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Topology Identification of Directed Dynamical
Networks via Power Spectral Analysis

Shahin Shahrampour and Victor M. Preciado, Member, IEEE

Abstract—We address the problem of identifying the topology
of an unknown weighted, directed network of LTI systems stimu-
lated by wide-sense stationary noises of unknown power spectral
densities. We propose several reconstruction algorithms by mea-
suring the cross-power spectral densities of the network response
to the input noises. The measurements are based on a series of
node-knockout experiments where at each round the knocked out
node broadcasts zero state without being eliminated from the
network. Our first algorithm reconstructs the Boolean structure
(i.e., existence and directions of links) of a directed network from
a series of dynamical responses. Moreover, we propose a second
algorithm to recover the exact structure of the network (including
edge weights), as well as the power spectral density of the input
noises, when an eigenvalue-eigenvector pair of the connectivity
matrix is known (for example, Laplacian connectivity matrices).
Finally, for the particular cases of nonreciprocal networks (i.e.,
networks with no directed edges pointing in opposite directions)
and undirected networks, we propose specialized algorithms that
result in a lower computational cost.

Index Terms—Network reconstruction, networked dynamical
systems, power spectral analysis, system identification.

I. INTRODUCTION

The reconstruction of networks of dynamical systems is an im-
portant task in many realms of science and engineering, including
biology [1], [2], physics [3], [4], and finance [5]. In the literature,
we find a wide collection of approaches aiming to solve the network
reconstruction problem. In the physics literature, we find in [3] a
method to identify a network of dynamical systems which assumes
that the input of each node can be individually manipulated. In [6],
an approach based on Granger’s causality [7] and the theory of repro-
ducing kernel Hilbert spaces is proposed. In the statistics community,
Bach and Jordan [8] used the Bayesian information criterion (BIC) to
estimate sparse graphs from stationary time series. The optimization
community has recently proposed a collection of papers aiming to find
the sparsest network given a priori structural information [2], [4]. Al-
though the assumption of sparsity is well justified in some applications,
this assumptions might lead to unsuccessful topology inference, as
illustrated in [9], [10]. Gonçalves et al. [9] investigate the necessary
and sufficient conditions for reconstruction of LTI networks. Their
work has been recently extended to reconstruction in the presence of
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intrinsic noise in [11]. On the other hand, for tree networks, several
techniques for reconstruction are proposed in [5] and [12]. More
recently, in a seminal work by Materassi and Salapaka [13], the authors
propose a methodology for reconstruction of directed networks using
locality properties of the Wiener filters. Although being applicable to
many networks, this methodology is not exact when two nonadjacent
nodes point towards a common node. In [14]–[16], several techniques
are proposed to extract structural information of an undirected network
running consensus dynamics. In particular, Nabi-Abdolyousefi et al.
proposed in [15] a reconstruction technique based on a node-knockout
procedure, where nodes are sequentially forced to broadcast a zero
state (without being removed from the network).

Networked dynamical systems have been widely used to study
the phenomenon of synchronization [17], [18]. Motivated by this
line of research, we propose several algorithms to reconstruct the
structure of a directed network of interconnected linear dynamical
systems. We first propose an algorithm to find the Boolean structure
of the unknown topology. This algorithm is based on the analysis of
power spectral properties of the network response when the inputs are
wide-sense stationary (WSS) processes of an unknown power spectral
density (PSD). The measurements are performed via a node-knockout
procedure inspired by work of Nabi-Abdolyousefi and Mesbahi [15].
Apart from recovering the Boolean structure of the network, we
propose another algorithm to recover the exact structure of the network
(including edge weights) when an eigenvalue-eigenvector pair of the
connectivity matrix is known. This algorithm can be applied, for
example, in the case of the connectivity matrix being a Laplacian
matrix or the adjacency of a regular graph. Apart from general directed
networks, we also propose reconstruction methodologies for directed
nonreciprocal networks (networks with no directed edges pointing in
opposite directions) and undirected networks. In the latter cases, we
propose specialized algorithms able to recover the network structure
with less computational cost.

The rest of the technical note is organized as follows. In Section II,
we introduce some preliminary definitions needed in our exposition
and describe the network reconstruction problem under consideration.
Section III provides several theoretical results that are the foundation
for our reconstruction techniques. In Section IV, we introduce several
algorithms to reconstruct the Boolean structure of a directed network
(Section IV-A), the exact structure of a directed network given an
eigenvalue-eigenvector pair (Section IV-B), and the structure of undi-
rected and nonreciprocal networks (Section IV-C and D, respectively).
We finish with some conclusions in Section V.

Nomenclature

Id d× d identity matrix.
1d d-dimensional vector of all ones.
ek k-th unit vector in the standard basis of RN .
E(·) Expectation operator.
Rxy(τ) Cross-correlation function, E(x(t)y(t− τ)).
Rx(τ) Auto-correlation function, E(x(t)x(t− τ)).
F{·} Fourier transform.
Syiyj (ω) Cross-power spectral density (CPSD), F{Ryiyj (τ)}.
Syi(ω) Power spectral density (PSD), F{Ryiyi(τ)}.
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II. PRELIMINARIES AND PROBLEM DESCRIPTION

A. Graph Theory

A weighted, directed graph is defined as the triad D Δ
= (V, Ed,Fd),

where V Δ
= {v1, . . . , vN} denotes a set of N nodes and Ed ⊆ V × V

denotes a set of m directed edges in D. The function Fd : Ed → R++

associates positive real weights to the edges. We define the weighted
in-degree of node vi as degin(vi) =

∑
j:(vj ,vi)∈Ed

Fd((vj , vi)).

The adjacency matrix of a weighted, directed graph D, denoted
by AD = [aij ], is a N ×N matrix defined entry-wise as aij =
Fd((vj , vi)) if edge (vj , vi) ∈ Ed, and aij = 0 otherwise. We de-
fine the Laplacian matrix LD as LD = diag(degin(vi))−AD . The
Laplacian matrix satisfies LD1 = 0, i.e., the vector 1/

√
N is an

eigenvector of the Laplacian matrix with eigenvalue 0.

B. Dynamical Network Model and Problem Statement

Consider a dynamical network consisting of N linearly coupled
identical nodes, with each node being an n-dimensional, LTI, SISO
dynamical system. The dynamical network under study can be charac-
terized by

ẋi(t) =Axi(t) + b

(
N∑

j=1

gijyj(t) + wi(t)

)
,

yi(t) = cTxi(t) (1)

where xi(t) ∈ R
n denotes the state vector describing the dynamics

of node vi ∈ V . A ∈ R
n×n and b, c ∈ R

n are the given state, input
and output matrices corresponding to the state-space representation of
each node in isolation. wi(t) and yi(t) ∈ R are stochastic processes
representing the input noise and the system output, respectively, gij ≥
0 is the coupling strength of a directed edge from vi to vj , which we
shall assume to be unknown. It is worth remarking that considering
identical nodes allows us to use tensor notation that simplifies our tech-
nical analysis. Relaxing this assumption as well as studying coupling
strengths of dynamic form are currently under investigation.

Defining the network state vector, the noise vector, and the network
output vector as

x(t)
Δ
=

(
xT
1 (t), . . . , x

T
N (t)

)T ∈ R
Nn

w(t)
Δ
= (w1(t), . . . , wN (t))T ∈ R

N

y(t)
Δ
= (y1(t), . . . , yN (t))T ∈ R

N

respectively, we can rewrite the network dynamics in (1), as

ẋ(t) = (IN ⊗A+G⊗ bcT )x(t) + (IN ⊗ b)w(t),

y(t) = (IN ⊗ cT )x(t) (2)

where G = [gij ] is the connectivity matrix of a (possibly weighted
and/or directed) network D. For the networked dynamical system to
be stable, we assume the network state matrix IN ⊗A+G⊗ bcT to
be Hurwitz.

Hereafter, we will analyze the following scenario. Consider a col-
lection of N dynamical nodes with a known LTI, SISO dynamics
defined by the state-space matrices (A, b, cT , 0). The link structure of
the network dynamic model, described by the connectivity matrix G,
is completely unknown. We assume the input noises, {wi(t)}Ni=1, are
i.i.d. wide-sense stationary processes of unknown but identical power
spectral densities, i.e., Swi

(ω) = Sw(ω) for all i = 1, . . . , N . We are
interested in identifying all the links in the network by exploiting only
the information provided by the realizations of the output stochastic

processes y1(t), . . . , yN (t). Formally, we can formulate this problem
as follows.

Problem 1: Consider the dynamical network model in (2), whose
connectivity matrix G is unknown. Assume that the only avail-
able information is a spectral characterization of the output signals
y1(t), . . . , yN (t) in terms of power and cross-power spectral densities,
Syi(ω) and Syiyj (ω), which can be empirically estimated from the
output signals.1 Then, find the Boolean structure of the directed
network, i.e., the location and direction of each edge.

It is worth remarking that we assume the input noise to be an
exogenous signal of unknown power spectral density, Sw(ω).

III. THEORETICAL RESULTS

We start by stating some assumptions we need in our subsequent
developments. The following definition will be useful for determining
sufficient conditions for detection of links in a network.

Definition 2—(Excitation Frequency Interval [13]): The excitation
frequency interval of a vector w(t) of wide-sense stationary processes
is defined as an interval (−Ω,Ω), with Ω > 0, such that the power
spectral densities of the input components wi(t) satisfy Swi

(ω) > 0
for all ω ∈ (−Ω,Ω), and all i ∈ {1, 2, . . . , N}.

Throughout the technical note we impose the following conditions
on the input vector.

A1. The collection of signals {wi(t), i = 1, . . . , N} are uncorre-
lated, zero-mean WSS processes with identical autocorrela-
tion function, i.e., for any t, τ ∈ R, Rwi

(τ) = E(wi(t)wi(t+

τ))
Δ
= Rw(τ).

A2. The input noise w(t) presents a nonempty excitation frequency
interval (−Ω,Ω).

In our derivation, we will invoke the following variation of the
matrix inversion lemma [20]:

Lemma 3 (Sherman-Morrison-Woodbury): Assume that the ma-
trices D and I +WD−1UE are nonsingular. Then, the following
identity holds:

(D + UEW )−1 = D−1 −D−1UE(I +WD−1UE)
−1

WD−1

where E, W , D, and U are matrices of compatible dimensions and I
is the identity matrix.

Based on Woodbury’s formula, we derive an expression that pro-
vides an explicit relationship between the (cross-)power spectral den-
sities of two stochastic outputs, yi(t) and yj(t), when we inject a noise
wk(t) into node k with power spectral density Sw(ω).

Lemma 4: Consider the continuous-time networked dynamical sys-
tem (2). Then, under assumptions (A1)–(A2), the following identity
holds:

S(ω) = Sw(ω)

(
IN

|h(jω)|2
+GTG− G

h∗(jω)
− GT

h(jω)

)−1

(3)

where S(ω)
Δ
= [Syiyj (ω)] is the matrix of output CPSD’s, and

h(jω)
Δ
= cT (jωIn −A)−1b is the nodal transfer function.

Proof: The N ×N transfer matrix, H(jw)
Δ
= [Hji(jω)], of the

state-space model in (2) is given by

H(jω)=(IN⊗ cT )(jωINn−IN ⊗A−G⊗ bcT )
−1

(IN ⊗ b)

=(IN⊗ cT )(IN ⊗ (jωIn−A)−G⊗ bcT )
−1

(IN ⊗ b). (4)

1One can use, for example, Bartletts averaging method [19] to produce
periodogram estimates of power and cross-power spectral densities, Syi (ω)
and Syiyj (ω).
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Assume that we inject a noise signal into the k-th node, i.e.,
w(t) = wk(t)ek. Hence, the power spectral density measured on
the output of node i is equal to Syi(ω) = Hki(ω)H

∗
ki(ω)Swk

(ω).
On the other hand, the transfer functions from input wk(t) to the
outputs yi(t) and yj(t) are, respectively, Yi(jω)/Wk(jω) = Hki(jω)
and Yj(jω)/Wk(jω) = Hkj(jω), where Yi(jω) and Wk(jω) are
the Fourier transforms of yi(t) and wk(t), respectively. Hence,
Yj(jω)/Yi(jω) = H−1

ki (jω)Hkj(jω), which implies Syiyj (ω) =

(Hkj(jω)H
−1
ki (jω))

∗
Syi(ω). Since Swk

(ω) = Sw(ω) for all k, we
have that Syiyj (ω) = Hki(jω)H

∗
kj(jω)Sw(ω). Assume that we inject

noise signals satisfying assumptions (A1)–(A2) into all the nodes
in the network, i.e., w(t) =

∑N

k=1
wk(t)ek. Hence, we can apply

superposition to obtain

Syiyj (ω)

Sw(ω)
=

N∑
k=1

H∗
kj(jω)Hki(jω)

=

N∑
k=1

eT
k H

∗(jω)eje
T
i H(jω)ek

=

N∑
k=1

Tr
(
H∗(jω)eje

T
i H(jω)eke

T
k

)
=Tr

(
H∗(jω)eje

T
i H(jω)

N∑
k=1

eke
T
k

)
= eT

i H(jω)H∗(jω)ej (5)

for any ω ∈ (−Ω,Ω), where we used the identity
∑N

k=1
eke

T
k = IN

in our derivation.
Let us define the matrices W

Δ
= IN ⊗ cT , U

Δ
= IN ⊗ b, E

Δ
= −G,

and D
Δ
= IN ⊗ (jωIn −A). Then, we can rewrite the transfer matrix

H(jω) in (4) as

H(jω) = W (D + UEW )−1U. (6)

Also, we have that h(jω)IN = WD−1U . Then, applying Lemma 3 to
(6), we can rewrite the transfer matrix, as follows:

H(jω) =h(jω)
(
IN +G (IN − h(jω)G)−1 h(jω)IN

)
=h(jω)

(
IN +G

(
IN

h(jω)
−G

)−1
)

=h(jω)

(
IN +

(
G− IN

h(jω)
+

IN
h(jω)

)

×
(

IN
h(jω)

−G

)−1
)

=h(jω)

(
IN − IN +

1

h(jω)

(
IN

h(jω)
−G

)−1
)

=

(
IN

h(jω)
−G

)−1

.

Substituting above into (5), we reach the statement of our lemma. �
In the following section, we will use this lemma to reconstruct an

unknown network structure G from the empirical CPSD’s of the out-
puts. We will also show that, assuming that we know one eigenvalue-
eigenvector pair of G, we can recover the weighted and directed graph
D (not only its Boolean structure, but also its weights), as well as

the PSD of the noise, Sw(ω). Relevant examples of this scenario are:
(i) networks of diffusively coupled systems with a Laplacian connec-
tivity matrix [21], i.e., G = −LD , since Laplacian matrices always
satisfy LD1N = 0; or (ii) k-regular networks [22], i.e., G = Ak, since
the adjacency matrix Ak satisfy Ak1N = k.

As stated in Problem 1, the PSD of the input noise w(t) is not avail-
able to us to perform the network reconstruction. The following lemma
will allow us reconstruct this PSD when an eigenvalue-eigenvector pair
of G is known a priori.

Lemma 5: Consider the continuous-time networked dynamical sys-
tem (2). Then, under assumptions (A1)–(A2), the input PSD can be
computed as

Sw(ω) =
λ2 |h(jω)|2 − 2λRe {h(jω)}+ 1

(uTS−1(ω)u) |h(jω)|2
(7)

where (λ,u) is an eigenvalue-eigenvector pair of G, h(jω) is the

nodal transfer function, and S(ω)
Δ
= [Syiyj (ω)] is the matrix of

CPSD’s.
Proof: From (3), we have

S−1(ω)Sw(ω) =
IN

|h(jω)|2
+GTG− G

h∗(jω)
− GT

h(jω)
.

Pre- and post-multiplying by uT and u, respectively, we obtain(
uTS−1(ω)u

)
Sw(ω) =

1

|h(jω)|2
+ λ2 − λ

h(jω)
− λ

h∗(jω)
.

Dividing by uTS−1(ω)u, we reach (7). �
Lemma 5 shows that, given the eigenvalue-eigenvector pair (λ,u),

the PSD of the input noise can be reconstructed from the nodal transfer
function and the matrix of CPSD’s, S(ω), which can be numerically
approximated from the empirical cross-correlations between output
signals.

IV. RECONSTRUCTION METHODOLOGIES

Based on the above results, we introduce several methodologies
to reconstruct the structure of an unknown network following the
dynamics in (2) when the PSD of the input noise is unknown. First,
in Section IV-A, we present a technique to reconstruct the Boolean
structure of an unknown (possibly weighted) directed network. More-
over, if an eigenvalue-eigenvector pair of G is known (for example,
G is a Laplacian matrix), we show how to recover the weights of the
directed edges, as well as the PSD of the input noise in Section IV-B.
Finally, in Section IV-C and D, we provide reconstruction techniques
to recover two special cases, namely, undirected networks and nonre-
ciprocal directed networks, respectively.

Consider Problem 1, when G is an unknown connectivity matrix
representing a weighted, directed network D. We propose a recon-
struction technique to recover the Boolean structure of D when the
PSD of the input noise is unknown. Note that, in general, the result
in Lemma 4 is not enough to extract the underlying structure of the
network, even if the input noise PSD were known. In what follows, we
propose a methodology to reconstruct a directed network of dynamical
nodes by grounding the dynamics in a series of nodes, similar to
the approach proposed in [15] to reconstruct undirected networks
following a consensus dynamics.

Definition 6 (Grounded Dynamics): The dynamics of (2) grounded
at node vj takes the form

˙̃x(t) = (IN−1 ⊗A+ G̃j ⊗ bcT )x̃(t) + (IN−1 ⊗ b)w̃(t),

ỹ(t) = (IN−1 ⊗ cT )x̃(t) (8)
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where w̃(t) is obtained by eliminating the j-th entry from the input
noise w(t), and G̃j ∈ R

(N−1)×(N−1) is obtained by eliminating the
j-th row and column from G.

The dynamics in (8) describes the evolution of (2) when we ground
the state of node vj to be xj(t) ≡ 0. Applying Lemma 4 to the
grounded dynamics (8), one obtains the following expression for the
CPSD’s:

S̃j(ω)=Sw(ω)

(
IN−1

|h(jω)|2
+G̃T

j G̃j−
G̃j

h∗(jω)
−

G̃T
j

h(jω)

)−1

. (9)

We will use the next Theorem to propose several reconstruction
techniques in Section IV-A and B.

Theorem 7: Consider the networked dynamical system (2) with
connectivity matrix G = [gij ]. Let us denote by Sw(ω) the PSD of the
input noise, by S(ω) = [Syiyj (ω)] the N ×N matrix of CPSD’s for

the (ungrounded) dynamics (2), and by S̃j(ω) = [S̃yiyk (ω)]i,k �=j
the

N − 1×N − 1 matrix of CPSD’s for the dynamics in (8) grounded at
node vj . Then, under assumptions (A1)–(A2), we have that, for i < j

gji =
[
Sw(ω0)

([
S−1(ω0)

]
ii
−
[
S̃−1
j (ω0)

]
ii

)]1/2
. (10)

For i > j

gji =

[
Sw(ω0)

([
S−1(ω0)

]
ii
−
[
S̃−1
j (ω0)

]
i−1,i−1

)]1/2

. (11)

Proof: Without loss of generality, we consider the case that
j = N (for any other j 	= N , we can transform the problem to the
case j = N via a simple reordering of rows and columns). Subtracting
the diagonal elements of S−1(ω) in (9) from those of S̃−1

j (ω) in (3),
we obtain

[
S−1(ω)

]
ii
−
[
S̃−1
j (ω)

]
ii
=

[GTG]ii −
[
G̃T

NG̃N

]
ii

Sw(ω)
.

Also, since [GTG]ii =
∑

k
g2ki and [G̃T

NG̃N ]ii =
∑

k �=N
g2ki, we

have that

[GTG]ii −
[
G̃T

NG̃N

]
ii
= g2Ni

for any i < N . The same analysis holds for j 	= N . Hence, we can
recover the entries gji, for i < j, as stated in our theorem. Notice also

that, for j 	= N and i > j, we must use the entry [S̃−1
j (ω)]

i−1,i−1
in

(11), to take into account that S̃j(ω) is an (N − 1)× (N − 1) matrix
associated to the dynamics grounded at node vj . �

A. Boolean Reconstruction of Directed Networks

Theorem 7 allows us to reconstruct the Boolean structure of an
unknown directed network if we have access to the matrices of
CPSD’s, S(ω0) and S̃j(ω0), for any ω0 in the excitation frequency
interval (−Ω,Ω). In particular, one can verify the existence of a
directed edge (i, j) by checking the condition gji > 0, where gji is

computed from Theorem 7. In practice, the CPSD’s S(ω0) and S̃j(ω0)
are empirically computed from the stochastic outputs of the network,
y(t) and ỹ(t); therefore, they are subject to numerical errors. Hence, in
the implementation, one should relax the condition gji > 0 to gji > τ ,
where τ is a small threshold used to account for numerical precision.

Based on Theorem 7, we propose Algorithm 1 to find the Boolean
representation of G, denoted by B(G), when a directed dynamical
network is excited by an input noise of unknown PSD.

Algorithm 1 Boolean reconstruction of directed networks

Require: h(jω), y(t) from (2), ỹ(t) from (8), and any ω0 ∈
(−Ω,Ω);

1: Compute S(ω0) from y(t);
2: for j = 1 : N do
3: Compute S̃j(ω0) from ỹ(t);
4: for i = 1 : j − 1 do
5: if [S−1(ω0)]ii − [S̃−1

j (ω0)]ii > τ then bji = 1;

6: if [S−1(ω0)]ii − [S̃−1
j (ω0)]ii < τ then bji = 0;

7: end for
8: for i = j + 1 : N do
9: if [S−1(ω0)]ii − [S̃−1

j (ω0)]i−,1i−1
> τ then bji = 1;

10: if [S−1(ω0)]ii − [S̃−1
j (ω0)]i−1,i−1

< τ then bji = 0;
11: end for
12: end for

Algorithm 1 incurs the following computational cost:

i) It computes the cross-correlation functions for all the N2 pairs of
outputs in (2). For each one of the N grounded dynamics in (8),
the algorithm also computes (N − 1)2 pairs of cross-correlation
functions, resulting in a total of O(N3) computations. To com-
pute these cross-correlations we use time series of length L.
Since each each cross-correlation takes O(L2) operations, we
have a total of O(N3L2) operations to compute all the required
cross-correlations.

ii) Algorithm 1 evaluates the DFT of all (N + 1)N2 cross-
correlation functions of length L in (i) at a particular frequency
ω0 ∈ (−Ω,Ω). Since evaluating the DFT at a single frequency
takes O(L) operations, we have a total of O(N3L) operations
to compute the CPSD’s matrices S(ω0) and S̃j(ω0), for all
j = 1, . . . , N .

iii) Our algorithm also needs to compute the inverse of S(ω) and
S̃j(ω). Since each inversion takes O(N3), we have a total of
O(N4) operations to compute the inverses of all the N + 1
matrices involved in our computations.

Therefore, the total computational cost of our algorithm is O(N4 +
N3L2). In the next subsection, we extend Algorithm 1 to reconstruct
the exact connectivity matrix G.

B. Exact Reconstruction of Directed Networks

Apart from a Boolean reconstruction of G, we can also compute
the weights of the edges in the network if we know one eigenvalue-
eigenvector pair (λ,u) of G, as follows. This can be the case of G
being, for example, a Laplacian matrix (since G1N = 0, in this case),
or the adjacency matrix of a d-regular graph (since G1N = d1N ).
In these cases, we use Lemma 7 to find the value of Sw(ω0) at a
particular frequency ω0 ∈ (−Ω,Ω). For example, in the case of G
being a Laplacian, we have the following result:

Corollary 8: Consider the networked dynamical system in (2),
when G = −LD , where LG is the Laplacian matrix of a directed graph
D. Then, under assumptions (A1)–(A2), the PSD of the input noise,
Sw(ω), can be computed as

Sw(ω) =
N

(1TS−1(ω)1) |h(jω)|2
.

Proof: This result can be directly obtained from Lemma 5 taking
into account that the eigenpair (λ,u) for the Laplacian matrix is
(0,1N ). �
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In general, we can reconstruct the weights of directed edges in a
dynamical network using Algorithm 2.

Algorithm 2 Exact reconstruction of directed networks

Require: h(jω), y(t) from (2), ỹ(t) from (8), and any ω0 ∈
(−Ω,Ω);

1: Compute S(ω0) from y(t) and Sw(ω0) using (7);
2: for j = 1 : N do
3: Compute S̃j(ω0) from ỹ(t);
4: for i = 1 : j − 1 do

5: gji = [Sw(ω0)([S
−1(ω0)]ii − [S̃−1

j (ω0)]ii)]
1/2

;
6: end for
7: for i = j + 1 : N do

8: gji = [Sw(ω0)([S
−1(ω0)]ii − [S̃−1

j (ω0)]i−1,i−1
)]

1/2
;

9: end for
10: end for

Remark 9: It is worth remarking that the reconstruction methods
proposed in the technical note do not require the entire power spectra
for S(ω) or Sw(ω), but only the values of these spectral densities at
any frequency ω0 ∈ (−Ω,Ω). This dramatically reduces the computa-
tional complexity of the reconstruction.

We now turn to two particular types of networks, namely, undirected
and nonreciprocal networks, in which the computational cost of recon-
struction can be drastically reduced.

C. Exact Reconstruction of Undirected Networks

Consider Problem 1, when the connectivity matrix G is an unknown
(possibly weighted) symmetric matrix. Then, when an eigenpair (λ,u)
is known, we can find the exact structure of the network from the
matrix of CPSD’s, S(ω) = [Syiyj (ω)]1≤i,j≤N

, and the nodal transfer

function, h(jω) = cT (jωIn −A)−1b, using the following result:
Theorem 10: Consider the networked dynamical system (2), when

G = GT . Then, under assumptions (A1)–(A2), we have that

G =
(
S−1(ω0)Sw(ω0)− Im2

{
h−1(jω0)

}
IN

)1/2
+Re

{
h−1(jω0)

}
IN . (12)

for any ω0 ∈ (−Ω,Ω).
Proof: From Lemma 4, we obtain the following for GT = G:

S−1(ω)Sw(ω)

=
IN

|h(jω)|2
+G2 − G

h∗(jω)
− G

h(jω)

= G2 − 2Re
{
h−1(jω)

}
G

+ IN
(
Im2

{
h−1(jω)

}
+Re2

{
h−1(jω)

})
=
(
G−Re

{
h−1(jω)

}
IN

)2
+ Im2

{
h−1(jω)

}
IN

thereby completing the proof. �
Based on Theorem 10, we can reconstruct the connectivity matrix

G = GT when we know an eigenpair of G. The input PSD in (12)
can be computed using Lemma 5. Notice that this algorithm does not
require grounding the dynamics of the network, resulting in a reduced
computational cost. In particular, the computational cost is dominated
by the computation of S(ω0), which requires O(N2L2) operations,
and its inversion, which requires O(N3), resulting in a total cost of
O(N2L2 +N3).

D. Reconstruction of Non-Reciprocal Networks

Another particular network structure that does not require grounding
in the reconstruction method is the so-called nonreciprocal directed
networks. In a nonreciprocal network, having an edge (vj , vi) ∈ Ed
implies that (vi, vj) 	∈ Ed. In other words, the connectivity matrix of a
purely unidirectional network satisfies Tr(G2) =

∑
i

∑
j
gijgji = 0,

since, if gij 	= 0, then gij = 0 (and assuming there are no self-loops
in the network).

The following theorem allows the Boolean reconstructing of a
nonreciprocal network. Moreover, if we have access to an eigenpair
of G, this theorem could be used to perform an exact reconstruction
without grounding the dynamics of the network.

Theorem 11: Consider the networked dynamical system (2), with a
connectivity matrix satisfying G ≥ 0 (nonnegativity) and Tr(G2) =
0 (nonreciprocity). Then, under assumptions (A1)–(A2), we have that

gij = max

{
Sw(ω)

(
[Im {S−1(ω)}]ij
Im {h−1(jω)}

)
, 0

}
(13)

for 1 ≤ i 	= j ≤ N .
Proof: Under purview of Lemma 4, we obtain

S−1(ω)Sw(ω) =
IN

|h(jω)|2
+GTG− G

h∗(jω)
− GT

h(jω)
.

Taking the imaginary parts, we obtain

Im
{
S−1(ω)Sw(ω)

}
=Im

{
− G

h∗(jω)
− GT

h(jω)

}
=Im

{
h−1(jω)

}
(G−GT )

which entails

G−GT =
Sw(ω)

Im {h−1(jω)} Im
{
S−1(ω)

}
.

Given that G≥0 and the network is nonreciprocal, if [G−GT ]ij>0,
then gij>0 and gji=0. If [G−GT ]ij < 0, then gij=0 and gji > 0.
Finally, if [G−GT ]ij=0, then no directed edge between vi and vj ex-
ists. These three conditional statements can be condensed into (13). �

Using this theorem, we can find the the Boolean representation of
G, B(G) = [bij ], as follows:

bij =

{
1, if

[Im{S−1(ω0)}]ij
Im{h−1(jω0)} > 0

0, otherwise

where ω0 ∈ (−Ω,Ω). Moreover, if an eigenvalue eigenvector pair of
G is known, we can recover Sw(ω0) using Lemma 5, which allows us
to recover the value of gij directly from (13). Following the analysis
of previous algorithms, the computational cost of the reconstruction of
a nonreciprocal directed network is O(N2L2 +N3).

V. CONCLUSION

In this technical note, we have addressed the problem of identi-
fying the topology of an unknown directed network of LTI systems
stimulated by wide-sense stationary noises of an unknown power
spectral density. We have proposed several reconstruction algorithms
based on the power spectral properties of the network response to the
input noise. Our first algorithm reconstructs the Boolean structure of a
directed network based on a series of grounded dynamical responses.
Our second algorithm recovers the exact structure of the network (in-
cluding edge weights) when an eigenvalue-eigenvector pair of the con-
nectivity matrix is known. This algorithm is useful, for example, when
the connectivity matrix is a Laplacian matrix or the adjacency matrix
of a regular graph. Apart from general directed networks, we have also
proposed more computationally efficient algorithms for reconstruction
of both directed nonreciprocal networks and undirected networks.
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