Y )−X − Ŷ . Hence,

PS,X,Y,Ŷ (s, x, y, ŷ) = PS,Y (s, y)PX|S,Y (x|s, y)PŶ |X(ŷ|x). (171)

1) The Statistical Parity requirement can be written as∣∣∣∣ 1

PS(s)

E [ss(X)hŷ(X)]

E [hŷ(X)]
− 1

∣∣∣∣ ≤ α, (172)

for all (s, ŷ) ∈ [d]× [c]. This is equivalent to

E
[
〈δa(s,ŷ)(X)− αb(ŷ)(X),h(X)〉

]
≤ 0, δ ∈ {±1}, (s, ŷ) ∈ [d]× [c] (173)

where

a(s,ŷ)(x) ,

(
ss(x)

PS(s)
− 1

)
e(ŷ), (174)

b(ŷ)(x) , e(ŷ). (175)

Here e(ŷ) is a vector of size c with one on the ŷ-th coordinate and zero elsewhere.
2) The Equalized Odds requirement can be written as∣∣∣∣∣∣ 1

PS|Y (s|y)

E
[
ss(X)y

(s)
y (X)hŷ(X)

]
E [yy(X)hŷ(X)]

− 1

∣∣∣∣∣∣ ≤ α, (176)

for all (s, ŷ, y) ∈ [d]× [c]× [c]. This is equivalent to

E
[
〈δa(s,ŷ,y)(X)− αb(ŷ,y)(X),h(X)〉

]
≤ 0, δ ∈ {±1}, (s, ŷ, y) ∈ [d]× [c]× [c] (177)

where

a(s,ŷ,y)(x) =

(
ss(x)y

(s)
y (x)

PS|Y (s|y)
− yy(x)

)
e(ŷ), (178)

b(ŷ,y)(x) = yy(x)e(ŷ). (179)



3) Overall Accuracy Equality condition can be written as∣∣∣∣∣ 1

PS(s)

E
[
〈ss(X)y(s)(X),h(X)〉

]
E [〈y(X),h(X)〉]

− 1

∣∣∣∣∣ ≤ α, (180)

for all s ∈ [d]. This is equivalent to

E
[
〈δa(s)(X)− αb(X),h(X)〉

]
≤ 0, ε ∈ {±1}, s ∈ [d] (181)

where

a(s)(x) =
ss(x)

PS(s)
y(s)(x)− y(x), (182)

b(x) = y(x). (183)

H. Proof of Theorem 3

We apply Theorem 13.2 in [40] to prove our theorem. To verify the assumptions therein, we show that the search space of
the minimization we aim to solve can be restricted into a convex and norm-bounded subset. Furthermore, we prove that, for
a fixed x ∈ X , the mapping λλλ 7→ Dconj

f (v(x;λλλ),y(x)) (i.e., the loss function f 7→ `(f, z) in [40]) is convex and Lipschitz.
Before we state the proof, recall that v(x;λλλ) = −G(x)λλλ.

a) Convexity of the mapping: By the definition of Dconj
f , for each fixed x ∈ X , the function Dconj

f (−G(x)λλλ,y(x)) is a
pointwise maximum of linear functions in λλλ. Therefore, λλλ 7→ Dconj

f (−G(x)λλλ,y(x)) is convex.
b) Search space: Due to the linear formulation of the fairness constraints, we have that the uniform classifier is strictly

feasible, i.e., E
[
1TG(X)

]
< 0. Furthermore, by Assumption I-(d), we have infx,j yj(x) > 0. Therefore, PXPU |X � PX,Y

and Df (PXPU |X‖PX,Y ) <∞. Now Corollary 4 guarantees that

inf
λλλ≥0

E
[
Dconj
f (v(X;λλλ),y(X))

]
= inf

λλλ≥0
‖λλλ‖1≤θ

E
[
Dconj
f (v(X;λλλ),y(X))

]
(184)

where
θ ,

cDf (PXPU |X‖PX,Y )

−maxj∈[2`] E [1TG:,j(X)]
, (185)

since the constant θq therein can be further bounded by θ.
c) Lipschitzianity of the mapping: First, we have that

∇vD
conj
f (v,y(x)) = qconj(v) ∈∆c. (186)

Then, ∇λλλDconj
f (−G(x)λλλ,y(x)) = −G(x)Tqconj(v) where v = −G(x)λλλ. Therefore, λλλ 7→ Dconj

f (v(x;λλλ),y(x)) is Lipshitz
with Lipschitz constant ‖G(x)‖1: by the mean-value theorem, for any λλλ and λλλ′, there is a v′′ = −G(x)λλλ′′ such that

|Dconj
f (v(x;λλλ),y(x))−Dconj

f (v(x;λλλ′),y(x))| = |∇λλλDconj
f (v(x;λλλ′′),y(x))T (λλλ− λλλ′)| (187)

≤ ‖G(x)Tqconj(v′′)‖2‖λλλ− λλλ′‖2 (188)
≤ ‖G(x)‖1‖λλλ− λλλ′‖2. (189)

Hence, the mapping λλλ 7→ Dconj
f (v(x;λλλ),y(x)) is Lipshitz with Lipshitz constant supx∈X ‖G(x)‖1.
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