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Distributed Detection: Finite-Time Analysis
and Impact of Network Topology

Shahin Shahrampour, Alexander Rakhlin, and Ali Jadbabaie, Fellow, IEEE

Abstract—This paper addresses the problem of distributed de-
tection in multi-agent networks. Agents receive private signals
about an unknown state of the world. The underlying state is
globally identifiable, yet informative signals may be dispersed
throughout the network. Using an optimization-based framework,
we develop an iterative local strategy for updating individual be-
liefs. In contrast to the existing literature which focuses on asymp-
totic learning, we provide a finite-time analysis. Furthermore, we
introduce a Kullback-Leibler cost to compare the efficiency of the
algorithm to its centralized counterpart. Our bounds on the cost
are expressed in terms of network size, spectral gap, centrality of
each agent and relative entropy of agents’ signal structures. A key
observation is that distributing more informative signals to central
agents results in a faster learning rate. Furthermore, optimizing
the weights, we can speed up learning by improving the spectral
gap. We also quantify the effect of link failures on learning speed
in symmetric networks. We finally provide numerical simulations
for our method which verify our theoretical results.

Index Terms—Kullback-Leibler cost.

I. INTRODUCTION

R ECENT years have witnessed an intense interest on dis-
tributed detection, estimation, prediction and optimiza-

tion [1]–[7]. Decentralizing the computation burden among
agents has been widely regarded in networks ranging from
sensor and robot to social and economic networks [8]–[11].
In this broad class of problems, agents in a network need
to perform a global task for which they only have partial
information. Therefore, they recursively exchange information
with their neighbors, and the global dispersion of information in
the network provides them with adequate data to accomplish the
task. In the big picture, many of these schemes can also be em-
bedded in the context of consensus protocols which have gained
a growing popularity over the past three decades [12]–[14].

Earlier works on decentralized detection have considered
scenarios where each agent sends its observations to a fusion
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center that decides over the true value of a parameter [1], [2],
[8]. In these situations, the fusion center faces a classical hy-
pothesis testing (centralized detection) problem after collecting
the data from agents. Distributed detection has been widely
regarded in various works providing the asymptotic analysis.
Cattivelli et al. [15] propose a fully distributed algorithm where
no fusion center is necessary. The methodology builds on
the connection of Neyman-Pearson detection and minimum-
variance estimation to solve the problem. Jakovetić et al. [16]
develop a consensus+innovations algorithm for detection under
Gaussian observations. The method achieves an asymptotic
exponential error rate even when communications of agents are
noisy. In [17], the authors extend the consensus+innovations
method to generic (non-Gaussian) observations over random
networks. More recently, another model of learning and detec-
tion has been proposed by Jadbabaie et al. [18]. In this frame-
work, the world is governed by a fixed true state or hypothesis
that is aimed to be recovered by a network of agents. The state
belongs to a finite set, and might represent a decision, an opin-
ion, the price of a product or any quantity of interest. Each agent
observes a stream of private signals generated by a marginal of
the global likelihood conditioned on the true state. However,
the signals might not be informative enough for the agent to
distinguish the underlying state of the world. Therefore, agents
use local diffusion to compensate for their imperfect knowledge
about the environment. In the literature, a host of schemes
build on this model to describe distributed learning [18]–[22].
Despite the wealth of results on the asymptotic behavior of
these methods, the finite-time analysis remains elusive. Though
appealing in certain cases, asymptotic analysis might not unveil
all important factors for learning. Realistically, one always has
finite time to make a decision; hence, studying non-asymptotic
aspects of learning is an interesting complementary direction.
For instance, let us think of a social network where individuals
need to choose a product which best suits the network. Individ-
uals might value the product differently, and they need to reach
consensus in a few rounds of opinion exchange. Agents do not
have an infinite horizon to make a decision; therefore, one needs
to view this scenario as a finite-time problem.

We now elaborate on several works inspired by the model
considered in [18]. The authors in [18] propose a non-Bayesian
update rule in the context of social networks. Each individual
averages her Bayesian posterior belief with the opinion of
her neighbors. It is then shown that, under mild technical
assumptions, agents’ beliefs converge to the true state almost
surely. Following up on the work of Duchi et al. [23] on
distributed dual averaging, an optimization-based algorithm is
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developed in [19]. The authors propose an update rule which
is the solution of a distributed stochastic optimization. They
demonstrate that the belief sequence is weakly consistent when
agents use gossip communication protocol. A communication-
efficient variant of the problem is studied in [20] where agents
switch between Bayesian and non-Bayesian regimes to asymp-
totically learn the true state. Lalitha et al. [21] introduce another
strategy where agents perform a local Bayesian update, and
geometrically average the posteriors in their neighborhood. The
authors then provide the convergence and rate analysis of their
method. On the other hand, Rahnama Rad et al. [22] present
a distributed estimation algorithm for continuous state space.
They prove the convergence of the algorithm, and characterize
the asymptotic efficiency of the method in comparison to any
centralized estimator. In [18]–[21], the convergence occurs
exponentially fast, and the asymptotic rate is characterized in
terms of the relative entropy of individuals’ signal structures
and their eigenvector centralities (see [24] for the rate analysis
of [18]). As an important consequence, the rate in [19] only
recovers the empirical average of relative entropies since the
method is restricted to undirected networks.

The asymptotic analysis presented in the above-discussed pa-
pers only describes the dominant factors that influence learning
in the long run. In real world applications, however, the decision
on the true state has to be made in a finite time. Therefore, it is
crucial to study the finite-time variant of these schemes to gain
insight into the interplay of network parameters which affect
learning. To this end, we extend the work of Shahrampour et al.
[19] to directed networks where agents are not equally central.
Moreover, we introduce the notion of Kullback-Leibler (KL)
cost to measure the learning rate of an individual agent versus
an expert who has all available information for learning. The
KL decentralization cost simply compares the performance of
distributed algorithm to its centralized counterpart. We derive
an upper bound on the cost which proves the spectral gap of
the network is substantial beside agents’ centralities. It turns
out that the upper bound scales inversely in the spectral gap,
and logarithmically with the network size, number of states and
time horizon. The rate also scales with the inverse of the relative
entropy of the conditional marginals. More specifically, the KL
cost grows when signals do not provide enough evidence in
favor of the true state versus some other state of the world.

Assuming that the network is realized with a default com-
munication structure, each agent is endowed with a centrality.
We establish that allocating more informative signals to more
central agents can expedite learning. More interestingly, the
importance of spectral gap opens new venues for optimal
network design to facilitate agents’ interactions. Each agent
assigns different weights to its neighbors’ information while
communicating with them. We demonstrate how agents can
modify these weights to achieve a faster learning rate. The key
idea is to find the Markov chain with the best mixing behavior
that is consistent with the network structure and agents’ cen-
tralities. On the other hand, as a natural conjecture, we expect a
more rapid learning rate in well-connected networks. We study
the ramification of link failures in the network, and prove that
in symmetric networks, less connectivity amounts to a sluggish
learning process. We further apply our results on star, cycle

and two-dimensional grid network, and observe that in each
case the effect of spectral gap can be translated to the network
diameter. Intuitively, a larger diameter makes the information
propagation difficult around the network. Finally, we present
numerical experiments which perfectly match our theoretical
findings.

The rest of the paper is organized as follows: we describe
the formal statement of the problem, and flesh out the distrib-
uted detection scheme in Section II. Section III is devoted to
the finite-time analysis of the algorithm, whereas Section IV
elaborates on the impact of network characteristics on the
convergence rate. We discuss briefly about applications of the
model, and provide our numerical experiments in Section V.
Section VI concludes.

Notation: We adhere to the following notation in the exposi-
tion of our results:

For any f ∈ Rm and μ ∈ Δm, we let Eμ[·] represent the
expectation of f under the measure μ, i.e., we have Eμ[f ] =∑m

j=1 μ(j)f(j). Throughout, all the vectors are assumed to be
column vectors.

II. THE PROBLEM DESCRIPTION AND ALGORITHM

In this section, we describe the observation and network
model, and outline the centralized setting for the problem.
Then, we provide a formal statement of the distributed setting,
and characterize the decentralization cost.

A. Observation Model

The signal and observation model of this work closely fol-
lows the framework proposed in [18]. We consider an envi-
ronment in which Θ = {θ1, θ2, . . . , θm} denotes a finite set of
states of the world. We have a network of n agents that seek the
unique, true state of the world θ1 ∈ Θ. At each time t ∈ [T ],
the belief of agent i is denoted by μi,t ∈ Δm, where Δm is a
probability distribution over the set Θ. In particular, μi,0 ∈ Δm

denotes the prior belief of agent i ∈ [n] about the states of the
world, and it is assumed to be uniform.1

1The assumption of uniform prior only avoids notational clutter. The analysis
in the paper holds for any prior with full support.
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The learning model is given by a conditional likelihood
function �(·|θk) which is governed by a state of the world
θk ∈ Θ. For each i ∈ [n], let �i(·|θk) denote the i-th marginal
of �(·|θk), and we use the vector representation �i(·|θ) =
[�i(·|θ1), . . . , �i(·|θm)]� to stack all states. At each time t ∈
[T ], the signal st = (s1,t, s2,t, . . . , sn,t) ∈ S1 × · · · × Sn is
generated based on the true state θ1. Therefore, for each i ∈ [n],
the signal si,t ∈ Si is a sample drawn according to the likeli-
hood �(·|θ1) where Si is the sample space.

The signals are i.i.d. over time, and also the marginals are
independent, i.e., �(·|θk) = Πn

i=1�i(·|θk) for any k ∈ [m]. For
the sake of convenience, we define ψi,t := log �i(si,t|θ) which
is a sample corresponding to Ψi := log �i(·|θ) for any i ∈ [n].

A1. We assume that all log-marginals are uniformly bounded
such that ‖ψi,t‖∞ ≤ B for any si,t ∈ Si, i.e., we have
| log �i(·|θk)| ≤ B for any i ∈ [n] and k ∈ [m].

Based on assumption A1, every private signal has bounded
information content. The assumption can also be interpreted as
Radon-Nikodym derivative of every private signal (likelihood
ratio) being bounded [25]. This bound can be found, for in-
stance, when the signal space is discrete and provides a full
support for distribution. Let us define Θ̄i as the set of states
that are observationally equivalent to θ1 for agent i ∈ [n]; in
other words, Θ̄i = {θk ∈ Θ : �i(si|θk) = �i(si|θ1) ∀ si ∈ Si}
almost surely with respect to the signal space.2 As evident
from the definition, any state θk �= θ1 in the set Θ̄i is not
distinguishable from the true state by observation of samples
from the i-th marginal. Let Θ̄ = ∩n

i=1Θ̄i be the set of states that
are observationally equivalent to θ1 from all agents perspective.

A2. We assume that no state in the world is observationally
equivalent to the true state from the standpoint of the
network, i.e., the true state is globally identifiable, and we
have Θ̄ = {θ1}.

Assumption A2 guarantees that the global likelihood provides
sufficient information to make the true state uniquely identifi-
able. In other words, for any false state θk �= θ1, there must exist
an agent who is able to distinguish θ1 from θk.

Let Ft be the smallest σ-field containing the information
about all agents up to time t. Then, when the learning process
continues for T rounds, the probability triple (Ω,F ,P) is
defined as follows: the sample space Ω = ⊗T

t=1(⊗n
i=1Si), the

σ-field F = ∪T
t=1Ft, and the true probability measure P =

⊗T
t=1�(·|θ1). Finally, the operator E denotes the expectation

with respect to P.

B. Network Model

The interaction between agents is captured by a directed
graph G = ([n], E), where [n] is the set of nodes corresponding
to agents, and E is the set of edges.3 Agent i receives infor-
mation from j only if the pair (i, j) ∈ E. We let Ni = {j ∈
[n] : (i, j) ∈ E} be the set of neighbors of agent i. Throughout

2The likelihoods can differ on a set of measure zero.
3Without loss of generality, we assume that n > 1 to have a well-defined

network.

the learning process agents truthfully report their information
to their neighbors. We represent by [W ]ii > 0 the self-reliance
of agent i, and by [W ]ij > 0 the weight that agent i assigns to
information received from agent j in its neighborhood. Then,
the matrix W is constructed such that [W ]ij denotes the entry
in its i-th row and j-th column. Therefore, W has nonnegative
entries, and [W ]ij > 0 only if (i, j) ∈ E. For normalization
purposes, we further assume that W is stochastic; hence

n∑
j=1

[W ]ij =
∑
j∈Ni

[W ]ij = 1.

A3. We assume that the network is strongly connected, i.e.,
there exists a directed path from any agent i ∈ [n] to any
agent j ∈ [n]. We further assume that W is diagonalizable
with real eigenvalues.4

The strong connectivity constraint in assumption A3 guarantees
the information flow in the network. The assumption implies
that λ1(W ) = 1 is unique, and the other eigenvalues of W
are strictly less than one in magnitude [26]. Given the matrix
of social interactions W , the eigenvector centrality is a non-
negative vector π such that for all i ∈ [n]

π(i) =

n∑
j=1

[W ]jiπ(j) (1)

for ‖π‖1 = 1. Then, π(i) denoting the i-th element of π is the
eigenvector centrality of agent i. In the matrix form, the preced-
ing relation takes the form π�W = π�, which means π is the
stationary distribution of W . Assumption A3 entails that the
Markov chain W is irreducible and aperiodic, and the unique
stationary distribution π has strictly positive components [26].

C. Centralized Detection

To motivate the development of distributed scheme, we
commence by introducing centralized detection.5 In this case,
the scenario could be described as a two player repeated game
between Nature and a centralized agent (expert) that has global
information to learn the true state. More specifically, the expert
observes the sequence of signals {st}Tt=1 that are in turn
revealed by Nature, and knows the entire network character-
istics. At any round t ∈ [T ], the expert accumulates a weighted
average of log-marginals, and forms the belief μt ∈ Δm about
the states, where Δm = {μ ∈ Rm|μ � 0,

∑m
k=1 μ(k) = 1}

denotes the m-dimensional probability simplex. Letting

ψt :=

n∑
i=1

π(i)ψi,t =

n∑
i=1

π(i) log �i(si,t|θ) (2)

4Note that diagonalizability is not necessary for convergence analysis, and
it only simplifies the results by avoiding Jordan blocks. In the absence of this
assumption, our theoretical results will depend on the size of the largest Jordan
block of W , which only complicates the message of the paper.

5The method can be cast as a special case of Follow the Regularized Leader
[27] and Mirror Descent [28] algorithm.
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the sequence of interactions could be depicted in the form of
the following algorithm:

Centralized Detection
Input: A uniform prior belief μ0, a learning rate η > 0.
Initialize: Let φ0(k) = 0 for all k ∈ [m].
At time t = 1, . . . , T :
Observe the signal st = (s1,t, s2,t, . . . , sn,t), update the vec-
tor function φt, and form the belief μt as follows:

φt =φt−1 + ψt

μt = arg min
μ∈Δm

{
−μ�φt +

1

η
DKL(μ‖μ0)

}
. (3)

Weighting the marginals based on the eigenvector centrality
(2), the centralized detector aggregates a geometric average of
marginals in φt. At each time t ∈ [T ], the goal is to maximize
the expected sum while sticking to the default belief μ0, i.e.,
minimizing the divergence. The trade-off between the two
behavior is tuned with the learning rate η.

Let us note that according to Jensen’s inequality for the
concave function log(·), we have for every i ∈ [n] and k ∈ [m]
that

−DKL (�i(·|θ1)‖�i(·|θk)) =E

[
log

�i(·|θk)
�i(·|θ1)

]

≤ logE

[
�i(·|θk)
�i(·|θ1)

]
= 0

where the inequality turns to equality if and only if
�i(·|θ1) = �i(·|θk), i.e., iff θk ∈ Θ̄i. Therefore, it holds that
E[log �i(·|θk)] ≤ E[log �i(·|θ1)], and recalling that the station-
ary distribution π consists of positive elements, we have for any
k �= 1 that

E

[
n∑

i=1

π(i)Ψi(k)

]
=E

[
n∑

i=1

π(i) log �i(·|θk)
]

< E

[
n∑

i=1

π(i) log �i(·|θ1)
]
=E

[
n∑

i=1

π(i)Ψi(1)

]

where the strict inequality is due to uniqueness of the true state
θ1, and the fact that Θ̄ = ∩n

i=1Θ̄i = {θ1} based on assumption
A2. In the sequel, without loss of generality, we assume the
following descending order, i.e.,

E

[
n∑

i=1

π(i)Ψi(1)

]
>E

[
n∑

i=1

π(i)Ψi(2)

]

≥ · · · ≥ E

[
n∑

i=1

π(i)Ψi(m)

]
. (4)

We shall see that the ordering will only simplify the derivation
of technical results throughout the paper.

D. Distributed Detection

We now extend the previous section to distributed setting
modeled based on a network of agents. In the distributed
scheme, each agent i ∈ [n] only observes the stream of private
signals {si,t}Tt=1 generated based on the parametrized likeli-
hood �i(·|θ1). That is, agent i ∈ [n] does not directly observe
sj,t for any j �= i. As a result, it gathers the local information
by averaging the log-likelihoods in its neighborhood, and forms
the belief μi,t ∈ Δm at round t ∈ [T ] as follows:

Distributed Detection
Input: A uniform prior belief μi,0, a learning rate η > 0.
Initialize: Let φi,0(k) = 0 for all k ∈ [m] and i ∈ [n].
At time t ∈ [T ]:
Observe the signal si,t, update the function φi,t, and form the
belief μi,t as follows:

φi,t =
∑
j∈Ni

[W ]ijφj,t−1 + ψi,t

μi,t = arg min
μ∈Δm

{
−μ�φi,t +

1

η
DKL(μ‖μi,0)

}
. (5)

As outlined above, each agent updates its belief using purely
local diffusion. We are interested in measuring the efficiency of
the distributed algorithm via a metric comparing that to its cen-
tralized counterpart. The centralized detector (expert) collects
all log-marginals and weights them according to centralities. A
distributed detector (an agent) collects local log-marginals, and
does not have access to centralities. At any round t ∈ [T ], let us
postulate that the cost which agent i ∈ [n] needs to pay to have
the same opinion as the expert is DKL(μi,t‖μt); then, the total
decentralization cost that the agent incurs after T rounds is as
follows:

Costi,T :=
T∑

t=1

DKL(μi,t‖μt) =
T∑

t=1

Eμi,t

[
log

μi,t

μt

]
. (6)

At each round, the outputs of the centralized and decentralized
algorithm are probability distributions over state space. The
KL-divergence captures the dissimilarity of two probability
distributions; hence, it could be a reasonable metric to measure
the difference between two algorithms. The function quantifies
the difference between the agent that observes private signals
{si,t}Tt=1 and an expert that has {st}Tt=1 and π available.
In other words, it shows how well the decentralized algo-
rithm copes with the partial information. Note importantly that
Costi,T is a random quantity since the expectation is not taken
with respect to randomness of signals.

We conclude this section with the following lemma which
reiterates that both algorithms are reminiscent of the well-
known Exponential Weights algorithm.
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Lemma 1: The update rules (3) and (5) have the explicit form
solutions

μt(k) =
exp {ηφt(k)}
〈1l, exp{ηφt}〉

and μi,t(k) =
exp{ηφi,t(k)}
〈1l, exp{ηφi,t}〉

respectively, for any i ∈ [n] and k ∈ [m]. Moreover

φi,t =

t∑
τ=1

n∑
j=1

[W t−τ ]ijψj,τ .

One can observe from above that

n∑
i=1

π(i)φi,t =

t∑
τ=1

n∑
j=1

n∑
i=1

π(i)[W t−τ ]ijψj,τ

=

t∑
τ=1

n∑
j=1

π(j)ψj,τ = φt

which connects the centralized and decentralized update via
eigenvector centrality (1). As explored in [21] and [24], we
shall see that centrality plays an important role in the conver-
gence rate.

III. FINITE-TIME ANALYSIS OF BELIEFS

AND COST FUNCTIONS

In this section, we investigate the convergence of agents’
beliefs to the true state in the network. Agents exchange infor-
mation over time, and reach consensus about the true state. The
connectivity of the network plays an important role in the learn-
ing as W t → 1lπ� as t → ∞. To examine the learning rate, we
need to have knowledge about the mixture behavior of Markov
chain W . The following lemma sheds light on the mixture rate,
and we invoke it later for technical analysis.

Lemma 2: Let the strong connectivity of network
(Assumption A3) hold, and define λmax(W ) :=max{|λn(W )|,
|λ2(W )|}. Then, for any t∈ [T ], the stochastic matrixW satisfies

t∑
τ=1

n∑
j=1

∣∣[W t−τ ]ij − π(j)
∣∣ ≤ 4 logn

1− λmax(W )

for any i ∈ [n] where 0 ≤ λmax(W ) < 1.
We now establish that agents have arbitrarily close opinions

in a strongly connected network. Furthermore, the convergence
rate is governed by cardinality of state space and network
characteristics.

Lemma 3: Let the sequence of beliefs {μi,t}Tt=1 for each
agent i ∈ [n] be generated by the distributed detection algo-
rithm with the learning rate η. Given bounded log-marginals
(Assumption A1), global identifiability of the true state
(Assumption A2), and strong connectivity of the network
(Assumption A3), for each individual agent i ∈ [n] it holds that

1

η
log ‖μi,t − e1‖TV ≤ −I(θ1, θ2)t+

√
2B2t log

m

δ

+
8B logn

1− λmax(W )
+

logm

η

with probability at least 1− δ, where for k ≥ 2

I(θ1, θk) :=
n∑

i=1

π(i)DKL (�i(·|θ1)‖�i(·|θk)) .

In particular, we have ‖μi,t − e1‖TV −→ 0 almost surely.
Beside providing an any-time bound in the high probability

sense, the lemma verifies that the belief μi,t of each agent
i ∈ [n] is strongly consistent, i.e., it converges almost surely
to a delta distribution on the true state. We also remark that
the asymptotic rate of I(θ1, θ2) was also discovered in [19],
[21], and [24] for the updates under study. However, Lemma 3
provides a non-asymptotic version of the convergence rate. Let
us proceed to the next lemma to derive a total variation bound
on the decentralization cost (6).

Lemma 4: The instantaneous KL cost associated to the
distributed detection algorithm with the learning rate η satisfies
for any t ∈ [T ]

DKL(μi,t‖μt) ≤ 2‖e1 − μt‖TV

as long as η‖qi,t‖∞≤1/4 at each round, where qi,t :=φi,t−φt.
The bound in Lemma 4 is evocative of a reverse Pinsker’s

inequality. It provides a total variation bound on the cost
function which is of the KL-divergence form. Let us remark that
an appropriate choice of learning rate η warrants the condition
η‖qi,t‖∞ ≤ 1/4. We now present the main result of the paper
in the following theorem.

Theorem 5: Let the sequence of beliefs {μi,t}Tt=1 for each
agent i∈ [n] be generated by the distributed detection algorithm
with the choice of learning rate η = 1− λmax(W )/16B logn.
Given bounded log-marginals (Assumption A1), global identi-
fiability of the true state (Assumption A2), and strong connec-
tivity of the network (Assumption A3), we have

Costi,T ≤ 18B2

I2(θ1, θ2)
max

{
log

6m

δ
,

3B
√
2

I(θ1, θ2)

}

+
48B logn

I(θ1, θ2)
logm+ 2

1− λmax(W )

with probability at least 1− δ.
Regarding Theorem 5 the following comments are in order:

the rate is related to the inverse of I(θ1, θ2) which is a weighted
average of KL-divergence of observations under θ2 (the second
best alternative) from observations under θ1 (the true state).
Also, from the definition of I(θ1, θ2) in Lemma 3, the weights
turn out to be agents’ centralities. Intuitively, when signals
hardly reveal the difference between the best two candidates
for the true state, agents must make more effort to distinguish
the two. In turn, this results in suffering a larger cost caused by
slower learning. The decentralization cost always scales loga-
rithmically with the number of states m. Now define

γ(W ) := 1− λmax(W ) (7)

as the spectral gap of the network. Then, Theorem 5 suggests
that for large networks, the cost scales inversely in the spectral
gap, and logarithmically with the network size n. Finally, the
detection cost is time-independent (with high probability),
proving the best possible bound with respect to time. Therefore,
the average expected cost (per iteration cost) asymptotically
tends to zero.
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IV. THE IMPACT OF NETWORK TOPOLOGY

The results of previous section verify that network character-
istics govern the learning process. We now discuss the role of
agents’ centralities and the network spectral gap.

A. Effect of Agent Centrality

To examine centrality, let us return to the definition of
I(θ1, θ2) in Lemma 3, and imagine that the network is collab-
orative in the sense that the network designer wants to expedite
learning. Then, to have the best information dispersion, the
marginal which collects the most evidence in favor of θ1 against
θ2 should be allocated to the most central agent. By the same
token, in an adversarial network where Nature aims to delay
the learning process, such marginal should be assigned to the
least central agent. To sum up, let us put forth the concept of
network regularity as defined in [24] in the context of social
learning. Recalling the definition of eigenvector centrality (1),
we say a network G is more regular than G′ if π′ majorizes π,
i.e., if for all j ∈ [n]

j∑
i=1

π[i] ≤
j∑

i=1

π′
[i] (8)

where π[i] denotes the i-th largest element of π. Letting

u :=[DKL (�1(·|θ1)‖�1(·|θ2)), . . . ,DKL (�n(·|θ1)‖�n(·|θ2))]�

it is a straightforward consequence of Lemma 1 proved in [24]
that

n∑
i=1

π[i]u[i] ≤
n∑

i=1

π′
[i]u[i]

when π′ majorizes π. Therefore, spreading more informative
signals among central agents speeds up the learning procedure.

B. Optimizing the Spectral Gap

We now turn our attention to the spectral gap of network (7).
Suppose that agents are given a default communication matrix
W which determines their neighborhood and centrality. The
problem is to find the optimal spectral gap assuming that the
neighborhood and centrality of each agent are fixed. The key
idea is to change the mixing behavior of the Markov chain W .
It is well-known, for instance, that we could do so using lazy ran
dom walks [29] which replacesW with (1/2)(W+In). To gen-
eralize the idea, let us define a modified communication matrix

W ′ := αW + (1− α)In α ∈ [0, 1] (9)

which has the same eigenstructure as W . Then, the eigenvalues
of W ′ are weighted averages of those of W with one. From
standpoint of network design, one can exploit the freedom in
choosing α to optimize the spectral gap.

Proposition 6: The optimal spectral gap of the modified
communication matrix W ′ (9) is as follows:

γ∗ =
2− 2λ2(W )

2− λn(W )− λ2(W )
for α∗ =

2

2− λn(W )− λ2(W )

when λn(W ) + λ2(W ) < 0

Proof: To optimize the spectral gap, we need to minimize
the second largest eigenvalue of W ′ in magnitude, that is, to
solve the min-max problem

min
α∈[0,1]

max {|αλ2(W ) + 1− α| , |αλn(W ) + 1− α|} . (10)

The functions |αλ2(W ) + 1− α| and |αλn(W ) + 1− α| are
both convex with respect to α. Therefore, the point-wise max-
imum of the two is also convex, and achieves its minimum
on a compact set. Since λn(W ) < −λ2(W ) by hypothesis, the
minimum occurs at the intersection of the following lines:

αλ2(W ) + 1− α = −αλn(W ) + α− 1

yielding α∗ = 2/(2− λn(W )− λ2(W )). Plugging α∗ into the
min-max problem (10), we calculate the optimal value λ∗

max as

λ∗
max =

λ2(W )− λn(W )

2− λn(W )− λ2(W )

and since γ∗ = 1− λ∗
max the proof follows immediately. �

We remark that when the Markov chain is symmetric, the
problem can be formulated as a convex optimization [30].
Moreover, for gossip protocols where the expected commu-
nication matrix is symmetric, the problem can be posed as a
semidefinite program [31]. However, in our setting the chain is
not necessarily symmetric and these results are not applicable.

C. Sensitivity to Link Failure

It is intuitive that in a network with more links, agents are
offered more opportunities for communication. Adding links
provides more avenues for spreading information, and improves
the learning quality. We study this phenomenon for symmetric
networks where a pair of agents assign similar weights to each
other, i.e., W� = W . In particular, we explore the connection
of spectral gap with the link failure. In this regard, let us
introduce the following positive semi-definite matrix:

ΔW (i, j) := (ei − ej)(ei − ej)
� (11)

where ei is the i-th unit vector in the standard basis of Rn.
Then, for i, j ∈ [n] the matrix

W̄ (i, j) := W + [W ]ijΔW (i, j) (12)

corresponds to a new communication matrix that removes edges
(i, j) and (j, i) from the network, and adds [W ]ij = [W ]ji to
the self-reliance of agent i and agent j.

Proposition 7: Consider the communication matrix W̄ (i, j)
in (12). Then, for any i, j ∈ [n] the following inequality holds:

λmax(W ) ≤ λmax

(
W̄ (i, j)

)
as long as W is positive semi-definite.

Proof: We recall that ΔW (i, j) in (11) is positive semi-
definite with λn(ΔW (i, j)) = 0. Applying Weyl’s eigenvalue
inequality on (12), we obtain for any k ∈ [n]

λk(W ) ≤ λk

(
W̄ (i, j)

)
which holds in particular for k = 2. On the other hand, the
matrixW is positive semi-definite, so we have that λmax(W ) =
λ2(W ). Combining with the fact that W̄ (i, j) is symmetric and
positive semi-definite, the proof is completed. �
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Fig. 1. Illustration of networks: star, cycle and grid networks with n agents. For
each network, each individual agent possesses a self-reliance of ω ∈ (0, 1).

The proposition immediately implies that removing a link
reduces the spectral gap. In this case, in view of the bound
in Theorem 5, the decentralization cost has more latitude to
vary. Therefore, to keep the costs small, agents tend to maintain
their connections. Let us take note of the delicate point that
monotone increase in the upper bound does not necessarily im-
ply a monotone increase in the cost; however, one can roughly
expect such behavior. We elaborate on this issue in the nu-
merical experiments. Notice that the positive semi-definiteness
constraint on W is not strong, since it can be easily satisfied by
replacing a lazy random walk (1/2)(W + In) with W . Finally,
we remark that link failures in distributed optimization [32]
and consensus protocols [33] has been previously studied in
the literature. We refer the interested reader to these references
where the impact of random link failure is considered.

D. Star, Cycle and Grid Networks

We now examine the spectral gap impact for some interesting
networks (Fig. 1), and derive explicit bounds for decentral-
ization cost. In the star network (regardless of the network
size), existence of a central agent always preserves the net-
work diameter, and therefore, we expect a benign scaling with
network size. On the other side of the spectrum lies the cycle
network where the diameter grows linearly with the network
size. We should, hence, observe how the poor communication
in cycle network affects the learning rate. Finally, as a possible
model for sensor networks, we study the grid network where
the network size scales quadratically with the diameter.

Corollary 8: Under conditions of Theorem 5 and the choice
of learning rate η = γ(·)/16B logn, for n large enough we
have the following bounds on the decentralization cost:

(a) For the star network in Fig. 1

Costi,T ≤ O
(

log[nm]

min {1− ω, 1− |2ω − 1|}

)
.

(b) For the cycle network in Fig. 1

Costi,T ≤ O
(

log[nm]

min
{
1− |2ω − 1|, 2(1− ω) sin2 π

n

}
)
.

(c) For the grid network in Fig. 1

Costi,T ≤O

⎛
⎝ log[nm]

min
{
1− |2ω − 1|, 2(1−ω) sin2 π√

n

}
⎞
⎠ .

Proof: The spectrum of the Laplacian of star and cy-
cle graphs are well-known [34]. We have the eigenvalue set
corresponding to communication matrix of star and cycle
graphs as

{1, ω, . . . , ω, 2ω − 1} and

{
ω + (1− ω) cos

2πi

n

}n−1

i=0

respectively. Therefore, the proof of (a) and (b) follows imme-
diately. The grid graph is the Cartesian product of two rings
of size

√
n (due to wraparounds at the edges), and hence, its

eigenvalues are derived by summing the eigenvalues of two√
n-rings [34]. Therefore, the eigenvalue set takes the form

{
ω + (1 − ω) cos

π(i + j)√
n

cos
π(i − j)√

n

}√
n−1

i,j=0

and the proof of (c) is completed. �
Let us use the notation Õ(·) to hide the poly log factors.

Then, the bounds derived in Corollary 8 indicate that the
algorithm requires Õ(1) iterations to achieve a near optimal
log-distance from the true state in the star network. However,
the rate deteriorates to Õ(n2) (respectively, Õ(n)) in the cycle
(respectively, grid) network. In all cases, the rate is proportional
to the diameter squared, and diameter is a natural indicator of
information dissemination quality.

V. NUMERICAL EXPERIMENT: BINARY

SIGNAL DETECTION

In this section, we discuss our numerical experiments. Note
that, as mentioned in the footnote of assumption A3, in our
convergence results the communication matrix need not be
diagonalizable, and the assumption is only for convenience.
In what follows, we disregard diagonalizability (in the con-
struction of network) for the first section. Therefore, we verify
the generality of convergence for arbitrary strongly connected
networks.

A. Convergence of Beliefs

We generate a random network of n = 50 agents based on
the Erdös-Rényi model. In our example, each link exists with
probability 0.3 independent of other links. We verify the strong
connectivity of the network before running the experiment.
Though generated randomly, the network is fixed throughout
the process. Assume that there exist m = 51 states in the world
and agents are to discover the true state θ1. At time t ∈ [T ],
a signal si,t ∈ {0, 1} is generated based on the true state such
that �i(·|θ1) = �i(·|θi+1). In other words, for agent i ∈ [n], we
have Θ̄i = {θ1, θi+1} and θi+1 is observationally equivalent to
the true state. Therefore, each agent i ∈ [n] fails to distinguish
θ1 from θi+1 once relying on the private signals. However,
since we have Θ̄ = ∩n

i=1Θ̄i = {θ1}, the true state is globally
identifiable. Consequently, in view of Lemma 3, all agents
reach a consensus on the true state (Fig. 2), and learn the truth
exponentially fast.
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Fig. 2. The belief evolution for all 50 agents in the network. The global identifi-
ability of the true state and strong connectivity of the network result in learning.

B. Optimizing the Spectral Gap

To verify the result of Proposition 6, we must construct a
communication matrix that is diagonalizable, yet not symmetric.
We let

W1 =

⎡
⎣ 0 0.95 0.05
0.95 0 0.05
0.05 0.95 0

⎤
⎦ and W2 =

[
0.5 0.5
0.3 0.7

]

and set W = W1 ⊗ (W2 ⊗W2). One can verify that W is row
stochastic, diagonalizable and asymmetric. Also, W t → 1lπ�

as t → ∞, where π consists of positive elements. The resulting
network has a specific structure, but it suits our purposes since it
satisfies all the conditions without being symmetric. The signal
generating process is precisely the same as the previous section.
We now turn to optimizing the spectral gap to speed up learning.
We proved in Proposition 6 that every default communication
matrix can be adjusted to a matrix W ′ which has the optimal
spectral gap when centralities are fixed. Setting the parameter α
in (9) equal to α∗ derived in Proposition 6, we obtain the
optimal network. In this example we have γ(W ) = 0.05, α∗ =
0.7273 and γ∗ = 0.5818. The dependence of decentralization
cost to the spectral gap was theoretically proved in Theorem 5.
Applying the results of Proposition 6 verifies that in the
optimal network, agents suffer a lower decentralization cost
comparing to the default network (Fig. 3). On the other hand,
we proved theoretically in Theorem 5 that the cost bound
is time-independent with high probability. Interestingly, the
plot verifies the high probability upper bound on the cost for
both cases. In particular, we observe that, for each agent, the
asymptotic value of the optimal network is smaller than the
default network, while both curves remain constant after almost
300 iterations. The difference between the asymptotic values, in
fact, reflects the quality of finite-time performance. The reason
is that for larger iterations (say, t > 300) both centralized and
decentralized algorithms have almost converged to the true
state, and there is no cost accumulation, whereas in smaller
iterations (say, t < 300) the network structure is still impactful
in collecting the cost.

Fig. 3. The plot of decentralization cost versus time horizon for agents 2, 4, 6,
and 12 in the network. The cost in the network with the optimal spectral gap
(green) is always less than the network with default weights (blue).

Fig. 4. The decentralization cost at round T = 300 for agents 10, 11, 29,
and 48 in the network. Removing the links causes poor communication among
agents and increase the decentralization cost.

C. Sensitivity to Link Failure

To evaluate the result of Proposition7, we need a symmetric
network. The upper triangle of W is generated using Erdös-
Rényi model (similar to the first section), and the matrix is then
symmetrized. In this case every agent is equally central, and we
have π = 1l/n. To study the impact of link failure, we sequen-
tially select random pairs of agents in the network, and remove
their connection. Each time that a link is discarded, we compute
the decentralization cost in the new network at iteration T =
300, and continue the process until 50 bi-directional edges
are eliminated from the network. In view of Proposition7, we
expect a monotone decrease in the spectral gap which amounts
to a larger decentralization cost. We plot the cost for four
agents in the network, and observe that the behavior is almost
(not quite) monotonic (Fig. 4). The monotone dependence of
the upper bound to the spectral gap (Theorem 5) does not
necessarily guarantee a monotone relationship between cost
and the spectral gap. However, we can intuitively expect that
removing edges makes the network less connected, causing the
performance of distributed algorithm to deteriorate.
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VI. CONCLUSION

We considered a distributed detection model where a net-
work of agents aim to learn the underlying state of the world.
The private signals do not provide enough information for
agents about the true state. Hence, agents engage in a local
communication to compensate for their imperfect knowledge.
Each agent iteratively forms a belief about the state space
using the collected data in its neighborhood. We analyzed
the learning procedure for a finite time horizon. To study the
efficiency of our algorithm versus its centralized counterpart,
we brought forward the idea of KL cost. It turned out that
network size, spectral gap, centrality of each agent and relative
entropy of agents’ signal structures are the key parameters that
affect distributed detection. We established that allocating more
informative signals to central agents as well as optimizing the
spectral gap can speed up learning. We also proved that the
learning rate deteriorates in the case of link failures, which can
be seen as a side effect of poor communication. Finally, we
would like to address a few issues in future works. In this paper,
we discussed a communication model in which agents ex-
change information at every round. In some networks, all-time
communication is potentially costly or unnecessary. It would be
interesting to study the trade-off between communication and
learning in finite time. As another direction, we can consider
scenarios where the signal distributions are not stationary. This
generalizes the model to dynamic parameters where we can
investigate detection robustness in changing environments.

APPENDIX

OMITTED PROOFS

Proof of Lemma 1: The proof is elementary, and it is only
given to keep the paper self-contained. We write the Lagrangian
associated to the update (3) as

L(μ, λ) = −μ�φt +
1

η

〈
μ, log

μ

μ0

〉
+ λμ�1l− λ

where we left the positivity constraint implicit. Differentiating
above with respect to μ and λ, and setting the derivatives equal
to zero, we get

μt(k) = μ0(k) exp {η (φt(k)− λ)− 1} and μ�
t 1l = 1

respectively, for any k ∈ [m]. Combining the equations above
and noting that μ0 is uniform, we have

1

m
exp{−ηλ− 1}

m∑
k=1

exp {ηφt(k)} = 1

which allows us to solve for λ and calculate the optimal solution
μt as follows:

μt(k) =
exp {ηφt(k)}∑m
k=1 exp {ηφt(k)}

.

The proof for μi,t follows precisely in the same fashion. To cal-
culate φi,t, notice that in view of the first update in (5) we have

⎡
⎢⎢⎢⎣

φ1,t

φ2,t

...
φn,t

⎤
⎥⎥⎥⎦ = (W ⊗ Im)

⎡
⎢⎢⎢⎣

φ1,t−1

φ2,t−1

...
φn,t−1

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

ψ1,t

ψ2,t

...
ψn,t

⎤
⎥⎥⎥⎦

where ⊗ denotes the Kronecker product. The equation above
represents a discrete-time linear system. Given the fact that
φi,0(k) = 0 for all k ∈ [m] and i ∈ [n], the closed-form
solution of the system takes the form

⎡
⎢⎢⎢⎣

φ1,t

φ2,t

...
φn,t

⎤
⎥⎥⎥⎦ =

t∑
τ=1

(W ⊗ In)
t−τ

⎡
⎢⎢⎢⎣

ψ1,τ

ψ2,τ

...
ψn,τ

⎤
⎥⎥⎥⎦

=
t∑

τ=1

(W t−τ ⊗ In)

⎡
⎢⎢⎢⎣

ψ1,τ

ψ2,τ

...
ψn,τ

⎤
⎥⎥⎥⎦ .

Therefore, extracting φi,t for each i ∈ [n] from the preceding
relation completes the proof. �

Proof of Lemma 2: Since the network is strongly connected
and the corresponding W is irreducible and aperiodic, by
standard properties of stochastic matrices (see, e.g., [26]), the
diagonalizable matrix W satisfies

∥∥e�i W t − π�∥∥
1
≤ nλmax(W )t (13)

for any i ∈ [n], where π is the stationary distribution of a
Markov chain with transition kernel W . Let us observe the
following inequality:

nλmax(W )t−τ ≤ 2 for t− τ ≥ t̃ :=
log n

2

logλmax(W )−1

and recall that the inequality ‖e�i W t−τ − π�‖1 ≤ 2 always
holds since any power of W is stochastic. With that in mind,
we use (13) to break the following sum into two parts to get:

t∑
τ=1

∥∥e�i W t−τ − π�∥∥
1
=

t−t̃∑
τ=1

∥∥e�i W t−τ − π�∥∥
1

+

t∑
τ=t−t̃+1

∥∥e�i W t−τ − π�∥∥
1

≤
t−t̃∑
τ=1

nλmax(W )t−τ + 2t̃

≤ nλmax(W )t̃

1− λmax(W )
+

2 log n
2

logλmax(W )−1
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for any i ∈ [n]. Note that 1− λmax(W ) ≤ logλmax(W )−1 and
2 + 2 log(n/2) ≤ 4 logn, since n > 1. It follows by plugging t̃
into above that:

t∑
τ=1

n∑
j=1

∣∣[W t−τ ]ij − π(j)
∣∣ = t∑

τ=1

∥∥e�i W t−τ − π�∥∥
1

≤ 4 logn

1− λmax(W )

which completes the proof. �
We use the following inequality in [35] in the proof of

Lemma 3.
Lemma 9 (McDiarmid’s Inequality): Let X1, . . . , XN ∈

χ be independent random variables and consider the map-
ping H : χN �→ R. If for i ∈ {1, . . . , N}, and every sample
x1, . . . , xN , x′

i ∈ χ, the function H satisfies

|H(x1, . . . , xi, . . . , xN )−H(x1, . . . , x
′
i, . . . , xN )| ≤ ci

then for all ε > 0

P {H(x1, . . . , xN )−E [H(X1, . . . , XN)] ≥ ε}

≤ exp

{
−2ε2∑N
i=1 c

2
i

}
.

Proof of Lemma 3: According to Lemma 1, we have

μi,t(1) =
exp {ηφi,t(1)}∑m
k=1 exp {ηφi,t(k)}

=

(
1 +

m∑
k=2

exp {ηφi,t(k)− ηφi,t(1)}
)−1

≥ 1−
m∑

k=2

exp {ηφi,t(k)− ηφi,t(1)} (14)

where we used the fact that (1 + x)−1 ≥ 1− x for any x ≥ 0.
Since we know

‖μi,t − e1‖TV =
1

2

(
1− μi,t(1) +

m∑
k=2

μi,t(k)

)
= 1− μi,t(1)

we can combine above with (14) to obtain

‖μi,t − e1‖TV ≤
m∑

k=2

exp {ηφi,t(k)− ηφi,t(1)} . (15)

For any k ∈ [m], define

Φi,t(k) :=

t∑
τ=1

n∑
j=1

[W t−τ ]ij log �j(·|θk)

and note that Φi,t(k) is a function of nt random variables.
As required in McDiarmid’s inequality in Lemma 9, set H =
Φi,t(k)− Φi,t(1), fix the samples for nt− 1 random variables,
and draw two different samples sj,τ and s′j,τ for some j ∈ [n]

and some τ ∈ [t]. The fixed samples are simply cancelled in the
subtraction, and we have∣∣H(. . . , sj,τ , . . .)−H

(
. . . , s′j,τ , . . .

)∣∣
=

∣∣∣∣∣[W t−τ ]ij

(
log

�j(sj,τ |θk)
�j(sj,τ |θ1)

− log
�j
(
s′j,τ |θk

)
�j
(
s′j,τ |θ1

)
)∣∣∣∣∣

≤ [W t−τ ]ij2B

where we used assumption A1. Since any power of W is
stochastic, summing over j ∈ [n] and τ ∈ [t], we get

t∑
τ=1

n∑
j=1

(
[W t−τ ]ij2B

)2 ≤ 4B2t.

We now apply McDiarmid’s inequality in Lemma 9 to obtain

P (φi,t(k)− φi,t(1) > E [Φi,t(k)− Φi,t(1)] + ε)

≤ exp

{
−ε2

2B2t

}

for each fixed k. Setting the probability above to δ/m and
taking a union bound over all states, the following event holds:

φi,t(k)−φi,t(1)≤E [Φi,t(k)−Φi,t(1)]+

√
2B2t log

m

δ
(16)

simultaneously for all k = 2, . . . ,m, with probability at least
1− δ. On the other hand, in view of assumption A1, we have

E [Φi,t(k)−Φi,t(1)]

=

t∑
τ=1

n∑
j=1

[W t−τ ]ijE [log �j(·|θk)−log �j(·|θ1)]

=

t∑
τ=1

n∑
j=1

(
[W t−τ ]ij−π(j)

)
E [log �j(·|θk)−log �j(·|θ1)]

+

t∑
τ=1

n∑
j=1

π(j)E [log �j(·|θk)−log �j(·|θ1)]

≤ 2B

t∑
τ=1

n∑
j=1

∣∣[W t−τ ]ij−π(j)
∣∣

−t
n∑

j=1

π(j)DKL (�j(·|θ1)‖�j(·|θk))

= 2B

t∑
τ=1

n∑
j=1

∣∣[W t−τ ]ij−π(j)
∣∣−I(θ1, θk)t

≤ 8B logn

1−λmax(W )
−I(θ1, θk)t (17)

where we applied Lemma 2 to derive the last step. Using (4),
we simplify above to get

E [Φi,t(k)− Φi,t(1)] ≤
8B logn

1− λmax(W )
− I(θ1, θ2)t (18)



3266 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 11, NOVEMBER 2016

for any k = 2, . . . ,m. Plugging (18) into (16) and combining
with (15), we have

‖μi,t − e1‖TV

≤
m∑

k=2

exp

{
−ηI(θ1, θ2)t+η

√
2B2t log

m

δ
+

8ηB log n

1−λmax(W )

}

≤m exp

{
−ηI(θ1, θ2)t+η

√
2B2t log

m

δ
+

8ηB logn

1−λmax(W )

}

with probability at least 1− δ, and thereby completing the
proof of the first part. Letting δ = 1/t2 in above and applying
Borel-Cantelli lemma, the almost sure convergence follows
immediately. �

Proof of Lemma 4: We recall from the statement of the
lemma that qi,t(k) = φi,t(k)− φt(k), and calculate the ratio
μi,t(k)/μt(k) for any k ∈ [m] as follows:

μi,t(k)

μt(k)
= exp {ηqi,t(k)}

Eμ0
[exp {ηφt}]

Eμ0
[exp {ηφi,t}]

= exp {ηqi,t(k)}
Eμ0

[exp {ηφt}]
Eμ0

[exp {ηφt} exp {ηqi,t}]

= exp {ηqi,t(k)}
1

Eμ0

[
exp{ηφt}

Eμ0
[exp{ηφt}] exp {ηqi,t}

]

=exp {ηqi,t(k)}
1

Eμ0

[
μt

μ0
exp {ηqi,t}

]

=exp {ηqi,t(k)}
1

Eμt
[exp {ηqi,t}]

.

This entails

1

η
Eμi,t

[
log

μi,t

μt

]
=Eμi,t

[qi,t]−
1

η
logEμt

[exp {ηqi,t}]

≤Eμi,t
[qi,t]−Eμt

[qi,t]

where we used Jensen’s inequality on the convex function
− log(·). Setting the expectation measures in the right hand side
of above to μt, and recalling the ratio μi,t/μt from above, we
conclude that

Eμi,t

[
log

μi,t

μt

]
≤ Eμt

[
μi,t

μt
ηqi,t

]
−Eμt

[ηqi,t]

=Eμt

[(
exp{ηqi,t}

Eμt
[exp{ηqi,t}]

−1

)
ηqi,t

]

=

m∑
k=1

μt(k)ηqi,t(k)

(
exp{ηqi,t(k)}

Eμt
[exp{ηqi,t}]

−1
)

=

m∑
k=1

μt(k)ηqi,t(k)
〈ek−μt, exp{ηqi,t}〉
〈μt, exp{ηqi,t}〉

≤
exp

{
1
4

}
4

m∑
k=1

μt(k) |〈ek−μt, exp{ηqi,t}〉|

where we used the condition η‖qi,t‖∞ ≤ 1/4 to obtain the last
line. We now apply Hölder’s inequality for primal-dual norm
pairs and use η‖qi,t‖∞ ≤ 1/4 again to simplify above as

Eμi,t

[
log

μi,t

μt

]

≤
exp

{
1
4

}
4

m∑
k=1

μt(k)‖ek − μt‖1 ‖exp{ηqi,t}‖∞

≤
exp

{
1
2

}
4

m∑
k=1

μt(k)‖ek − μt‖1

≤
exp

{
1
2

}
4

(
‖e1 − μt‖1 + 2

m∑
k=2

μt(k)

)
(19)

where the last step follows from the fact that ‖ek − μt‖1 ≤ 2
for any k ∈ [m]. Recalling

1

2
‖e1 − μt‖1 =

1

2

(
1− μt(1) +

m∑
k=2

μt(k)

)

=
1

2

(
m∑

k=1

μt(k)− μt(1) +

m∑
k=2

μt(k)

)
=

m∑
k=2

μt(k)

as well as the fact ‖e1 − μt‖TV = (1/2)‖e1 − μt‖1, we sim-
plify (19) to get

Eμi,t

[
log

μi,t

μt

]
≤exp

{
1

2

}
‖e1−μt‖TV ≤2‖e1−μt‖TV (20)

and thereby completing the proof. �
Proof of Theorem 5: We recall that qi,t in the statement of

Lemma 4 satisfies

‖qi,t‖∞ =

∥∥∥∥∥∥
t∑

τ=1

n∑
j=1

(
[W t−τ ]ij − π(j)

)
ψj,t

∥∥∥∥∥∥
∞

≤B
t∑

τ=1

n∑
j=1

∣∣[W t−τ ]ij − π(j)
∣∣ ≤ 4B logn

1− λmax(W )

due to Lemma 2 and assumption A1. Therefore, the choice
of η = (1− λmax(W ))/16B logn guarantees that qi,t satisfies
η‖qi,t‖∞ ≤ 1/4 for all t ∈ [T ]. Let us follow exactly the same
steps in the proof of Lemma 3, and note that the centralized
update can be recovered using W = 1lπ�. It can be verified
from (17) that for any t ∈ [T ], we only remain with

E [Φt(k)− Φt(1)] ≤ −I(θ1, θ2)t

which yields

1

η
log‖μt−e1‖TV ≤−I(θ1, θ2)t+

√
2B2t log

m

δt
+
logm

η
(21)
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with probability at least 1− δt. To have the above work for
all t ∈ [T ] (simultaneously) with probability at least 1− δ, we
need to take a union bound over any t ∈ [T ]. Therefore, we
have to choose {δt}Tt=1 such that

∑T
t=1 δt ≤ δ. Letting δt :=

δ exp{−t1/3}/6, we have

T∑
t=1

δt ≤
δ

6

∞∫
0

exp
{
−t

1
3

}
dt

=
δ

6

∞∫
0

3u2 exp {−u}du =
δ

6
3! = δ. (22)

Let us avoid notational clutter, by defining a := I(θ1, θ2), b :=
(2B2 log(6m/δ))1/2 and c :=

√
2B, respectively. Also, define

t1 := max

{(
3b

a

)2

,

(
3c

a

)3
}

and t2 :=
3

aη
logm.

Then, in view of (21) and Lemma 4, with probability at least
1− δt we have

DKL(μi,t‖μt) ≤ 2‖e1 − μt‖TV

≤ 2m exp
{
η
(
−at+ bt

1
2 + ct

2
3

)}

≤ 2m exp
{
−a

3
ηt
}

for t ≥ t1

≤ 2, for t ≥ t2.

Let t0 = max{t1, t2}, note all the inequalities above together,
and observe the fact that ‖e1 − μt‖TV ≤ 1 for any t ∈ [T ].
Also, recall the proper choice of δt for (22) to boundCosti,T as

T∑
t=1

DKL(μi,t‖μt) ≤ 2

t0∑
t=1

‖e1 − μt‖TV

+ 2

T∑
t=t0+1

m exp
{
−a

3
ηt
}

≤ 2t0 + 2

T∑
t=t2+1

m exp
{
−a

3
ηt
}

≤ 2t0 + 2

∞∫
t2

m exp
{
−a

3
ηt
}
dt

=2t0 +
6

aη

with probability at least 1− δ. Plugging our choice of η into
above completes the proof. �
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