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Abstract— This paper addresses tracking of a moving target in a
multi-agent network. The target follows a linear dynamics corrupted
by an adversarial noise, i.e., the noise is not generated from a statistical
distribution. The location of the target at each time induces a global
time-varying loss function, and the global loss is a sum of local losses,
each of which is associated to one agent. Agents noisy observations
could be nonlinear. We formulate this problem as a distributed online
optimization where agents communicate with each other to track the
minimizer of the global loss. We then propose a decentralized version of
the Mirror Descent algorithm and provide the non-asymptotic analysis
of the problem. Using the notion of dynamic regret, we measure the
performance of our algorithm versus its offline counterpart in the
centralized setting. We prove that the bound on dynamic regret scales
inversely in the network spectral gap, and it represents the adversarial
noise causing deviation with respect to the linear dynamics. Our result
subsumes a number of results in the distributed optimization literature.
Finally, in a numerical experiment, we verify that our algorithm
can be simply implemented for multi-agent tracking with nonlinear
observations.

I. INTRODUCTION

Distributed estimation, detection, and tracking is ubiquitous in
engineering applications ranging from sensor and robotic networks
to social networks, and it has received a lot of attention for many
years [1]–[5]. In these scenarios, the task is to estimate the value
of a parameter which may or may not be dynamic. A group of
agents aim to accomplish this task as a team. Each individual
agent only partially observes the parameter, but the global spread of
observations in the network allows agents to estimate the parameter
collaboratively. This would require agents to aggregate local infor-
mation, and many methods use consensus protocols as a critical
component [6]. It is well-known that when agents’ observations
are linear with respect to the parameter, the tracking problem is
equivalent to minimizing a global quadratic loss, written as a sum of
local quadratic losses (see e.g. [7]). However, in general, the global
loss can be more complicated, resulting in nonlinear observations.

In real-world applications, the parameter of interest is often
time-varying. Therefore, regardless of the structure of the loss,
the dynamic nature of the problem brings forward two issues: (i)
The local losses are observed in an online or sequential fashion,
i.e., the local losses are disclosed to agents only after they form
their estimates at each round, and they are not aware of future
loss functions. Therefore, the problem must be solved in an online
setting. (ii) The online algorithm should mimic the performance
of its offline counterpart in which the losses are known a priori.
The gap between the two is often called regret. Tracking the
minimizer of the global loss over time introduces the notion of
dynamic regret [8]. This framework has been studied in centralized
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online optimization [8]–[12], where the hardness of the problem is
captured via the variation in the minimizer sequence.

To address these issues in this paper, we adopt an online opti-
mization approach to formulate distributed tracking. We consider
tracking of a dynamic parameter or a moving target in a network
of agents. The dynamics of the target is linear and known to
agents, but the target deviates from this dynamics due to an
unstructured or adversarial disturbance or noise. In other words,
the noise is not necessarily generated from a statistical distribution,
or it can be highly correlated to its past values over time. At
each time instance, the target induces a global convex loss whose
minimizer coincides with the target location. The global loss is
a sum of local losses, where each local loss is associated to a
specific agent. Agents exchange noisy local gradients according to
a communication protocol to track the moving target.

Our problem setup is reminiscent of a distributed Kalman [13].
However, we differentiate the two as follows: (i) We do not assume
that the target is driven by a Gaussian noise. Nor do we assume
that this noise has a statistical distribution. Instead, we consider
an adversarial-noise model with unknown structure. (ii) Agents
observations are not necessarily linear; in fact, the observations
are noisy local gradients that are non-linear when the loss is not
quadratic. Furthermore, our focus is on the finite-time analysis rather
than asymptotic results.

We propose a decentralized version of the Mirror Descent algo-
rithm, developed by Nemirovksi and Yudin [14]. Using the notion
of Bregman divergence in lieu of Euclidean distance for projection,
Mirror Descent has been shown to be a powerful tool in large-scale
optimization. Our algorithm consists of three interleaved updates:
(i) each agent follows the noisy local gradient while staying close
to previous estimates in the local neighborhood; (ii) agents take into
account the dynamics of the moving target; (iii) agents average their
estimates in their local neighborhood in a consensus step.

We then use a dynamic notion of regret to measure the difference
between our online decentralized algorithm and its offline central-
ized version. We establish a regret bound that scales inversely in the
spectral gap of the network, and it represents the adversarial noise
causing deviation with respect to the linear dynamics. We further
show that from optimization perspective our result subsumes two
important classes of decentralized optimization in the literature:
(i) decentralized optimization of time-invariant losses, and (ii)
decentralized optimization of time-variant losses for fixed targets.
This generalization is achieved by allowing the loss function and
the target value to vary simultaneously. We also provide a numerical
experiment to show that our algorithm can be simply implemented
to work with nonlinear observations in multi-agent tracking.
Related Literature on Decentralized Optimization: In [15],
decentralized mirror descent has been developed for time-invariant
functions in the case that agents receive the gradients with a
delay. Moreover, Rabbat in [16] proposes a decentralized mirror
descent for stochastic composite optimization problems and provide
guarantees for strongly convex regularizers. Duchi et al. [17] study
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dual averaging for distributed optimization, and the extension of
dual averaging to online distributed optimization is considered in
[18]. Mateos-Núnez and Cortés [19] consider online optimization
using subgradient descent of local functions, where the graph
structure is time-varying. In [20], a decentralized variant of Nes-
terov’s primal-dual algorithm is proposed for online optimization. In
[21], distributed online optimization is studied for strongly convex
objective functions over time-varying networks. Our setup follows
the work of [22] on decentralized online mirror descent, but we
extend the results to high probability bounds on the dynamic regret.

[n] The set {1, 2, ..., n} for any integer n
x> Transpose of the vector x
x(k) The k-th element of vector x
In Identity matrix of size n
∆d The d-dimensional probability simplex
〈·, ·〉 Standard inner product operator
‖·‖p p-norm operator
‖·‖∗ The dual norm of ‖·‖
σi(W ) The i-th largest eigenvalue of W in magnitude

II. PROBLEM FORMULATION AND ALGORITHM

A. Dynamical Model and Optimization Perspective

Consider a d-dimensional moving target x?t following the linear
dynamics A for a finite time T as

x?t+1 = Ax?t + vt, t ∈ [T ] (1)

where A ∈ Rd×d is known, and vt ∈ Rd is an adversarial noise, i.e.,
the sequence {vt}Tt=1 is neither generated according to a statistical
distribution, nor it is independent over time. Our goal is to track x?t ,
and regardless of the observation model, a distribution-dependent
mechanism, such as Kalman or particle filter, cannot solve the
problem since the noise does not assume a statistical distribution.

In the centralized version of the tracking problem above, the
observations of x?t are realized through a time-varying, global
loss function. That is, consider the tracking problem above as an
optimization, where x?t is the minimizer of the global loss at time
t. Let X be a convex, compact set, and represent the global loss
by ft : X → R at time t. As the global loss varies over time, the
goal is to track the minimizer of ft(·), which is x?t . The offline and
centralized version of our problem can be viewed as follows

minimize
x1,...,xT

T∑
t=1

ft(xt)

subject to xt ∈ X , t ∈ [T ].

(2)

We are interested to solve the problem above in an online and
decentralized fashion. In particular, the global function at time t is
a sum of n local functions as

ft(x) :=
1

n

n∑
i=1

fi,t(x), (3)

where fi,t : X → R is a local convex function on X for all i ∈ [n].
We consider a network of n agents facing two challenges when
solving problem (2): (i) agent j ∈ [n] receives information only
about fj,t(·) and does not observe the global loss function ft(·),
which is common to decentralized schemes; (ii) The functions are
revealed to agents sequentially along the time horizon, i.e., at any
time instance s, agent j has observed fj,t(·) for t < s, whereas the
agent does not know fj,t(·) for s ≤ t ≤ T , which is common to
online settings.

The agents interact with each another, and their relationship is
captured via an undirected graph G = (V, E), where V = [n]
denotes the set of nodes, and E is the set of edges. Each agent i
assigns a positive weight [W ]ij for the information received from
agent j 6= i, and the set of neighbors of agent i is defined as
Ni := {j : [W ]ij > 0}.

While the problem framework is reminiscent of a distributed
Kalman [13], there are fundamental distinctions in our setup: (i)
The adversarial noise vt is neither Gaussian nor of known statistical
distribution. It can be thought as a noise with unknown structure,
which represents the deviation from the dynamics1. (ii) Agents
observations are not necessarily linear; in fact, the observations are
local gradients of {fi,t(·)}Tt=1 and are non-linear when the objective
is not quadratic. The other implicit distinction in this work is our
focus on finite-time analysis rather than asymptotic results.

From optimization perspective, our framework subsumes two
important classes of decentralized optimization in the literature:

1) Existing methods often consider time-invariant objectives (see
e.g. [15], [17], [24]). This is simply the special case where
ft(x) = f(x) and xt = x in (2).

2) Online algorithms deal with time-varying functions, but often
the network’s objective is to minimize the temporal average of
{ft(x)}Tt=1 over a fixed variable x (see e.g. [18], [19]). This
can be captured by our setup when xt = x in (2).

However, in the tracking problem, functions and comparator vari-
ables evolve simultaneously, i.e., the variables {xt}Tt=1 are not
constrained to be fixed in (2). Recall that x?t := argminx∈X ft(x)
is the minimizer of the global loss function at time t. Then, the
solution to problem (2) is simply

∑T
t=1 ft(x

?
t ). Denote by xi,t the

estimate of agent i for x?t at time t. To exhibit the online nature of
problem (2), we reformulate it using the notion of dynamic regret
as follows

RegdT =
1

n

n∑
i=1

T∑
t=1

ft(xi,t)−
T∑
t=1

ft(x
?
t ). (4)

Then, the objective is to minimize the dynamic regret above which
measures the gap between the online algorithm and its offline
version. Our performance bound shall exhibit the impact of system
noise, i.e., we want to prove a regret bound in terms of

‖vt‖ = ‖x?t+1 −Ax?t ‖ , (5)

which represents the deviation of the moving target with respect to
dynamics A. Note that generalizing the results to the linear time-
variant dynamics is straightforward, i.e., when A is replaced by At
in (1).

B. Technical Assumptions

To solve the multi-agent online optimization (4), we propose to
decentralize the Mirror Descent algorithm [14]. Mirror Descent has
been shown to be a powerful method in large-scale optimization by
using Bregman divergence in lieu of Euclidean distance in the pro-
jection step. Before defining Bregman divergence and elaborating
the algorithm, we start by stating a couple of standard assumptions
on loss functions and agents communication.

Assumption 1: For any i ∈ [n], the function fi,t(·) is Lipschitz
continuous on X with a uniform constant L. That is,

|fi,t(x)− fi,t(y)| ≤ L ‖x− y‖ ,

1In online optimization, the focus is not on distribution of data. Instead,
data is thought to be generated arbitrarily, and its effect is observed through
the loss functions [23].

3307



for any x, y ∈ X .
Assumption 2: The network is connected2, i.e., there exists a path

from any agent i ∈ [n] to any agent j ∈ [n]. Also, the matrix W
is symmetric and doubly stochastic with positive diagonal. That is,

n∑
i=1

[W ]ij =

n∑
j=1

[W ]ij = 1.

The connectivity constraint in Assumption 2 guarantees the infor-
mation flow in the network.

We now outline the notion of Bregman divergence, which is
critical in the development of Mirror Descent. Consider a compact,
convex set X , and let R : X → R denote a 1-strongly convex
function on X with respect to a norm ‖·‖. That is,

R(x) ≥ R(y) + 〈∇R(y), x− y〉+
1

2
‖x− y‖2 .

for any x, y ∈ X . Then, the Bregman divergence DR(·, ·) with
respect to the function R(·) is defined as follows:

DR(x, y) := R(x)−R(y)− 〈x− y,∇R(y)〉 .

The definition of the Bregman divergence and the strong convexity
of R(·) imply that

DR(x, y) ≥ 1

2
‖x− y‖2 , (6)

for any x, y ∈ X . Two famous examples of Bregman divergence are
the Euclidean distance and the Kullback-Leibler (KL) divergence
generated from R(x) = 1

2
‖x‖22 and R(x) =

∑d
i=1 x(i) log x(i)−

x(i), respectively.
Assumption 3: Let x and {yi}ni=1 be vectors in Rd. We assume

that the Bregman divergence satisfies the separate convexity in the
following sense

DR(x,

n∑
i=1

α(i)yi) ≤
n∑
i=1

α(i)DR(x, yi),

where α ∈ ∆n is on the n-dimensional simplex.
The assumption is satisfied for commonly used cases of Bregman
divergence. For instance, the Euclidean distance evidently respects
the condition. The KL-divergence also satisfies the constraint, and
we refer the reader to Theorem 6.4. in [25] for the proof.

Assumption 4: The Bregman divergence satisfies a Lipschitz
condition of the form

|DR(x, z)−DR(y, z)| ≤ K‖x− y‖,

for all x, y, z ∈ X .
When the function R is Lipschitz on X , the Lipschitz condition on
the Bregman divergence is automatically satisfied. Again, for the
Euclidean distance the assumption evidently holds. In the particular
case of KL divergence, the condition can be achieved via mixing a
uniform distribution to avoid the boundary (see e.g. [11] for more
comments on the assumption).

Assumption 5: The dynamics A is assumed to be non-expansive.
That is, the condition

DR
(
Ax,Ay

)
≤ DR

(
x, y
)
,

holds for all x, y ∈ X , and ‖A‖ ≤ 1.
The assumption postulates a natural constraint on the dynamics A:
it does not allow the effect of a poor estimation (at one step) to be
amplified as the algorithm moves forward.

2The setup is generalizable to when network connectivity changes over
time, and the communication matrix is time-varying.

C. Decentralized Tracking via Online Mirror Descent

We now propose our algorithm to solve the problem formulated
in terms of dynamic regret in (4). In our setting, agents observations
are gradients of the local losses. However, common in distributed
state estimation and tracking, these observations are noisy. Hence,
denoting the local gradient of agent i at time t by ∇i,t :=
∇fi,t(xi,t), the agent only receives ∇i,t representing the stochastic
gradient. The stochastic oracle that provides noisy gradients satisfies
the following constraints3

E
[
∇i,t

∣∣Ft−1

]
= ∇i,t ‖∇i,t‖∗ ≤ L, (7)

where Ft is the σ-field containing all information prior to the outset
of round t + 1. A commonly used model to generate stochastic
gradients satisfying (7) is an additive, bounded, zero-mean noise.
Agents then track the moving target using a decentralized variant
of Mirror Descent as follows4

x̂i,t+1 = argminx∈X
{
ηt 〈x,∇i,t〉+DR(x,yi,t)

}
, (8a)

xi,t = Ax̂i,t, and yi,t =
n∑
j=1

[W ]ijxj,t, (8b)

where {ηt}Tt=1 is the step-size sequence, and A ∈ Rd×d is the given
dynamics in (1) which is common knowledge. In these updates,
xi,t ∈ Rd represents the estimate of agent i of the moving target
x?t at time t. The step-size sequence should be tuned for different
cases, but it is generally non-increasing and positive.

The update (8a) allows an agent to follow the noisy local gradient
while keeping the estimate close to those of the local neighborhood.
This closeness occurs by minimizing the Bregman divergence. On
the other hand, the first update in (8b) takes into account the
dynamics of the moving target, and the second update in (8b) is the
consensus term averaging the estimates in the local neighborhood.

III. THEORETICAL RESULTS

In this section, we state our theoretical result on the non-
asymptotic performance of the decentralized online mirror descent
for tracking dynamic parameters. Theorem 1 proves a bound on the
dynamic regret, which captures the deviation of the moving target
from the dynamics A (tracking error), the decentralization cost
(network error), and the impact of stochastic gradients (stochastic
error). We show that this theorem recovers previous rates on
decentralized optimization once the tracking error is removed. Also,
it recovers previous rates on centralized online optimization in
dynamic setting when the network error is eliminated. The proof
can be found in the Appendix of [26].

Theorem 1: Consider a moving target x?t ∈ Rd with the dynam-
ical model of (1). Further consider the distributed, online tracking
problem formulated in (4), where xi,t denotes the local estimate of
agent i ∈ [n] of the moving target x?t at time t ∈ [T ]. Let the local
estimates be generated by updates (8a)-(8b), where the stochastic
gradients satisfy the condition (7). Given Assumptions [1-5], the
dynamic regret can be bounded as

RegdT ≤ ETrack + ENet + EStoch,

3For simplicity, we use one constant L to bound gradients as well as the
stochastic gradients.

4We set xi,t to be the vector of all zeros to initialize the algorithm. In
general, any initialization could work for the algorithm.
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with probability at least 1− δ, where

ETrack :=
2R2

ηT+1
+

T∑
t=1

K

ηt+1
‖x?t+1 −Ax?t ‖+ L2

T∑
t=1

ηt
2

ENet := 4L2√n
T∑
t=1

t−1∑
τ=0

ητσ
t−τ−1
2 (W )

EStoch := 8LR
√
−T log δ,

and R2 := supx,y∈X DR(x, y).
In view of (1), the dynamical model of the target is described with
the noise vt. The term ETrack shows the dependence of performance
bound to noise by aggregating the errors ‖x?t+1 −Ax?t ‖ = ‖vt‖
over time. Also, ENet and EStoch are the errors related to network
and stochastic gradients, respectively.

In Section II, we discussed that our setup generalizes some of the
previous results. It is now important to see that this generalization
is valid in the sense that our result can recover those special cases:
. When the global loss ft(x) = f(x) is time-invariant, the target
{x?t }Tt=1 is fixed, i.e., the dynamics A = Id and vt = 0 in (1).
In this case in Theorem 1, the term involving ‖x?t+1 −Ax?t ‖ in
ETrack is equal to zero, and we can use the step-size sequence
η =

√
(1− σ2(W ))/T to recover the result of comparable

algorithms, such as Theorem 4 in [17] on distributed dual
averaging.

. The same argument holds when the global loss is time-variant,
but the target is fixed. This setup is studied, for instance, in
[18] via distributed online dual averaging with exact gradients.
Disregarding EStoch in our bound due to stochastic gradients,
since ‖x?t+1 −Ax?t ‖ = 0 again, we recover Corollary 3 in
[18].

. When the graph is complete, σ2(W ) = 0 and hence ENet =
0. We then recover the results of [9] on centralized online
learning (for linear dynamics) with exact gradients once we
remove EStoch due to stochastic gradients.

IV. NUMERICAL EXPERIMENT: TRACKING MANEUVERING

TARGETS

In Mirror Descent algorithm, one has freedom over the selection
of the Bregman divergence. A particularly well-known type of Breg-
man is the Euclidean distance, commonly used in state estimation
and tracking dynamic parameters. We focus on this scenario in this
section to provide the numerical experiments for our method.

We consider a slowly maneuvering target in the 2D plane and
assume that each position component of the target evolves indepen-
dently according to a near constant velocity model [27]. The state
of the target at each time consists of four components: horizontal
position, vertical position, horizontal velocity, and vertical velocity.
We represent the state at time t by x?t ∈ R4, and therefore, the state
space model takes the form

x?t+1 = Ax?t + vt,

where vt ∈ R4 is the system noise, and using ⊗ for Kronecker
product, A can be written as

A = I2 ⊗
[
1 ε
0 1

]
,

with ε being the sampling interval5. The goal is to cooperatively
track x?t in a network of agents. This problem has been studied

5The sampling interval of ε (seconds) is equivalent to the sampling rate
of 1/ε (Hz).

in the context of distributed Kalman filtering [13], [28], state
estimation [29]–[31], and particle filtering [32]–[34]. However, in
contrast to Kalman filtering, we do not assume that the system
noise vt is Gaussian. Also, as opposed to particle filtering, we do
not receive a large number of samples (particles) per iteration since
our setup is online, i.e., agents only observe one sample per time.
Furthermore, we do not assume a statistical distribution on vt in our
analysis, which differentiates our framework from state estimation.
We adopt a model-free approach where the noise can be adversarial
(deterministic), stochastic with dependence over time, or of some
complex structure. We generate the noise as follows. At each time t
we draw a sample νt ∈ R4 from a zero-mean Gaussian distribution
with covariance matrix Σ as follows

Σ = σ2
νI2 ⊗

[
ε3/3 ε2/2
ε2/2 ε

]
,

for the sampling interval ε = 0.1 seconds which amounts to
frequency 10 Hz. Then, we let the system noise be vt = νt ‖νt‖∞.
Though νt is generated from Gaussian distribution, the mismatch
noise vt is non-Gaussian and can have a complicated distribution.
The constant σ2

ν takes different values in each experiment, and we
describe this choice later.

We consider a sensor network of n = 25 agents located on a
5×5 grid. Agents aim to track the moving target x?t collaboratively.
Agents observe a noisy version of the target through a local loss
function, and these observations are nonlinear. In particular, let the
quantity zi,t be a noisy version of one coordinate of x?t as follows

zi,t = e>kix
?
t + wi,t,

where wi,t ∈ R denotes a random noise, and ek is the k-th unit
vector in the standard basis of R4 for k ∈ {1, 2, 3, 4}. We partition
the agents into four groups, and for each group we select one
specific ki from the set {1, 2, 3, 4}. The random noise wi,t satisfies
the standard assumption of being zero-mean and finite-variance.
Again, to show that our results are not dependent on Gaussian
noise, we generate wi,t independently from a uniform distribution
on [−1, 1].

Then, at time t the local loss for agent i takes the form

fi,t(x) :=
1

4
E

[(
zi,t − e>kix

)4 ∣∣Ft−1, x
?
t

]
,

resulting in the global loss

ft(x) :=
1

4n

n∑
i=1

E

[(
zi,t − e>kix

)4 ∣∣Ft−1, x
?
t

]
,

where Ft−1 is the σ-field containing all information in {wi,s}t−1
s=1.

It is straightforward to see that x?t is the minimizer of the global
loss. Observation of agent i at time t is the stochastic gradient of
the local loss

∇fi,t(x) =
(
zi,t − e>kix

)3
eki .

We derive an explicit update to form an estimate xi,t of x?t . We use
Euclidean distance as the Bregman divergence in updates (8a)-(8b)
to get6

xi,t =

n∑
j=1

[W ]ijAxj,t−1 + ηtAeki
(
zi,t−1 − e>kixi,t−1

)3
,

6We assume that the state of the target remains in a convex, compact set,
and the updates can keep the estimate in the set without the projection step.
This assumption can be satisfied in the finite-time domain.
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Fig. 1. The plot of dynamic regret versus iterations. Naturally, when σ2
v

is smaller, the innovation noise added to the dynamics is smaller with high
probability, and the network incurs a lower dynamic regret. In this plot, the
dynamic regret is normalized by iterations, so the y-axis is RegdT /T .

and tune the step size to ηt = η = 0.1. The update is akin to
consensus+innovation updates in the literature (see e.g. [2], [7])
though we recall that the observation is nonlinear, and the system
noise vt is arbitrary.

It is proved in [7] that in decentralized tracking, the dynamic
regret can be presented in terms of the tracking error xi,t − x?t
when the local losses are quadratic. More specifically, the expected
dynamic regret averages the tracking error over space and time
(when normalized by T ). While here we deal with polynomial loss
of power four, the connection between tracking error and dynamic
regret still holds true. Therefore, using the result of Theorem 1
we can expect that once the parameter does not deviate too much
from the dynamics, i.e., when

∑T
t=1 ‖vt‖ is small, the bound on

the dynamic regret as well as the collective tracking error is small.
We show this intuitive idea by setting σ2

ν to different vaues.
Larger values for σ2

ν are expected to cause more deviations from
the dynamics A and larger dynamic regret (worse performance).
In Fig. 1, we plot the normalized dynamic regret for σ2

ν ∈
{0.25, 0.5, 0.75, 1}. Note that for each value of σ2

ν , we run the
experiment only once to investigate the high probability bound in
Theorem 1. As expected, the performance improves once σ2

v tends
to smaller values.

We next restrict our attention to the case that σ2
v = 0.5. For one

run of this case, we provide a snapshot of the target trajectory (in
red) in Fig. 2 and plot the estimator trajectory (in blue) for agents
i ∈ {1, 6, 12, 23}. Fig. 2 suggests that agents’ estimators closely
follow the trajectory of the moving target with high probability.

V. CONCLUSION

In this paper, we addressed tracking of a moving target in a
network of agents. The target follows a linear dynamics which is
common knowledge to agents, but it deviates from this dynamics
due to an additive noise of an unknown structure. We formulated
the problem as an online optimization of a global time-varying loss
in a distributed fashion. The global loss at each time is a sum of a
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Fig. 2. The trajectory of x?t over T = 1000 iterations is shown in red.
We also depict the trajectory of the estimator xi,t (shown in blue) for
i ∈ {1, 6, 12, 23} and observe that it closely follows x?t in every case.

finite number of local losses, and each agent in the network holds
a private copy of one local loss. Agents are unaware of the future
loss functions as the local losses only become available to them
sequentially. They exchange noisy local gradients with each other
to track the value of the target.

Our proposed algorithm for this setup can be cast as a de-
centralized version of Mirror Descent. We however incorporated
two more steps to include agents interactions and dynamics of the
target. We used a notion of network dynamic regret to measure the
performance of our algorithm versus its offline counterpart. We es-
tablished that the regret bound scales inversely in the spectral gap of
the network and captures the deviation of the target with respect to
the dynamics. Our results generalized a number of results in online
and offline distributed optimization. Also, numerical experiments
verified the applicability of our algorithm to multi-agent tracking
with nonlinear observations. Future directions include studying the
algorithm in the case that several observations are available per
round, i.e., when agents can receive multiple noisy gradients per
time. The method can be useful in the sensor networks where each
sensor can have multiple measurements from different sources.
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