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Analysis of Multistate Autoregressive Models
Jie Ding , Shahin Shahrampour , Kathryn Heal , and Vahid Tarokh

Abstract—In this paper, we consider the inference problem for
a wide class of time-series models, referred to as multistate autore-
gressive models. The time series that we consider are composed
of multiple epochs, each modeled by an autoregressive process.
The number of epochs is unknown, and the transitions of states
follow a Markov process of an unknown order. We propose an in-
ference strategy that enables reliable and efficient offline analysis
of this class of time series. The inference is carried out through a
three-step approach: detecting the structural changes of the time
series using a recently proposed multiwindow algorithm, identi-
fying each segment as a state and selecting the most appropriate
number of states, and estimating the Markov source based upon
the symbolic sequence obtained from previous steps. We provide
theoretical results and algorithms in order to facilitate the infer-
ence procedure described above. We demonstrate the accuracy,
efficiency, and wide applicability of the proposed algorithms via an
array of experiments using synthetic and real-world data.

Index Terms—Consistency, multi-regime models, prediction, re-
curring patterns, time series.

I. INTRODUCTION

MODELING and forecasting time series is of fundamental
importance in a variety of applications. Temporal mea-

surements collected from various domains usually exhibit occa-
sional changes and recurring patterns, and therefore they cannot
be modeled as a single stationary process. Some examples are
monthly temperature, hourly electricity demand in a city, U.S.
business cycles [1], Canadian lynx series [2], electroencephalo-
gram (EEG) signals [3], environmental measurement [4], and
activity data collected from wearable devices [5].

A recurring pattern offers non-negligible predictive power.
Suppose, for example, that an EEG recording exhibits a partic-
ular pattern leading up to the onset of an epileptic seizure. Then
one might reasonably expect that it is possible to predict the
next ictal event by modeling historical data. Long-period cycli-
cality cannot be well modeled by a single time-series model
such as autoregression. It is natural to consider a model that
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occasionally varies over time and that can recur. To address this,
we assume that there exists a dictionary of models, and that one
such model best explains the data for a given time epoch.

In line with this idea, a generic model is to assume that the
observation xt at each time step t is a random variable with prob-
ability density function (PDF) pt(xt | xt−1 , xt−2 , . . .), where pt

comes from a finite set of PDF’s, also referred to as states. When
the states are assumed to follow a first order Markov process, the
time series is usually referred to as a regime-switching model
[6], [7]. Note that if each row of the transition probability ma-
trix is the same, the states then follow independent multinomial
distributions. Therefore, it is common to assume the Markov
chain to be quite persistent [8]. If the data within each segment
is further assumed to be generated from a parametric family,
then a fully parametric model can be established. In fact, the
case where xt takes values from a fixed set of constants is usu-
ally referred to as a Hidden Markov model, and its analysis
can be traced back to [9], [10]. The model with general pt’s
has been studied in the speech recognition literature [11]. A
similar idea also led to self-exciting threshold autoregressive
models [12], where the states are triggered by historical values
of xt . When the states are assumed to be periodic, time-series
models such as periodic autoregression are commonly utilized
[13], [14]. A class of nonparametric piecewise autoregressive
models was studied in [15], where the inference procedure
was cast as an optimization problem. Other attempts to char-
acterize these types of models follow optimization perspectives
[16]–[18], the model averaging perspective [19], or Bayesian
perspectives under which the number of states and parameters
are jointly inferred using Markov chain Monte Carlo techniques
[20]–[22]. A comprehensive review on time-varying processes
can be found in [23]. The aforementioned methods have been
applied to several interesting applications such as forensics [24],
transportation [25], energy [26], [27], neuroscience [28], [29],
and finance [30]–[35].

As with other statistical inference tasks, any prescribed para-
metric model here may not be adequate to explain the observed
data, as the model may be subject to aperiodic changes in be-
havior. To overcome this shortcoming, a suitable approach is
to postulate multiple parametric models and apply a model
selection procedure to select the optimal one. In this paper,
we aim to address this issue as follows. Given a collection of
parametric probability distribution functions pt , we provide a
scheme that accurately determines the number of regimes, de-
noted by s. The key challenge is that models with larger s fit
the observed data better. However, using larger s has the un-
fortunate consequence of over-fitting, which decreases the pre-
dictive power. On the other hand, smaller s might give rise to
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a insufficient description of the model which is also unable to
predict accurately. Therefore, an appropriate selection of s is
essential.

A relevant framework for detecting the optimal number of
states is to apply likelihood ratio tests, i.e., to test the null hy-
pothesis that there are s states, versus the alternative hypoth-
esis that s is larger, for s = 1, 2, . . .. However, this approach
is not theoretically founded because of the lack of regularity
conditions [36] for time series with mixture-model structures.
Another approach is to apply a maximum penalized likelihood
method such as the Akaike Information Criterion (AIC) [37],
[38] or Bayesian Information Criterion (BIC) [39]. As an ex-
ample, recent works have extended the applicability of AIC
and BIC to finite mixture models, including the evaluation of
AIC for mixture regression models [40], the introduction of a
modified AIC for mixture regression models [41], and BIC-
like consistent criterion for mixture models [42]. A compre-
hensive review on information criteria can be found in [43].
However, the existing theories have been established for a sin-
gle time-series model, and it is not clear whether they can be
extended to mixture models in the presence of data-dependent
structure.

In order to select the number of states s, our first contribution
is to propose a test statistic that is asymptotically chi-square dis-
tributed under the null hypothesis. This newly-proposed statis-
tic allows for identification of the true number of states via
hypothesis testing. An analytical difficulty stems from the fact
that sample points (data) across various states are mutually de-
pendent. Our next contribution is to find theoretical guarantees
(proper penalty function) under which the k-means algorithm is
capable of simultaneously identifying the state of each segment
correctly and consistently.

In practice, we are often interested in persistent states [8].
A commonly used model is a Markov switching model with
transition probabilities close to zero. A characteristic of this
model is that its true parameters are located near the boundary
of the parameter space. Thus when using this model, one may
encounter errors due to a failure of the “interior point” regular-
ity assumption, commonly used to prove asymptotic results (see
for example [42], [44]). What is more, enumerating candidate
models also requires large computational cost. Our novel ap-
proach overcomes these challenges; it is conceptually intuitive
and computationally tractable. The idea is to detect the switching
point first, and then fit a high-order Markov model by adding
some sparsity constraint. The sparsity is imposed through an
information-theoretic coding method that alleviates the afore-
mentioned “interior point” issue. Our method also serves as a
preliminary step to propose more suitable parametric models,
as will be discussed more in the experiment section.

The remainder of the paper is outlined below. In Section II,
we introduce the background and model. After that, we pro-
pose a three-step approach to analyze multi-state time series in
Section III, and propose our statistical test to identify the num-
ber of states, followed by our theoretical results. In Section IV,
we evaluate the proposed modeling technique with experiments.
We make our conclusions in Section V, and include the proofs
of main results in the Appendix.

II. MULTI-STATE AUTOREGRESSIVE MODELS

We first introduce some notation for the rest of the paper.
Let N (μ, V ), χ2

k , M(p), respectively denote the normal distri-
bution with mean μ and covariance matrix V , the chi-square
distribution with k degrees of freedom, and the multinomial
distribution with parameter p. This M(p) is represented by a
nonnegative vector with unit 1-norm. Given an s × s positive
definite matrix V , let ‖·‖V denote the norm ‖y‖2

V = yTV y for
all y ∈ Rs×1 . We use →p and →d to denote the in probability
and in distribution convergence.

A sequence of data {xt, t = 1, 2, . . .} is generated by an au-
toregressive model of order L ∈ N, also referred to as AR(L),
if

xt = β0 + βTxt + εt ,

where xt � [xt−1 , . . . , xt−L ]T , β � [β1 , . . . , βL ]T , and εt are
independent and identically distributed (i.i.d.) random variables
with zero mean and variance σ2 [45]–[47]. We sometimes refer
to the vector β as an AR filter of order L. In particular, AR(0) de-
notes a sequence of i.i.d. noise variables, namely xt = β0 + εt .
Note that we use x1−� , � = 1, . . . , L to denote initial observa-
tions, where subscript t represents the data at time step t.

In this work, we restrict our attention to the space of all
stable AR filters, denoted by RL . By “stable” we mean that if
β = [β1 , . . . , βL ]T ∈ RL , then all of the (complex) roots of its
characteristic polynomial zL − ∑L

�=1 β�z
L−� lie inside of the

unit circle.
What has been presented so far describes the class of single-

state AR models, where the coefficient β remains constant
throughout the process. In this work, however, we are inter-
ested in analyzing multi-state AR models, characterized by a
time-varying coefficient βt , as follows:

xt = βt,0 +
L∑

�=1

βt,�xt−� + εt .

Here the AR filter βt � [βt,0 , . . . , βt,L ]T at each time step t
belongs to a finite set {γ1 , . . . ,γs0 }, and εt are independent
noise variables. If we let βt = γzt

, then zt ∈ {1, . . . , s0} is
called the state at time t. Two underlying assumptions in this
model are: (1) Each data point depends linearly on finitely many
previous points, corrupted by a random noise. The assumption
of dependence only on previous points is reasonable since the
observations are obtained sequentially in time. (2) There are
finitely many AR states, which is reasonable if the stochastic
process exhibits different patterns in different epochs, and each
pattern recurs. For example, stock prices may fall into a few
regular patterns throughout business cycles. The multi-state AR
model serves as a generic model that can be used to fit data in
various real-world applications.

A purely parametric model requires further assumptions on
the data generating process of (hidden) variables zt . For ex-
ample, when one assumes that the states are generated in-
dependently and according to a multinomial distribution, the
model is capable of representing non-linear and non-stationary
time series with multimodal conditional distributions and with
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heteroscedasticity [48]. As another example, one may assume
that {z1 , z2 , . . .} follows a Markov chain, or that the switches of
states follow a point process parameterized by exogenous vari-
ables. In those cases, the maximum-likelihood estimator (MLE)
for the mixture model may be obtained via, for instance, the
expectation-maximization algorithms. However, the usual as-
sumption that states follow a first order Markov process may be
too restrictive. Instead of postulating a fully parametric model,
we allow the states to follow a Markov process of unknown high
order.

We propose the use of a three-step strategy that infers the
parameters in each state and the transition of states separately.
Our basic idea is to divide the inference procedure into three
steps: 1) discover the switch points using a change detection
approach and estimate the parameters within each segment; 2)
identify the segments associated with the same state since each
state can be revisited; and 3) estimate how the states transition.

While we briefly discuss all three steps in this paper, our focal
point is the second step, where we provide identification algo-
rithms supported with theoretical and empirical guarantees. The
first step can be tackled using change point detection algorithms;
we developed one such algorithm in a companion paper [49].
Furthermore, we introduce the Context Tree Weighting (CTW)
method for the third step.

III. METHODOLOGY & RESULTS

A. Step 1: Identifying the Change of States

A typical offline multiple change point analysis aims to solve
the following problem. Given observations y1 , . . . , yT ∈ Rd and
some m ∈ N, the goal is to find integers 0 < �1 < · · · < �m <
T that minimize the sum of within-segment loss

em �
m+1∑

k=1

Loss(y�k −1 +1 , . . . , y�k
), (1)

where Loss(·) is an appropriate loss function, �0 = 0, and
�m+1 = T . Here, the number of change points m is usually
determined by a two-step penalized approach: first minimize
(1) for different m’s, and then select the optimal one by mini-
mizing em + mfT , where fT is a proper penalty term. A simple
and widely adopted loss function for independent data (with
different means in each segment) is the quadratic loss

Lossq (y�k −1 +1 , . . . , y�k
) �

�k∑

t=�k −1 +1

‖yt − ȳk‖2
2 , (2)

where ȳk is the sample mean of y�k −1 +1 , . . . , y�k
.

For general loss functions, the bisection procedure [50], [51]
and exact search methods such as segment neighborhood [52],
optimal partitioning [53], [54], and the PELT method [55] have
also been widely applied. For the special case where a time series
is segmented into several parts, each modeled by an autoregres-
sive model, a multi-window (MW) algorithm was proposed in
[49] that achieves both accurate change detection and near linear
computational cost, outperforming the state-of-the-art bisection
procedure. More details of this algorithm, as well as relevant

MATLAB software, can be found in [49]. We will provide here
a brief overview of the MW algorithm.

Assuming that the order L is known a priori, the multi-
window approach uses a sequence of R window sizes w1 >
· · · > wR in order to capture true segments regardless of size.
For each wr , the algorithm

1) transforms the original data into a sequence of L + 1
dimensional points, all of which are asymptotically
independent;

2) minimizes (1) based on the quadratic loss and applies pe-
nalized model selection to determine the optimal number
of change points;

3) maps the change points output from step 2 back to the
original scale {1, . . . , T} and obtains several short ranges
(intervals) I

(r)
k , k = 1, 2, . . . (each of size 2wr ) that are

likely to contain the desired change points.
After repeating the above procedure for different window sizes
wr , the MW algorithm combines the information using the fol-
lowing rule: the detected intervals of change points from each
window size are each assigned a score of one, those scores are
aggregated, and those highest-scoring intervals are selected as
change points. An optional post-processing step can be applied
to find the exact optimal change points. We refer to [49] for ex-
periments on various datasets and theoretical results. It has been
shown in [49] that the identified number of change points con-
verges almost surely to the truth (if it exists) under reasonable
assumptions, and the deviation between the detected change
points is negligible as data size tends to infinity.

B. Step 2: Identifying the States

In view of Section III-A, in this section we assume that a
set of potential change points has been already discovered. In
practice, Step 1 serves as a preliminary screening procedure to
facilitate the discovery of change points and then the labeling of
states. It remains to identify which segments are generated by the
same AR model. This section consists of two parts. First, we pro-
pose a test statistic that is asymptotically chi-square distributed
under the null hypothesis, that is, two segments are generated
from the same state. Second, we prove that a direct application of
the k-means algorithm is capable of simultaneously identifying
the state of each segment correctly and consistently. Note that
our theory will be applicable in the presence of a superfluous
change point. That is, state identification will succeed even if
one begins Step 2 with the assumption that two neighboring
segments, truly generated from the same state, are distinct.

We write the matrix representation of the single-state AR
model as y = Xβ + ε, where

y � [x1 , . . . , xT ]T

XT � [x1 , . . . ,xT ]

ε � [ε1 , . . . , εT ]T .

The least squares estimation of β from x1 , . . . xT is

β̂ = (XTX)−1XTy,
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and the sum of squared error (SSE) is

ê = ‖y − Xβ̂‖2
2

= ‖(I − X(XTX)−1XT)y‖2
2

= ‖ε‖2
I−PX

,

where PX � X(XTX)−1XT denotes the projection matrix as-
sociated with X . We may also write β̂ as β̂1:T , where the
subscript 1 : T is used to emphasize the dependency on samples
x1 , . . . , xT (in addition to L implicit initial values). When the
constant term is taken into account, the least squares estimates
are similar except that X is replaced with X , where X � [1,X]
with 1 denoting the column vector of all ones.

Suppose that data consists of m + 1 (m ≥ 1) segments, de-
noted by {xTk −1 +1 , . . . , xTk

}m+1
k=1 , where 0 = T0 < T1 < · · · <

Tm+1 = T . Least squares estimates are applied to each seg-
ment, with the SSE denoted by êTk −1 +1:Tk

, k = 1, . . . ,m + 1.
Since the fitting error of a model is no larger than that of
a smaller model that nests in the larger one, it is clear that
ê1:T ≥ ∑m+1

k=1 êTk −1 +1:Tk
. We define the overfitting gain by

ηm � log
ê1:T

∑m+1
k=1 êTk −1 +1:Tk

, (3)

and a normalized gain

gm = Tηm .

By its definition, the overfitting gain quantifies the advantage
of modeling data by m + 1 segments over one segment. We
note that both gm and ηm are invariant to a scaling of noise
variance σ2 . We provide the following result characterizing the
asymptotic behavior of the normalized gain.

Theorem 1: Suppose that x1 , . . . , xT are generated from a
zero mean stable AR(L) model, and noise variables εt are i.i.d.
with zero mean, variance σ2 , and finite fourth moments. Assume
that Tk − Tk−1 → ∞ as T → ∞, k = 1, . . . ,m + 1 (m ≥ 1).
Suppose also that the distribution of ε1 has a nontrivial abso-
lutely continuous component, and that E[max{(log |ε1 |), 0}] <
∞. Then gm →d χ2

mL as T → ∞.
Before providing insights into Theorem 1, we state two corol-

laries of that result, which will require us to first define

g′m � ê1:T −
m+1∑

k=1

êTk −1 +1:Tk
.

A byproduct of the proof of Theorem 1 implies the following
corollary.

Corollary 1: Under the same conditions of Theorem 1,
g′m /σ2 →d χ2

mL as T → ∞.
We could take into account the constant term in applying

the least squares, namely to use X instead of X as the design
matrix. In that case, the overfitting gains are denoted by g

m
, g′

m
.

Following similar proof of Theorem 1, we have the following
corollary.

Corollary 2: Under the same conditions of Theorem 1,
g

m
→d χ2

m (L+1) , and g′
m

/σ2 →d χ2
m (L+1) as T → ∞.

Remark 1: The assumption on noise is mild. For instance,
it is satisfied by distributions such as Gaussian, doubled

Fig. 1. Figures showing the empirical CDF of g1 (in black dotted lines)
and g

1
(in blue dotted lines) computed from several independent draws with

T1 = 50, T = 150, for each of the fifty AR(2) filters uniformly generated from
RL , along with the true CDF of χ2

2 (in a black circled line) and of χ2
3 (in a blue

circled line).

exponential (Laplace), doubled chi-square, etc. Remarkably,
Theorem 1 implies that the asymptotic distribution does not
depend on the locations of splitting point Tk and the true filter
β. In addition, synthetic data experiments show that the empir-
ical distribution is close to the asymptotic distribution even for
finite sample size (small T ). To illustrate, we draw 50 AR(2)
filters uniformly from RL (using Algorithm 3 in [56]); for each
AR(2), we generate an AR sequence of T = 150 data and record
the overfitting gain g1 with T1 = 50, and repeat a few indepen-
dent random instances to obtain a empirical CDF of g1 (plotted
in black dashes of Fig. 1). This empirical CDF is close to the
CDF of χ2

2 plotted in black dotted lines. We also repeat the
experiments for g

1
(in blue).

The result can be used for a hypothesis test for whether two
(or more) segments are associated with the same state. For ex-
ample, suppose that there are two segments xTk −1 +1:Tk

and
xT�−1 +1:T�

(1 ≤ k < � ≤ m + 1), associated with state labels z
and z′, respectively. Consider the hypothesis test

H0 : z = z′, H1 : z 	= z′. (4)
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Algorithm 1: State Identification.

input β̂k , k = 1, . . . ,m + 1, penalty fT .
output ŝ, ẑk , k = 1, . . . , m + 1

1: for s = 1 → m + 1 do
2: Apply the k-means algorithm to obtain s clusters

from β̂k , k = 1, . . . , m + 1, with the sum of
within-cluster squared distance denoted by �s .

3: end for
4: Let ŝ = arg min1≤s≤m+1{�s + sfT }, and

ẑk ∈ {1, . . . , ŝ}, k = 1, . . . ,m + 1 be the associated
labels.

We compute

g1 � (Tk −Tk−1 + T� − T�−1) log{ê/(êTk −1 +1:Tk
+ êT�−1 +1:T�

)},
where ê denotes the SSE if the two segments are merged.
Given a significance level α ∈ (0, 1), we compare g1 with
tL � F−1

χ2
L
(1 − α) where F−1

χ2
L
(·) denotes the inverse function

of the CDF of χ2
L . We reject H0 if g1 > tL . If we take into

account a possibly nonzero mean, we use g
1

and tL+1 instead.
Remark 2: Using Theorem 1 or its corollaries, we can apply

the above hypothesis test to each pair of segments to determine
whether they are from the same state. However, this procedure
can be computationally cumbersome if there are a large number
of segments. To alleviate the issue, we can apply the k-means
clustering algorithm to the estimated AR filters to simultane-
ously label their states, instead of pairwise tests (Algorithm 1).
We show in the result below that a proper penalized approach
produces correct labelling of states. Illustrative experiments are
given in Section IV, where we let fT be L log(T̃ )/T̃ (which
resembles BIC) is used by default, with T̃ defined in the state-
ment of Theorem 2. Note that the theorem applies even if two
neighboring segments are truly from the same state.

Before we proceed, we briefly discuss the issue of identifi-
ability of states. In the multi-state model, the parameters (AR
coefficients) are identifiable only up to a permutation of states.
We need a slightly extended notation of identifiability in the
sense of an equivalence relation. We will say that {z1 , . . . , zT ∈
A} ≡ {z′1 , . . . , z′T ∈ A′} if and only if A = A′ and zt = π(z′t)
(t = 1, . . . , T ) for some permutation π : A �→ A.

Theorem 2: Suppose that m + 1 ≥ s0 and that the assump-
tions of Theorem 1 hold. Let T̃ � min1≤k≤m+1(Tk − Tk−1).
Then for any fT and T̃ satisfying

lim
T →∞

fT +
1

T̃ fT

= 0, (5)

The selected number of states ŝ in Algorithm 1 satisfies ŝ →p s0
as T → ∞.

While in Algorithm 1, our clustering is based on the AR
coefficients, we remark that an alternative approach is to clus-
ter based on the roots of the characteristic polynomial which
determine the physical behavior of AR systems. In other words,
there exist two perspectives for measuring the distance of time-
series models: time domain and frequency domain. Our focus
in this work is on the former.

C. Step 3: Modeling the State Transitions

The Context Tree Weighting (CTW) method is a sequential
universal data compression procedure for a sequence with finite
alphabet, which works by mixing the predictions of many un-
derlying variable order Markov models [57], [58]. We propose
to use it to model and predict the state sequence {z1 , . . . , zt}
(also denoted by z1:t), where zt ∈ A, and A = {1, . . . , s} is the
finite alphabet (labels of states).

Following standard notation from information theory, we
sometimes refer to a sequence {z1 , . . . , zk} ∈ Ak as a string,
also denoted by z � z1 · · · zk . We say z is a suffix of another
z′ � z′1 · · · z′k ′ if k ≤ k′ and zk−i = z′k ′−i , i = 0, . . . , k − 1.
The empty string, denoted by ∅, is the suffix of all strings.
A proper and complete suffix set, denoted by V with memory
no larger than d ∈ N is defined below. This is a set of strings in
the form of [z1 , . . . , zk ] where zk ∈ A, k ≤ d, which satisfies
the following conditions: 1) no string in V is a suffix of any
other string in V; and 2) for any t ∈ N, any string z1 · · · zt ∈ At

has a suffix that belongs to V (this suffix is unique since V
is proper). Following the definition, any proper and complete
suffix set induces a function F : z1 · · · zt �→ v ∈ V . Let p(v)
denote a discrete measure over A for each v ∈ V . We assume
the following true data generating process.

The sequence z1:t is generated by a finite memory tree
source defined by zt | z(t−d):(t−1) ∼ M(pt), where pt �
p(F(zt−d:t−1)), z1−d , . . . , z0 are known initial values.

Let DK L (f, g) denote the Kullback-Leibler divergence of
PDF f(·) from g(·). Because the CTW exploits the potentially
sparse tree structure, it can be much more efficient than maxi-
mum likelihood estimation when directly applied to a Markov
process, especially when the Markov order is large. Given d
initial states, the CTW procedure sequentially produces an esti-
mate of the joint distribution of z1:t , Pw (z1:t), which is shown
to converge to the stationary probability measure Pa(z1:t) in the
sense that DK L (Pa(z1:t), Pw (z1:t))/t → 0 as t → ∞ [58].

By using this strategy, we do not assume specifically how the
states evolve, but we need to assume that each state is fairly
persistent, i.e., the time intervals between two consecutive state
changes are long. This is a reasonable assumption in many real
cases such as EEG data, speech data, and environmental data
where the sampling rate is high.

IV. NUMERICAL EXPERIMENT

A. Synthetic Data Experiment: Three-step Approach

We illustrate the three-step approach via a numerical ex-
periment. We define 3 states (labeled A = {1, 2, 3}) as zero
mean AR(2) xt = xT

t β(k) + εt , k = 1, 2, 3, with indepen-
dent N (0, 1) noises, β(1) = [0.8,−0.5],β(2) = [−0.6,−0.7],
and β(3) = [0, 0.6]. We generate a time series of length T =
3000 that consists of 20 segments xTk −1 +1:Tk

, k = 1, . . . , 20,
corresponding to the state sequence 1, 2, 3, 2, . . . , 1, 2, 3, 2 (of
length 20). The segment lengths Tk − Tk−1 , k = 1, . . . , 20 are
generated from the symmetric Dirichlet distribution with con-
centration parameter 10. The above procedure is repeated
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Fig. 2. A graph showing (a) one of the 50 time series (black line) with the true locations of state transitions (vertical blue dash); (b) the estimated coefficients
β̂1 , β̂2 of each experiment (black cross), together with those coming from the 29 experiments with correctly identified number of states (blue circle), and with the
true filters (red plus); (c) the predictive probabilities of observing state i ∈ {1, 2, 3} plus i − 1 (in green dash, blue line, red small dash, respectively), along with
the true states (black plus); (d) the recovered patten of state transitions.

50 times. In each repetition, we apply the three-step approach
in Section III and summarize the final results in Fig. 2.

Fig. 2(a) depicts one instance of the data (in black line) with
the true locations of state transitions (in blue dash). We first
apply the MW algorithm to obtain the change points. We then
apply Algorithm 1 (Section III-B, with the default choice of
fT = 2T̃−1 log(T̃ ), T̃ being the minimal segment length from
the last step) to obtain the optimal number of states and their
labels. The estimated coefficients β̂1 , β̂2 of 50 experiments are
plotted together in Fig. 2(b). The coefficients that are associated
with the experiments where the number of states is correctly
identified (29 in total) are highlighted with circles. In the plot,
the cloud of estimated filters are centered around the true filters.
We notice a slight “pooling” of estimates toward each other and
the presence of a few outliers. The pooling effect occurs due
to minor but unavoidable error in the estimator, i.e., when the
discovered change points do not coincide precisely with true
state transitions. The outliers result from false negatives, i.e.
when the estimator misses a true change point (which causes
a reconciliation between adjacent filters). The latter issue can
be alleviated by deliberately overfitting the number of change
points (in implementing Section III-A). Lastly, we apply the
CTW approach with depth d = 2 to sequentially predict the
next state. We define the state in segment level in the sense that
if m − 1 switching points are discovered, the state sequence is
of m.

As was discussed in Remark 2, the states are identifiable only
up to permutations. For the sake of easy presentation, we rela-
bel the states in the following way. For those experiments that

correctly identify the number of states, we find the permutation

π : A �→ A such that
∑

i∈A ‖β(π (i)) − β̂
(i)‖2

2 is minimized, and
relabel i as π(i),∀i ∈ A. After relabeling, the identified state
sequences (in segment level) in all of the 29 experiments are the
correct sequence (namely 1, 2, 3, 2, . . .). The predictive proba-
bilities of observing state i ∈ {1, 2, 3} plus i − 1 are plotted in
Fig. 2(c) along with the true states. The closer the probability
(curve) is to the true state (point), the better predictive per-
formance we achieved. The pattern of state transitions is soon
accurately characterized, as illustrated in Fig. 2(d).

To verify that the performance of Algorithm 1 improves as
sample size increases, we repeat the experiment of the three-
step approach for T = 103 , 3 × 103 , 5 × 103 , 104 , where
the average selected number of states (with standard errors)
are respectively 2.26(0.13), 3.62(0.15), 3.22(0.09), 3.10(0.10).
To further focus on the verification of Theorem 2 (proved
in the Appendix), we simplify the setting by first assuming
that the locations of change points are known, and then ap-
plying Algorithm 1 for the same synthetic data with T =
100, 300, 500, 1000, 3000, 10000, each with 50 independent
repetitions. In addition to the average selected number of states
ŝ, we also recorded the measures

û � card{(i, j) : ai 	= aj , âi = âj , 1 ≤ i, j ≤ 20}
card{(i, j) : ai 	= aj , 1 ≤ i, j ≤ 20} ,

ô � card{(i, j) : ai = aj , âi 	= âj , 1 ≤ i, j ≤ 20}
card{(i, j) : ai = aj , 1 ≤ i, j ≤ 20, i 	= j} , (6)
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TABLE I
PERFORMANCE OF ALGORITHM 1

along with their standard errors in parentheses, where
{ai}20

i=1 , {â}20
i=1 are the true and the estimated state sequences.

Larger û (resp. ô) implies more underfitting (resp. overfitting).
In this simulation, we use Laplace noises, and give the results in
Table I. As shown in Table I, the number of states and labeling
are correctly identified as T grows large.

B. Synthetic Data Experiment: Comparison with a Fully
Parametric Model

The purpose of this section is to compare our three-step ap-
proach for offline observations to the maximum likelihood es-
timation commonly used for statistical inference of parametric
models. We show that our approach can serve as a fast prepro-
cessing method for classical inference procedures. Suppose that
the time-series model consists of 3 states, corresponding to zero
mean AR(2) with independent N (0, 1) noises, and coefficients
β(1) ,β(2) ,β(3) i.i.d. samples from the uniform distribution on
the space of all stable AR(2) filters (using Algorithm 3 intro-
duced in [56]) for each run of the experiment. The law of state
transitions follows a Markov process, with transition probabil-
ity matrix T being Tii = 1 − c, Tii′ = c/2, c = 0.01, ∀i, i′ =
1, . . . , 3, i 	= i′. In other words, we may write the data generat-
ing process as

zt ∼
{ M(π1 , . . . , πM ) if t = 1,

M(Tj1 , . . . , TjM ), j = zt−1 otherwise,
(7)

xt ∼ N (xT
t β(zt ) , σ2

z ( t ) ), t = 2, . . . , T. (8)

where z1 , . . . , zT denote the sequence of unobserved states.
We generate synthetic data from the above model and run the

three methods described next. The first method considered is
the three stage approach (denoted by “3-step”). The estimated
transition probability from state i′ to i is taken to be the latest
CTW predictive probability after observing i′ (1 ≤ i′, i ≤ 3).
We also use the standard expectation-maximization (EM) al-
gorithm to numerically find the maximum likelihood estimator
(MLE). The derivation of the EM algorithm for the above par-
ticular model can be found in [56, Sec. 3]. We assume that
the number of states is known a priori for the EM algorithm.
The initial values of unknown parameters are chosen to be
πi = 1/3, σ2

i = 10,β(i) ∼ N (0, I), i = 1, 2, 3. The drawback
of the EM algorithm is that its convergence speed and perfor-
mance strongly depend on its initialization. An improper ini-
tialization causes EM to converge to a local maximum that can
be quite far from the global optimum (which is the MLE). A
popular technique is to use multiple random initializations and
choose the output with the largest likelihood [59], but this can

be quite time consuming. Instead, we first apply “3-step” and
use the obtained results as the initial values for EM in order to
improve the convergence. We refer to the hybrid approach as
“3-step-EM”.

We repeat the experiment 50 times independently, for each
T = 103, 3 × 103, 104. The results are summarized in Table II.
We compare the mean square error (MSE) of the estimated co-

efficients (average
∑3

i=1 ‖β(i) − β̂
(i)‖2

2), MSE of the transition
probabilities (average

∑3
i ′,i=1(Ti ′,i − T̂i ′,i)2), and the compu-

tational cost (in seconds). Each mean value is provided with its
standard error in the parentheses below. The algorithms were
implemented in MATLAB and run on a PC with 3.1 GHz dual-
core CPU. To overcome the identifiability issue, a relabeling has
been applied that is similar to the last section.

As expected, EM with calibrated initialization (“3-step-EM”)
gives the lowest MSE of coefficients. In addition, “3-step” per-
forms better than other two approaches in terms of the estimation
of transition probabilities and computational cost, and slightly
better than EM (with random initialization) in terms of estimat-
ing AR coefficients.

Fig. 3 shows one instance of the time series, along with the
true states and the discovered states by three approaches. The
estimated state ẑt at time step t for the latter two approaches is
defined as the state with the largest posterior probability con-
ditioned on the observations. Fig. 3 demonstrates the typical
performance of three methods. We have noticed that “3-step”
tends to produce overly persistent states. This phenomenon can
be avoided by either fine tuning the penalization used to deter-
mine the number of change points in MW algorithm (we had
been using the default option suggested in [49]), or using an ex-
act search algorithm (more time consuming) such as the PELT
method [55]. On the contrary, “EM” tends to capture the true
transitions, but it tends to produce states with overly frequent
transitions. This occurs because the posterior means of the hid-
den states exhibit variations and EM does not encourage them to
be persistent. Finally, “3-step-EM” strikes a satisfying balance
between the previous two methods.

In summary, our proposed approach is comparable to the
classical strategies used for inferring a particular mixture model.
In addition, it can serve as a companion of classical inference
procedures to further enhance their performance. Finally, our
approach does not require any assumption on parametric forms,
so it is generally applicable.

C. Real Data Experiments

1. Eastern US temperature data: In this experiment, we revisit
the temporal variability of the summer temperatures over the
Eastern US for 1895-2015, which was also studied in [49]. The
temperature data was obtained from the National Climatic Data
Center. It is averaged over the Eastern US (east of 100◦ W), and
shown by black dots in Fig. 4. In this and the following real
data experiments, we shall use the default parameters suggested
in Section III. The segmentation and state transitions of the
time series of the Eastern US temperature over the past century
matches the phase shift of the Atlantic Multi-decadal Oscillation
(AMO) [4]. As seen from Fig. 4, since the early 20th century,
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TABLE II
COMPARISON OF THREE APPROACHES

Fig. 3. A figure showing one instance of the time series with T = 3000, r = 0.9 (black dash), with the true transition time (black vertical lines), true state
zt ∈ {1, 2, 3} (black line), and the estimated states ẑt + 3 by “3-step” (blue line), ẑt + 6 by “EM” (green line), ẑt + 9 by “3-step-EM” (red line).

Fig. 4. A figure showing the 1895-2015 summer-time temperature over the
Eastern US (unit: ◦C) and the discovered states.

there has been an alternation between warm phases and cool
phases, in synchrony with our discovered states. The dynamic
link between AMO and Eastern US climate has previously been
reported in the field of environmental science, based upon a
global climate model [4], [60]. This validates our conclusion
derived from the three-step approach.

2. Chest-mounted accelerometer data: In this experiment,
we study the problem of activity recognition using a dataset col-
lected from a wearable accelerometer mounted on the chest, with
52 Hz sampling frequency and 7 labeled activities/states [5].
The 7 states (labeled by 1–7) respectively denote “working at
computer”, “standing up, walking and going up/down stairs”,
“standing”, “walking”, “going up/down stairs”, “walking and
talking with someone”, “talking while standing”. The raw data
is a 3-dimensional time series recording the acceleration mea-
surements from x, y, and z dimensions. We transform the data to
a 1-dimensional series by taking the square norm of acceleration
vectors, and then standardize the data. We also subsample the
data with rate 52, since the wearer of accelerometer is likely not
to frequently change states within a few seconds. By running
the three-step approach, we plot the true states (human-labeled),
and marked the time steps when we mis-labeled in Fig. 5. Our
states have been relabeled to match the true states using a similar
technique discussed in Section IV-A.

3. EEG data: In this experiment, we attempt to model EEG
data that exhibits structural changes and recurring patterns over
time. The data consists of EEG signals recorded from a person
over 22 hours with 100 Hz sampling frequency and accompany-
ing hypnograms (expert annotations of sleep stages) [3], [61].
We use 1, . . . , 6 to respectively represent the true states ‘1’, ‘2’,
‘3’, ‘4’, ‘R’, ‘W’ (which are stored in hypnograms). The raw data
was subsampled at rate 10. By running the three-step approach,
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Fig. 5. A figure showing the labeled true states of activities (in black lines),
the mis-labeled states (in blue dots), and the pre-processed data (which was
rescaled for aesthetic purpose).

Fig. 6. A figure showing the labeled true states of sleep (in black lines), the
mis-labeled states (in blue dots), and the pre-processed data (which was rescaled
for aesthetic purpose).

we plot the true and mis-labeled states in Fig. 6. A typical sleep
pattern is expected to flow from state 1 to 6, and then to 1 again.
Though our discovered state transitions seem reasonable, it is
not ideal, perhaps because we were using only one dimensional
EEG signals. A possible future work is to extend our three-step
procedure to multi-dimensional input, taking into account other
signals such as electrooculography (EOG).

V. CONCLUSION

In this paper, we considered modeling a general dynamic time
series which exhibits recurring patterns. By assuming a multi-
state autoregressive model with persistent states, we proposed a
three-step strategy to efficiently infer the unknown parameters
including the number of states. The inferred state sequence can
be further modeled to obtain hierarchical information such as
Markovity and seasonality.

In this paper, we have assumed that each state is persistent,
or the data size between two consecutive change points is large.
An interesting future endeavor would be the development of
effective strategies for frequent change points. Note that when
two change points are very close, it is unrealistic to obtain
large sample asymptotics (such as consistent identification of
change points). Nevertheless, this may not be an issue when our
evaluation metric is merely prediction error. Intuitively, this is
possible because if changes are too quick to be discovered, they
will have little influence on the average long-term prediction
error.
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APPENDIX

We use op(1) and Op(1) to respectively denote any random
variable that converges in probability to zero and that is stochas-
tically bounded.

A. Proof of Theorem 1

To prove Theorem 1, we first prove the case of m = 1. Let
p1 = T1/T, p2 = (T − T1)/T (which may depend on T ). Sim-
ilar to the definition of XT and ε, we define X1 ,X2 , ε1 , ε2
by

XT
1 = [xT

1 , . . . ,xT
T1

], XT
2 = [xT

T1 +1 , . . . ,x
T
T ],

ε1 = [ε1 , . . . , εT1 ]
T , ε2 = [εT1 +1 , . . . , εT ]T .

It is well known that the least squares estimates of the covariance
matrix and noise variance are consistent in the following sense

XTX

T
,

XT
k Xk

Tpk
→p ΓL ,

ê1:T

T
,

ê1:Tk

Tpk
→p σ2 , (9)

k = 1, 2, and the martingale central limit theorem [47,
Appendix 7.5] gives

XTε√
T

,
XT

1 ε1√
Tp1

,
XT

2 ε2√
Tp2

→d N (0, σ2ΓL ). (10)

It follows that (ê1:T1 + êT1 +1:T )/T →p σ2 , and

g1 = T

(
ê1:T

ê1:T1 + êT1 +1:T
− 1

)

{1 + o(1)}

=
ê1:T − ê1:T1 − êT1 +1:T

(ê1:T1 + êT1 +1:T )/T
{1 + o(1)}

= σ−2(ê1:T − ê1:T1 − êT1 +1:T ){1 + op(1)}. (11)



2438 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 9, MAY 1, 2018

Therefore, g1 →d χ2
L is equivalent to g′1 = ê1:T − ê1:T1 −

êT1 +1:T →d σ2χ2
L . We rewrite g′1 as

g′1 =
2∑

k=1

εT
k Xk (XT

k Xk )−1XT
k εk − εTX(XTX)−1XTε

=
2∑

k=1

1
pk

εT
k Xk (XTX)−1XT

k εk − εTX(XTX)−1XTε

+
2∑

k=1

εT
k Xk

{

(XT
k Xk )−1 − 1

pk
(XTX)−1

}

XT
k εk .

(12)

From identities (9) and (10), the last two terms are op(1) since
they can be rewritten as

εT
k Xk√
Tpk

{(
1

Tpk
XT

k Xk

)−1

−
(

1
T

XTX

)−1}
XT

k εk√
Tpk

,

for k = 1, 2. Therefore, using the fact that p1 + p2 = 1 we ob-
tain

g′1 =
p2

p1
εT

1 X1(XTX)−1XT
1 ε1

+
p1

p2
εT

2 X2(XTX)−1XT
2 ε2

− εT
1 X1(XTX)−1XT

2 ε2

− εT
2 X2(XTX)−1XT

1 ε1 + op(1)

=
∥
∥
∥
∥

√
p2

Tp1
εT

1 X1 −
√

p1

Tp2
εT

2 X2

∥
∥
∥
∥

2

(X T X/T )−1

+ op(1). (13)

Note that XT
1 ε1/

√
Tp1 and XT

2 ε2/
√

Tp2 are asymptotically
independent since {Xt} is strongly mixing under the assumption
on noises. [62]. Then it follows from identities (9), (10), (13)
and p1 + p2 = 1 that (XTX/T )−1 →p Γ−1

L ,

√
p2

Tp1
XT

1 ε1 −
√

p1

Tp2
XT

2 ε2 →d N (0, p1ΓL + p2ΓL ),

which further implies that g′1 →d σ2χ2
L by Slutsky’s theorem.

We now generalize to the case m ≥ 2. Similar to the above
proof, it suffices to prove that g′m →d σ2χ2

mL .
For any integers 0 ≤ a < b < c ≤ T , we let XT

a :b �
[xT

a , . . . ,xT
b ], εa :b = [εa , . . . , εb ]T , and define ga,b,c �

êa+1:c − êa+1:b − êb+1:c . Then g′m may be rewritten as ê1:T −∑m+1
k=1 êTk −1 +1:Tk

=
∑m

k=1 gTk −1 ,Tk ,T . Using the proved result
for m = 1 case, gTk −1 ,Tk ,T →d σ2χ2

L . Therefore, it remains
to prove that gTk −1 ,Tk ,T , k = 1, . . . , m are asymptotically mu-
tually independent. We prove it by induction. Suppose that
gTk −1 ,Tk ,T , k = 1, . . . , � are asymptotically mutually indepen-
dent, where 1 ≤ � ≤ m − 1. We now prove the statement for
k = � + 1. From (13) and the related discussions in proving for
m = 1, we can rewrite gTk −1 ,Tk ,T = ‖hk

2
Γ−1

L
+ op(1) for each

k = 1, . . . ,m, where

hk � √
pk

XT
Tk −1 +1:Tk

εTk −1 +1:Tk√
Tk − Tk−1

−
√

1 − pk

XT
Tk +1:T εTk +1:T√

T − Tk

,

and pk � (T − Tk )/(T − Tk−1). For notational simplicity, we
write h�+1 as

h�+1 =
√

T − T�+1

T − T�
Z1 −

√
T�+1 − T�

T − T�
Z2

where

Z1 �
XT

T� +1:T� + 1
εT� +1:T� + 1

√
T�+1 − T�

Z2 �
XT

T� + 1 +1:T εT� + 1 +1:T
√

T − T�+1
.

Thus, it remains to prove that h�+1 is asymptotically indepen-
dent with h1 , . . . , h� . Define

h
′
�+1 �

√
T�+1 − T�

T − T�
Z1 +

√
T − T�+1

T − T�
Z2

Ω � 1√
T − T�

[ √
T − T�+1 −√

T�+1 − T�√
T�+1 − T�

√
T − T�+1

]

which satisfies ΩTΩ = I . Since Z1 , Z2 →d N (0, σ2ΓL ) and
they are asymptotically independent [62], we obtain

[
h�+1

h
′
�+1

]

= (Ω ⊗ I)
[

Z1
Z2

]

→d N (
0, (Ω ⊗ I)(I ⊗ σ2ΓL )(Ω ⊗ I)T)

which isN (0, I ⊗ σ2ΓL ). Therefore, h�+1 and h
′
�+1 are asymp-

totically independent. Note that h
′
�+1 may be rewritten as

h
′
�+1 = XT

T� +1:T εT� +1:T /
√

T − T�,

and h�+1 is a function of XT
T� +1:T� + 1

εT� +1:T� + 1 , XT
T� + 1 +1:T

εT� + 1 +1:T . Moreover, h1 , . . . , h� are functions of XT
Tk −1 +1:Tk

εTk −1 +1:Tk
, k = 1, . . . , �, and XT

T� +1:T εT� +1:T . It follows that
h�+1 is asymptotically independent with h1 , . . . , h� . This con-
cludes the proof.

Proof of Theorem 2

By similar arguments in the proof of Theorem 1, we have

β̂k = βzk
+ Op(T̃−1) (14)

= βzk
+ op(1), k = 1, . . . ,m + 1. (15)

where zk labels the true state. We will construct a proof by
contradiction. Suppose that the kth segment is categorized into
one of s clusters that contains at least one segment that is not
from the same state. Without loss of generality, let this cluster be
labeled as 1, and the kth segment be from state 1. Let A1 denote
the set of segments (represented by their labels) from state 1
that are in cluster 1 (by Algorithm 1), and Ac

1 the remaining



DING et al.: ANALYSIS OF MULTISTATE AUTOREGRESSIVE MODELS 2439

segments in cluster 1. We use #(S) to denote the cardinality
of a finite set S. By our assumption, 0 < #(Ac

1) < m + 1. Let
β̂A 1 denote the mean of β̂i , i ∈ A1 , and similarly we define β̂Ac

1
,

β̂A 1 ∪Ac
1
. Note that the sum of Euclidean distances within cluster

1 is

�(1)
s �

∑

i∈A 1 ∪Ac
1

|β̂i − β̂A 1 ∪Ac
1
|2

=
∑

i∈A 1

|β̂i − β̂A 1 |2 +
∑

i∈Ac
1

|β̂i − β̂Ac
1
|2

+
#(A1)#(Ac

1)
#(A1) + #(Ac

1)
|β̂A 1 − β̂Ac

1
|2 (16)

≥ min{#(A1),#(Ac
1)}

2

{

min
2≤i≤s0

|β1 − βi |2 + op(1)
}

≥ 1
2

min
2≤i≤s0

|β1 − βi |2 + op(1) (17)

where the identity (16) is by direct calculations We first consider
the case s < s0 . By the pigeon-hole principle, there exist two
segments that are categorized into one of s clusters and that are
not from the same state. Therefore, by the previous arguments,
for all 1 ≤ s < s0 , �s + sfT > �s ≥ �

(1)
s > c0 for the constant

c0 � min1≤i,j≤s0 ,i 	=k |βi − βj |2/2 with probability close to one
for large T .

We then consider the case s ≥ s0 . First of all, we prove that
each cluster does not contain two segments that are from dif-
ferent states (with probability going to one). If so, by the pre-
vious arguments, eventually �s ≥ �

(1)
s > c0 . On the other hand,

it is a valid configuration that each cluster only contains seg-
ments that are from the same states (which is not unique); if so,
then it follows from (15) that �s = op(1), which is less than c0
with probability close to one. Therefore, with probability tend-
ing to one, two segments that are from different states are not
in the same cluster, and �s + sfT , s = s0 , . . . ,m are less than
�s + sfT , s = 1, . . . , s0 − 1.

Then, it remains to prove that mins0 ≤s≤m �s + sfT is
achieved at s = s0 . In fact, it follows from (14) that �s − �s0 =
Op(T̃−1) for s0 ≤ s ≤ m which, by assumption (5), is less than
fT with probability tending to one.
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