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ABSTRACT

This paper addresses the multi-armed bandit problem in a multi-
player framework. Players explore a finite set of arms with stochastic
rewards, and the reward distribution of each arm is player-dependent.
The goal is to find the best global arm, i.e., the one with the largest
expected reward when averaged out among players. To achieve this
goal, we develop a distributed variant of the well-known UCB1 algo-
rithm. Confined to a network structure, players exchange informa-
tion locally to estimate the global rewards, while using a confidence
bound relying on the network characteristics. Then, at each round,
each player votes for an arm, and the majority vote is played as the
network action. The whole network gains the reward of the network
action, hoping to maximize the global welfare. The performance of
the algorithm is measured via the notion of network regret. We prove
that the regret scales logarithmically with respect to time horizon and
inversely in the spectral gap of the network. Our algorithm is opti-
mal in the sense that in a complete network it scales down the regret
of its single-player counterpart by the network size. We demonstrate
numerical experiments to verify our theoretical results.

Index Terms— Sequential decision-making, multi-armed ban-
dits, multi-agent networks, distributed learning.

1. INTRODUCTION

The multi-armed bandit (MAB) problem has been extensively stud-
ied in the literature [1–6]. In its classical setting, the problem is
defined by a set of arms or actions, and it captures the exploration-
exploitation dilemma for a learner. At each time step, the learner
chooses an arm and receives its corresponding payoff or reward. The
term bandit indicates that only the reward of the chosen arm is re-
vealed to the learner, while the rewards of other arms remain undis-
closed at that particular time. The learner then hopes to maximize the
total payoff obtained from sequentially selecting the arms. Equiva-
lently, the learner aims to minimize the regret by competing with the
best single arm in hindsight. The reward model for arms could be
stochastic or non-stochastic, and optimal algorithms for both cases
are proposed in the literature [6]. While early studies on MAB dates
back to nine decades ago, the problem has received considerable at-
tention due to its modern applications. MAB could be an instance of
sequential decision-making for ad placement, website optimization,
packet routing, cognitive compressive sensing, and etc. [6–9].

In this paper, we depart from the classical setting and address the
stochastic MAB in a multi-player network. We consider a scenario
where a group of players or agents collaborate to achieve a team
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task. In this framework, each arm may possess different reward dis-
tributions for distinct players. The goal is to reach consensus on the
arm which best fits the network. We consider this arm to be the arm
with the largest expected reward when averaged out among players.
As a motivating example, consider a number of brands (arms) selling
a product. We have several users (players) in a social network who
need to decide on one specific brand for the whole network. The
users rate these brands differently and must agree upon using one
brand. The decision is made by the majority vote to maximize the
global welfare.

Therefore, in our setup, each arm has a true global payoff that
can be written in terms of an average of individual rewards. Agents
are not able to identify the best global arm since they do not receive
any informative signal about the global reward. Therefore, they need
to benefit from side observations gained from local communication.
The model has a flavor of distributed detection algorithms where the
parameter of interest is not fully observable to an individual agent
[10, 11]. However, there is an additional restriction in this work, as
we consider a bandit setup where the player only receives the signal
of the chosen action.

To find the best global arm, players wish to maximize a global
objective. As standard in online algorithms, we translate this objec-
tive to minimizing a network regret. We then propose an algorithm
dubbed Distributed Upper Estimated Reward (d-UER ) to minimize
the network regret. The algorithm estimates the global reward of the
arms in a purely distributed fashion. To concentrate around the true
value of the global rewards with high probability, the algorithm ex-
ploits a confidence bound that relies on the network topology. Then,
players iteratively vote for their favorite arm, and each time the ma-
jority vote is played as the network action. The whole network scores
the reward of the network action, hoping to maximize the global wel-
fare. This algorithm can be viewed as a distributed version of the
well-known UCB1 algorithm.

We prove that the regret of our algorithm scales logarithmically
with respect to time horizon. It also scales inversely in the gap be-
tween the arms. The inverse dependence to gap is quite natural since
similar arms to the best arm are hard to distinguish. Furthermore, the
regret relies on the spectral gap of the network as in the exploration
phase information needs to be propagated throughout the network.
Our algorithm is optimal in the sense that in a complete network the
regret is scaled down by the network size comparing to its single-
player analog. This is due to variance reduction when we distribute
samples between agents throughout the network. We finally pro-
vide numerical experiments to verify the impact of network size and
spectral gap in practice.
Related Work: Several variants of decentralized MAB have been
studied in the literature. In [12–14], decentralized MAB has been
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formulated for applications in cognitive radio networks and multi-
channel communication systems. Unlike our setup, in these works
simultaneous selection of one arm by a few players is not recom-
mended and reduces the reward in some sense. Some other works
focused on decentralized MAB with application to advertising sys-
tems. In [15], the interaction between users in a social network pro-
vides information for an external, centralized decision-maker. In
[16] only a single major agent in the network has access to its re-
ward sequence, while other agents are aware of the sampling pattern
of the major agent. The works of [17, 18] are particularly relevant
to our work; however, the arms in those settings are player indepen-
dent, whereas in our setup they are player dependent. Our work is
also related to distributed detection and learning under full informa-
tion setting [11, 19–26]. In these models, the world is governed by a
fixed true state (arm), aimed to be recovered collaboratively. How-
ever, agents receive information about all states per round, whereas
our bandit setup entails only one-state feedback per round.

Notation
[n] The set {1, 2, ..., n} for any integer n
1{·} The indicator function

1 The vector of all ones
E[·] The expectation operator
x> Transpose of the vector x
x(k) The k-th element of vector x
σi(W ) The i-th largest singular value of matrix W

2. PROBLEM FORMULATION

We have a multi-agent network with N players or agents sequen-
tially selecting arms or actions. The number of arms is a finite num-
ber K, a common knowledge in the network. Pulling arm k ∈ [K]
at time t ∈ [T ] rewards the player i ∈ [N ] with a random variable
Xi,t(k) ∈ [0, 1]. The rewards are independent and identically dis-
tributed over time for an individual player. We further assume that
they are independent across players and arms. Hence, the expected
value µi = E[Xi,t] ∈ RK is fixed over time though the characteris-
tics of each arm is different among players. That is, for arm k and
players i, j, the values µi(k) and µj(k) are not equal in general. The
true reward of arm k ∈ [K] is the network average as follows

µ(k) :=
1

N

N∑
i=1

µi(k) =
1

N

N∑
i=1

E[Xi,t(k)].

Agents aim to maximize the global welfare in the sense of finding
the arm k∗ such that µ(k) ≤ µ(k∗) for all k ∈ [K]. However, no
individual player can make a correct inference by simply collecting
individual signals {Xi,t}Tt=1 as these only approximate µi over time.
Therefore, players must collaborate with each other to estimate the
true rewards in a distributed fashion. Based on a distributed protocol
discussed in the next section, each agent votes for an arm at each
round. We represent by the random variable Ii,t, the arm that is
chosen by player i at time t. The network action It at time t is then
the majority vote, i.e., the random variable It is defined as

It := the most repeated element of the set {Ii,t}Ni=1.

Consistently with the bandit setting, after this selection is made,
player i only observes the corresponding payoffXi,t(It) at period t.

Common to the MAB framework, let us reformulate the prob-
lem in terms of regret. Without loss of generality, we assume the
following order for the true rewards,

µ(1) ≥ µ(2) ≥ · · · ≥ µ(K),

for the rest of the paper. For any pair k ≤ m, we define the gap as

∆k,m := µ(k)− µ(m) =
1

N

N∑
i=1

µi(k)− µi(m),

to capture the suboptimality of arm m comparing to arm k. We use
nt(k) to denote the number of times that arm k has been chosen by
the network as the majority vote until time t. It is easy to observe
that maximizing the global welfare is equivalent to minimizing the
network regret in the following sense,

RT := Tµ(1)−
T∑
t=1

E [µ(It)] =

K∑
k=2

∆1,kE[nT (k)], (1)

where the expectation is taken over the randomness in the choice of
arms.

In Section 3, we propose an online, distributed algorithm to solve
(1). We prove that the algorithm incurs a strongly sub-linear regret
with respect to time. Furthermore, we show that the regret depends
on the network characteristics since players communicate with each
other to understand the true value of the rewards. In other words, the
information dissemination over the network requires a time which
appears as a network penalty in the regret. This is in contrast with the
classical (one-player) MAB, where the player only investigates the
arms in the exploration phase. In our setup (multi-player MAB), an
extra information-exchange time is also required in the exploration
period to estimate the true rewards.

Network Structure: One individual player is not able to track the
best arm in isolation as the signals {Xi,t}Tt=1 are not informative
enough for approximation of µ. Therefore, agents communicate
with each other iteratively to approximate the true rewards. We use
the symmetric and doubly stochastic matrix W to capture the inter-
action between agents. This matrix has positive diagonals, and a pos-
itive [W ]ij > 0 means that player i assigns a weight [W ]ij = [W ]ji
to observations of player j 6= i. When [W ]ij = 0, agents i and j
never communicate with each other directly. Therefore, we have

∑
j∈Ni

[W ]ij =
N∑
j=1

[W ]ij =
N∑
i=1

[W ]ij =
N∑

i∈Nj

[W ]ij = 1,

where Ni := {j ∈ [N ] : [W ]ij > 0} is the local neighborhood of
agent i. We assume that the underlying network is connected, i.e.,
there exists a path from any player i ∈ [N ] to any player j ∈ [N ].
This assumption guarantees the information flow over the network.

3. DISTRIBUTED UPPER ESTIMATED REWARD

We now describe the d-UER algorithm to minimize regret in (1).
The algorithm can be cast as a cooperative version of the well-known
UCB1 [3]. As we discussed in Section 2, the feedback setup does not
allow an individual player to solely identify the best arm. Therefore,
players need to cooperate with each other to collectively explore the
arms.

2787



Algorithm 1 Distributed Upper Estimated Reward

Input : Number of agents N and arms K. Parameter d > 0.
Initialization : Each action is played once, and the reward of action k ∈ [K] for player i ∈ [N ] is stored in ψi,1(k). For each i ∈ [N ] and
k ∈ [K], let φi,0(k) = 0 and ni,0(k) = 1, respectively.
for t = 1 to T do

for i = 1 to N do
φi,t =

∑N
j=1[W ]ijφj,t−1 + ψi,t. % estimation of true rewards

Ct(k) =

√
2 log t

(
1

Nnt−1(k)
+ 2d

n2
t−1(k)

)
. % upper confidence bound for each action

Ii,t = argmaxk∈[K]

{ φi,t(k)

nt−1(k)
+ Ct(k)

}
. % agent’s action

end for
Let It be the most frequent element of the set {Ii,t}Ni=1. % network’s action or majority vote
For any k ∈ [K], update the counter as nt(k) = nt−1(k) + 1{k = It}.
The network scores µ(It), and player i ∈ [N ] observes Xi,t(It). % private observation
Let ψi,t+1(k) = Xi,t(k)1{k = It} for any k ∈ [K].

end for

The d-UER algorithm is summarized in the table above. It pro-
vides a completely decentralized method to estimate the true re-
wards. Players accumulate local observations, and they take into
account an upper confidence bound to make individual decisions.
The term φi,t in the algorithm (normalized by the number of times
each arm has been played) is an estimator of the true rewards. The
confidence bound Ct allows agents to concentrate around the true
value of the rewards with high probability. Then, agent i makes the
individual decision Ii,t at time t, the majority vote It among agents
is chosen as the network action, and agents observe the correspond-
ing payoff of the action chosen by the majority vote.

Note that since the setup is multi-player, d-UER exploits a con-
fidence bound relying on the network structure through parameter d.
We will see that this parameter must be tuned as an upper bound on
a quantity that depends on network size and spectral gap.

The following lemma provides a closed-from solution for
{φi,t}Tt=1 and shows the importance of the mixture behavior of
the Markov chain W in estimation.

Lemma 1. Any update of the form φi,t =
∑N
j=1[W ]ijφj,t−1 +ψi,t

can be expressed as,

φi,t =

t∑
τ=1

n∑
j=1

[
W t−τ ]

ij
ψj,τ ,

whenever the update is initialized at φi,0(k) = 0, for any i ∈ [N ]
and k ∈ [K]. Also, given the connectivity of the network, the doubly
stochastic matrix W with positive diagonal satisfies

t∑
τ=1

N∑
j=1

∣∣∣∣[W t−τ ]
ij
− 1

N

∣∣∣∣ ≤ dE1,

for any i ∈ [N ], where

dE1 :=
2

1− σ2(W )
+

logN

log [σ2(W )−1]
,

and σ2(W ) < 1 is the second largest singular value of W .

Proof. See the Appendix in [27].

The lemma suggests that the update φi,t accumulates new infor-
mation from the environment and averages out the past. It is im-
portant to have network connectivity, since it allows W t → 1

N
11>

as t → ∞. Indeed, when the underlying network topology is dis-
connected, information cannot spread in the whole network. There-
fore, players cannot observe some of informative signals dispersed
throughout the network. In this case, they are not able to make a
correct inference about the true reward of the arms, resulting in the
network regret increasing linearly in time.

Finally, the lemma implies that the performance of the algorithm
relies on the mixture properties of the Markov chain W . This is
proved by the dependence of the quantity dE1 to σ2(W ).

Theorem 2. Let for each k ∈ [K] and i ∈ [N ], the sequence
{Xi,t(k)}Tt=1 be i.i.d. samples from a stationary distribution with
µi(k) = E[Xi,t(k)]. Let also the independence over arms and
agents hold such that

E[Xi,t(k)Xj,t(k
′)] = E[Xi,t(k)]E[Xj,t(k

′)],

for i 6= j or k 6= k′. Given the connectivity of the network, the regret
of d-UER algorithm, defined in (1), satisfies the following bound

RT ≤
K∑
k=2

4 max

{
12 log T

N∆1,k
, Nd

}

+K

K∑
k=2

(
2.5

(
1 + log

[
4

∆1,k

])
dE1dE2 +

2π2

3
∆1,k

)
,

whenever d ≥ dE1, where

dE1 :=
2

1− σ2(W )
+

logN

log [σ2(W )−1]
,

and

dE2 :=
logN

log [σ2(W )−1]
.

Proof. See the Appendix in [27].

Theorem 2 indicates that the regret depends on the network size
as well as the second largest singular value ofW . Defining the spec-
tral gap of the network as

γ(W ) := 1− σ2(W ),
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the theorem further shows that the regret bound scales inversely in
the spectral gap of the network. Note that regret serves as a non-
asymptotic performance metric, reiterating the importance of the
spectral gap in the finite-time analysis.

The local feedback does not provide each player with adequate
information, yielding a delay in proper decision-making. For in-
stance, in cycle and path networks where the diameter is O(N) the
incurred penalty dE1 = O(N2 logN) is large, whereas in a com-
plete network W = 1

N
11> the Markov chain is mixed from the

outset, and there is no network penalty. The latter can be seen as
N copies of a single-player MAB where σ2(W ) = 0. In this case,
the network errors become dE1 = 2 and dE2 = 0, and the well-
known result of [3] for UCB1 algorithm is recovered (scaled down
by a factor of N ). The 1

N
factor is an advantage gained through re-

ducing the variance of samples by distributing N samples among N
individuals.

4. NUMERICAL EXPERIMENTS

Our theoretical results indicate that the size and spectral gap of the
network are decisive in the performance of d-UER . In this section,
we study the impact of these two factors via numerical experiments.
In the first scenario, we consider networks of the same size differing
in the spectral gap, while in the second scenario we consider com-
plete networks of different sizes. For both cases, we plot the regret
versus time horizon to investigate the performance.

For all of our experiments, we deal with K = 4 arms. We di-
vide the agents into two groups, for whom the expected value of the
rewards are as follows,

µi(1) µi(2) µi(3) µi(4)

i ∈ Group 1 0.0149 0.7161 0.7944 0.6749
i ∈ Group 2 0.5144 0.5108 0.9955 0.4778

generated randomly in the unit interval. This gives rise to the fol-
lowing global rewards

µ(1) µ(2) µ(3) µ(4)

0.2646 0.6135 0.8950 0.5764

and the best global arm would be arm 3.

4.1. The Impact of Spectral Gap

For the first scenario, we fix the network size to N = 50. We would
like to evaluate the performance of d-UER algorithm in three net-
works: complete, cycle and 4-regular (all with self-loops). For the
reward values given in the tables, we run 100 experiments and av-
erage out regret over these runs. We then plot Fig. 1 which shows
regret for these networks with respect to time (T = 3000).

As verified in theoretical results, the regret bound scales in-
versely with the spectral gap γ(W ) = 1− σ2(W ) . We can observe
the impact in Fig. 1 where the networks are sorted correctly with
respect to this metric. The complete network (largest spectral gap)
has the best performance, while the 4-regular outperforms the cycle
(due to its larger spectral gap). The result is also consistent with
the intuition that the networks should be sorted according to their
connectivity. The more the connectivity, the less the regret.
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Fig. 1. Performance of d-UER in complete, cycle, and 4-regular
networks. The regret scales inversely in the spectral gap. Hence, as
the spectral gap grows larger, the regret becomes smaller.
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Fig. 2. Performance of d-UER in complete networks of size N ∈
{4, 8, 64}. As network grows larger, the estimation variance for
agents decreases, and the regret becomes smaller.

4.2. The Impact of Network Size

Theorem 2 indicates that the regret scales logarithmically with time
in the long run, and the dominant term has a 1/N factor. Therefore,
the network size proves to be crucial in the performance. We choose
the complete networks such thatW = 1

N
11>, for different values of

N ∈ {4, 8, 64} to investigate the performance of d-UER algorithm.
We study complete networks to remove the effect of spectral gap and
focus on size. In this case, the spectral gap always remains to be one
and does not change with network size.

For the reward values given in the tables, we run 100 experi-
ments and average out regret over these runs. Fig. 2 shows the regret
for the three networks with respect to time (T = 4000). The simu-
lation certifies that larger network size results in a lower regret.
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[6] Sébastien Bubeck and Nicolo Cesa-Bianchi, “Regret analysis of
stochastic and nonstochastic multi-armed bandit problems,” Machine
Learning, vol. 5, no. 1, pp. 1–122, 2012.

[7] Aditya Mahajan and Demosthenis Teneketzis, “Multi-armed bandit
problems,” in Foundations and Applications of Sensor Management,
pp. 121–151. Springer, 2008.

[8] Sattar Vakili, Keqin Liu, and Qing Zhao, “Deterministic sequencing of
exploration and exploitation for multi-armed bandit problems,” IEEE
Journal of Selected Topics in Signal Processing, vol. 7, no. 5, pp. 759–
767, 2013.

[9] Saeed Bagheri and Anna Scaglione, “The restless multi-armed ban-
dit formulation of the cognitive compressive sensing problem,” IEEE
Transactions on Signal Processing, vol. 63, no. 5, pp. 1183–1198, 2015.
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