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Abstract—We consider a network of agents that aim to learn
some unknown state of the world using private observations
and exchange of beliefs. At each time, agents observe private
signals generated based on the true unknown state. Each agent
might not be able to distinguish the true state based only
on her private observations. This occurs when some other
states are observationally equivalent to the true state from the
agent’s perspective. To overcome this shortcoming, agents must
communicate with each other to benefit from local observations.
We propose a model where each agent selects one of her neighbors
randomly at each time. Then, she refines her opinion using her
private signal and the prior of that particular neighbor. The
proposed rule can be thought of as a Bayesian agent who cannot
recall the priors based on which other agents make inferences.
This learning without recall approach preserves some aspects
of the Bayesian inference while being computationally tractable.
By establishing a correspondence with a random walk on the
network graph, we prove that under the described protocol,
agents learn the truth exponentially fast in the almost sure sense.
The asymptotic rate is expressed as the sum of the relative
entropies between the signal structures of every agent weighted
by the stationary distribution of the random walk.

I. INTRODUCTION & BACKGROUND

Distributed estimation and detection problems have been
interesting subject of study in a variety of disciplines, rang-
ing from control theory to statistics, economics, and signal
processing [1]–[8]. In the distributed detection problem, each
agent observes a sequence of independent and identically
distributed (i.i.d.) private signals generated according to the
true (unknown) state. Suppose that each agent forms a belief
about the true state, represented by a discrete probability
distribution over a finite state space, and sequentially performs
the Bayes’ rule to her observations at each step. It is well-
known [9], [10] that the beliefs formed in the above manner
constitute a bounded martingale and converge to a limiting
distribution as the number of observations tends to infinity.
However, the limiting distribution is not necessarily concen-
trated on the truth, in which case the agent fails to learn
the true state asymptotically. In fact, in many scenarios, the
agent faces an identification problem where there are states
(other than the true state) that are observationally equivalent
to the true state. In other words, these states induce the same
distribution on her sequence of privately observed signals.
Therefore, rational agents communicate in a social network
to distinguish the truth by relying on local observations. This
leads to the problem of social learning that is a classical focus
of behavioral microeconomic theory [11], [12], also studied
in the context of distributed estimation and statistical learning
theory [1], [13].
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On the other hand, sequentially applying Bayes’ rule in
networks can become computationally intractable since the
global network structure is not available to individuals. This
origins from the fact that agents should use their local data
that is increasing with time, and infer about the global signal
structure. Therefore, the analysis of rational behavior in net-
works is an important problem in Bayesian economics, and
has attracted a considerable attention [14], [15]. On the other
side of the spectrum lie the works such as [16]–[19] which
aim to study the problem of learning in networks via iterative
applications of non-Bayesian rules. These updates provide the
asymptotic properties of learning and consensus under certain
conditions. More recently, some works (e.g. see [20], [21])
have also provided the non-asymptotic analysis of the problem.

In this paper, we study a distributed learning model where
each agent observes a sequence of independent and identically
distributed private signals. The structure of the network (which
we assume to be strongly connected) is preset in the sense that
all agents know their local neighborhood before the learning
process. However, they do not necessarily contact all their
neighbors every time. At every epoch of time, each agent
randomly selects one neighbor, and uses her neighbor’s prior
(rather than herself) in the form of the Bayes’ update together
with her private signal at that instant of time. This can be
seen as a learning without recall rule where agents randomly
pick their priors from their local neighborhood. Intuitively,
asymptotic learning occurs since each agent performs a ran-
dom walk over a strongly connected graph and picks up
the privately observed signals of the nodes as they are hit
by the random walk. We show that the learning rate for
such an agent is exponentially fast with an asymptotic rate
that can be expressed as the weighted sum of the relative
entropies between the likelihood structures of each agent
under various states of the world, and the weights are the
their probabilities in the stationary distribution of the random
walk. In many distributed learning models over random and
switching networks, agents must have positive self-reliant at
any time. One can observe this condition, for instance, in
gossip algorithms [22] and ergodic stationary processes [23].
An interesting and subtle point in our communication structure
is the relaxation of this condition, as our agents rely entirely
on the beliefs of their neighbors every time that they select
a neighbor to gossip with. Moreover, unlike the majority of
results that rely on the convergence properties of products of
stochastic matrices and are applicable only to irreducible and
aperiodic communication matrices, cf. [24, Proporition 1]; our
results do not require the transition probability matrix to be
aperiodic. This is because our proof of convergence relies on
the ergodic theorem for the almost-sure convergence of the
long-run fraction of time that is spent in any state of a Markov
chain; and it holds true for any irreducible, positive-recurrent
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chain, and in particular any irreducible, finite-state chain [25,
Theorem 1.5.6]. It is further true that such a chain has a unique
stationary distribution [25, Theorem 1.7.7], which we use to
characterize the almost-sure exponentially fast asymptotic rate
of convergence under our proposed distributed learning model.

The remainder of this paper is organized as follows. The
modeling and formulation are set forth in Section II, where
we present the signal and belief structures and their evolution.
We end section II by a description of learning without recall
updates in sparse structures where the neighborhood of each
agent has at most one node. Next in Section III we show
how the preceding updates can be used even when the agents’
neighborhood are not singletons. This achieved by imple-
menting a gossip-like procedure where a single neighbors is
chosen randomly at every time-step and communications are
performed with only one neighbor at a time. We study the
properties of convergence and learning under this procedure
and show a correspondence with random walks on directed
graphs that simplifies our analysis. An illustration is provided
at the end of Section III, and the paper is concluded by
Section IV.

II. THE MODEL

Notation: Throughout the paper, R is the set of real
numbers, N denotes the set of all natural numbers, and
W = N ∪ {0}. For n ∈ N a fixed integer the set of
integers {1, 2, . . . , n} is denoted by [n], while any other set is
represented by a calligraphic capital letter. The cardinality of
a set X , which is the number of its elements, is denoted by
| X |, and P(X ) = {M;M ⊂ X} denotes the power-set of
X , which is the set of all its subsets. The difference of two
sets X and Y is defined by XKY := {x;x ∈ X and x /∈ Y}.
Boldface letters denote random variables.

We consider a network of n agents that interact according
to a directed graph G = ([n], E), where E ⊂ [n]× [n] is the set
of directed edges. Each agent is labeled with an element of
the set [n]. N (i) = {j ∈ [n]; (j, i) ∈ E} is the neighborhood
of agent i which is the set of all agents whose beliefs can be
observed by agent i. We let deg(i) =| N (i) | be the degree
of node i corresponding to the number of agent i’s neighbors.

The Environment: We denote by Θ the set of states of the
world which has a finite cardinality. Also, ∆Θ represents the
space of all probability measures on the set Θ. Each agent’s
goal is to decide amongst the finitely many possibilities in the
state space Θ. A random variable θ is chosen randomly from Θ
by the nature and according to the probability measure ν(·) ∈
∆Θ, which satisfies ν(θ̂) > 0,∀θ̂ ∈ Θ and is referred to as
the common prior. For each agent i, there exists a finite signal
space denoted by Si, and given θ, `i(· | θ) is a probability
measure on Si, which is referred to as the signal structure
or likelihood function of agent i. Furthermore, (Ω,F ,P) is a
probability triplet, where

Ω = Θ×

∏
i∈[n]

Si

W

,

is an infinite product space with a general element ω =
(θ; (s1,0, . . . , sn,0), (s1,1, . . . , sn,1), . . .) and the associated
sigma field F = P(Ω). P(·) is the probability measure on Ω
which assigns probabilities consistently with the common prior
ν(·) and the likelihood functions `i(· | θ), i ∈ [n]. Conditioned
on θ, the random vectors {(s1,t, . . . , sn,t), t ∈ W} are inde-
pendent. E{·} is the expectation operator, which represents
integration with respect to dP(ω).

Signals: Let t ∈ W denote the time index and for each
agent i, define {si,t, t ∈W} to be a sequence of independent
and identically distributed random variables with the proba-
bility mass function `i(· | θ); this sequence represents the
private observations made by agent i at each time period t.
The privately observed signals are independent and identically
distributed over time, but they could be correlated across the
agents.

Beliefs: We let µi,t(·) represent the opinion or belief at
time t of agent i about the realized value of θ. In other words,
µi,t(·) is a probability distribution on the set Θ at any time
t formed by agent i. Note the randomness of µi,t(·) due to
its dependence on the random observations of the agent. The
goal is to study asymptotic learning, i.e. for each agent to
learn the true realized value θ ∈ Θ of θ asymptotically. This
amounts to having µi,t(·) converge to a point mass centered
at θ, where the convergence could be in probability or in the
stronger almost sure sense that we use in this work.

At t = 0 the value θ = θ is selected by nature. Followed by
that, si,0 for each i ∈ [n] is realized and observed by agent i.
Then the agent forms an initial Bayesian opinion µi,0(·) about
the value of θ. Given si,0, and using the Bayes’ rule for each
agent i ∈ [n], the initial belief in terms of the observed signal
si,0 is given by:

µi,0(θ̂) =
ν(θ̂)`i(si,0 | θ̂)∑

θ̃∈Θ

ν(θ̃)`i(si,0 | θ̃)
.

Afterwards, at any time t each agent i observes the realized
value of si,t as well as the current belief of one of her
neighbors µk,t−1(·), where k is selected randomly from N (i).
She then forms a refined opinion µi,t(·) by incorporating all
the data that have been made available to her by the time t.
We elaborate on the update rule in the following.

III. COMBINED GOSSIP AND WITHOUT RECALL UPDATES:
SIGNALS PICKED UP IN A RANDOM WALK

Consider a digraph G satisfying deg(i) ∈ {0, 1},∀i ∈ [n].
For this class of networks which include directed circles and
rooted trees in [26], [27], the authors propose to use the
Bayesian update

µi,t(θ̂) =
µi,t−1(θ̂)`i(si,t | θ̂)∑

θ̃∈Θ

µi,t−1(θ̃)`i(si,t | θ̃)
,∀θ̂ ∈ Θ, (1)
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if deg(i) = 0; and else to use

µi,t(θ̂) =
µj,t−1(θ̂)`i(si,t | θ̂)∑

θ̃∈Θ

µj,t−1(θ̃)`i(si,t | θ̃)
,∀θ̂ ∈ Θ, (2)

where j ∈ [n] is the unique vertex j ∈ N (i). These updates
are a special case of the Learning without Recall rules that
are developed in a companion paper, and they can describe
the behavior of Rational but Memoryless agents who share
a common prior ν(·) and always interpret their current and
observed beliefs as having stemmed from this common prior,
thus ignoring their entire history of past observations.

Here we propose the application of the Learning without
Recall updates that we described in the previous section to
general networks, by requiring that at every time step t, node
i make a random choice from her set of neighbors N (i)
and uses that choice for the unique j in (2). To this end,
let σt ∈ Πi∈[n]N (i), t ∈ N be a sequence of independent
and identically distributed random vectors such that ∀t ∈ N,
σt,i ∈ N (i) is that neighbor of i which she chooses to
communicate with at time t. Hence, for all t and any i, (2)
becomes

µi,t(θ̂) =
µ

σt,i
,t−1(θ̂)`i(si,t | θ̂)∑

θ̃∈Θ

µ
σt,i

,t−1(θ̃)`i(si,t | θ̃)
,∀θ̂ ∈ Θ. (3)

To proceed, annex the random choice of neighbors for every
node i ∈ [n] and all times t ∈ N to the original probability
space (Ω,F ,P) specified in Section II; and for t ∈ N arbitrary,
let P{σt,i = j} = pi,j > 0. Wherefore,

∑
j∈N (i) pi,j = 1 −

pi,i ≤ 1, and pi,j = 0 whenever j 6∈ N (i) ∪ {i}. Let P be
the row stochastic matrix whose (i, j)-th entry is equal to pi,j .
Let 1{σt,i=j} = 1 if σt,i = j and 1{σt,i=j} = 0 otherwise.
Then (3) can be written as

µi,t(θ̂) =

n∑
j=1

1{σt,i=j}
µj,t−1(θ̂)`i(si,t | θ̂)∑

θ̃∈Θ

µj,t−1(θ̃)`i(si,t | θ̃)

= `i(si,t | θ̂)
n∏
j=1

 µj,t−1(θ̂)∑
θ̃∈Θ

µj,t−1(θ̃)`i(si,t | θ̃)


1{σt,i=j}

To analyze the propagation of beliefs under (3) we form the
belief ratio

µi,t(θ̌)

µi,t(θ)
=
`i(si,t | θ̌)
`i(si,t | θ)

n∏
j=1

(
µj,t−1(θ̌)

µj,t−1(θ)

)1{σt,i=j}

(4)

for any false state θ̌ ∈ ΘK{θ} and each agent i ∈ [n] at
all times t ∈ N. The above has the advantage of removing
the normalization factor in the dominator out of the picture;
thence, focusing instead on the evolution of belief ratios. To

proceed, we take the logarithms of both sides in (4) to obtain

log

(
µi,t(θ̌)

µi,t(θ)

)
= log

(
`i(si,t | θ̌)
`i(si,t | θ)

)
(5)

+

n∑
j=1

1{σt,i=j} log

(
µj,t−1(θ̌)

µj,t−1(θ)

)

Next we can iterate (5) to replace for (µj,t−1(θ̌)/µj,t−1(θ))
and so on, from which we get (6) at the top of next page. Also
note,

n∑
i1=1

. . .

n∑
it=1

1{σt,i=i1} . . .1{σ1,it−1
=it} = 1,

almost surely, and in fact every where on Ω, so that the
initial prior belief ratio log(ν(θ̌)/ν(θ)) always appears in the
summation (6), and it simplifies as in (7) at the top of next
page.

We now claim that whenever t→∞ and the network graph
G is strongly connected, with P-probability one the likelihood
ratios of private signals from any node m ∈ [n] appears in the
summation (7) as `m(sm,t−τ | θ̌)/`m(sm,t−τ | θ) for infinitely
many values of τ . The gist of the proof is in realizing the
correspondence between the summation (6) and a random walk
on the directed graph G that starts at time t on node i, proceeds
in the reversed time direction, and terminates at time zero.
The jumps in this random walk are made from each node i
to one of her in-neighbors j ∈ N (i) and in accordance with
the probabilities pi,j specified by matrix P = [pi,j ]. Indeed,
we can denote the random sequence of nodes that are hit by
this random walk as (i, i1, . . . , it) where the random variables
iτ ∈ [n], τ ∈ [t] are defined recursively by i1 := σt,i, i2 :=
σt−1,σt,i1

, i3 := σt−2,σt−1,i2
, . . ., it := σ1,σ2,it−1

. Whence
(7) is written succinctly as

log

(
µi,t(θ̌)

µi,t(θ)

)
= log

(
`i(si,t | θ̌)
`i(si,t | θ)

)
+ log

(
ν(θ̌)

ν(θ)

)

+

t∑
τ=1

log

(
`iτ (siτ ,t−τ | θ̌)
`iτ (siτ ,t−τ | θ)

)
. (8)

As t → ∞, the sequence iτ , τ ∈ N forms a Markov process
with transition matrix P . Given (8), our claim can be restated
as that for every m ∈ [n] and as t → ∞ there are infinitely
many values of τ ∈ N for which iτ = m, and it is true because
in a finite state Markov chain with transition matrix P every
state is persistent (recurrent) and will be hit infinitely many
times provided that the directed graph G is strongly connected
[25, Theorem 1.5.6], i.e. we have that ∀m ∈ [n],

P{iτ = m, for infinitely many τ} = 1.

For any agent m ∈ [n] let Tm := {τm,j , j ∈ N} be the
sequence of stopping times that record the first, second and
so on passage times of node m by the process iτ , τ ∈ N.
That is we have τm,1 = inf{τ ∈ N : iτ = m} and for j > 1,
τm,j = inf{τ > τm,j−1 : iτ = m}. Using the above notation,
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log

(
µi,t(θ̌)

µi,t(θ)

)
= log

(
`i(si,t | θ̌)
`i(si,t | θ)

)
+

n∑
i1=1

1{σt,i=i1} log

(
`i1(si1,t−1 | θ̌)
`i1(si1,t−1 | θ)

)

+ 1{σt,i=i1}

n∑
i2=1

1{σt−1,i1=i2} log

(
`i2(si2,t−2 | θ̌)
`i2(si2,t−2 | θ)

)

+ 1{σt,i=i1}1{σt−1,i1
=i2}

n∑
i3=1

1{σt−2,i2
=i3} log

(
`i3(si3,t−3 | θ̌)
`i3(si3,t−3 | θ)

)
+ . . .

+ 1{σt,i=i1}1{σt−1,i1
=i2}...1{σ1,it−2

=it−1}

n∑
it=1

1{σ1,it−1
=it}

{
log

(
`it(sit,0 | θ̌)
`it(sit,0 | θ)

)
+ log

(
ν(θ̌)

ν(θ)

)}
(6)

log

(
µi,t(θ̌)

µi,t(θ)

)
= log

(
`i(si,t | θ̌)
`i(si,t | θ)

)
+ log

(
ν(θ̌)

ν(θ)

)
+

n∑
i1=1

1{σt,i=i1}{log

(
`i1(si1,t−1 | θ̌)
`i1(si1,t−1 | θ)

)

+

n∑
i2=1

1{σt,i1=i2}{log

(
`i2(si2,t−2 | θ̌)
`i2(si2,t−2 | θ)

)
+ . . .+

n∑
iτ=1

1{σt−τ+1,iτ−1
=iτ}{log

(
`iτ (siτ ,t−τ | θ̌)
`iτ (siτ ,t−τ | θ)

)

+ . . .+

n∑
it−1=1

1{σ1,it−2
=it−1}{log

(
`it−1(sit−1,1 | θ̌)
`it−1(sit−1,1 | θ)

)
+

n∑
it=1

1{σ1,it−1
=it} log

(
`it(sit,0 | θ̌)
`it(sit,0 | θ)

)
} . . .} (7)

(8) can be rewritten as

log

(
µi,t(θ̌)

µi,t(θ)

)
= log

(
`i(si,t | θ̌)
`i(si,t | θ)

)
+ log

(
ν(θ̌)

ν(θ)

)
+

n∑
m=1

∑
τ∈Tm,
τ≤t

log

(
`m(sm,t−τ | θ̌)
`m(sm,t−τ | θ)

)
. (9)

On the other hand, note that
log
(
`m(sm,t−τm,j | θ̌)/`m(sm,t−τm,j | θ)

)
, j ∈ N is a

sequence of independent and identically distributed signals,
so that by the strong of large numbers we obtain that with
P-probability one,

lim
n→∞

1

n

n∑
j=1

log

(
`m(sm,t−τm,j | θ̌)
`m(sm,t−τm,j | θ)

)

= E log

(
`m(sm,0 | θ̌)
`m(sm,0 | θ)

)
:= −DKL

(
`m(·|θ)‖`m(·|θ̌)

)
6 0,

(10)

where the non-positivity follows from the information in-
equality for the Kullback-Leibler divergence DKL (·||·) and
is strict whenever `m(·|θ̌) 6≡ `m(·|θ), i.e. ∃s ∈ Si such that
`i(s|θ̌) 6= `i(s|θ) [28, Theorem 2.6.3]. Note that whenever
`i(·|θ̂) ≡ `i(·|θ) or equivalently DKL

(
`i(·|θ̂)‖`i(·|θ))

)
= 0,

then the two states θ̂ and θ are statically indistinguishable
to agent i. In other words, there is no way for agent i to
differentiate θ̂ from θ based only on her private signals. This
follows from the fact that both θ and θ̂ induce the same prob-
ability distribution on her sequence of observed i.i.d. signals.
On the other hand, having DKL

(
`m(·|θ)‖`m(·|θ̌)

)
< 0 for

some agent m ∈ [n] would ensure per (10) and persistence of
state m that with P-probability one,∑

τ∈Tm,
τ≤t

log

(
`m(sm,t−τ | θ̌)
`m(sm,t−τ | θ)

)
→ −∞

as t→∞ in (9); consequently, log
(
µi,t(θ̌)/µi,t(θ)

)
→ −∞

for all agent i ∈ [n] and any such θ̌ ∈ Θ, θ̌ 6= θ. Indeed, having
log
(
µi,t(θ̌)/µi,t(θ)

)
→ −∞ for all θ̌ 6= θ is necessary and

sufficient for learning, and we therefore, have the following
characterization.

Definition 1 (Global Identifiability). In a strongly connected
topology, the true state θ is globally identifiable, if for
all θ̌ 6= θ there exists some agent m ∈ [n] such that
DKL

(
`m(·|θ)‖`m(·|θ̌)

)
< 0, i.e. m can distinguish between

θ̌ and θ based only on her private signals.

We have thus established the conditions for learning under
the without recall updates in (1) and (2), where the neighbor j
is chosen randomly with strictly positive probabilities specified
in transition matrix P . We dub this procedure “gossips without
recall” and summarize our findings as follows:

Theorem 1 (Almost-Sure Learning). Under the gossips with-
out recall updates in a strongly connected network where
the truth is globally identifiable, all agents learn the truth
asymptotically almost surely.

We can extend the above analysis to derive an asymptotic
rate of learning for the agents that is exponentially fast
and is expressed as

∑m
m=1 πmDKL

(
`m(·|θ)‖`m(·|θ̌)

)
< 0,

where π := (π1, . . . , πn) is the stationary distribution of the
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transition matrix P , which for a strongly connected G is the
unique probbaility distribution on [n] satisfying πP = π.
To see how, for each agent m ∈ [n] and all time t, define
Tm(t) := {τm,j , j ∈ N : τm,j ≤ t} and divide both sides of
(9) by t to obtain

1

t
log

(
µi,t(θ̌)

µi,t(θ)

)
=

1

t
log

(
`i(si,t | θ̌)
`i(si,t | θ)

)
+

1

t
log

(
ν(θ̌)

ν(θ)

)
+

1

t

n∑
m=1

∑
τ∈Tm(t)

log

(
`m(sm,t−τ | θ̌)
`m(sm,t−τ | θ)

)
.

Upon invoking (10) we obtain

lim
t→∞

1

t
log

(
µi,t(θ̌)

µi,t(θ)

)
=

−
n∑

m=1

lim
t→∞

|Tm(t)|
t

DKL

(
`m(·|θ)‖`m(·|θ̌)

)
. (11)

Finally the ergodic theorem ensures that the average time spent
in any state m ∈ [n] converges almost surely to its stationary
probability πm, i.e. with probability one limt→∞ |Tm(t)|/t =
πm, [25, Theorem 1.10.2]. Hence, (11) becomes

lim
t→∞

1

t
log

(
µi,t(θ̌)

µi,t(θ)

)
= −

n∑
m=1

πmDKL

(
`m(·|θ)‖`m(·|θ̌)

)
,

completing the proof for the claimed asymptotically exponen-
tially fast rate.

Example 1. Eight Agents with Binary Signals in a Tri-State
World.

As an illustration consider the network of agents in Fig. 1
with the true state of the world being 1, the first of the tree
possible states Θ = {1, 2, 3}. The likelihood structure for the
first three agents is given in the table and note that none of
them can learn the truth on their own; indeed, agent 3 does
not receive any informative signals and her beliefs shall never
depart from their initial priors following (1). We further set
lj(· | ·) ≡ l3(· | ·) for all j ∈ [8]K[3], so that all the remaining
agents are also unable to infer anything about the true state of
the world from their own private signals.

1

2
5

4
3

6

7

8

Fig. 1: Network Structure for Example 1
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Fig. 2: Evolution of the second agents beliefs over time
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Fig. 3: The difference between the third and eighth agents
beliefs over time
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Starting from a uniform common prior and following the
proposed gossip without recall scheme with neighbors chosen
uniformly at random, all agents asymptotically learn the true
state, even though none of them can learn the true state on their
own. The plots in Figs. 2 and 3 depict the belief evolution for
the second agent, as well as the difference between the beliefs
for the third and eighth agents. It is further observable that
all agents learn the true state at the same exponentially fast
asymptotic rate of learning.

IV. CONCLUDING REMARKS

This work addressed a social and observational learning
model in multi-agent networks. Agents attempt to learn some
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unknown state of the world which belongs to a finite state
space. Conditioned on the true state, a sequence of i.i.d.
private signals are generated and observed by each agent of
the network. The private signals do not provide each agent
with adequate information to identify the truth. Hence, agents
contact their neighbors to augment their imperfect observations
with those of their neighbors. In our model, every time, each
agent picks a neighbor randomly and updates her belief using
the prior of that particular neighbor but using the likelihood
for her own private signal. The communication protocol is an
instance of a learning without recall and is implemented in
such a way that signals likelihoods that comprise an agent’s
belief are picked up by a random walk on the network graph.
We proved that agents learn the truth exponentially fast and
in the almost sure sense, provided that the network is strongly
and the truth is globally identifiable. The asymptotic rate is
expressed as a weighted sum of the relative entropies between
the signal structures of each agent, where the weights come
from the stationary distribution of the transition probability
matrix according to which neighbors are chosen at every time
instant.
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