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Abstract— This paper addresses the problem of identifying
the topology of an unknown, weighted, directed network run-
ning a consensus dynamics. We propose a methodology to
reconstruct the network topology from the dynamic response
when the system is stimulated by a wide-sense stationary noise
of unknown power spectral density. The method is based on a
node-knockout, or grounding, procedure wherein the grounded
node broadcasts zero without being eliminated from the net-
work. In this direction, we measure the empirical cross-power
spectral densities of the outputs between every pair of nodes
for both grounded and ungrounded consensus to reconstruct
the unknown topology of the network. We also establish that
in the special cases of undirected and purely unidirectional
networks, the reconstruction does not need grounding. Finally,
we extend our results to the case of a directed network assuming
a general dynamics, and prove that the developed method can
detect edges and their direction.

I. INTRODUCTION

In recent years, complex dynamical networks have at-
tracted considerable attention [1]. The power grid, the In-
ternet, the World Wide Web, as well as many other bi-
ological, social and economic networks [2], are examples
of networked dynamic systems that motivate this interest.
The availability of datasets describing the structure of many
real-world networks has allowed to detect the presence of
common patterns in a large variety of networks [3], [4].
In this paper, we address the problem of reconstructing the
structure of an unknown network of dynamical nodes from
observations of its input-output behavior.

The problem of network reconstruction is crucial in a wide
variety of disciplines such as biology [5]–[8], physics [9]–
[11] and finance [12]. A wide collection of approaches have
been proposed to solve the network reconstruction problem.
For example, we find in the literature several papers that
approach this problem using an optimization framework,
such as [8], [11], [13]. In these papers, the reconstruction
problem is stated as the optimization problem of finding
the network that maximizes a function that measures the
sparsity of the network (e.g. `1-norm) while conforming
to known a priori structural information. Although the as-
sumption of sparsity is well justified in some applications
(e.g. biological networks), this assumptions might lead to
unsuccessful topology inference in other cases, as illustrated
in [14] and [15]. When the unknown network is known to
be a tree, several techniques for network reconstruction were
proposed in [12], [16] and [17]. More recently, Materassi and
Salapaka proposed in [18] a methodology for reconstruction
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of directed networks using Wiener filters. Although effective
for many networks, this methodology is not exact when
two nonadjacent nodes are connected to a common node
with directed edges pointing towards the common node. In
[19], Nabi-Abdolyousefi and Mesbahi proposed a technique
to extract structural information, such as node degrees,
of an undirected network running a consensus dynamics.
Subsequently, they find a collection of undirected graphs that
are consistent with this structural information. Furthermore,
the work in [20] provides a method that performs a complete
identification of undirected networks via a procedure called
node knock-out.

In this paper, we propose an approach to reconstruct
the structure and weights of a directed network from the
output of an agreement dynamics run on the network. We
also revisit the problem of network reconstruction for more
general dynamical systems. We develop methodologies to
unveil the network structure from the dynamic response of
the network when the system is driven by stochastic inputs.
More specifically, we assume that the system is stimulated
by a collection of wide-sense stationary noises with unknown
power spectral densities. Considering several cases, we pro-
pose methodologies to recover the network topology from
the empirical cross-power spectral densities of the outputs
between every pair of nodes. We first consider the case
of undirected networks running a consensus dynamics, and
propose an algorithm to reconstruct its unknown topology.
Using the node knockout procedure proposed in [20], we
extend our results to the directed networks. In this scenario,
the node knockout is equivalent to state grounding, where the
node broadcasts a zero state to its neighbors without being
eliminated from the network. We also prove that for purely
unidirectional networks (networks with no reciprocity [21]),
there is no need to run the grounded consensus to perform the
network identification. Finally, we consider the reconstruc-
tion of directed networks assuming a general dynamics. We
establish that, without the knowledge of the power spectral
densities of the input vector, a Boolean reconstruction is still
possible, i.e., we can detect edges and their direction, but not
their weights.

The rest of the paper is organized as follows. In section
II, we provide some nomenclature needed in our exposi-
tion and describe the network reconstruction problem under
consideration. Assuming the system is driven by wide-sense
stationary noise, in section III.A, we provide a technique
to recover the structure of an undirected network running
consensus dynamics. Section III.B covers the extension of
the problem to a directed network. Section III.C addresses
the reconstruction of directed networks following general
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dynamics. Section IV concludes.

II. PRELIMINARIES & PROBLEM DESCRIPTION

In this section, we introduce a series of definitions used
throughout the paper. Let G = (V, E) be an unweighted,
undirected graph, where V = {v1, . . . , vn} denotes a set of
n nodes and E ⊆ V × V denotes a set of m undirected
edges. If {vi, vj} ∈ E , we call nodes vi and vj adjacent (or
first-neighbors), which we denote by vi ∼ vj . A weighted,
undirected graph is defined as the triad W = (V, E ,F),
where V and E are the sets of nodes and edges in W , and
the function F : E →R associates real weights to the edges.
Similarly, a weighted, directed graph is defined as the triad
D = (V, Ed,Fd), where V is the set of nodes and Ed is the set
of directed edges in D, where a directed edge from node vi
to node vj is defined as an ordered pair (vi, vj). Furthermore,
Fd is a weight function Fd : Ed → R.

In an unweighted, undirected graph G, the degree of a ver-
tex vi, denoted by deg (vi), is the number of nodes adjacent
to it, i.e., deg (vi) = |{vj ∈ V : {vi, vj} ∈ E}|. This defini-
tion can be generalized to both weighted and directed graphs.
For weighted graphs, the weighted degree of node vi is equal
to deg (vi) =

∑
j:{vi,vj}∈E F ({vi, vj}), i.e., the sum of the

weights associated to edges connected to vi. For weighted,
directed networks, we define the weighted in-degree of node
vi as degin (vi) =

∑
j:(vj ,vi)∈Ed Fd ((vj , vi)).

The adjacency matrix of an unweighted, undirected graph
G, denoted by AG = [aij ], is a n × n Boolean symmetric
matrix defined entry-wise as aij = 1 if nodes vi and vj are
adjacent, and aij = 0 otherwise. We define the Laplacian
matrix LG of a graph G as LG = DG − AG where DG is
the diagonal matrix of degrees, DG = diag ((deg (vi))

n
i=1).

For simple graphs, LG is a symmetric positive semidefinite
matrix, which we denote by LG � 0 [22]. Thus, LG has
a full set of n real and orthogonal eigenvectors with real
nonnegative eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λn.

Similarly, the weighted adjacency of a weighted graph W
is defined as AW = [wij ], where wij = F ({vi, vj}) for
{vi, vj} ∈ E , and wij = 0 if {vi, vj} 6∈ E . We define
the degree matrix of a weighted graph W as the diagonal
matrix DW = diag ((deg (vi))

n
i=1). The Laplacian matrix

of a weighted, undirected graph W , is defined as LW =
DW−AW . Furthermore, the adjacency matrix of a weighted,
directed graph D is defined as AD = [dij ], where dij =
Fd ((vj , vi)) for (vj , vi) ∈ Ed, and dij = 0 if (vj , vi) 6∈
Ed. We define the in-degree matrix of a directed graph D
as the diagonal matrix DD = diag ((degin (vi))

n
i=1). The

Laplacian matrix of D is then defined as LD = DD − AD.
Note that the Laplacian matrix satisfies LG1 = LW1 =
LD1 = 0, i.e., the vector of all ones is an eigenvector of the
Laplacian matrix with corresponding eigenvalue 0.

In this paper, we focus on the continuous-time non-
autonomous model of consensus dynamics in directed net-
works, described as

ẋ(t) = −LDx(t) + w (t) , y(t) = x(t), (1)

where LD is the Laplacian matrix of a weighted, directed
network D; and the vectors x(t),w (t) , y(t) ∈ Rn are the
state, input, and output vectors, respectively. We assume that
we do not have access to the network structure, i.e., LD
is unknown. In this context, we consider the problem of
identifying the topology of the directed network D when
the (cross-)power spectral densities of the output vector
y(t) are measured empirically while the stochastic input
vector w (t), injected at the nodes of the network, has
unknown power spectral characteristics. We also investigate
the reconstruction problem in the case that (1) follows a
general dynamics GD in lieu of −LD. In any case, we
assume the input w (t) = [wi (t)] is a vector of uncorrelated
wide-sense stationary processes.

Definition 1 (Wide-Sense Stationary): A continuous-time
scalar random process w(t) is wide-sense stationary (WSS),
if it satisfies the following properties:

P1. µw(t) , E(w(t)) = µw(t+ τ) for any τ ∈ R.

P2. Rw(t1, t2) , E(w(t1)w(t2)) = Rw(t1 + τ, t2 +
τ) = Rw(t1 − t2, 0) for any τ ∈ R.

The reconstruction methods proposed in this paper take
the output vector y (t) = [yi (t)] and deliver the network
structure as a function of the (cross-)power spectral densities.

Definition 2 ((Cross-)Power Spectral Density): The
cross-power spectral density of two WSS signals, yi (t) and
yj (t), is the Fourier transform of their cross-correlation
function, i.e.,

Syiyj (ω)
∆
= F{Ryiyj (τ)

∆
= E(yi(t)yj(t− τ))},

where F {·} is the Fourier transform operator. The power
spectral density of yi (t) is defined as

Syi
(ω)

∆
= F{Ryi

(τ)
∆
= E(yi(t)yi(t− τ))}.

In order to detect the links through observation of outputs,
we need to ascertain that system (1) is driven by a collection
of noises with nonzero power spectral densities. To capture
this idea, we commence with the following definition:

Definition 3 (Excitation Frequency Interval): The
excitation frequency interval of a vector w (t) of wide-sense
stationary processes is defined as an interval (−Ω,Ω),
with Ω > 0, such that the spectral densities of the input
components wi (t) satisfy Swi(ω) > 0 for all ω ∈ (−Ω,Ω),
and all i ∈ {1, 2, ..., n}.

We end this section by stating our assumptions. Through-
out the paper we impose the following conditions on the
input vector:

A1. The collection of signals {wi(t), i = 1, ..., n} are
uncorrelated zero-mean WSS processes such that,
for any t, τ ∈ R,

E(wi(t)wj(τ)) = 0, for i 6= j,

and

Rwi
(τ) = E(wi(t)wi(t+ τ)) = Rw(τ).
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A2. There exists a nonempty excitation frequency inter-
val (−Ω,Ω).

III. MAIN RESULTS

We now consider several cases and present methodologies
to reconstruct the structure of an unknown network from
observations of its temporal response (1). We provide re-
construction techniques for weighted, undirected networks
(Sect. III.A), and weighted, directed networks (Sect. III.B)
following consensus dynamics. We briefly, revisit the recon-
struction of directed networks following general dynamics
(Sect. III.C).

For the consensus dynamics (as well as general dynam-
ics) of weighted, directed networks, the following lemma
provides an explicit relationship between the cross-power
spectral densities of two outputs, yi (t) and yj (t), and the
power spectral density of the input wk (t) (which we assume
to be identical, i.e., Swk

(ω) = Sw (ω) for all k):
Lemma 4: Given assumptions (A1)-(A2), the following

identity holds

Syiyj
(ω)

Sw(ω)
= eTi (ω2I − jω(LD − LT

D) + LT
DLD)−1ej , (2)

for any ω ∈ (−Ω,Ω), where

Syiyj
(ω)

∆
= F{Ryiyj

(τ)} and Sw(ω)
∆
= F{Rw(τ)},

for any 1 ≤ i, j ≤ n.
Proof: The transfer function corresponding to the state-

space equations (1) is H (ω) = (jωI +LD)−1. The transfer
function from the k-th input wk (t) to the i-th output yi (t)
is defined as

Hki(ω)
∆
= eTi (jωI + LD)−1ek.

Therefore, the power spectral density of the i-th output yi (t)
when the input is w (t) = wk (t) ek (i.e., a WSS noise on
the k-th node) is equal to

Syi
(ω) = Hki(ω)H∗ki(ω)Swk

(ω). (3)

On the other hand, the transfer functions from input
wk (t) to the outputs yi (t) and yj (t) are, respectively,
Yi (ω) /Wk (ω) = Hki(ω) and Yj (ω) /Wk (ω) = Hkj(ω).
Hence, Yj (ω) /Yi (ω) = H−1

ki (ω)Hkj(ω) which implies

Syiyj (ω) =

(
Hkj(ω)H−1

ki (ω)

)∗
Syi(ω). (4)

Since Swk
(ω) = Sw(ω) for all k, we can combine (3) and

(4) to obtain

Syiyj
(ω) = Hki(ω)H∗kj(ω)Sw(ω). (5)

When the input is w (t) =
∑n

k=1 wk (t) ek, with
E(wi(t)wj(τ)) = 0 for i 6= j, we can superpose (5) over
1 ≤ k ≤ n, to obtain the following for any ω ∈ (−Ω,Ω):

Syiyj (ω)

Sw(ω)
=

n∑
k=1

H∗kj(ω)Hki(ω)

=

n∑
k=1

eT
j (−jωI + LD)

−1eke
T
i (jωI + LD)

−1ek

=

n∑
k=1

eT
j (−jωI + LD)

−1eke
T
k (jωI + LT

D)
−1ei

= eT
j (−jωI + LD)

−1(

n∑
k=1

eke
T
k )(jωI + LT

D)
−1ei.

As
∑n

k=1 eke
T
k = I , we can simplify the last equation to

Syiyj
(ω)

Sw(ω)
= eTj (−jωI + LD)−1(jωI + LT

D)−1ei

= eTi (ω2I − jωLD + jωLT
D + LT

DLD)−1ej ,

which is the desired relation.
Corollary 5: Given assumptions (A1)-(A2), and substitut-

ing −LD in (1) with any negative semi-definite GD, the
input-output power spectra relationship is as following

Syiyj
(ω)

Sw(ω)
= eTi (ω2I − jω(GT

D −GD) +GT
DGD)−1ej ,

for any ω ∈ (−Ω,Ω).
Proof: In the proof of Lemma 4, we did not use any

properties of Laplacian, so we only need to replace −LD by
any negative semi-definite GD in (2) to derive the result.

In our analysis in the next subsections, we frequently
invoke the result of Lemma 4 and Corollary 5.

A. Undirected Laplacian Identification from Stochastic In-
puts

In this subsection, we propose an approach to reconstruct
the topology of an unknown weighted, undirected network
W from the output of (1). The formal statement of the
reconstruction problem for weighted, undirected network can
be stated as follows:

Problem 6: Consider the dynamical network in (1), with
LD ≡ LW where W is an unknown weighted, undirected
graph. Find the structure of W , from the empirical (cross-
)power spectral densities1 of the outputs, i.e., Syi(ω) and
Syiyj (ω) for all 1 ≤ i, j ≤ n.

In the case of weighted, undirected networks, we can use
the result of Lemma 4 in the form of the following corollary:

Corollary 7: Consider the network dynamics (1), when
D is a weighted, undirected network W . Given assumptions
(A1)-(A2), the (cross-)power spectral densities satisfy

Syiyj (ω)

Sw(ω)
= eTi (ω2I + L2

W)−1ej , (6)

for any 1 ≤ i, j ≤ n.
Proof: Since LW is symmetric, replacing LD in (2) by

LW , the proof follows immediately.

1There are several methods to empirically measure the (cross-)power
spectral densities (see e.g., Welch’s method [23]).
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We now proceed with a theorem that can be used to
reconstruct a weighted, undirected Laplacian LW , from
the empirical (cross-)power spectral densities Syi(ω) and
Syiyj (ω) for all 1 ≤ i, j ≤ n.

Theorem 8: Consider the network dynamics (1), when D
is a weighted, undirected network W . Let us define the
matrix of cross-correlations as S (ω) =

[
Syiyj

(ω)
]
. Then,

given assumptions (A1)-(A2), we can recover the weighted,
undirected Laplacian LW as

LW = ω

(
S−1 (ω)

[S−1(ω)1]i
− I
)1/2

, (7)

for any i, and for any ω in the excitation frequency interval
(−Ω,Ω).

Proof: According to Corollary 7, we have

S(ω) = Sw(ω)(ω2I + L2
W)−1,

which yields

S−1(ω) =
1

Sw(ω)
(ω2I + L2

W). (8)

Hence,
L2
W = Sw(ω)S−1(ω)− ω2I. (9)

We can derive an expression for Sw(ω) in terms of S−1(ω)
and ω, as follows. Post-multiplying (8) by the vector 1, we
get

S−1(ω)1 =
1

Sw(ω)
(ω2I + L2

W)1 =
ω2

Sw(ω)
1, (10)

since L2
W1 = 0. Therefore,

Sw(ω) =
ω2

[S−1(ω)1]i
, (11)

for any i. Substituting (11) in (9), we obtain the statement
of our Theorem. (Notice that LW is the Laplacian of an
undirected network, hence, it is positive semidefinite).

In practice, since
[
S−1(ω)1

]
i

is a noisy measurement,
according to (10) one can average out noise by replacing[
S−1(ω)1

]
i

with 1TS−1(ω)1/n, to achieve improved em-
pirical results. Hence, (7) can be rewritten as

LW = ω

(
S−1 (ω)

1TS−1(ω)1
n− I

)1/2

.

Remark 9: To derive node degrees computationally effi-
cient, one can circumvent the implicit eigenvalue decompo-
sition involved in the result of Theorem8 for computing LW
from L2

W , since

[L2
W ]ii = [(DW −AW)2]ii

= [D2
W −DWAW −AWDW +A2

W ]ii

= deg2(vi) + deg(vi).

Therefore, computing L2
W , we obtain the degrees by solving

the quadratic equation above for any i.

B. Directed Laplacian Identification from Stochastic Inputs

In this section we address the problem of reconstructing a
weighted, directed Laplacian LD when the input is a vector
of uncorrelated wide-sense stationary processes w (t).

Problem 10: Consider the dynamical network in (1),
where D is an unknown weighted, directed graph. Recon-
struct D, from the empirical (cross-)power spectral densities
of the outputs, i.e., Syi

(ω) and Syiyj
(ω) for all 1 ≤ i, j ≤ n.

In what follows, we propose a reconstruction approach
based on a grounded consensus dynamics, similar to the one
proposed in [20] for the reconstruction of undirected graphs.
The grounded consensus is defined as follows:

Definition 11 (Grounded Consesus): The consensus dy-
namics with node vj grounded takes the form

ẋ(t) = −L̃Dj
x(t) + w(t) , y(t) = x(t), (12)

where L̃Dj ∈ R(n−1)×(n−1) is obtained by eliminating the
j-th row and the j-th column from LD.

The consensus dynamics with node vj grounded describes
the evolution of the network when we force the state of node
vj to be xj(t) ≡ 0. We now state a lemma and a corollary
to extract LT

DLD from the ungrounded consensus (1), and
L̃T
Dj
L̃Dj from the grounded consensus (12), respectively.

Lemma 12: Consider the network dynamics (1), when D
is a weighted, directed network. Let us define the matrix
of cross-correlations as S (ω) =

[
Syiyj

(ω)
]
. Then, given

assumptions (A1)-(A2), we can compute LT
DLD and LD −

LT
D as

LT
DLD = ω2

(
Re{S−1(ω)}

[Re{S−1(ω)}1]i
− I
)

LD − LT
D = −ω

(
Im{S−1(ω)}

[Re{S−1(ω)}1]i

)
,

for any i, and for any ω in the excitation frequency interval
(−Ω,Ω).

Proof: Let us consider the matrix S(ω) = [Syiyj (ω)].
According to (2), we can separate the real and imaginary
parts of its inverse as

Re{S−1(ω)} =
1

Sw(ω)
(ω2I + LT

DLD) (13)

Im{S−1(ω)} = − 1

Sw(ω)
(ωLD − ωLT

D). (14)

Post-multiplying (13) by 1, and taking into consideration that
LT
DLD1 = 0, we obtain

Sw(ω) =
ω2

[Re{S−1(ω)}1]i
, (15)

for any i. Plugging (15) into (13) and (14), the proof follows
immediately.

Corollary 13: Consider the network dynamics (12), where
L̃Dj

is the grounded Laplacian matrix of the weighted,
directed network D grounded at vj . Let us define the matrix
of cross-correlations as S̃ (ω) = [S̃yiyk

(ω)] for all i, k 6=
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j. Then, given assumptions (A1)-(A2), we can compute
L̃T
Dj
L̃Dj

as

L̃T
Dj
L̃Dj = ω2

(
Re{S̃−1(ω)}

[Re{S−1(ω)}1]i
− I
)
,

for any i 6= j, and for any ω in the excitation frequency
interval (−Ω,Ω).

Proof: By Corollary 5, it holds that

S̃yiyk
(ω)

Sw(ω)
= eTi (ω2I − jω(L̃Dj

− L̃T
Dj

) + L̃T
Dj
L̃Dj

)−1ek.

Since S̃(ω) = [S̃yiyk
(ω)], we have that

Re{S̃−1(ω)} =
1

Sw(ω)
(ω2I + L̃T

Dj
L̃Dj

). (16)

Substituting the expression for Sw(ω) from Lemma 12, we
have

L̃T
Dj
L̃Dj

= ω2

(
Re{S̃−1(ω)}

[Re{S−1(ω)}1]i
− I

)
.

In general, the results of Lemma 12 might not be in-
formative enough to extract the underlying structure of the
network without running the grounded consensus. We will
see at the end of this section how running both ungrounded
and grounded consensus will lead to exact reconstruction
of the network. However, imposing certain conditions on
the network graph, allows us to perform the reconstruction
without recourse to grounding. For instance, for a network
that does not contain any bidirectional edge, i.e., if (vj , vi) ∈
Ed, then (vi, vj) 6∈ Ed, we can employ Lemma 12 to identify
the network. The adjacency matrix of a purely unidirectional
network satisfies

tr(A2
D) = 0. (17)

We now proceed to the identification technique of a purely
unidirectional network.

Corollary 14: Suppose the conditions in the Lemma 12
hold. Also, suppose the weighted, directed network satisfies
(17). Then, the entries of adjacency are recovered as

[AD]ij = max

{
ωn

(
[Im{S−1(ω)}]ij
1T Re{S−1(ω)}1

)
, 0

}
.

Proof: For any k, by (15) we have

[Re{S−1(ω)}1]k =
1

n
(1T Re{S−1(ω)}1).

Therefore, under purview of Lemma 12 we obtain

LD − LT
D = −ωn

(
Im{S−1(ω)}

1T Re{S−1(ω)}1

)
.

If the ij-th entry of the right hand side in the above equation
is negative, since there is no bidirectional edge, [AD]ij 6= 0
and [AD]ji = 0. If the ij-th entry of the right hand side
in the above equation is positive, the ji-th entry would be
negative which implies [AD]ji 6= 0 and [AD]ij = 0. In case

the ij-th entry is zero, no directed edge between vi and vj
exists, and the proof is complete.

In the next theorem, we show using grounding, there is
no need for structural conditions to solve Problem 10.

Theorem 15: Consider the network dynamics (1), where
D is a weighted, directed network. Let us also consider
the grounded consensus dynamics in (12), when node vj
is grounded. Then, given assumptions (A1)-(A2), we can
recover the entries of the weighted, directed adjacency matrix
AD as

[AD]ji =


√[

LT
DLD

]
ii
−
[
L̃T
Dj
L̃Dj

]
ii

for i < j,√[
LT
DLD

]
ii
−
[
L̃T
Dj
L̃Dj

]
i−1,i−1

for i > j,

for any i 6= j.
Proof: For simplicity, we consider the case j = n (for

any j 6= n, we can transform the problem to the case j =
n via a simple reordering of rows and columns). Running
the ungrounded consensus (1) and applying Lemma 12, we
recover LT

DLD. Also, running the grounded consensus (12)
and applying Corollary 13, we can recover L̃T

Dn
L̃Dn

. Hence,
for any i < n

[LT
DLD]ii−[L̃T

Dn
L̃Dn

]ii =
∑
k

[LD]
2
ki−

∑
k 6=n

[LD]
2
ki = [LD]

2
ni .

Hence, we can recover the adjacency as

[AD]ni =

√[
LT
DLD

]
ii
−
[
L̃T
Dj
L̃Dj

]
ii
,

for any i < n. The same analysis holds for any other j 6= n.

C. Boolean Reconstruction of General Dynamics

In this section, we study the reconstruction of a general
dynamics GD in weighted, directed networks, characterized
as

ẋ(t) = GDx(t) + w(t) , y(t) = x(t), (18)

where GD is a negative semi-definite matrix.
It turns out that for the general dynamics (18), complete

identification including weights is not possible. However, we
can propose an algorithm for a Boolean reconstruction of the
system which detects the existence and direction of edges in
the directed network (18).

Problem 16: Consider the dynamical network in (18),
where D is an unknown weighted, directed graph. Recon-
struct an unweighted version of D, from the empirical (cross-
)power spectral densities of the outputs, i.e., Syi

(ω) and
Syiyj

(ω) for all 1 ≤ i, j ≤ n.
To solve Problem 16, similar to Definition 11, we define

the Grounded Dynamics at node vj as

ẋ(t) = G̃Dj
x(t) + w(t) , y(t) = x(t), (19)

where G̃Dj
∈ R(n−1)×(n−1) is obtained by eliminating the

j-th row and the j-th column from GD. We now state a
theorem to reconstruct an unweighted version of D.
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Theorem 17: Consider the network dynamics (18), where
D is a weighted, directed network. Let us also consider
the grounded consensus dynamics in (19), when node vj
is grounded. Then, given assumptions (A1)-(A2), we can
recover a scaled version of off diagonal entires for matrix
GD as

[GD]ji =


√
Sw[Re{[S−1]ii − [S̃−1]ii}] for i < j,√
Sw[Re{[S−1]ii − [S̃−1]i−1,i−1}] for i > j,

for any i 6= j.
Proof: Without loss of generality, let j = n as in the

proof of Theorem 15. By Corollary 5, it holds that

Sw(ω)Re{S−1(ω)} = ω2I +GT
DGD

Sw(ω)Re{S̃−1(ω)} = ω2I + G̃T
Dn
G̃Dn

,

which entails, for any i < n

[GD]
2
ni = [GT

DGD]ii − [G̃T
Dn
G̃Dn

]ii

= Sw(ω)

(
[Re{S−1(ω)}]ii − [Re{S̃−1(ω)}]ii

)
,

which implies the result of the theorem. The proof for j 6= n
follows with similar arguments.

Remark 18: Results of previous sections regarding Lapla-
cian (Sect. III.A-B), could be extended to any negative semi-
definite GD with a nonzero nullity, as long as a nonzero
vector in the kernel of GD is known.

Theorems 8, 15 and 17 are functional for any frequency
ω 6= 0, and we do not require the knowledge of entire
power spectral densities. In fact, we only need the power
spectral densities evaluated at one frequency, which dramat-
ically reduces the computational complexity. One can also
evaluate the spectra at several frequencies to average out the
measurement noise and make a robust reconstruction.

IV. CONCLUSIONS

In this paper, we addressed the problem of identifying
the topology of an unknown, weighted, directed network
running a consensus dynamics when the system is stimu-
lated by a wide-sense stationary noise of unknown power
spectral density. We proposed a methodology for network
reconstruction based on sequentially grounding nodes in the
system. We showed how to reconstruct the topology of the
network from the empirical cross-power spectral densities of
the outputs between every pair of nodes. We also established
that, in the special cases of undirected (i.e., perfect edge
reciprocity) or purely unidirectional networks (i.e., no edge
reciprocity), our reconstruction procedure does not require
any grounding. Finally, we extended our results to the case
of a directed network with a general dynamics, and proved
that the developed method can detect the presence of edges
and their direction.
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