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On Sequential Elimination Algorithms for Best-Arm
Identification in Multi-Armed Bandits

Shahin Shahrampour, Mohammad Noshad, and Vahid Tarokh

Abstract—We consider the best-arm identification problem
in multi-armed bandits, which focuses purely on exploration.
A player is given a fixed budget to explore a finite set of arms,
and the rewards of each arm are drawn independently from
a fixed, unknown distribution. The player aims to identify the
arm with the largest expected reward. We propose a general
framework to unify sequential elimination algorithms, where the
arms are dismissed iteratively until a unique arm is left. Our
analysis reveals a novel performance measure expressed in terms
of the sampling mechanism and number of eliminated arms at
each round. Based on this result, we develop an algorithm that
divides the budget according to a nonlinear function of remaining
arms at each round. We provide theoretical guarantees for the
algorithm, characterizing the suitable nonlinearity for different
problem environments described by the number of competitive
arms. Matching the theoretical results, our experiments show
that the nonlinear algorithm outperforms the state-of-the-art. We
finally study the side-observation model, where pulling an arm
reveals the rewards of its related arms, and we establish improved
theoretical guarantees in the pure-exploration setting.

Index Terms—Multi-armed bandits, best-arm identification, se-
quential decision-making, pure-exploration, online learning.

I. INTRODUCTION

MULTI-ARMED Bandits (MAB) is a sequential
decision-making framework addressing the exploration-

exploitation dilemma [1]–[4]. A player explores a finite set
of arms sequentially, and pulling each of them results in a
reward to the player. The problem has been studied for different
reward models. In the stochastic MAB, the rewards of each
arm are assumed to be i.i.d. samples of an unknown, fixed
distribution. Then, the player’s goal is to exploit the arm
with the largest expected reward as many times as possible
to maximize the gain. In the literature, this objective has been
translated to minimizing the cumulative regret, a comparison
measure between the actual performance of the player versus
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a clairvoyant knowing the best arm in advance. Early studies
on MAB dates back to a few decades ago, but the problem has
surged a lot of renewed interest due to its modern applications.
Though generally addressing sequential decision-making
problems, MAB has been studied in several engineering
contexts such as web search and advertising, wireless cognitive
radios, multi-channel communication systems, and Big-Data
streaming (see e.g. [5]–[11] and references therein).

Departing from its classical setting (exploration-
exploitation), many researchers have studied MAB in the
pure-exploration framework. In this case, the player aims to
minimize the simple regret which can be related to finding
the best arm with a high probability [12]. As a result, the
best-arm identification problem has received a considerable
attention in the literature of machine learning [12]–[19]. The
problem has been viewed from two main standpoints: (i) the
fixed-confidence setting, where the objective is to minimize
the number of trials to find the best arm with a certain
confidence, and (ii) the fixed-budget setting, where the player
attempts to maximize the probability of correct identification
given a fixed number of arm pulls. Best-arm identification has
several applications including channel allocation as originally
proposed in [12]. Consider the problem of channel allocation
for mobile phone communication. Before the outset of commu-
nication, a cellphone (player) can explore the set of channels
(arms) to find the best one to operate. Each channel feedback is
noisy, and the number of trials (budget) is limited. The problem
is hence an instance of best-arm identification, and minimizing
the cumulative regret is not the right approach to the problem.

While both pure-exploration and exploration-exploitation se-
tups are concerned with finding the best arm, they are quite
different problems in nature. In fact, Bubeck et al. [17] estab-
lish that methods designed to minimize the cumulative regret
(exploration-exploitation) can perform poorly for the simple-
regret minimization (pure-exploration). More specifically, they
proved that upper bounds on the cumulative regret yield lower
bounds on the simple regret, i.e., the smaller the cumulative
regret, the larger the simple regret. Therefore, one must adopt
different strategies for optimal best-arm recommendation.

A. Our Contribution

In this paper, we address the best-arm identification problem
in the fixed-budget setting. We restrict our attention to a class
of algorithms that work based on sequential elimination. Re-
cently, it is proved in [20] that some existing strategies based
on the sequential elimination of the arms are optimal. However,
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the notion of optimality is defined with respect to the worst-
case allocation of the reward distributions. The main focus of
this paper is not the worst-case scenario. On the contrary, given
certain regimes for rewards, our goal is to propose an algo-
rithm outperforming the state-of-the-art in these regimes. We
characterize these reward regimes in terms of the number of
competitive arms, and we prove the superiority of our algorithm
both theoretically and empirically.

Of particular relevance to the current study is the works of
[12], [18], where two iterative algorithms are proposed for se-
quential elimination: Successive Rejects (Succ-Rej) [12] and
Sequential Halving (Seq-Halv) [18]. In both algorithms, the
player must sample the arms in rounds to discard the arms se-
quentially, until a single arm is left, one that is perceived as the
best arm. However, we recognize two distinctions between the
algorithms: (i) Succ-Rej eliminates one arm at each round,
until it is left with a single arm, whereas Seq-Halv discards
roughly half of the remaining arms at each round to identify
the best arm. (ii) At each round, Seq-Halv samples the re-
maining arms uniformly (excluding previous rounds), whereas
Succ-Rej samples them uniformly once including the previ-
ous rounds.

Inspired by these works, our first contribution is to propose
a general framework to bring sequential elimination algorithms
(including Succ-Rej and Seq-Halv) under the same um-
brella. Our analysis reveals a novel performance bound which
relies on the sampling design as well as the number of elimi-
nated arms at each around. Following this general framework,
we extend Succ-Rej to an algorithm that divides the budget
by a nonlinear function of remaining arms at each round, unlike
Succ-Rej that does so in a linear fashion. We prove theo-
retically that we can gain advantage from the nonlinearity. In
particular, we consider several well-studied reward regimes and
exhibit the suitable nonlinearity for each environment. Tuning
with a proper nonlinearity, our algorithm outperforms Succ-
Rej and Seq-Halv in these regimes. Interestingly, our numer-
ical experiments support our theoretical results, while showing
that our algorithm is competitive with UCB-E [12] which re-
quires prior knowledge of a problem-dependent parameter.

Finally, we consider sequential elimination in the presence of
side observations. In this model, a graph encodes the connec-
tion between the arms, and pulling one arm reveals the rewards
of all neighboring arms [21]. While the impact of side obser-
vations is well-known for exploration-exploitation [22], [23],
we consider the model in the pure-exploration setting. Given a
partition of arms to a few blocks, we propose an algorithm that
eliminates blocks consecutively and selects the best arm from
the final block. Naturally, we provide an improved theoretical
guarantee comparing to the full bandit setting where there is no
side observation.

B. Related Work

Pure-exploration in the PAC-learning setup was studied in
[13], where Successive Elimination for finding an ε-optimal arm
with probability 1 − δ (fixed-confidence setting) was proposed.
Seminal works of [14], [15] provide matching lower bounds

for the problem, which present a sufficient number of arm
pulls to reach the confidence 1 − δ. Many algorithms for pure-
exploration are inspired by the classical UCB1 for exploration-
exploitation [2]. For instance, Audibert et al. [12] propose
UCB-E, which modifies UCB1 for pure-exploration. UCB-E
needs prior knowledge of a problem-dependent parameter, so
the authors also propose its adaptive counterpart AUCB-E to
address the issue. In addition, Jamieson et al. [24] propose an op-
timal algorithm for the fixed confidence setting, inspired by the
law of the iterated logarithm. We refer the reader to [25] and the
references therein for recent advances in the fixed-confidence
setting, while remarking that Gabillon et al. [19] present a uni-
fying approach for fixed-budget and fixed-confidence settings.
As another interesting direction, various works in the literature
introduce information-theoretic measures for best-arm identifi-
cation. Kaufmann et al. [26] study the identification of multiple
top arms using KL-divergence-based confidence intervals. The
authors of [27] investigate both settings to show that the com-
plexity of the fixed-budget setting may be smaller than that
of the fixed-confidence setting. Recently, Russo [28] develops
three Bayesian algorithms to examine asymptotic complexity
measure for the fixed-confidence setting. There also exists ex-
tensive literature on identification of multiple top arms in MAB
(see e.g. [26], [27], [29]–[32]). Finally, we remark that simple-
regret minimization has been successfully used in the context
of Monte-Carlo Tree Search [33], [34] as well.

C. Organization

The rest of the paper is organized as follows. Section II is ded-
icated to nomenclature, problem formulation, and a summary
of our results. In Sections III and IV, we discuss our main the-
oretical results and their consequences, while we extend these
results to side-observation model in Section V. In Section VI,
we describe our numerical experiments, and the concluding re-
marks are provided in Section VII. We include the proofs in the
Appendix (Section VIII).

II. PRELIMINARIES

Notation: For integer K, we define [K] := {1, . . . , K} to
represent the set of positive integers smaller than or equal to K.
We use |S| to denote the cardinality of the set S. Throughout,
the random variables are denoted in bold letters.

A. Problem Statement

Consider the stochastic Multi-armed Bandit (MAB) problem,
where a player explores a finite set of K arms. When the player
samples an arm, only the corresponding payoff or reward of
that arm is observed. The reward sequence for each arm i ∈ [K]
corresponds to i.i.d samples of an unknown distribution whose
expected value is μi . We assume that the distribution is sup-
ported on the unit interval [0, 1], and the rewards are generated
independently across the arms. Without loss of generality, we
further assume that the expected value of the rewards are ordered
as

μ1 > μ2 ≥ · · · ≥ μK , (1)
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and therefore, arm 1 is the unique best arm. We let Δi := μ1 −
μi denote the gap between arm i and arm 1, measuring the
sub-optimality of arm i. We also represent by x̄i,n the average
reward obtained from pulling arm i for n times.

In this paper, we address the best-arm identification setup,
a pure-exploration problem in which the player aims to find
the arm with the largest expected value with a high confidence.
There are two well-known scenarios for which the problem has
been studied: fixed confidence and fixed budget. In the fixed-
confidence setting, the objective is to minimize the number of
trials needed to achieve a fixed confidence. However, in this
work, we restrict our attention to the fixed-budget, formally
described as follows:

Problem 1: Given a total budget of T arm pulls, minimize
the probability of misidentifying the best arm.

It is well-known that classical MAB techniques in the
exploration-exploitation setting, such as UCB1, are not efficient
for the identification of the best arm. In fact, Bubeck et al. have
proved in [17] that upper bounds on the cumulative regret yield
lower bounds on the simple regret, i.e., the smaller the cumu-
lative regret, the larger the simple regret. In particular, for all
Bernoulli distributions on the rewards, a constant L > 0, and a
function f(·), they have proved if an algorithm satisfies

Expected Cumulative Regret ≤ Lf(T ),

after T rounds, we have

Misidentification Probability ≥
Expected Simple Regret ≥ D1 exp(−D2f(T )),

for two positive constants D1 and D2 . Given that for opti-
mal algorithms in the exploration-exploitation setting, we have
f(T ) = O(log T ), these algorithms decay polynomially fast for
best-arm identification. However, a carefully designed best-arm
identification algorithm achieves an exponentially fast decay
rate (see e.g. [12], [18]).

The underlying intuition is that in the exploration-exploitation
setting, only playing the best arm matters. For instance, playing
the second best arm for a long time can result in a dramatically
large cumulative regret. Therefore, the player needs to mini-
mize the exploration time to focus only on the best arm. On
the contrary, in the best-arm identification setting, player must
recommend the best arm at the end of the game. Hence, explor-
ing the suboptimal arms “strategically” during the game helps
the player to make a better recommendation. In other words,
the performance is measured by the final recommendation re-
gardless of the time spent on the suboptimal arms. We focus on
sequential elimination algorithms for the best-arm identification
in the next section.

B. Previous Performance Guarantees and Our Result

In this work, we examine sequential-elimination type algo-
rithms in the fixed budget setting. We propose a general al-
gorithm that unifies sequential elimination methods, including
celebrated Succ-Rej [12] and Seq-Halv [18]. We then use
a special case of this general framework to develop an algorithm
called Nonlinear Sequential Elimination. We show that this al-

gorithm is more efficient than Succ-Rej and Seq-Halv in
several problem scenarios.

Any sequential elimination algorithm samples the arms based
on some strategy. It then discards a few arms at each round and
stops when it is only left by one arm. In order to integrate
sequential elimination algorithms proceeding in R rounds, we
use the following key observation: let any such algorithm play
each (remaining) arm for nr times (in total) by the end of round
r ∈ [R]. If the algorithm needs to discard br arms at round r, it
must satisfy the following budget constraint

b1n1 + b2n2 + · · · + (bR + 1)nR ≤ T, (2)

since the br arms eliminated at round r have been played nr

times, and the surviving arm has been played nR times. Al-
ternatively, letting gr :=

∑R
i=r bi + 1 denote the number of re-

maining arms at the start of round r, one can pose the budget
constraint as

g1n1 + g2(n2 − n1) + · · · + gR (nR − nR−1) ≤ T. (3)

Our first contribution is to derive a generic performance mea-
sure for such algorithm (Theorem 2), relating the algorithm
efficiency to {br}R

r=1 as well as the sampling scheme deter-
mining {nr}R

r=1 . Note that Succ-Rej satisfies br = 1 for
R = K − 1 rounds, whereas Seq-Halv is characterized via
gr+1 = �gr/2� with g1 = K for R = �log2 K�. While it is
shown in [14] that in many settings for MAB, the quantity
H1 in the following plays a key role,

H1 :=
K∑

i=2

1
Δ2

i

and H2 := max
i �=1

i

Δ2
i

, (4)

the performance of both Succ-Rej and Seq-Halv is de-
scribed via the complexity measure H2 , which is equal to H1
up to logarithmic factors in K [12]. In particular, for each algo-
rithm the bound on the probability of misidentification can be
written in the form of β exp (−T/α), where α and β are given
in Table I in which log K = 0.5 +

∑K
i=2 i−1 .

In Succ-Rej, at round r, the K − r + 1 remaining arms are
played proportional to the whole budget divided by K − r + 1
which is a linear function of r. Motivated by the fact that this
linear function is not necessarily the best sampling rule, as our
second contribution, we specialize our general framework to
an algorithm which can be cast as a nonlinear extension of
Succ-Rej. This algorithm is called Nonlinear Sequential
Elimination (N-Seq-El), where the term “nonlinear” refers
to the fact that at round r, the algorithm divides the budget by
the nonlinear function (K − r + 1)p for a positive real p > 0
(an input value). We prove (Proposition 3) that the performance
of our algorithm depends on the following quantities

H(p) := max
i �=1

ip

Δ2
i

and Cp := 2−p +
K∑

r=2

r−p , (5)

as described in Table I. We do not use p as a subscript in the defi-
nition of H(p) to avoid confusion over the fact that H(1) = H2
due to definition (4). Indeed, N-Seq-El with p = 1 recov-
ers Succ-Rej, but we show that in many regimes for arm
gaps, p �= 1 provides better theoretical results (Corollary 4). We
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TABLE I
THE PARAMETERS α AND β FOR THE ALGORITHMS DISCUSSED IN THIS SECTION, WHERE THE MISIDENTIFICATION PROBABILITY FOR

EACH OF THEM DECAYS IN THE FORM OF β exp (−T/α). THE RELEVANT COMPLEXITY MEASURES USED

IN THIS TABLE ARE DEFINED IN (4) AND (5)

also illustrate this improvement in the numerical experiments
in Section VI, where we observe that p �= 1 can outperform
Succ-Rej and Seq-Halv in many settings considered in
[12], [18]. Since the value of p is received as an input, we re-
mark that our algorithm needs tuning to perform well; however,
the tuning is more qualitative rather than quantitative, i.e., the
algorithm maintains a reasonable performance as long as p is
in a certain interval, and therefore, the value of p needs not be
specific. We will discuss this in the next section in more details.

III. NONLINEAR SEQUENTIAL ELIMINATION

In this section, we propose our generic sequential elimination
method and analyze its performance in the fixed budget setting.
Consider a sequential elimination algorithm given budget T of
arm pulls. The algorithm maintains an active set initialized by
the K arms, and it proceeds for R rounds to discard the arms se-
quentially until it is left by a single arm. Let us use �·� to denote
the ceiling function. Then, for a constant C and a decreas-
ing, positive sequence {zr}R

r=1 , set nr = �(T − K)/(Czr )� at
round r ∈ [R], let the algorithm sample the remaining arms for
nr − nr−1 times, and calculate the empirical average of rewards
for each arm. If the algorithm dismisses br arms with lowest av-
erage rewards, and we impose the constraint

∑R
r=1 br = K − 1

on the sequence {br}R
r=1 , the algorithm outputs a single arm,

the one that it hopes to be the best arm. This general point of
view is summarized in Fig. 1 on the left side.

The choice of C in the algorithm (see Fig. 1) must warrant
that the budget constraint (3) holds. When we substitute nr into
(3), we get

nR +
R∑

r=1

brnr =
⌈

T − K

CzR

⌉

+
R∑

r=1

br

⌈
T − K

Czr

⌉

≤ T − K

CzR
+ 1 +

R∑

r=1

br +
R∑

r=1

br
T − K

Czr

= K +
T − K

C

(
1
zR

+
R∑

r=1

br

zr

)

= T,

where in the last line we used the condition
∑R

r=1 br = K − 1.
The following theorem provides an upper bound on the error
probability of the algorithm.

Theorem 2: Consider the General Sequential Elimination al-
gorithm outlined in Fig. 1. For any r ∈ [R], let br denote the
number of arms that the algorithm eliminates at round r. Let also
gr := |Gr | =

∑R
i=r bi + 1 be the number of remaining arms at

the start of round r. Given a fixed budget T of arm pulls and the

input sequence {zr}R
r=1 , setting C and {nr}R

r=1 as described
in the algorithm, the misidentification probability satisfies
the bound,

P (GR+1 �= {1}) ≤

R max
r∈[R ]

{br} exp

(

−T − K

C
min
r∈[R ]

{
2Δ2

gr + 1 +1

zr

})

.

It is already quite well-known that the sub-optimality Δi of
each arm i plays a key role in the identification quality; however,
an important subsequent of Theorem 2 is that the performance of
any sequential elimination algorithm also relies on the choice of
zr which governs the constant C. In [12], Succ-Rej employs
zr = K − r + 1, i.e., at each round the remaining arms are
played equally often in total. This results in C being of order
log K.

We now use the abstract form of the generic algorithm to
specialize it to Nonlinear Sequential Elimination delineated in
Fig. 1. The algorithm works with br = 1 and zr = (K − r + 1)p

for a given p > 0, and it is called “nonlinear” since p is not nec-
essarily equal to one. The choice of p = 1 reduces the algorithm
to Succ-Rej. In Section IV, we prove that in many regimes
for arm gaps, p �= 1 provides better theoretical results, and we
further exhibit the efficiency in the numerical experiments in
Section VI. The following proposition encapsulates the theoret-
ical guarantee of the algorithm.

Proposition 3: Let the Nonlinear Sequential Elimination al-
gorithm in Fig. 1 run for a given p > 0, and let Cp and H(p) be
as defined in (5). Then, the misidentification probability satisfies
the bound,

P (GK �= {1}) ≤ (K − 1) exp
(

−2
T − K

CpH(p)

)

.

The performance of the algorithm does depend on the parameter
p, but the choice is more qualitative rather than quantitative.
For instance, if the sub-optimal arms are almost the same, i.e.,
Δi ≈ Δ for i ∈ [K], noting the definition of Cp and H(p) in
(5), we observe that 0 < p < 1 performs better than p > 1. In
general, larger values for p increase H(p) and decrease C(p).
Therefore, there is a trade-off in choosing p. We elaborate on
this issue in Sections IV and VI, where we observe that a wide
range of values for p can be used for tuning, and the trade-off
can be addressed using either 0 < p < 1 or 1 < p ≤ 2.

We remark that in the proof of Theorem 2, the constant behind
the exponent can be improved if one can avoid the union bounds.
To do so, one needs to assume some structure in the sequence
{gr}R

r=1 . For instance, the authors in [18] leverage the fact that
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Fig. 1. The algorithm on the left represents a general recipe for sequential elimination, whereas the one on the right is a special case of the left hand side, which
extends Succ-Rej to nonlinear budget allocation.

gr+1 = �gr/2� to avoid union bounds in Seq-Halv. The idea
can be extended to when the ratio of gr+1/gr is a constant
independent of r.

Finally, while the result of Proposition 3 provides a general
performance bound with respect to reward regimes, in the next
section, we provide two important corollaries of the proposition
to study several regimes for rewards, where we can simplify the
bound and compare our result with other algorithms.

IV. PERFORMANCE IN SEVERAL SUB-OPTIMALITY REGIMES

Inspired by numerical experiments carried out in the pre-
vious works [12], [18], we consider a few instances for sub-
optimality of arms in this section, and we demonstrate how
N-Seq-El fares in these cases. We would like to distinguish
three general regimes that encompass interesting settings for
sub-optimality and determine the values of p for which we ex-
pect N-Seq-El to achieve faster identification rates:

1) Arithmetic progression of gaps: In this case, Δi = (i − 1)
Δ0 for i > 1, where Δ0 is a constant.

2) A large group of competitive, suboptimal arms: We recog-
nize this case as when there exists a constant1 ε ≥ 0 such
that Δi/Δ2 ≤ 1 + ε for arms i ∈ S, where |S| grows lin-
early as a function of K, and for i /∈ S, Δi/Δ2 ≥ i.

3) A small group of competitive, suboptimal arms: This
case occurs when there exists a constant ε ≥ 0 such that
Δi/Δ2 ≤ 1 + ε for i ∈ S, where |S| is of constant order
with respect to K, and for i /∈ S, Δi/Δ2 ≥ i.

We now state the following corollary of Proposition 3, which
proves to be useful for our numerical evaluations. Note that the
orders are expressed with respect to K.

1The choice of ε must be constant with respect to i and K .

Corollary 4: Consider the Nonlinear Sequential Elimination
algorithm described in Fig. 1. Let constants p and q be chosen
such that 1 < p ≤ 2 and 0 < q < 1. Then, for the three settings
given above, the bound on the misidentification probability pre-
sented in Proposition 3 satisfies

We can now compare our algorithm with Succ-Rej and
Seq-Halv using the result of Corollary 4. Returning to Table I
and calculating H2 for Regimes 1 to 3, we can observe the
following table, which shows that with a right choice of p for
N-Seq-El, we can save a O(log K) factor in the exponential
rate comparing to other methods. Though we do not have a
prior information on gaps to categorize them into one of the
Regimes 1 to 3 (and then choose p), the choice of p is more
qualitative rather than quantitative. Roughly speaking: if the
sub-optimal arms are almost the same 0 < p < 1 performs better
than p > 1, and if there are a few real competitive arms, p > 1
outperforms 0 < p < 1. Therefore, the result of Corollary 4 is of
practical interest, and we will show using numerical experiments
(Section VI) that a wide range of values for p can potentially
result in efficient algorithms.

One should observe that the number of competitive arms is
a key factor in tuning p. We now provide another corollary of
Proposition 3, which presents the suitable range of parameter p
given the growth rate of competitive arms as follows.

Corollary 5: Let the number of competitive arms be an arbi-
trary function fK of total arms, i.e., there exists a constant ε ≥ 0
such that Δi/Δ2 ≤ 1 + ε for i ∈ S, where |S| = fK , and for
i /∈ S, Δi/Δ2 ≥ i. Then, there exists a suitable choice of p for
which N-Seq-El outperforms Succ-Rej and Seq-Halv in
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TABLE II
THE MISIDENTIFICATION PROBABILITY FOR ALL THREE ALGORITHMS

DECAYS IN THE FORM OF β exp (−T/α). THE TABLE REPRESENTS THE

PARAMETER α FOR EACH ALGORITHM IN REGIMES 1 TO 3. FOR REGIME 2,
WE SET 0 < p < 1, AND FOR REGIMES 1 AND 3, WE USE 1 < p ≤ 2

TABLE III
GIVEN THAT THE MISIDENTIFICATION PROBABILITY DECAYS IN THE FORM OF

β exp (−T/α), THE TABLE REPRESENTS THE CHOICE OF p FOR WHICH

THE PARAMETER α IN N-Seq-El IS SMALLER THAN THOSE

OF Succ-Rej AND Seq-Halv. NOTE THAT WE USE

lK := max{0, 1 − log(log K )/ log (K/fK )} AND

uK := min{2, 1 + log(log K )/ log(fK )}

TABLE IV
THE TABLE SHOWS THE SUITABLE INTERVAL OF p FOR

K ∈ {40, 120, 5 × 102 , 5 × 104 , 5 × 106 , 5 × 108} GIVEN THE GROWTH

RATE OF COMPETITIVE ARMS AS DERIVED IN COROLLARY 5

the sense that the misidentification probability decays with
a faster rate, i.e., we have O(H(p)Cp) ≤ O(H2 log K). For
different conditions on the growth of fK , the suitable choice of
parameter p is presented in Table III.

The corollary above indicates that a side information in the
form of the number of competitive arms (in the order) can help
us tune the input parameter p. The corollary exhibits a smooth
interpolation between when the competitive arms are small ver-
sus when they are large. Perhaps, the most interesting regime
is the middle row, where the choice of p is given as a func-
tion of the number of arms K. Consider the following exam-
ple where we calculate the choice of p for fK = Kγ , where
γ ∈ {0.3, 0.5, 0.7}.

As we can see in Table IV, since the condition on p depends
in logarithmic orders on K and fK , we have flexibility to tune
p even for very large K. However, we only use K ∈ {40, 120}
for the numerical experiments in Section VI, since the time-

complexity of Monte Carlo simulations is prohibitive on large
number of arms.

V. SIDE OBSERVATIONS

In the previous sections, we considered a scenario in which
pulling an arm yields only the reward of the chosen arm. How-
ever, there exist applications where pulling an arm can addition-
ally result in some side observations. For a motivative example,
consider the problem of web advertising, where an ad placer
offers an ad to a user and receives a reward only if the user
clicks on the ad. In this example, if the user clicks on a va-
cation ad, the ad placer receives the side information that the
user could have also clicked on ads for rental cars. The value of
side observations in the stochastic MAB was studied in [22] for
exploration-exploitation setting. The side-observation model is
described via an undirected graph that captures the relation-
ship between the arms. Once an arm is pulled, the player ob-
serves the reward of the arm as well as its neighboring arms.
In exploration-exploitation settings, the analysis of MAB with
side observations relies on the cliques of the graph [21], [22].
In this section, we would like to consider the impact in the
pure-exploration setting.

In the pure-exploration, we minimize the simple regret rather
than the cumulative regret, and therefore, the player’s best bets
are the most connected arms resulting in more observations.
Now consider a partition of the set [K] into M blocks {Vi}M

i=1
such that each Vi contains a star graph, i.e., there exists an
arm in Vi connected to all other arms. Given such partition, the
player can follow a simple rule to leverage side observations and
eliminate blocks one by one. The idea is to sample the central
arm in each block, which reveals the rewards for all the arms in
that block. At round r, sample the remaining blocks (the central
arms of each block) for nr − nr−1 times, and find the arm with
largest average reward in each block. With the best arms of all
blocks at hand, remove the block whose best arm is the worst
comparing to other blocks. Continue the sampling until only one
block is left, and output the arm with largest average reward in
the final block as the best arm. The algorithm, called Sequential
Block Elimination, is summarized in Fig. 2, and its performance
is characterized in the following theorem.

Theorem 6: Let the Sequential Block Elimination algorithm
in Fig. 2 run given the input sequence {zr}M

r=1 and blocks
{Vi}M

i=1 . Define V := maxi∈[M ]{|Vi |} to be the maximum car-
dinality among the blocks. Then, the misidentification probabil-
ity satisfies the bound

P ({J} �= {1}) ≤ V M exp
(

−T − M

C
2 min

r∈[M ]

{
Δ2

M +1−r

zr

})

.

In particular, the choice of zr = (M + 1 − r)p for a given
p > 0, yields

P ({J} �= {1}) ≤ V M exp
(

−2
T − M

CHM,p

)

,

where H(M,p) := maxi∈[M ]\{1}{ ip

Δ2
i
}.

The theorem indicates that once we can partition the arms into
M blocks, the complexity measure H(p) need not be maximized
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Fig. 2. Sequential Block Elimination discards the blocks one by one and selects the best arm in the last block.

over K arms. Instead, it is maximized over the top M arms. The
improvement must be more visible in the settings that arms are
roughly as competitive as each other, since we can slow down
the linear growth of K by M .

As a final note, M = K recovers the fully bandit (no side
observation) setting with V = 1, and we observe that in such
case, we recover the result of Proposition 3 from Theorem 6 in
the rate of exponential decay. However, the constant behind the
exponential would change from K − 1 in Proposition 3 to K in
Theorem 6. This is the artifact of an extra term contributing to
the upper bound, which can be removed for the case M = K.

VI. NUMERICAL EXPERIMENTS

In this section, we empirically evaluate our algorithm on the
settings previously studied in [12], [18]. In these experiments,
we compare N-Seq-El with Succ-Rej, Seq-Halv, and
UCB-E. Though we includeUCB-E proposed in [12] as a bench-
mark, we remark that the algorithm requires a prior knowledge
of a parameter that depends on H1 defined in (4). The adaptive
version of UCB-E was also developed in [12]. The algorithm
(called AUCB-E) does not need prior knowledge of H1 , and it
calculates the parameter online. The experiments in [18] suggest
that for T ≈ H1 , Succ-Rej, Seq-Halv, and UCB-E outper-
form AUCB-E, and it is not surprising that the prior knowledge
of H1 must give UCB-E an advantage over AUCB-E.

We consider Bernoulli distribution on the rewards, assuming
that the expected value of Bernoulli distribution for the best
arm is μ1 = 0.7. In what follows, we use the notation x : y to
denote integers in [x, y]. We examine the following setups for
two values of arm numbers K ∈ {40, 120}:

1) One group of suboptimal arms: μ2:K = 0.6.
2) Two groups of suboptimal arms: μ2:m = 0.7 − 2

K ,
μm+1:K = 0.4, and m =

⌈
log K

2 + 1
⌉
.

3) Three groups of suboptimal arms: μ2:m = 0.7 − 2
K ,

μm+1:2m = 0.7 − 4
K , μ2m+1:K = 0.4, and m =

�log K
2 + 1�.

4) Arithmetic progression: Δi = 0.6(i−1)
K−1 for i = 2 : K.

5) Geometric progression: Δi = 0.01(1 + 4
K )i−2 for

i = 2 : K.

6) One real competitive arm: μ2 = 0.7 − 1
2K and μ3:K

= 0.2.
We run 4000 experiments for each setup with specific K,

and the misidentification probability is averaged out over the
experiment runs. The budget T considered in each setup is
equal to �H1� in the corresponding setup following [12], [18].
Fig. 3 illustrates the performance of each algorithm in different
setups. The height of each bar depicts the misidentification
probability, and the index guideline is as follows: (i) indices 1-4:
N-Seq-El with parameter p = 0.75, 1.35, 1.7, 2. (ii) index 5:
Succ-Rej. (iii) index 6: Seq-Halv. (iv) indices 7-9: UCB-E
with parameter a = cT/H1 , for c = 1, 2, 4. The legends are the
same for all the plots, and we remove some of them to avoid
clutter.

The results are consistent with Corollary 4, and the following
comments are in order:

� Setup 1 perfectly relates to Regime 2 in Corollary 4
(ε = 0). While any choice of 0 < p < 1 gives an O(K)
rate, the rate deteriorates to O(Kp) by choosing 1 < p ≤
2. Therefore, only the choice of p = 0.75 is appropriate for
N-Seq-El. This choice joined with Succ-Rej (which
amounts to our algorithm with p = 1) outperform others
even UCB-E.

� Setup 4 defines Regime 1 in Corollary 4. Accord-
ingly, choice of 1 < p ≤ 2 outperforms Succ-Rej and
Seq-Halv, and p = 1.7, 2 prove to be competitive to
UCB-E.

� In Setups 2-3, the number of competitive arms grows with
O(log K), but they can be considered close to Regime 3 in
Corollary 4 as the growth is sub-linear. Also, Setup 6 is the
ideal match for Regime 3 in Corollary 4. Therefore, any
choice of 1 < p ≤ 2 should be suitable in these cases. We
observe that for p = 1.35, 1.7, 2, N-Seq-El outperforms
Succ-Rej and Seq-Halv, while being quite competi-
tive to UCB-E in Setups 2-3 for K = 40.

� In Setup 5, we were expecting to observe good perfor-
mance for 1 < p ≤ 2. While we do see that for K = 40,
N-Seq-El outperforms Succ-Rej and Seq-Halv
with p = 1.35, 1.7, the performance is not quite satisfac-
tory for K = 120 (only p = 1.35 performs well). A poten-
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Fig. 3. The figure shows the misidentification probability for N-Seq-El, Succ-Rej, Seq-Halv, and UCB-E algorithms in six different setups. The six
plots on the left hand side relate to the case K = 40, and the six plots on the right hand side are associated with K = 120. The height of each bar depicts the
misidentification probability, and each index (or color) represents one algorithm tuned with a specific parameter in case the algorithm is parameter dependent.

tial reason is that we want to keep the rewards bounded in
[0, 1], thereby choosing the geometric rate for Δi so slow
that it is dominated by ip rate in (5). To support our argu-
ment, we present a complementary evaluation of this case
for a small K, where we can use faster geometric growth.

� As a final remark, note that in consistent with Table II,
for relevant cases we observe an improvement of perfor-
mance when K increases. For instance, in Setup 1 with p =
0.75, the ratio of misidentification probability of N-Seq-
El to Seq-Halv increases from 1.84 (K = 40) to 2.06
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Fig. 4. The figure shows the misidentification probability for N-Seq-El,
Succ-Rej, Seq-Halv, and UCB-E algorithms for an experiment with
K = 7. The height of each bar depicts the misidentification probability, and
each index (or color) represents one algorithm tuned with a specific parameter
in case the algorithm is parameter dependent.

(K = 120), or in Setup 4 with p = 2, the ratio of misiden-
tification probability of N-Seq-El to Succ-Rej in-
creases from 1.43 (K = 40) to 1.63 (K = 120).

A. Complementary Numerical Experiment for Geometric
Sub-Optimality Setup

As we remarked in the very last comment of numerical ex-
periments, choosing small number of arms, we can space the
expected value of arm rewards such that in (5) the sub-optimality
term Δi dominates ip for 1 < p ≤ 2. We propose a simple ex-
periment for K = 7 arms, where μ1 = 0.7 and Δi = (0.6)8−i

in Fig. 4. As expected, N-Seq-El tuned with p > 1 is competi-
tive, and it achieves its best performance with p = 1.7, winning
the competition against others, while almost equalizing with
UCB-E for c = 2.

VII. CONCLUSION

We considered best-arm identification in the stochastic multi-
armed bandits, where a player is given a certain budget to explore
a finite number of arms. The player’s objective is to detect the
arm with largest expected reward. We contribute to the litera-
ture of best-arm identification by (i) unifying sequential elimi-
nation algorithms under a general framework, which introduces
a novel performance metric for this class of algorithms, (ii)
developing a nonlinear sequential elimination algorithm with
provable theoretical and practical guarantees, (iii) and estab-
lishing a theoretical result on the value of side observations in
the pure-exploration setting.

Having established that we gain advantage from nonlinear
budget allocation, an important future direction is to propose
a method that starts with a specific nonlinear rate and fine-
tunes the rate according to the problem environment. The main
challenge is that the quantity C should perhaps be time-varying,
and its value needs to be cautiously controlled by the algorithm,
so that the algorithm does not overspend the budget.

APPENDIX

Fact 1: (Hoeffding’s inequality) Let W1 , . . . , Wn be inde-
pendent random variables with support on the unit interval with
probability one. If Sn =

∑n
i=1 Wi , then for all a > 0, it holds

that

P (Sn − E[Sn ] ≥ a) ≤ exp
(−2a2

n

)

.

Proof of Theorem 2: Recall that Gr denotes the set of arms
not eliminated by the start of round r with gr = |Gr | being its
cardinality. Also, Br represents the set of arms that we decide
to discard after playing round r with br = |Br | denoting its
cardinality. It evidently holds thatGr+1 = Gr \ Br for r ∈ [R].
Therefore,

P (GR+1 �= {1}) = P
(
1 ∈ ∪R

r=1Br

)
=

R∑

r=1

P (1 ∈ Br ) ,

(6)
since the sets of removed arms at each round are disjoint, i.e.
Bi ∩ Bj = ∅ for i �= j. We can then write

P (1 ∈ Br ) =
∑

Gr

P (1 ∈ Br | Gr = Gr ) P (Gr = Gr ) . (7)

Now for any particular Gr , consider the worst br arms, i.e.,
the bottom br arms when arms are ordered in terms of (true)
expected value. If the best arm (arm 1) is set to be eliminated
at the end of round r, its empirical average must be less than at
least one of these br arms. In the case that Gr = {1, 2, . . . , gr},
the bottom br arms would be {gr − br + 1, . . . , gr}. Therefore,
recalling that x̄i,n denotes the average reward of pulling arm i
for n times, and using Hoeffding’s inequality (Fact 1), we get

P (1 ∈ Br | Gr = {1, 2, . . . , gr})

≤
gr∑

i=gr −br +1

P (x̄1,nr
≤ x̄i,nr

)

≤ br exp
(−2nrΔ2

gr −br +1
)

= br exp
(
−2nrΔ2

gr + 1 +1

)
, (8)

where the last step is due to the fact that gr+1 = gr − br . In any
other case for Gr the best of the worst br arms cannot be better
than arm gr − br + 1. As a result, combining (7) and (8), we
obtain

P (1 ∈ Br ) ≤
∑

Gr

br exp
(
−2nrΔ2

gr + 1 +1

)
P (Gr = Gr )

= br exp
(
−2nrΔ2

gr + 1 +1

)
.

Then, in view of (6) we derive

P (GR+1 �= {1}) ≤
R∑

r=1

br exp
(
−2nrΔ2

gr + 1 +1

)

≤ R max
r∈[R ]

{br}max
r∈[R ]

{
exp

(
−2nrΔ2

gr + 1 +1

)}
.
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Noting the fact that nr =
⌈

T −K
C zr

⌉
≥ T −K

C zr
, we can use above to

conclude that

P (GR+1 �= {1})

≤ R max
r∈[R ]

{br}max
r∈[R ]

{

exp
(

−T − K

Czr
2Δ2

gr + 1 +1

)}

,

which completes the proof. �
Proof of Proposition 3: We point out that the algorithm is

a special case of General Sequential Elimination where R =
K − 1, br = 1, gr = K − r + 1, and zr = (K − r + 1)p . The
proof then follows immediately from the result of Theorem 2.
�

Proof of Corollary 4: The proof follows by substituting each
case in (5). We need to understand the order of Cp and H(p) for
different regimes of p. Let us start by

Cp = 2−p +
K∑

r=2

r−p ,

and noting that for any p > 1, Cp is a convergent sum when
K → ∞. Therefore, for the regime p > 1, the sum is a constant,
i.e., Cp = O(1). On the other hand, consider q ∈ (0, 1), and
note that the sum is divergent, and for large K we have Cq =
O(K1−q ). Now, let us analyze

H(p) = max
i �=1

ip

Δ2
i

.

For Regime 1, since Δi = (i − 1)Δ0 , for p ∈ (1, 2), we have

H(p) = max
i �=1

(

1 +
1

i − 1

)p (i − 1)p−2

Δ2
0

≤ max
i �=1

(

1 +
1

i − 1

)p 1
Δ2

0
=

1.5p

Δ2
0

,

which is of constant order with respect to K. Therefore, the
product CpH(p) = O(1).

For Regime 2, we have

H(q) = max
i �=1

iq

Δ2
i

≤ max
i �=1

iq

Δ2
2
≤ Kq

Δ2
2
,

and the maximum order can be achieved as the number of arms
close to the second best arm grows linearly in K. Combining
with Cq = O(K1−q ), the product CqH(q) = O(K).

For Regime 3, if i ∈ S, we have

max
i∈S

ip

Δ2
i

= O(1),

since the cardinality of S is of constant order with respect to K.
On the other hand, since 1 < p ≤ 2, we have

max
i /∈S

ip

Δ2
i

≤ max
i /∈S

ip

i2Δ2
2

= max
i /∈S

ip−2

Δ2
2

= O(1).

Therefore, H(p) is of constant order, and combining with Cp =
O(1), the product CpH(p) = O(1). �

Proof of Corollary 5: According to calculations in the pre-
vious proof, we have that Cp = O(K1−p) for 0 < p < 1, and
Cp = O(1) for 1 < p ≤ 2. In order to find out the order of H(p)
and H2 , we should note that

O(H(p)) = O
(

max
i∈S

ip

Δ2
i

)

= O
(

max
i∈S

ip

Δ2
2

)

= fp
K ,

and we simply have O(H2) = O(H(1)) = fK . Now return-
ing to Table I, we must compare O(H(p)Cp) = fp

KO(Cp)
and O(H2 log K) = fK log K for all three the rows given in
Table III.

Row 1: In the case that 1 ≤ fK ≤ log K, for any choice of
1 < p ≤ 2, since Cp = O(1), we always have

fp
K ≤ fK log K ⇔ fp−1

K ≤ log K.

Row 3: In the case that K
log K ≤ fK ≤ K − 1, for any choice

of 0 < p < 1, since Cp = O(K1−p), we have

fp
KO(Cp) = fp

K K1−p = fK

(
K

fK

)1−p

≤ fK log K.

Row 2: In this case, we have that log K < fK < K
log K . To

prove the claim in the Table III, we have to break down the
analysis into two cases:

Row 2 – Case 1: First, consider the case 1 − log log K

log
(

K
f K

) <p<1.

Since Cp = O(K1−p), we have that

fp
KO(Cp) = fp

K K1−p = fK

(
K

fK

)1−p

≤ fK

(
K

fK

) l o g lo g K

l o g
(

K
f K

)

= fK log K.

Row 2 – Case 2: Second, consider the case 1 < p < 1 +
log log K
log fK

. Since Cp = O(1), we have that

fp
KO(Cp) = fp

K ≤ f
1+ lo g lo g K

l o g f K

K = fK f
l o g lo g K
l o g f K

K = fK log K.

Therefore, for all of the conditions on fK , we showed proper
choice of p which guarantees fp

KO(Cp) ≤ fK log K. �
Proof of Theorem 6: Recall that the elements of Gr are the

set of M + 1 − r blocks not eliminated by the start of round
r ∈ [M ], and Br only contains the block we decide to discard
after playing round r. Also, recall that arm 1 is the best arm,
located in the block V1 , and V := maxi∈[M ]{|Vi |} denotes the
maximum cardinality of the blocks.

If the algorithm does not output the best arm, the arm is either
eliminated with block V1 in one the rounds in [M − 1], or not
selected at the final round M . Therefore,

P (J �= 1) ≤ P
(
argmaxi∈V1

{x̄i,nM
} �= 1 | GM = {V1}

)

+
M −1∑

r=1

P (Br = {V1}) . (9)
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The first term can be bounded simply by Hoeffding’s inequality

P
(
argmaxi∈V1

{x̄i,nM
} �= 1 | GM = {V1}

)

≤ |V1 | exp
(−2nM Δ2

2
)

= |V1 | exp
(−2nM Δ2

1
)
, (10)

using the convention Δ1 := Δ2 . On the other hand, for any
r ∈ [M − 1]

P (Br = {V1})

=
∑

Gr

P (Br = {V1} | Gr = Gr ) P (Gr = Gr ) . (11)

Note that, without loss of generality, we sort the blocks based
on their best arm as

μ1 = max
i∈V1

μi > max
i∈V2

μi ≥ · · · ≥ max
i∈VM

μi,

so the best possible arm in Vm cannot be better than arm
m in view of above and (1). We remove block V1 after ex-
ecution of round r only if it is the worst among all other
candidates. Therefore, consider the particular case that Gr =
{V1 , V2 , . . . , VM +1−r} contains the best possible M + 1 − r
blocks that one can keep until the start of round r. In such case,

P (Br = {V1} | Gr = {V1 , V2 , . . . , VM +1−r})
≤ V exp

(−2nrΔ2
M +1−r

)
.

In any other case for Gr the best possible arm in the worst block
cannot be better than arm M + 1 − r. Therefore, combining
above with (11), we obtain

P (Br = {V1}) ≤ V
∑

Gr

exp
(−2nrΔ2

M +1−r

)
P (Gr = Gr )

= V exp
(−2nrΔ2

M +1−r

)
.

Incorporating above and (10) into (9), we derive

P (J �= 1) ≤ |V1 | exp
(−2nM Δ2

1
)

+
M −1∑

r=1

V exp
(−2nrΔ2

M +1−r

)

≤ V

M∑

r=1

exp
(−2nrΔ2

M +1−r

)

≤ V M exp
(

−T − M

C
2 min

r∈[M ]

{
Δ2

M +1−r

zr

})

,

noticing the choice of nr in the algorithm (Fig. 2). Having fin-
ished the first part of the proof, when we set zr = (M + 1 − r)p

for r ∈ [M − 1] and zM = 2p , we have

P (J �= 1) ≤ V M exp
(

−2
T − M

CHM,p

)

,

where H(M,p) := maxi∈[M ]\{1}{ ip

Δ2
i
}. �
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