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Abstract— This paper addresses the problem of distributed
detection in fixed and switching networks. A network of agents
observe partially informative signals about the unknown state
of the world. Hence, they collaborate with each other to
identify the true state. We propose an update rule building on
distributed, stochastic optimization methods. Our main focus is
on the finite-time analysis of the problem. For fixed networks, we
bring forward the notion of Kullback-Leibler cost to measure
the efficiency of the algorithm versus its centralized analog.
We bound the cost in terms of the network size, spectral gap
and relative entropy of agents’ signal structures. We further
consider the problem in random networks where the structure
is realized according to a stationary distribution. We then
prove that the convergence is exponentially fast (with high
probability), and the non-asymptotic rate scales inversely in the
spectral gap of the expected network.

I. INTRODUCTION

Distributed detection, estimation, prediction and optimiza-
tion has been an interesting subject of study in science
and engineering for so many years [1]–[6]. Decentralized
algorithms are ubiquitous in numerous scenarios ranging
from sensor and robot to social and economic networks
[7]–[10]. In these applications, a network of agents aim to
accomplish a team task for which they only have partial
knowledge. Therefore, they must communicate with each
other to benefit from local observations. In fact, the global
spread of information in the network is sufficient for agents
to achieve the network goal. In most of these schemes,
consensus protocols are employed to converge agents to a
common value [11], [12].

We would like to focus on the distributed detection prob-
lem in this work. The problem was first considered in the
case that each agent sends its private observations to a fusion
center [1], [2], [7]. The fusion center then faces a classical
hypothesis testing to make a decision over the value of the
parameter. While collecting data is decentralized in these
cases, the decision making part is done in a centralized
fashion.

Distributed detection has also been considered in works
where no fusion center is necessary [13]–[15]. These works
mostly focus on asymptotic analysis of the problem. Cattiv-
elli et al. [13] develop a fully distributed algorithm based on
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the connection of Neyman-Pearson detection and minimum-
variance estimation to tackle the problem. Jakovetić et al.
[14] propose a consensus+innovations algorithm for detec-
tion in the case of Gaussian observations. Their method pos-
sesses an asymptotic exponential error rate even under noisy
communication of agents. In [15], the consensus+innovations
method is extended to generic (non-Gaussian) observations
over random networks.

Another social learning model inspiring several works
in the literature is proposed by Jadbabaie et al. [16]. In
this model, a fixed true state or hypothesis is aimed to be
recovered by a network of agents. The state might be a
decision or opinion of an individual, the correct price of a
product or any quantity of interest. The state is assumed
to belong to a finite collection of states. Agents receive
a stream of private signals about the true state. However,
the signals do not provide enough information for agents
to detect the underlying state of the world. Hence, agents
engage in local interactions to compensate for their imperfect
knowledge about the states. Numerous works build on this
approach to study social learning and distributed detection
[17]–[19]. The focus of theses works is the asymptotic
behavior of the model. Though appealing in certain cases,
asymptotic analysis might not unveil all important parameters
for learning. Therefore, finite-time analysis of the problem is
also an interesting complementary direction to study.

Let us first provide more details on the asymptotic analysis
of the problem. The authors in [16] propose a non-Bayesian
update rule for social learning applications. Each individual
updates her Bayesian prior, and averages the result with
the opinion of her neighbors. Under mild technical assump-
tions, the authors prove that agents’ beliefs converge to a
delta distribution on the true state. The convergence occurs
exponentially fast and in almost sure sense. Shahrampour
and Jadbabaie [17] consider an optimization-based approach
to the problem, inspired by the work of Duchi et al. [20]
on distributed dual averaging. Their proposed update rule
is essentially a distributed stochastic optimization. They
establish that the sequence of beliefs is weakly consistent
(convergence in probability) when agents employ a gossip
communication protocol. A communication-efficient variant
of the problem is considered in [19] in which agents switch
between Bayesian and non-Bayesian regimes to detect the
true state. Furthermore, Lalitha et al. [18] develop a strategy
where agents perform a Bayesian update, and geometrically
average the posteriors in their local neighborhood. The au-
thors then provide the convergence and rate analysis of their
method. In [16]–[19], the convergence occurs exponentially
fast, and the asymptotic rate is characterized via the relative
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entropy of individuals’ signal structures and their eigenvector
centralities (in directed networks).

The asymptotic analysis presented in the works above only
characterizes the dominant factors in the long run. In real
world applications, however, the decision has to be made
in a finite time horizon. Hence, it is important to study the
finite-time version of the problem to understand the role of
network parameters in detection quality. Serving this goal,
the works of [21]–[23] study the non-asymptotic problem.
While the network structure in [21] is assumed to be fixed,
the works of [22], [23] address switching protocols that are
deterministic.

In this paper we build on the results of [21] to extend our
setup to random networks. For fixed networks, we define the
notion of Kullback-Leibler (KL) cost to compare the perfor-
mance of distributed setting to its centralized counterpart. We
provide an upper bound on the cost in terms of the spectral
gap of the network. Our cost bound is independent of time
with high probability. We further consider the stochastic
communication setting in which the structure is realized
randomly at each iteration. We prove that in this case, the rate
scales inversely in the spectral gap of the expected network.
Our result also guarantees the almost sure learning in random
networks.

The rest of the paper is organized as follows: we formalize
the notation, problem and the distributed detection scheme in
Section II. Section III is devoted to the finite-time analysis of
the problem. We consider both fixed and switching network
topologies and provide non-asymptotic results. Section IV
provides the concluding remarks, and proofs are included in
the Appendix.

II. THE PROBLEM DESCRIPTION AND ALGORITHM

A. Notation
We use the following notation throughout the paper:

[n] The set {1, 2, ..., n} for any integer n
x> Transpose of the vector x
x(k) The k-th element of vector x
ek Delta distribution on k-th component
1 Vector of all ones

‖µ− π‖TV Total variation distance between µ, π ∈ ∆m

DKL(µ‖π) KL-divergence of π ∈ ∆m from µ ∈ ∆m

σi(W ) The i-th largest singular value of matrix W

Furthermore, all the vectors are assumed to be in column
format.

B. Observation Model

We consider a setting in which Θ = {θ1, θ2, . . . , θm}
denotes a finite set of states of the world. A network of
n agents seek the unique, true state of the world θ1 ∈ Θ
(unknown of the problem). At each time t ∈ [T ], the
belief of agent i is represented by µi,t ∈ ∆m, where ∆m

is a probability distribution over the set Θ. For instance,
µi,0 ∈ ∆m denotes the prior belief of agent i ∈ [n] about
the states of the world, and it is assumed to be uniform1.

1The assumption of uniform prior only avoids notational clutter. The
analysis in the paper holds for any prior with full support.

The detection model is defined with a conditional like-
lihood function `(·|θk) parametrized by some state of the
world θk ∈ Θ. For each i ∈ [n], `i(·|θk) denotes the i-
th marginal of `(·|θk), and we use the vector representation
`i(·|θ) = [`i(·|θ1), ..., `i(·|θm)]> to stack all states. At each
time t ∈ [T ], the signal st = (s1,t, s2,t, . . . , sn,t) ∈ S1 ×
· · ·×Sn is generated based on the true state θ1. As a result,
for each i ∈ [n], the signal si,t ∈ Si is a sample drawn from
the likelihood `(·|θ1) where Si is the sample space.

The signals are i.i.d. over time horizon, and also the
marginals are independent across agents, i.e., `(·|θk) =
Πn
i=1`i(·|θk) for any k ∈ [m]. For simplicity, we define

the log-marginal ψi,t := log `i(si,t|θ) which is a sample
corresponding to Ψi := log `i(·|θ) for any i ∈ [n].

A1. We assume that all log-marginals are uniformly
bounded such that ‖ψi,t‖∞ ≤ B for any si,t ∈ Si,
i.e., we have | log `i(·|θk)| ≤ B for any i ∈ [n] and
k ∈ [m].

Based on assumption A1, every private signal has bounded
information content [24]. This bound can be found, for
instance, when the signal space is discrete and provides a full
support for distribution. Let us define Θ̄i as the set of states
that are observationally equivalent to θ1 for agent i ∈ [n]; in
other words, Θ̄i = {θk ∈ Θ : `i(si|θk) = `i(si|θ1) ∀si ∈
Si} almost surely with respect to the signal space. As evident
from the definition, any state θk 6= θ1 in the set Θ̄i is not
distinguishable from the true state by observation of samples
from the i-th marginal. Let Θ̄ = ∩ni=1Θ̄i be the set of
states that are observationally equivalent to θ1 from all agents
perspective.

A2. We assume that no state in the world is obser-
vationally equivalent to the true state from the
standpoint of the network, i.e., the true state is
globally identifiable, and we have Θ̄ = {θ1}.

Assumption A2 guarantees that agents can benefit from
collaboration with each other. In other words, for any false
state θk 6= θ1, there must exist an agent who is able to
distinguish θ1 from θk.

Finally, the operator ES [·] denotes the expectation with
respect to signal space throughout the paper.

C. Network Model

Private signals are not informative enough for agents, so
they interact with each other to learn the true state of the
world. For any time t ∈ [T ], the graph Gt = ([n], Et)
captures the network structure, i.e. [n] is the set of nodes
corresponding to agents (n > 1), and Et is the set of
edges for that particular round. Agent i receives information
from j only if the pair (i, j) ∈ Et. We also define the
neighborhood of agent i at any time t ∈ [T ] as Ni,t :=
{j ∈ [n] : (i, j) ∈ Et}. We represent by [W (t)]ii > 0 the
self-reliance of agent i at time t, and by [W (t)]ij > 0
the weight that agent i assigns to information received from
agent j in round t. The matrix W (t) is then defined such
that [W (t)]ij denotes the entry in its i-th row and j-th
column. By construction, W (t) has nonnegative entries, and
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[W (t)]ij > 0 only if (i, j) ∈ Et. We further assume that
W (t) is doubly stochastic and symmetric; hence,

W (t)> = W (t)

n∑
j=1

[W (t)]ij =
∑
j∈Ni,t

[W (t)]ij = 1.

To form the network structure, W (t) is drawn independently
over time from a stationary distribution W , i.e. the elements
of the sequence {W (t)}Tt=1 are i.i.d. samples. Note impor-
tantly that the source of randomness is independent of signal
space. We distinguish any expectation with respect to the
network randomness from signal space using EW [·].

A3. The network is connected in expectation sense.
That is, for matrix W = EW [W (t)] there exists
a bidirectional path from any agent i ∈ [n] to any
agent j ∈ [n].

The assumption guarantees that (in expectation sense) infor-
mation can be propagated properly throughout the network.
It further implies that σ1(W ) = 1 is unique, and the other
singular values of W are strictly less than one in magnitude
[25]. Since the matrix W is symmetric, each agent in the
network is equally central, and

1>W = 1.

Therefore, 1/n is the stationary distribution of W . Assump-
tion A3 entails that the Markov chain W is irreducible and
aperiodic [25].

A well-known example of the communication protocol
detailed above is gossip algorithm. The communication pro-
tocol works based on a Poisson clock. Once the clock ticks,
an agent from the set [n] is picked uniformly at random.
The agent then selects a neighboring agent (with respect to a
fixed, predefined structure) at random, and they average their
information. For a thorough review of gossip algorithms we
refer the interested reader to [26].

D. Centralized vs. Decentralized Detection

Decentralized detection is constructed based on its cen-
tralized analog. In the centralized scenario there is only one
agent in the world (no network exists), and the agent has
global information to learn the true state. In other words,
the agent has full access to the sequence of signals {st}Tt=1.
At any round t ∈ [T ], the agent accumulates an empirical av-
erage of log-marginals, and forms the belief µt ∈ ∆m about
the states, where ∆m = {µ ∈ Rm | µ � 0,

∑m
k=1 µ(k) = 1}

denotes the m-dimensional probability simplex. Defining

ψt :=
1

n

n∑
i=1

ψi,t =
1

n

n∑
i=1

log `i(si,t|θ), (1)

the following updates capture the centralized detection

φt = φt−1 + ψt , µt(k) =
exp{ηφt(k)}∑m
z=1 exp{ηφt(z)}

. (2)

It can be seen from above that the centralized detector
aggregates a geometric average of marginals in φt. The
parameter η is called the learning rate.

One can prove that (see e.g. [21]) the following inequality
holds

E

[
n∑
i=1

Ψi(k)

]
= E

[
n∑
i=1

log `i(·|θk)

]

< E

[
n∑
i=1

log `i(·|θ1)

]
= E

[
n∑
i=1

Ψi(1)

]
,

for any k 6= 1, due to uniqueness of the true state θ1
(assumption A2). In what follows, without loss of generality,
we assume the following descending order, i.e.

E

[
n∑
i=1

Ψi(1)

]
> E

[
n∑
i=1

Ψi(2)

]
≥ · · · ≥ E

[
n∑
i=1

Ψi(m)

]
,

(3)

The assumption will only help us to simplify the derivation
of technical results.

We now describe the distributed setting which involves a
network of agents. In this scenario, each agent i ∈ [n] only
receives a stream of private signals {si,t}Tt=1 generated based
on the parametrized likelihood `i(·|θ1). Therefore, agent i ∈
[n] does not directly observe sj,t for any j 6= i. In other
words, the agent collects local information by calculating
a weighted average of log-likelihoods in its neighborhood.
Then, the agent forms the belief µi,t ∈ ∆m at round t ∈ [T ]
as follows:

φi,t =
∑
j∈Ni,t

[W (t)]ijφj,t−1 + ψi,t

µi,t(k) =
exp{ηφi,t(k)}∑m
z=1 exp{ηφi,t(z)}

. (4)

As depicted above, each agent updates its belief using
purely local diffusion. Let us distinguish the centralized
and decentralized detector more specifically. The centralized
detector collects all log-marginals, whereas the decentral-
ized detector receives private log-marginals, and collects a
weighted average of local information. Regardless of the
information collection part, both algorithms are special cases
of the well-known Exponential Weights algorithm.

It can be verified (see e.g. [17]) that the closed-form
solution of φi,t in the decentralized update (4) is as follows

φi,t =

t∑
τ=1

n∑
j=1

[
t−1−τ∏
ρ=0

W (t− ρ)

]
ij

ψj,τ ,

for any i ∈ [n]. One can also combine above with (1) and
(2) to observe that

1

n

n∑
i=1

φi,t =
1

n

t∑
τ=1

n∑
j=1

n∑
i=1

[
t−1−τ∏
ρ=0

W (t− ρ)

]
ij

ψj,τ

=
1

n

t∑
τ=1

n∑
j=1

ψj,τ = φt,

since product of doubly stochastic matrices remains doubly
stochastic. The identity above draws the connection between
centralized and decentralized updates.
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III. FINITE-TIME ANALYSIS

In this section, we provide our technical results. We first
specialize the problem to fixed network structures, and then
consider switching topologies, and prove non-asymptotic
results for convergence of beliefs.

A. Fixed Network Topology

One can investigate the convergence of beliefs in fixed
networks; however, we present a more general result in
this section. We measure the efficiency of the distributed
algorithm versus its centralized counterpart using the notion
of decentralization cost. Throughout this section we assume
that W (t) = W with probability one for all t ∈ [T ].

At any round t ∈ [T ] , we quantify the cost which agent
i ∈ [n] needs to pay to have the same opinion as a centralized
agent with DKL(µi,t‖µt); then, the agent suffers a total
decentralization cost of

Costi,T :=

T∑
t=1

DKL(µi,t‖µt), (5)

after T rounds. In general, the KL-divergence measures the
dissimilarity of two probability distributions; hence, it could
be a reasonable metric to capture the difference between two
algorithms as they both output a probability distribution over
state space.

More formally, the cost quantifies the difference between
a decentralized agent that observes private signals {si,t}Tt=1

and a centralized agent that has {st}Tt=1 available. In other
words, it shows how well the decentralized algorithm copes
with the partial information. It is important to note that
Costi,T is still a random quantity as it depends on signals.
Our goal is to find a bound on the cost in the high probability
sense.

The connectivity of network plays an important role in the
learning as W t → 1

n11> as t → ∞. We shall see that the
cost bound is governed by the mixture behavior of Markov
chain W . We now present the main result of this section in
the following theorem. The proof can be found in [21].

Theorem 1: Let the sequence of beliefs {µi,t}Tt=1 for each
agent i ∈ [n] be generated by the Distributed Detection
algorithm with the choice of learning rate η = 1−σ2(W )

16B logn .
Given bounded log-marginals (assumption A1), global iden-
tifiability of the true state (assumption A2), and connectivity
of the network (assumption A3 with W (t) = W a.e.), we
have

Costi,T ≤
18B2

I2(θ1, θ2)
max

{
log

6m

δ
,

3B
√

2

I(θ1, θ2)

}
+

48B log n

I(θ1, θ2)

logm+ 2

1− λmax(W )
,

with probability at least 1− δ.
We remark that the special choice of learning rate only
simplifies the bound. We do not tune the learning rate for
optimization purposes; otherwise, using the same η for both
algorithms would not provide a fair comparison. One can also
work with η = 1 for both algorithms, and derive a bound

which looks slightly more complicated than the bound in
Theorem 1.

The dependence of bound to the inverse of I(θ1, θ2)
is quite natural since it can be seen as the asymptotic
convergence rate of beliefs (see e.g. [17]–[19]). It simply
means that when observations under θ2 (the second likeliest
state) are as likely as observations under θ1 (the true state),
the cost of the algorithm increases. Intuitively, when signals
hardly reveal the difference between the best two candidates
for the true state, agents must spend more effort to discern
the two. Hence, this results in suffering a larger cost caused
by slower learning rate.

The cost scales logarithmically with the network size n
and the number of states m. It further scales inversely in

γ(W ) := 1− σ2(W ),

defined as the spectral gap of the network. Interestingly, in
a fixed network, the detection cost is time-independent (with
high probability), showing the best behavior with respect to
time. Therefore, the average expected cost (per iteration cost)
asymptotically tends to zero. We finally indicate that depen-
dence of the bound to σ2(W ) is important from network
design perspective [21].

B. Switching Network Topology

In this section, we investigate the convergence of agents’
beliefs in time-varying networks. As described in Section II-
C, at every time t the network structure is realized with a
random matrix W (t). Agents then communicate with each
other following W (t). We assume that the matrix is gener-
ated from a stationary distribution, and therefore, we have
EW [W (t)] = W for all t ∈ [T ]. Assumption A3 guarantees
that the network is connected in expectation sense. We show
that even in time-varying networks the mixture behavior of
W (expected network) affects convergence of beliefs with
high probability.

We now establish that agents have arbitrarily close opin-
ions in a network that is connected in expectation sense.
The following proposition proves that the convergence rate
is governed by relative entropy of signals and network
characteristics.

Proposition 2: Let the sequence of beliefs {µi,t}Tt=1 for
each agent i ∈ [n] be generated by the Distributed Detection
algorithm (4) with the learning rate η = 1. Given bounded
log-marginals (assumption A1), global identifiability of the
true state (assumption A2), and connectivity of the expected
network (assumption A3), for each individual agent i ∈ [n]
it holds that

log ‖µi,t − e1‖TV ≤ −I(θ1, θ2)t+

√
2B2t log

m

δ

+
8B log n

1− σ2(W )
+ logm,

with probability at least 1− δ, where for k ≥ 2

I(θ1, θk) :=
1

n

n∑
i=1

DKL(`i(·|θ1)‖`i(·|θk)).
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The proposition provides an anytime bound on the log-
distance in the high probability sense. It also verifies that the
belief µi,t of each agent i ∈ [n] is strongly consistent, i.e.,
it converges almost surely to a delta distribution on the true
state. It is evident that the dominant term (asymptotic rate)
depends on relative entropy of signals through I(θ1, θ2). This
is consistent with previous asymptotic results found in [17]–
[19] for other updates similar to our update. Proposition 2
complements those results by providing a non-asymptotic
convergence rate. Finally, the inverse scaling with spectral
gap also remains in effect (for expected network) similar to
the case of fixed topologies.

IV. CONCLUSION

We considered the distributed detection problem in fixed
and switching network topologies. A network of agents
observe a stream of private signals which do not provide
enough information about the true state of the world. There-
fore, agents must communicate with each other to augment
their imperfect knowledge with local observations. Iteratively
forming a belief about the states, each agent uses purely local
diffusion to update itself. We analyzed the detection problem
in finite-time domain. We first specialized to the case of fixed
networks, and study the efficiency of our algorithm versus its
centralized analog. We introduced a KL cost to measure the
dissimilarity of the two algorithms, and bounded the cost
in terms of relative entropy of signals, network size and
spectral gap. We further extended our results to switching
network topologies. We investigated convergence of beliefs,
and provided an anytime bound on the detection error in the
high probability sense. In this case, the spectral gap of the
expected network proves to be crucial in convergence rate.
As a future direction, we would like to consider the scenario
where the signal distribution is not stationary. Studying
drifting distributions allows us to examine the robustness of
detection in dynamic framework.

APPENDIX : OMITTED PROOFS

We use McDiarmid’s inequality in Lemma 3 for the proof
of Proposition 2.
Proof of Proposition 2. Letting η = 1 in (4), we write

µi,t(1) =
exp {φi,t(1)}∑m
k=1 exp {φi,t(k)}

=

(
1 +

m∑
k=2

exp {φi,t(k)− φi,t(1)}

)−1

≥ 1−
m∑
k=2

exp {φi,t(k)− φi,t(1)} , (6)

using the simple inequality that (1 + x)−1 ≥ 1− x for any
x ≥ 0. Since we know

‖µi,t − e1‖TV =
1

2

(
1− µi,t(1) +

m∑
k=2

µi,t(k)

)
= 1− µi,t(1),

we can combine above with (6) to get

‖µi,t − e1‖TV ≤
m∑
k=2

exp {φi,t(k)− φi,t(1)} . (7)

For any k ∈ [m], define

Φi,t(k) :=

t∑
τ=1

n∑
j=1

[
t−1−τ∏
ρ=0

W (t− ρ)

]
ij

log `j(·|θk),

and note that given {W (τ)}tτ=1, Φi,t(k) is a function of
nt random variables {si,τ}tτ=1 for all i ∈ [n]. To use
McDiarmid’s inequality in Lemma 3, set H = Φi,t(k) −
Φi,t(1), fix the samples for nt − 1 random variables, and
draw two different samples sj,τ and s′j,τ for some j ∈ [n]
and some τ ∈ [t]. The fixed samples are simply cancelled in
the subtraction, and we derive

|H(..., sj,τ , ...)−H(..., s′j,τ , ...)|

=

[
t−1−τ∏
ρ=0

W (t− ρ)

]
ij

∣∣∣∣log
`j(sj,τ |θk)

`j(sj,τ |θ1)
− log

`j(s
′
j,τ |θk)

`j(s′j,τ |θ1)

∣∣∣∣
≤

[
t−1−τ∏
ρ=0

W (t− ρ)

]
ij

2B,

where we applied assumption A1. Since the product of dou-
bly stochastic matrices remains doubly stochastic, summing
over j ∈ [n] and τ ∈ [t], we obtain

t∑
τ=1

n∑
j=1

[t−1−τ∏
ρ=0

W (t− ρ)

]
ij

2B

2

≤ 4B2t.

Let us define the event A as

A :=
{
φi,t(k)− φi,t(1) > E [Φi,t(k)− Φi,t(1)] + ε

}
,

where E[·] is expectation over all sources of randomness
(signals and network structures). We then have

P(A) = EW
[
P
(
A
∣∣{W (τ)}tτ=1

)]
,

where the expectation EW [·] is taken with respect to net-
work randomness. We now apply McDiarmid’s inequality in
Lemma 3 to obtain

P
(
A
∣∣{W (τ)}tτ=1

)
≤ exp

{
−ε2

2B2t

}
,

for each fixed k. Letting the probability above equal to δ/m
and taking a union bound over k ∈ [m], the following event
(AC) holds (given {W (τ)}tτ=1)

φi,t(k)− φi,t(1) ≤ E [Φi,t(k)− Φi,t(1)] +

√
2B2t log

m

δ
,

(8)

simultaneously for all k = 2, ...,m, with probability at least
1− δ, which implies

P(AC) = EW
[
P
(
AC
∣∣{W (τ)}tτ=1

)]
≥ 1− δ.

On the other hand, in view of assumption A1 and the fact
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that EW [W (t)] = W for all t, we have

E [Φi,t(k)− Φi,t(1)]

=

t∑
τ=1

n∑
j=1

[
W t−τ ]

ij
ES [log `j(·|θk)− log `j(·|θ1)]

=

t∑
τ=1

n∑
j=1

([
W t−τ ]

ij
− 1

n

)
ES [log `j(·|θk)− log `j(·|θ1)]

+
1

n

t∑
τ=1

n∑
j=1

ES [log `j(·|θk)− log `j(·|θ1)]

≤ 2B

t∑
τ=1

n∑
j=1

∣∣∣∣[W t−τ ]
ij
− 1

n

∣∣∣∣
− t

n

n∑
j=1

DKL (`j(·|θ1)‖`j(·|θk))

= 2B

t∑
τ=1

n∑
j=1

∣∣∣∣[W t−τ ]
ij
− 1

n

∣∣∣∣− I(θ1, θk)t

≤ 8B log n

1− σ2(W )
− I(θ1, θk)t,

where we applied Lemma 2 in [21] to derive the last step.
Using (3), we simplify above to get

E [Φi,t(k)− Φi,t(1)] ≤ 8B log n

1− σ2(W )
− I(θ1, θ2)t, (9)

for any k = 2, ...,m. Substituting (9) into (8) and combining
with (7), we have

‖µi,t − e1‖TV

≤
m∑
k=2

exp

{
−I(θ1, θ2)t+

√
2B2t log

m

δ
+

8B logn

1− σ2(W )

}
≤ m exp

{
−I(θ1, θ2)t+

√
2B2t log

m

δ
+

8B logn

1− σ2(W )

}
,

with probability at least 1− δ, and the proof is completed.�

Lemma 3: (McDiarmid’s Inequality) Let X1, ..., XN ∈
χ be independent random variables and consider the mapping
H : χN 7→ R. If for i ∈ {1, ..., N}, and every sample
x1, ..., xN , x

′
i ∈ χ, the function H satisfies

|H(x1, ..., xi, ..., xN )−H(x1, ..., x
′
i, ..., xN )| ≤ ci,

then for all ε > 0,

P

{
H(x1, ..., xN )− E [H(X1, ..., XN )] ≥ ε

}
≤ exp

{
−2ε2∑N
i=1 c

2
i

}
.
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