Thickening and Information in Dynamic Matching Markets

Mohammad Akbarpour† ‡ Shengwu Li§ Shayan Oveis Gharan¶

First Draft: February 2014 This Draft: April 2017

Abstract

We introduce a simple model of dynamic matching in networked markets, where agents arrive and depart stochastically, and the composition of the trade network depends endogenously on the matching algorithm. We show that if the planner can identify agents who are about to depart, then waiting to thicken the market is highly valuable, and if the planner cannot identify such agents, then matching agents greedily is close to optimal. The planner’s decision problem in our model involves a combinatorially complex state space. However, we show that simple local algorithms that choose the right time to match agents, but do not exploit the global network structure, can perform close to complex optimal algorithms. Finally, we consider a setting where agents have private information about their departure times, and design a continuous-time dynamic mechanism to elicit this information.

Keywords: Market Design, Matching, Networks, Continuous-time Markov Chains, Mechanism Design

JEL Classification Numbers: D47, C78, C60

†This paper has been previously distributed with the title “Dynamic Matching Market Design.”
‡We thank Paul Milgrom and Alvin Roth for valuable guidance. We also thank Eric Budish, Ben Golub, Scott Kominers, Alex Wolitzky, and multiple anonymous referees for their valuable comments. We are also grateful to Daron Acemoglu, Nikhil Agarwal, Nick Arnosti, Itai Ashlagi, Peter Biro, Timothy Bresnahan, Jeremy Bulow, Gabriel Carroll, Sylvain Chassang, Constantinos Daskalakis, Darrell Duffie, Alex Frankel, Matthew Jackson, Fuhito Kojima, Soohyung Lee, Jacob Leshno, Malwina Luczak, Joshua Mollner, Markus Mobius, Roger Myerson, Stephen Nei, Muriel Niederle, Afshin Nikzad, Michael Ostrovsky, Parag Pathak, Robert Shimer, Takuo Sugaya, and Bob Wilson for their valuable discussions, as well as several seminar participants for helpful suggestions. All errors remain our own.
§Graduate School of Business, Stanford University. Email: mohamwad@stanford.edu
¶Society of Fellows, Harvard University. Email: shengwu_li@fas.harvard.edu
¶Department of Computer Science and Engineering, University of Washington. Supported by a Miller fellowship. Email: shayan@cs.washington.edu
1 Introduction

We study the problem of matching in a dynamic market with network constraints. In many markets, only some pairs of agents can be feasibly matched. For instance, in paired kidney exchange, patient-donor pairs must be biologically compatible before a swap can be made. In online labor markets, not every worker is qualified for every task. Because of these frictions, any matching decision is constrained by a network, comprised of agents (nodes) and compatible pairs (links).

Of course, in many matching markets, agents arrive and depart over time. A social planner continually observes the network, and chooses how to match agents. Matched agents leave the market, and unmatched agents either persist or depart. Consequently, the planner’s decision today affects the sets of agents and options tomorrow. For instance, in kidney exchange, matches are irreversible and unmatched patient-donor pairs may leave the market. In online labor markets, tasks may be time-sensitive, and workers assigned a task may be unavailable to take on future tasks.

In this paper, we introduce a stylized model of dynamic matching for a networked market with arrivals and departures. In the classic Erdős-Rényi random graph setting, there are m agents, and any two agents are compatible with probability $\frac{d}{m}$ (Erdős and Rényi, 1960). The planner observes the network and chooses a matching, seeking to minimize the number of unmatched agents. We create a natural dynamic analogue: Agents arrive at Poisson rate m, any two agents are compatible with probability $\frac{d}{m}$, and each agent departs (perishes) at a Poisson rate, normalized to 1. Links persist over time. The planner observes the current network and chooses a matching; matched agents leave the market. The planner also observes which agents’ needs are urgent, in the sense that he knows which agents will perish imminently if not matched. As in the static case, the planner seeks to minimize the proportion of unmatched agents (the loss).

In our model, the planner must decide not only which agents to match, but also when to match them. The planner could match agents frequently, or wait to thicken the market. If the planner waits, agents may perish. However, waiting has benefits. For example, in the left scenario in Figure 1, where each node represents an agent and each link represents a compatible pair, if the planner matches agent 1 to agent 2 at time t, then the planner will be unable to match agents 3 and 4 at time $t + 1$. By contrast, if the planner waits until $t + 1$, he can match all four agents by matching 1 to 4 and 2 to 3. Moreover, waiting might bring information about which agents will soon perish, enabling the planner to give priority to those agents. For example, in the right scenario in Figure 1, the planner learns at $t + 1
Figure 1: Waiting expands information about the set of options and departure times. Here, each node represents an agent and each link represents a compatible pair. In (a), the planner observes the set of new agents and options at time $t + 1$. If he matches agent 1 to agent 2 at time t, then the planner will be unable to match agents 3 and 4 at time $t + 1$. In (b), the planner gets the information that agent 3 is about to depart at time $t + 1$. If he matches 1 and 2 at time t, then he will be unable to react to the information about urgency of agent 3 at time $t + 1$.

What are the key features of the optimal dynamic matching algorithm? Since we explicitly model the network of potential matches, the resulting Markov Decision Problem is combinatorially complex. Thus, it is not feasible to compute the optimal solution with standard dynamic programming techniques. Instead, we employ a different approach: We formulate simple algorithms with different timing properties, that are tractable because they naively ignore the network structure. By comparing these algorithms, we show that the choice of when to match agents has large effects on performance. Then, we produce theoretical bounds on the performance of optimal algorithms that additionally exploit the network structure. We show that our simple algorithms can come close to these bounds on optimum performance. This suggests that timing is an important concern relative to optimizing over the entire network.

The simple algorithms are as follows: The **Greedy** algorithm attempts to match agents as soon as possible; it treats each instant as a static matching problem without regard for the future.\(^1\) The **Patient** algorithm attempts to match only urgent agents (potentially to a non-urgent partner). Both these algorithms are local, in the sense that they look only at the

\(^1\)For instance, in kidney exchange, the Alliance for Paired Kidney Donation “performs match runs every day or whenever new pairs or altruistic donors are added.” (APKD, 2017)
immediate neighbors of the agent they attempt to match, rather than at the global network
structure.

It is intuitive that the Patient algorithm will achieve a lower loss than the Greedy algo-
rum, but is the difference substantial? Our first result answers this question: The Greedy
algorithm’s loss is at least \(\frac{1}{2d+1} \), whereas the Patient algorithm’s loss is at most \(\frac{e^{-d/2}}{2} \). To
place these results in context, the static model provides a useful benchmark. Given a maxi-
mum matching on an Erdős-Rényi random graph, the expected fraction of unmatched agents
is exponentially small in \(d \), so the loss falls rapidly as \(d \) rises (Zhou and Ou-Yang, 2003).
In the case with arrivals and departures, our result shows that running a statically-optimal
matching at every instant does not yield exponentially small loss. However, waiting to match
agents suffices to achieve exponentially small loss, and thus the Patient algorithm substan-
tially outperforms the Greedy. For instance, in a market where \(d = 8 \), the loss of the Patient
algorithm is no more than 16% of the loss of the Greedy algorithm.

The intuition behind this result is as follows: The composition and the number of agents
in the market depends endogenously on the matching algorithm. As \(d \) rises, the Greedy
algorithm matches agents more rapidly, reducing the equilibrium stock of available agents.
This effect cancels out the exponential improvements that would accrue from raising \(d \) in
a static model. In addition, under the Greedy algorithm, there are no compatible agents
among the set of agents in the market (the market is thin) and so all critical agents perish.
On the contrary, under the Patient algorithm, an increase in \(d \) will not rapidly reduce the
equilibrium stock of available agents, so the market is always thick. This market thickness
enables the planner to react to urgent cases.

Our second result is that the loss of the Patient algorithm is “close to” the loss of the
optimum algorithm; the optimum algorithm’s loss is at least \(\frac{e^{-d/2(1+\epsilon)}}{d+1} \) where \(\epsilon \leq e^{-d/2} \). Recall
that the Patient algorithm is local; it looks only at the immediate neighborhood of the agents
it seeks to match. By contrast, the optimum algorithm chooses the optimal time to match
agents, as well as the optimal agents to match, by exploiting the entire network structure.
When we compare the performance of the Greedy algorithm to the optimum algorithm, we
find that most of the gain is achieved merely by being patient and thickening the market,
rather than optimizing over the network structure.

So far we have assumed that the planner can identify urgent cases, at the point an agent
is about to perish. What if the planner has more or less information about departure times?
Our next results show that departure information and thickness are complements, in the
following sense: Any algorithm that cannot identify urgent cases has a loss of at least \(\frac{1}{2d+1} \),
no matter how long it waits. Suppose on the other hand that the planner is constrained to match agents as soon as possible, but can identify urgent cases far ahead of time. Any algorithm that does not wait has a loss of at least \(\frac{1}{2d+1} \), no matter how much information it has about departure times.

Recall that the Patient algorithm requires only short-horizon information about agent departures. What if the planner has even more information? For instance, the planner may be able to forecast departures long in advance, or foresee how many new agents will arrive, or know that certain agents are more likely than others to have new links. We prove that no expansion of the planner’s information allows him to achieve a loss smaller than \(\frac{e^{-d}}{d+1} \).

Taken together, these results suggest that short-horizon information about departure times is especially valuable to the planner. Lacking this information leads to large losses, and having more than this information does not yield large gains.

In some settings, however, agents know when their cases are urgent, but the planner does not. For instance, doctors know whether their patients have urgent needs, but kidney exchange pools do not. Our final result concerns the incentive-compatible implementation of the Patient algorithm. Suppose that the planner observes the network, but does not know when cases are urgent. Suppose that agents know when their cases are urgent, but do not observe the network (i.e. they do not know when they have a compatible partner).² When agents have waiting costs, they may have incentives to mis-report their urgency so as to hasten their match or to increase their probability of getting matched. We show that if agents are not too impatient, a dynamic mechanism without transfers can elicit such information. The mechanism treats agents who report that their need is urgent, but persist, as though they had left the market. This means that as an agent, I trade off the possibility of a swifter match (by declaring that I am in urgent need now) with the option value of being matched to another agent before I truly become urgent. We prove that it is arbitrarily close to optimal for agents to report the truth in large markets.

1.1 Related Work

There have been several studies on dynamic matching in the literatures of economics, computer science, and operations research. To the best of our knowledge, no prior work has examined dynamic matching on a general graph, where agents stochastically depart.

²One of the reasons that agents enter centralized matching markets is that they are unable to find partners by themselves.
Kurino (2009) and Bloch and Houy (2012) study an overlapping generations model of the housing market. In their models, agents have deterministic arrivals and departures and the housing side of the market is infinitely durable and static. In the same context, Leshno (2012) studies a one-sided dynamic housing allocation problem in which there are two types of houses that arrive stochastically over time. In subsequent papers, Baccara et al. (2015) and Loertscher et al. (2016) study the problem of optimal dynamic matching and thickness in two-sided models with two types on each side.

In the context of kidney exchanges, a problem first studied by Roth et al. (2004) and Roth et al. (2005), Ünver (2010) is the first paper that considers dynamics in a model with multiple types of agents. In his model, agents never perish. Thus, one insight of his model is that waiting to thicken the market is not helpful when only bilateral exchanges are allowed. We show that this result changes when agents depart stochastically. Some other aspects of dynamic kidney exchange have been studied in Zenios (2002); Su and Zenios (2005); Awasthi and Sandholm (2009); Dickerson et al. (2012); Sonmez and Ünver (2015). Ashlagi et al. (2013) construct a finite-horizon model of kidney exchange with agents who never depart. They show that (with 2-way exchanges) waiting yields large gains only if the planner waits for a constant fraction of total agents to arrive. Since our model is infinite-horizon and agents depart, it is not possible to wait for a constant fraction of the total agents to arrive. Nevertheless, the Patient algorithm ensures that the size of the market is linear in m, which makes thickness valuable. Finally, a recent paper builds on our framework to study the competition of two platforms with Greedy and Patient algorithms (Das et al., 2015).

In concurrent work, Anderson et al. (2014) analyze a model in which the main objective is to minimize the average waiting time, and agents never perish. They show that with two-way exchanges, the Greedy algorithm is optimal in the class of ‘periodic Markov policies’, which is similar to Theorem 4 in this paper. Our paper, on top of that, shows that when agents’ departure times are observable, then Greedy performs weakly, and the option value of waiting can be large. In another concurrent study, Arnosti et al. (2014) model a two-sided dynamic matching market to analyze congestion in decentralized markets. Some recent papers study the problem of stability in dynamic matching markets (Du and Livne, 2014; Kadam et al., 2014; Doval, 2014).

The literature on online advertising is also related to our work. In this setting, advertisements are static, but queries arrive adversarially or stochastically over time. Unlike our model, queries persist in the market for exactly one period. Karp et al. (1990) introduced the problem and designed a randomized matching algorithm. Subsequently, the problem has
been considered under several arrival models with pre-specified budgets for the advertisers,
(Mehta et al., 2007; Goel and Mehta, 2008; Feldman et al., 2009; Manshadi et al., 2012;
Blum et al., 2015).

The problem of dynamic matching has been extensively studied in the literature of labor
search and matching in labor markets. Shimer and Smith (2001) study a decentralized
search market and discuss efficiency issues. In addition to studying a decentralized market
as opposed to a centrally planned market, this paper and its descendants are different from
ours in at least two ways: First, rather than modeling market thickness via a fixed match-
function, we explicitly account for the network structure that affects the planner’s options,
endogenously determining market thickness. In addition, in Shimer and Smith (2001), the
benefit of waiting is in increasing the \textit{match quality}, whereas in our model we show that
even if you cannot increase match quality, waiting can still be beneficial because it increases
the \textit{number} of agents who get matched. Ebrahimy and Shimer (2010) study a decentralized
version of the Greedy algorithm from a labor-search perspective.\footnote{In contrast to dynamic matching, there are numerous investigations of dynamic auctions and dynamic mechanism design. Budish et al. (2015) study the problem of timing and frequent batch auctions in the high frequency setting. Parkes and Singh (2003) generalize the VCG mechanism to a dynamic setting. Athey and Segal (2007) construct efficient and incentive-compatible dynamic mechanisms for private information settings. We refer interested readers to Parkes (2007) for a review of the dynamic mechanism design literature.}

\section{The Model}

In this section, we introduce the pieces of our continuous-time model for a matching market
on stochastic networks that runs in the interval $[0,T]$.

Arrivals and Departures. Agents arrive at the market at Poisson rate m. Hence, in any
interval $[t,t+1]$, m new agents enter the market in expectation. Throughout the paper we
assume $m \geq 1$. Let A_t be the set of the agents in our market at time t, and let $Z_t := |A_t|$.
We refer to A_t as the pool of the market and to Z_t as the pool size. We start by describing
the evolution of A_t as a function of $t \in [0,T]$. Since we are interested in the limit behavior
of A_t, we assume $A_0 = \emptyset$. We use A^n_t to denote\footnote{As a notational guidance, we use subscripts to refer to a point in time or a time interval, while superscripts n,c refer to new agents and critical agents, respectively.} the set of agents who enter the market at time t. Note that with probability 1, $|A^n_t| \leq 1$. Also, let $|A^n_{t_0,t_1}|$ denote the set of agents who enter the market in time interval $[t_0, t_1]$.

Each agent becomes \textit{critical} according to an independent Poisson process with rate λ,

which, without loss of generality5, we normalize to 1. This implies that, if an agent a enters the market at time t_0, then she becomes critical at some time $t_0 + X$ where X is an exponential random variable with mean 1. Any critical agent leaves the market immediately; so the last point in time that an agent can get matched is the time that she gets critical. We say an agent a \textit{perishes} if a leaves the market unmatched.6

We assume that an agent $a \in A_t$ leaves the market at time t if either a is not critical but is matched with another agent $b \in A_t$, or if a becomes critical and gets matched to another agent, or if a becomes critical and leaves the market unmatched and so perishes. Consequently, for any matching algorithm, a leaves the pool at some time t_1 where $t_0 \leq t_1 \leq t_0 + X$. The \textit{sojourn} of a is the length of the interval that a is in the pool, i.e., $s(a) := t_1 - t_0$. We use A^c_t to denote the set of agents that are critical at time t.7 Also, note that for any $t \geq 0$, with probability 1, $|A^c_t| \leq 1$.

It is essential to note that the arrival of the criticality event with some Poisson rate is not equivalent to discounting with the same rate, because the criticality event might be observed by the planner and the planner can react to that information.

\textbf{The Compatibility Network.} For any pair of agents, they are compatible with probability p, where $0 \leq p \leq 1$, and these probabilities are independent across pairs. Let $d = m \cdot p$ be the density parameter of the model. In the paper, we use this definition and replace p with d/m.

For any $t \geq 0$, let $E_t \subseteq A_t \times A_t$ be the set of compatible pairs of agents in the market (the set of \textit{edges}) at time t, and let $G_t = (A_t, E_t)$ be the network at time t. Compatible pairs persist over time; i.e., $a, b \in A_t$ and $a, b \in A_{t'}$, then $(a, b) \in E_t$ if and only if $(a, b) \in E_{t'}$. For an agent $a \in A_t$ we use $N_t(a) \subseteq A_t$ to denote the set of neighbors of a in G_t. It follows that, if the planner does not match any agents, then for any fixed $t \geq 0$, G_t is distributed as an Erdős-Rényi graph with parameter d/m and in the long-run, d is the average degree8 of agents (Erdős and Rényi, 1960).

Let $A = \bigcup_{t \leq T} A^n_t$, let $E \subseteq A \times A$ be the set of acceptable transactions between agents.

5See ?? for details of why this is without loss of generality.

6We intend this as a term of art. In the case of kidney exchange, perishing can be interpreted as a patient’s medical condition deteriorating in such a way as to make transplants infeasible.

7In our proofs, we use the fact that $A^c_t \subseteq \bigcup_{0 \leq \tau \leq t} A_{t}$. In the example of the text, we have $a \in A^c_{t_0 + X}$. Note that even if agent a is matched before getting critical (i.e., $t_1 < t_0 + X$), we still have that $a \in A^c_{t_0 + X}$. Hence, A^c_t is not necessarily a subset of A_t since it may have agents who are already matched and left the pool. This generalized definition of A^c_t is helpful in our proofs.

8In an undirected graph, \textit{degree} of of a vertex is equal to the total number of edges connected to that vertex.
in A, and let $G = (A, E)$\footnote{Note that $E \supseteq \cup_{t \leq T} E_t$, and the two sets are not typically equal, since two agents may find it acceptable to transact, even though they are not in the pool at the same time because one of them was matched earlier.}. Observe that any realization of the above stochastic process is uniquely defined given A_t^n, A_t^c for all $t \geq 0$ and the set of compatible pairs, E. A vector $(m, d, 1)$ represents a dynamic matching market.

Matching Algorithms. A set of edges $M_t \subseteq E_t$ is a matching if no two edges share the same endpoints. A matching algorithm, at any time $t \geq 0$, selects a (possibly empty) matching, M_t, in the current graph G_t, and the endpoints of the edges in M_t leave the market immediately. We assume that any matching algorithm at any time t_0 only knows the current graph G_t for $t \leq t_0$ and does not know anything about $G_{t'}$ for $t' > t_0$. In the benchmark case that we consider, the matching algorithm can depend on the set of critical agents at time t. Nonetheless, we will extend several of our theorems to the case where the online algorithm knows more than this, or less than this.

We emphasize that the random sets A_t (the set of agents in the pool at time t), E_t (the set of compatible pairs of agents at time t), $N_t(a)$ (the set of an agent a’s neighbors), as well as the random variable Z_t (pool size at time t) are all functions of the underlying matching algorithm. We abuse notation and do not include the name of the algorithm when we analyze these variables.

The Goal. Let $\text{ALG}(T)$ be the set of matched agents by time T,

$$\text{ALG}(T) := \{a \in A : a \text{ is matched by ALG by time } T\}.$$

We may drop the T in the notation $\text{ALG}(T)$ if it is clear from context.

The goal of the planner is to match the maximum number of agents, or, equivalently, to minimize the number of perished agents. The loss of a matching algorithm ALG is defined as the ratio of the expected number of perished agents to the expected number of agents, which is, by definition, a number in $[0, 1]$.

$$L(\text{ALG}) := \frac{\mathbb{E}[|A - \text{ALG}(T) - A_T|]}{\mathbb{E}[|A|]} = \frac{\mathbb{E}[|A - \text{ALG}(T) - A_T|]}{mT}.$$

As in the static case, the planner seeks a maximum matching among all agents in a random graph. Unlike the static case, he faces two additional constraints: First, not all agents are present at the same time, and second, he is uncertain about future arrivals and
Minimizing loss is equivalent to maximizing social welfare, for the case where the cost of waiting is negligible compared to the cost of leaving the market unmatched. For the most parts, we study the case where agents do not discount the future.\footnote{The case where discount rate is not zero is extensively studied in a subsequent working paper (Akbarpour \textit{et al.}, 2017).}

Our problem can be modeled as a Markov Decision Problem (MDP) that is defined as follows. The state space is the set of pairs (H, B) where H is any undirected graph of any size, and if the algorithm knows the set of critical agents, B is a set of at most one vertex of H representing the corresponding critical agent. The action space for a given state is the set of matchings on the graph H. Under this conception, an algorithm designer wants to minimize the loss over a time period T.

Optimum Solutions. In many parts of this paper we compare the performance of a matching algorithm to the performance of an optimal omniscient algorithm. Unlike any matching algorithm, the omniscient algorithm has full information about the future, i.e., it knows the full realization of the graph G. Therefore, it can return the (static) maximum matching in this graph as its output, and thus minimize the fraction of perished agents. Let $\text{OMN}(T)$ be the set of matched agents in the maximum matching of G. The loss function under the omniscient algorithm at time T is

$$L(\text{OMN}) := \frac{E[|A - \text{OMN}(T) - A_T|]}{mT}$$

Observe that for any matching algorithm ALG, and any realization of the probability space, we have $|\text{ALG}(T)| \leq |\text{OMN}(T)|$, because the omniscient algorithm could select the same matching as any matching algorithm.

The optimum matching algorithm, \textit{i.e.}, the solution to the above MDP, is the algorithm that minimizes loss. We first consider OPT^c, the algorithm that knows the set of critical agents at time t. We then relax this assumption and consider OPT, the algorithm that does not know these sets.

Let ALG^c be any online algorithm that knows the set of critical agents at time t. It follows that

$$L(\text{ALG}^c) \geq L(\text{OPT}^c) \geq L(\text{OMN}).$$

Similarly, let ALG be any online algorithm that does not know the set of critical agents
at time t. It follows that

$$L(\text{ALG}) \geq L(\text{OPT}) \geq L(\text{OPT}^c) \geq L(\text{OMN}).$$

Note that $|\text{ALG}|$ and $|\text{OPT}|$ (the number of matched agents under ALG and OPT) are generally incomparable, and depending on the realization of G we may even have $|\text{ALG}| > |\text{OPT}|$.

3 Simple matching algorithms

In our model, solving for the optimal matching algorithm is computationally complex. This is because there are at least $2^m/m!$ distinct graphs of size m, so for even moderately large markets, we cannot apply standard dynamic programming techniques to find the optimum online matching algorithm.\(^{11}\)

Nevertheless, we are not fully agnostic about the optimal algorithm. In particular, we know that OPT\(^c\) has at least two properties:

i) A pair of agents a, b gets matched in OPT\(^c\) only if one of them is critical, because if a, b can be matched and neither of them is critical, then we are weakly better off if we wait and match them later.

ii) If an agent a is critical at time t and $N_t(a) \neq \emptyset$ then OPT\(^c\) matches a. This is because allowing a critical agent to perish now decreases the number of future perished agents by at most one.

OPT\(^c\) waits until some agent gets critical and if an agent is critical and has some compatible partner, then OPT\(^c\) matches that agent. But the choice of match partner depends on the entire network structure, which is what makes the problem combinatorially complex. Our goal here is to separate these two effects: How much is achieved merely by being patient? And how much more is achieved by optimizing over the network structure?

To do this, we start by designing a matching algorithm (the Greedy algorithm), which mimics ‘match-as-you-go’ algorithms used in many real marketplaces. It delivers maximal matchings at any point in time, without regard for the future.

\(^{11}\)This lower bound is derived as follows: When there are m agents, there are m possible edges, each of which may be present or absent. Some of these graphs may have the same structure but different agent indices. A conservative lower bound is to divide by all possible re-labellings of the agents ($m!$). For instance, for $m = 30$, there are more than 10^{98} states in the approximated MDP.
Definition 1 (Greedy Algorithm). If any new agent a enters the market at time t, then match her with an arbitrary agent in $N_t(a)$ whenever $N_t(a) \neq \emptyset$.

Since no two agents arrive at the same time almost surely, we do not need to consider the case where more than one agent enters the market. Moreover, the graph G_t in the Greedy algorithm is almost always an empty graph. Hence, the Greedy algorithm cannot use any information about the set of critical agents.

To separate the value of waiting from the value of optimizing over the network structure, we design a second algorithm which chooses the optimal time to match agents, but ignores the network structure.

Definition 2 (Patient Algorithm). If an agent a becomes critical at time t, then match her uniformly at random with an agent in $N_t(a)$ whenever $N_t(a) \neq \emptyset$.

To run the Patient algorithm, we need access to the set of critical agents at time t. Note that the Patient algorithm exploits only short-horizon information about urgent cases, as compared to the Omniscient algorithm which has full information about the future. Of course, the knowledge of the exact departure times is an abstraction from reality and we do not intend the timing assumptions about critical agents to be interpreted literally. An agent’s point of perishing represents the point at which it ceases to be socially valuable to match that agent. Letting the planner observe the set of critical agents is a modeling convention that represents high-accuracy short-horizon information about agents’ departures. In a stylized way, these stochastic departures represent, for example, emergencies such as vascular access failure of kidney patients (Roy-Chaudhury et al., 2006), which may be difficult to predict far ahead of time (Polkinghorne and Kerr, 2002). Another example of such information is when a donor needs to donate her kidney in a certain time interval.

We now state results for the case of large markets with sparse graphs, in the steady state: $m \to \infty$, d is held constant, and $T \to \infty$. Clearly, this implies that $\frac{d}{m} = p \to 0$, which should not be taken literally. This method eliminates nuisance terms and is a standard way to state results for large but sparse graphs (Erdős and Rényi, 1960). Appendix A and Appendix B study the performance of each algorithm as a function of m, T, and d, without taking limits. Simulations in Appendix F indicate that the key comparisons hold for small values of m. Moreover, the algorithms we examine converge rapidly to the stationary distribution (Theorem 7). The readers interested in technical non-limit results can see Theorem 8 and Theorem 9 for the dependence of our results on m and T.

11
4 Timing, Thickness, and Network Optimization

Does timing substantially affect the performance of dynamic matching algorithms? Our first result establishes that varying the timing properties of simple algorithms has large effects on their performance.

Theorem 1. For (constant) $d \geq 2$, as $T, m \to \infty$,

\[
\begin{align*}
L(\text{Greedy}) & \geq \frac{1}{2d+1} \\
L(\text{Patient}) & \leq \frac{1}{2} \cdot e^{-d/2}
\end{align*}
\]

We already knew that the Patient algorithm outperforms the Greedy algorithm. What this theorem shows is that Patient algorithm achieves exponentially small loss, but the Greedy algorithm does not. **Theorem 1** provides an upper bound for the value of waiting: We shut down the channels by which waiting can be costly (negligible waiting cost, while the planner observes critical agents) and show that in this world, the option value of waiting is large.

Why does this happen? The Greedy algorithm attempts to match agents upon arrival and the Patient algorithm attempts to match them upon departure. Now, suppose a new agent enters the market under the Greedy algorithm. If there are z other agents in the market, the probability that the agent has no feasible partner is $(1 - \frac{d}{m})^z$, which falls exponentially as d rises. Equally, suppose an urgent case arises, and the Patient algorithm attempts to match it. If there are z other agents in the market, the probability that the agent has no feasible partner is again $(1 - \frac{d}{m})^z$. What, then, explains the difference in performance?

The key is to see that the composition and number of agents in the market depends endogenously on the matching algorithm. As d rises, the Greedy algorithm matches agents more rapidly, depleting the stock of available agents, and reducing the equilibrium z. This effect cancels out the exponential improvements that would accrue from raising d in a static model. By contrast, because the Patient algorithm waits, the market is thick. We prove that, under the Patient algorithm, equilibrium z is always above $\frac{m}{2}$, which entails that $(1 - \frac{d}{m})^z$ falls exponentially as d rises.

The next question is, are the gains from patience large compared to the total gains from optimizing over the network structure and choosing the right agents to match? First we show by example that the Patient algorithm is not optimal, because it ignores the global network structure.
Figure 2: If a_2 gets critical in the above graph, it is strictly better to match him to a_1 as opposed to a_3. The Patient algorithm, however, chooses either of a_1 or a_3 with equal probability.

Example 1. Let G_t be the graph shown in Figure 2, and let $a_2 \in A^t_c$, i.e., a_2 is critical at time t. Observe that it is strictly better to match a_2 to a_1 as opposed to a_3. Nevertheless, since the Patient algorithm makes decisions that depend only on the immediate neighbors of the agent it is trying to match, it cannot differentiate between a_1 and a_3 and will choose either of them with equal probability.

The next theorem provides a lower bound for the optimum.

Theorem 2. Consider any algorithm ALG that observes the set of critical agents. Then, for (constant) $d \geq 2$, as $T, m \to \infty$,

$$L(\text{OPT}^c) \geq e^{-\frac{d}{2}(1+L(\text{ALG}))} \frac{d+1}{d}.$$

Recall that $L(\text{Patient}) \leq \frac{1}{2} \cdot e^{-d/2}$. Substituting for $L(\text{ALG})$ implies that $\frac{1}{2} \cdot e^{-d/2} \geq \frac{e^{-\frac{d}{2}(1+e^{-d/2}/2)}}{d+1}$. This exponential term in $L(\text{OPT}^c)$ is close to that of the $L(\text{Patient})$ for even moderate values of d. The preceding results show that the gains from the right timing decision (moving from the Greedy algorithm to the Patient algorithm) are larger than the remaining gains from optimizing over the entire network (moving from the Patient algorithm to the optimum algorithm). In many settings, optimal solutions may be computationally demanding and difficult to implement. Thus, this result suggests that, under some conditions, it will often be more worthwhile for policymakers to find ways to thicken the market, rather than to seek potentially complicated optimal policies.

It is worth emphasizing that this result (as well as Theorem 4) proves that “local” algorithms are close-to-optimal. Since in our model agents are ex ante homogeneous, this shows that “whom to match” is not as important as “when to match”. In settings where agents have multiple types, however, the decision of “whom to match” can be an important one even when it is local. For instance, suppose a critical agent has two neighbors, one who...
is hard-to-match and one who is easy-to-match. Then, ceteris paribus, the optimal policy should match the critical agent to the hard-to-match neighbor and breaking the ties in favor of hard-to-match agents reduces the loss.

We now sketch the proof and offer intuition for Theorem 1. The proof of Theorem 2 has similar ideas as the proof of Theorem 4, so we discuss them together in the next section.

Proof Overview. The key idea in proving Theorem 1 is to carefully study the structure of the graph induced by these algorithms and the distribution of the pool size, Z_t. In particular, we show that Z_t is Markov chain with a unique stationary distribution that mixes rapidly, and it is a sufficient statistic for the structure of the graph under the Greedy and Patient algorithms.

Greedy algorithm. Under the Greedy algorithm, conditional on Z_t, the pool is almost always an empty graph; i.e., a graph with no edges. Now note that the rate that some agent in the pool becomes critical is Z_t. Because the graph is empty, critical agents perish with probability one. Therefore, in steady state, $L(Greedy) \approx \mathbb{E}[Z_t] / m$.

Next, we show that for the Greedy algorithm, $\mathbb{E}[Z_t] \geq \frac{m^2 d}{m+1}$. Take any pool size z. At rate m, a new agent arrives. With probability $(1 - d/m)^z$ the new agent has no compatible matches, which increases the pool size by 1. With probability $1 - (1 - d/m)^z$, the new agent has a compatible match and the pool size falls by 1. At rate z, an agent perishes, in which case the pool size falls by 1. Let z^* be the point where these forces balance; i.e., the solution to:

$$m(1 - d/m)^z (+1) + z(-1) + m(1 - (1 - d/m)^z)(-1) = 0.$$

By algebraic manipulation, $z^* \geq \frac{m^2 d}{m+1}$. We show that under the stationary distribution, Z_t is highly concentrated around z^*, which then implies that $\mathbb{E}[Z_t]$ is close to z^*. This produces the lower bound for $L(Greedy)$.

Patient algorithm. Under the Patient algorithm, conditional on Z_t, the pool is an Erdős-Rényi random graph with parameter d/m. To see why, suppose an agent gets critical. The Patient algorithm’s choice of a match partner for that agent depends only on the immediate neighbors of that agent. Consequently, after the critical agent leaves, the rest of the graph is still distributed as an Erdős-Rényi random graph. The rate that some agent becomes critical is Z_t. Because the graph is a random graph, critical agents perish with probability $(1 - d/m)^{Z_t}$. Therefore, in steady state, $L(Patient) \approx \mathbb{E}[Z_t(1 - d/m)^{Z_t}] / m$.

The next step is to show that Z_t is highly concentrated around $\mathbb{E}[Z_t]$, so $L(Patient) \approx \mathbb{E}[Z_t] (1 - d/m)^{\mathbb{E}[Z_t]} / m$. This step involves long arguments. But once this step is established,
it remains to prove that $\mathbb{E}[Z_t] \geq \frac{m}{2}$. The exact proof for this is involved, but a simple thought experiment gives good intuition. Suppose the Patient algorithm is not able to match any agents. Then $\mathbb{E}[Z_t] = m$. On the other hand, suppose the Patient algorithm can match all agents. Then agents arrive at rate m and get matched at rate $2\mathbb{E}[Z_t]$ because for each critical agent, two agents get matched. This implies that $\mathbb{E}[Z_t] = \frac{m}{2}$. In fact, the Patient algorithm can match some but not all agents, so, $\frac{m}{2} \leq \mathbb{E}[Z_t] \leq m$. This produces the upper bound for $L(Patient)$.

One alternative interpretation of the above results is that information (i.e. knowledge of the set of critical agents) is valuable, rather than that waiting is valuable. This is not our interpretation at this point, since the Greedy algorithm cannot improve its performance even if it has knowledge of the set of critical agents. The graph G_t is almost surely an empty graph, so there is no possibility of matching an urgent case in the Greedy algorithm. Because urgent cases depart imminently, maintaining market thickness at all times is highly valuable.

What if the planner has more than short-horizon information about agents’ departure times? Suppose the planner knows the exact departure times of all agents who are in the pool. Is it still the case that waiting is highly valuable? To answer this question, we design a new class of algorithms which are constrained to match agents as soon as they can, but have access to exact departure times of all agents in the market. We refer to this class of algorithms as departure-aware Greedy (DAG) algorithms.

Definition 3 (Departure-Aware Greedy Algorithms). *If any new agent a enters the market at time t, then match her with an arbitrary agent in $N_t(a)$ whenever $N_t(a) \neq \emptyset$, where the choice of match partner can depend on the profile of departure times for agents in the pool.*

For instance, if a newly arrived agent has multiple matches, a DAG algorithm can break the tie in favor of the partner who departs soonest. If this algorithm can perform ‘close to’ the Patient algorithm, then it suggests that waiting is not valuable if the planner has access to sufficiently rich information. Our next theorem, however, shows that even this long-horizon information cannot substantially help the planner.

Theorem 3. *For any DAG algorithm, and for (constant) $d \geq 2$, as $T \to \infty$,

$$L(DAG) \geq \frac{1}{2d + 1}$$

Proof. To prove Theorem 3, consider the stationary distribution. Let ϕ_n denote the probability that a newly arrived agent i is not matched upon arrival and let ϕ denote the probability...
that a newly arrived agent is not matched at all. Our goal is to provide a lower bound for ϕ. By the definition of DAG, every match involves one agent who has newly arrived and one agent who has not. Consequently, $1 - \phi = 2(1 - \phi_n)$.

Now, consider an agent who did not get matched upon arrival and entered the pool. She perishes at rate 1, while new compatible partners arrive at rate $m \times d/m = d$. Therefore, the probability that she perishes before a new compatible partner arrives is $\frac{1}{d+1}$. Thus, $\phi \geq \frac{\phi_n}{d+1}$. Substituting for ϕ_n yields $\phi \geq \frac{1}{2d+1}$.

The theorem proves an important point: Any matching algorithm that does not wait, even with access to long-horizon information about departure times of agents who are in the market, cannot perform close to the Patient algorithm. Therefore, the Patient algorithm strongly outperforms the Greedy algorithm because it waits long enough to create a thick market.

5 Value of Information and Incentive-Compatibility

Up to this point, we have assumed that the planner knows the set of critical agents; i.e., he has accurate short-horizon information about departures. We now relax this assumption in both directions.

First, we consider the case that the planner does not know the set of critical agents. That is, the planner’s policy may depend on the graph G_t, but not the set of critical agents A^c_t. Recall that OPT is the optimum algorithm subject to these constraints. Second, we consider OMN, the case under which the planner knows everything about the future realization of the market. Our main result in this section is stated below:

Theorem 4. For (constant) $d \geq 2$, as $T, m \to \infty$,

$$\frac{1}{2d+1} \leq L(\text{OPT}) \leq L(\text{Greedy}) \leq \frac{\log(2)}{d}$$

$$\frac{e^{-d}}{d+1} \leq L(\text{OMN}) \leq L(\text{Patient}) \leq \frac{1}{2} \cdot e^{-d/2}.$$

This shows that the loss of OPT and Greedy are relatively close, which indicates that waiting and criticality information are complements: Waiting to thicken the market is substantially valuable only when the planner can identify urgent cases. Observe that OPT could
in principle wait to thicken the market, but this result proves that the gains from doing so (compared to running the Greedy algorithm) are not large.

What if the planner knows more than just the set of critical agents? For instance, the planner may have long-horizon forecasts of agent departure times, or the planner may know that certain agents are more likely to have matches in future than other agents. However, Theorem 4 shows that no expansion of the planner’s information set yields a better-than-exponential loss.

Under these new information assumptions, we once more find that local algorithms can perform close to computationally intensive global optima: Greedy is close to OPT under no information setting, and Patient is close to OPT.

We now sketch the proof ideas of Theorem 4 and Theorem 2.

Proof Overview. We now provide bounds for our optimum benchmarks.

OPT algorithm. We show how we bound $L(OPT)$, without knowing anything about the way OPT works. The idea is to provide lower bounds on the performance of any matching algorithm as a function of its expected pool size. Let ζ be the expected pool size of OPT. The rate that some agent gets critical is ζ. When the planner does not observe critical agents, all critical agents perish. Hence, in steady state, $L(OPT) \simeq \zeta/m$. Note that this is an increasing function of ζ, so from this perspective the planner prefers to decrease the pool size as much as possible.

Next, we count the fraction of agents who do not form any edges upon arrival and during their sojourn. No matching algorithm can match these agents and so the fraction of those agents is a lower bound on the performance of any matching algorithm, including OPT. The probability of having no edges upon arrival is $(1 - d/m)^{\zeta}$, while the probability of not forming any edges during a sojourn is $\int_{t=0}^{\infty} e^{-t} \cdot (1 - d/m)^{mt} dt$, because an agent who becomes critical t periods after arrival meets mt new agents in expectation. Simple algebra (see Subsection C.1) shows that for any algorithm ALG, $L(ALG) \geq e^{-\zeta} \left(1 + \frac{d}{m}\right)^{\zeta} \geq \frac{1 - \zeta(d/m + d^2/m^2)}{1 + 2d + d^2/m^2}$. From this perspective, the planner prefers to increase the pool size as much as possible. One can then easily show that if $\zeta \leq 1/(2d + 1)$, this lower bound guarantees that the fraction of agents with no matches is at least $1/(2d + 1)$, and if $\zeta > 1/(2d + 1)$ our previous bound guarantees that loss is at least $1/(2d + 1)$. So $L(OPT) \geq 1/(2d + 1)$.

OMN algorithm. We use a similar trick to provide a lower bound for $L(OMN)$. We have already established a lower bound on the fraction of agents with no matches, as a

\footnote{In our model, the number of acceptable transactions that a given agent will have with the next N agents to arrive is Bernoulli distributed. If the planner knows beforehand whether a given agent’s realization is above or below the 50th percentile of this distribution, it is as though agents have different ‘types’.}
function of expected pool size. But we know that the expected pool size can never be more than m, because that is the expected pool size when the planner does not match any agents. Hence, the fraction of agents with no matches when the expected pool size is m is a lower bound on the loss of the OMN. (See Subsection C.2 for the details.)

OPTc algorithm. Now we sketch the proof of Theorem 2 and bound OPTc. The key idea behind this proof is the following: OPTc matches agents (to non-critical partners) if and only if they are critical. Consider the stationary distribution; the expected departure rate of agents is m. Agents depart in one of two ways: Either they become critical, or they are matched before becoming critical. Thus, the rate at which agents are matched before becoming critical is $m - \zeta^c$, where ζ^c is the expected pool size of OPTc (which is equal to the rate at which agents become critical). Every pair of matched agents involves exactly one non-critical agent, so the rate of matching is equal to $2(m - \zeta^c)$.

Thus, for any ALG, $L(ALG) \geq L(OPT^c) = \frac{m - 2(m - \zeta^c)}{m}$, which leads to $\frac{m}{2}(1 + L(ALG)) \geq \zeta^c$. From before, $L(OPT^c) \geq \frac{e^{-\zeta^c(1 + d/m)d/m}}{1 + d + d^2/m}$, and substituting for ζ^c finishes the proof of Theorem 2.

The proof sheds light on the fundamental dilemma that any algorithm with no access to criticality information confronts. On the one hand, the planner wishes to make the pool size as small as possible to avoid perishings. On the other hand, the planner wishes to thicken the market so that agents have more matches. In balancing these two opposing forces, we prove that the planner cannot do much to outperform the Greedy algorithm.

These results suggest that criticality information is particularly valuable. This information is necessary to achieve exponentially small loss, and no expansion of information enables an algorithm to perform much better. However, in many settings, agents have privileged insight into their own departure times. In kidney exchange, for instance, doctors (and hospitals) have relatively accurate information about the urgency of a patient-donor pair’s need, but kidney exchange pools are separate entities and often do not have access to that information. In such cases, agents may have incentives to misreport whether they are critical, in order to increase their chance of getting matched. The situation is more subtle if agents have waiting costs.

To study this problem, we first formally introduce discounting to our model: An agent receives zero utility if she leaves the market unmatched. If she is matched, she receives a utility of 1 discounted at rate r. More precisely, if $s(a)$ is the sojourn of agent a, then we
define the utility of agent a as follows:

$$u(a) := \begin{cases}
 e^{-rs(a)} & \text{if } a \text{ is matched} \\
 0 & \text{otherwise.}
\end{cases}$$

We assume that agents are fully rational and know the underlying parameters, and that they believe that the pool is in the stationary distribution when they arrive, but they do not observe the actual realization of the stochastic process. That is, agents observe whether they are critical, but do not observe G_t, while the planner observes G_t but does not observe which agents are critical. Consequently, agents’ strategies are independent of the realized sample path. Our results are sensitive to this assumption; for instance, if the agent knew that she had a neighbor, or knew that the pool at that moment was very large, she would have an incentive under our mechanism to falsely report that she was critical. This assumption is plausible in many settings; generally, centralized brokers know more about the current state of the market than individual traders. Indeed, frequently agents approach centralized brokers because they do not know who is available to trade with them.\(^{14}\)

We now exhibit a truthful mechanism without transfers that elicits such information from agents, and implements the Patient algorithm.

Definition 4 (Patient Mechanism). Ask agents to report when they get critical. When an agent reports being critical, the market-maker attempts to match her to a random neighbor. If the agent has no neighbors, the market-maker treats her as if she has perished, i.e., she will never be matched again.

Each agent a selects a mixed strategy by choosing a function $c_a(\cdot)$; at the interval $[t, t+dt]$ after her arrival, if she is not yet critical, she reports being critical with rate $c_a(t)dt$, and when she truly becomes critical she reports immediately. Our main result in this section asserts that if agents are not too impatient, then the Patient Mechanism is incentive-compatible in the sense that the truthful strategy profile is a strong ϵ-Nash equilibrium.\(^{15}\)

Theorem 5. Suppose that the market is in the stationary distribution, $d \geq 2$ and $d = \text{polylog}(m).^{16}$ If $0 \leq r \leq e^{-d/2}$, then the truthful strategy profile is a strong ϵ-Nash equilib-

\(^{14}\)For instance, in the kidney exchange setting, the Alliance for Paired Kidney Donation requires enrolled pairs to provide blood samples to a central laboratory; this laboratory then screens the samples for compatible partners (APKD, 2017).

\(^{15}\)Any strong ϵ-Nash equilibrium is an ϵ-Nash equilibrium. For a definition of strong ϵ-Nash equilibrium, see Definition 5.

\(^{16}\)polylog(m) denotes any polynomial function of log(m). In particular, $d = \text{polylog}(m)$ if d is a constant independent of m.

19
Proof Overview. An agent can be matched in one of two ways under Patient Mechanism: Either she becomes critical and has a neighbor, or one of her neighbors becomes critical and is matched to her. By symmetry, the chance of either happening is the same, because with probability 1 every matched pair consists of one critical agent and one non-critical agent. When an agent declares that she is critical, she is taking her chance that she has a neighbor in the pool right now. By contrast, if she waits, there is some probability that another agent will become critical and be matched to her before she takes her chance of getting matched by reporting to be critical. Consequently, for small r, agents will opt to wait.

There is a hidden obstacle here. Even if one assumes that the market is in a stationary distribution at the point an agent enters, the agent’s beliefs about the graph structure and Z_t may change as time passes. In particular, an agent makes inferences about the current distribution of pool size, conditional on not having been matched yet, and this conditional distribution is different from the stationary distribution. This makes it difficult to compute the payoffs from deviations from truthful reporting. We tackle this problem by using the concentration bounds (see Proposition 16) which limit how much an agent’s posterior can be different from her prior. We also focus on strong ϵ-Nash equilibrium, which allows small deviations from full optimality.

The key insight of Theorem 5 is that remaining in the pool has a “continuation value”: The agent, while not yet critical, may be matched to a critical agent. If agents are not too impatient, then the planner can induce truth-telling by using punishments that decrease this continuation value. The Patient Mechanism sets this continuation value to zero, but in practice softer punishments could achieve the same goal. For instance, if there are multiple potential matches for a critical agent, the planner could break ties in favor of agents who have never misreported. However, such mechanisms can undermine the Erdős-Rényi property that makes the analysis tractable.\(^\text{17}\)

\section{Concluding remarks}

The reader has surely noticed that, considered as a description of kidney exchange, our model abstracts from important aspects of reality. One limitation of the model is that we do not\(^\text{17}\)

\[^{17}\text{If an agent could be matched even if he misreported previously, then we need to keep track of the edges of that agent off the equilibrium path. However, the fact that the agent was not matched indicates that the agent did not have any edges at the point he misreported, which means that the Markov process off the path does not have a tractable Erdős-Rényi random graph representation.}\]
consider three-way exchanges and donation chains, even though such methods are feasible in practice. Perhaps more importantly, we assumed that the probability of a compatible match was independent across pairs of agents, whereas a full treatment of kidney compatibility would keep track of sixteen different blood type combinations for patient-donor pairs, as well as six different protein levels for highly-sensitized patients. Such an approach would result in a detail-heavy dynamic program, which would be valuable to solve but may not yield transparent economic insights.

What, then, do we learn from this theoretical exercise? We simplified some standard dimensions of the problem, in order to capture new dimensions that arise in dynamic matching: Firstly, the matching that the planner makes today changes the agents present tomorrow. Secondly, agents may depart even if unmatched, and the planner may be able to forecast departures. These features allow us to answer two natural questions: Can the planner substantially improve performance by waiting to thicken the market? Is information about departures highly valuable? The main insight of the model is that thickness and information are complements. Waiting to thicken the market can yield large gains if and only if the planner can forecast departures accurately. Information about departures is highly valuable if and only if it is feasible to wait.

The optimal timing policy in a dynamic matching problem is not obvious a priori. In practice, many paired kidney exchanges enact static matchings algorithms (‘match-runs’) at fixed intervals. Even then, matching intervals differ substantially between exchanges: The Alliance for Paired Donation conducts a match-run every weekday (APKD, 2017), the United Network for Organ Sharing conducts a match-run twice a week (UNOS, 2015), the South Korean kidney exchange conducts a match-run once a month, and the Dutch kidney exchange conducts a match-run once a quarter (Akkina et al., 2011). The model indicates that the gains from waiting depend on d, the expected number of compatible partners who arrive per unit time. This might explain why the matching intervals in these exchanges are decreasing in the size of the exchange.

Our results should not be read as an unequivocal argument for waiting to thicken the market. It does not take a model to see that when waiting is prohibitively costly, agents should be matched quickly. The costs of waiting and the benefits of matching depend on the market being considered. Even in the case of kidney exchange, these will change as medical technology improves. Our results characterize the conditions under which the option value of waiting is large; whether this outweighs the costs requires context-specific empirical analysis.

We close with a methodological remark. One obstacle in studying dynamic matching
markets is that there are heterogenous constraints at the individual level, which results in an intractably large state space. We offer a new way to attack this problem. Random graph techniques enable us to respect heterogenous individual constraints, while ensuring that the system as a whole has a tractable dynamic representation. By then studying simple policies that are provably close-to optimal, we are able to learn which dimensions of policy matter even when optimal policies are too complex to characterize. Furthermore, we show that local algorithms perform well relative to global algorithms that account for the entire network structure. This could be employed as an argument for ‘black-box’ representations of network constraints in studying large matching markets.

References

22

A Modeling an Online Algorithm as a Markov Chain

In this section, we establish that under both of the Patient and Greedy algorithms the random processes Z_t are Markovian, have unique stationary distributions, and mix rapidly to the stationary distribution. To do so, this section contains a brief overview on continuous
time Markov Chains. We refer interested readers to Norris (1998); Levin et al. (2006) for detailed discussions.

First, we argue that the pool size Z_t is a Markov process under the Patient and Greedy algorithms. This follows from the following simple observation.

Proposition 6. Under either of Greedy or Patient algorithms, for any $t \geq 0$, conditioned on Z_t, the distribution of G_t is uniquely defined. So, given Z_t, G_t is conditionally independent of $Z_{t'}$ for $t' < t$.

Proof. Under the Greedy algorithm, at any time $t \geq 0$, $|E_t| = 0$. Therefore, conditioned on Z_t, G_t is an empty graph with $|Z_t|$ vertices.

For the Patient algorithm, note that the algorithm never looks at the edges between non-critical agents, so the algorithm is oblivious to these edges. It follows that under the Patient algorithm, for any $t \geq 0$, conditioned on Z_t, G_t is an Erdős-Rényi random graph with $|Z_t|$ vertices and parameter d/m.

Now we will review some known results from the theory of Markov chains. Let Z_t be a continuous time Markov Chain on the non-negative integers (\mathbb{N}) that starts from state 0. For any two states $i, j \in \mathbb{N}$, we assume that the rate of going from i to j is $r_{i \rightarrow j} \geq 0$. The rate matrix $Q \in \mathbb{N} \times \mathbb{N}$ is defined as follows,

$$Q(i, j) := \begin{cases} r_{i \rightarrow j}, & \text{if } i \neq j, \\ \sum_{k \neq i} -r_{i \rightarrow k}, & \text{otherwise}. \end{cases}$$

Note that, by definition, the sum of the entries in each row of Q is zero. It turns out that (see e.g., (Norris, 1998, Theorem 2.1.1)) the transition probability in t units of time is,

$$e^{tQ} = \sum_{i=0}^{\infty} \frac{t^i Q^i}{i!}.$$

Let $P_t := e^{tQ}$ be the transition probability matrix of the Markov Chain in t time units. It follows that,

$$\frac{d}{dt} P_t = P_t Q.$$ \hspace{1cm} (A.1)

In particular, in any infinitesimal time step dt, the chain moves based on $Q \cdot dt$.

A Markov Chain is irreducible if for any pair of states $i, j \in \mathbb{N}$, j is reachable from i with a non-zero probability. Fix a state $i \geq 0$, and suppose that $Z_{t_0} = i$, and let T_1 be the first
jump out of i (note that T_1 is distributed as an exponential random variable). State i is positive recurrent iff

$$\mathbb{E} \left[\inf \{ t \geq T_1 : Z_t = i \} | Z_{t_0} = i \right] < \infty$$ (A.2)

The ergodic theorem (Norris, 1998, Theorem 3.8.1) entails that a continuous time Markov Chain has a unique stationary distribution if and only if it has a positive recurrent state.

Let $\pi : \mathbb{N} \rightarrow \mathbb{R}_+$ be the stationary distribution of a Markov chain. It follows by the definition that for any $t \geq 0$, $P_t = \pi P_t$. The balance equations of a Markov chain say that for any $S \subseteq \mathbb{N}$,

$$\sum_{i \in S, j \notin S} \pi(i) r_{i \rightarrow j} = \sum_{i \in S, j \notin S} \pi(j) r_{j \rightarrow i}. \quad (A.3)$$

Let $z_t(.)$ be the distribution of Z_t at time $t \geq 0$, i.e., $z_t(i) := \mathbb{P}[Z_t = i]$ for any integer $i \geq 0$. For any $\epsilon > 0$, we define the mixing time (in total variation distance) of this Markov Chain as follows,

$$\tau_{\text{mix}}(\epsilon) = \inf \left\{ t : \| z_t - \pi \|_{\text{TV}} := \sum_{k=0}^{\infty} |\pi(k) - z_t(k)| \leq \epsilon \right\}. \quad (A.4)$$

The following is the main theorem of this section.

Theorem 7. For the Patient and Greedy algorithms and any $0 \leq t_0 < t_1$,

$$\mathbb{P} \left[Z_{t_1} | Z_t \text{ for } 0 \leq t < t_1 \right] = \mathbb{P} \left[Z_{t_1} | Z_t \text{ for } t_0 \leq t < t_1 \right].$$

The corresponding Markov Chains have unique stationary distributions and mix in time $O(\log(m) \log(1/\epsilon))$ in total variation distance:

$$\tau_{\text{mix}}(\epsilon) \leq O(\log(m) \log(1/\epsilon)).$$

This theorem is crucial in justifying our focus on long-run results in Section 3, since these Markov chains converge very rapidly (in $O(\log(m))$ time) to their stationary distributions.

A.1 Proof of Theorem 7

A.1.1 Stationary Distributions: Existence and Uniqueness

In this part we show that the Markov Chain on Z_t has a unique stationary distribution under each of the Greedy and Patient algorithms. By Proposition 6, Z_t is a Markov chain on the
non-negative integers (\(\mathbb{N}\)) that starts from state zero.

First, we show that the Markov Chain is irreducible. First note that every state \(i > 0\) is reachable from state 0 with a non-zero probability. It is sufficient that \(i\) agents arrive at the market with no acceptable bilateral transactions. On the other hand, state 0 is reachable from any \(i > 0\) with a non-zero probability. It is sufficient that all of the \(i\) agents in the pool become critical and no new agents arrive at the market. So \(Z_t\) is an irreducible Markov Chain.

Therefore, by the ergodic theorem it has a unique stationary distribution if and only if it has a positive recurrent state (Norris, 1998, Theorem 3.8.1). In the rest of the proof we show that state 0 is positive recurrent. By (C.1) \(Z_t = 0\) if \(\tilde{Z}_t = 0\). So, it is sufficient to show

\[
\mathbb{E} \left[\inf \{t \geq T_1 : \tilde{Z}_t = 0\} | \tilde{Z}_{t_0} = 0 \right] < \infty. \tag{A.5}
\]

It follows that \(\tilde{Z}_t\) is just a continuous time birth-death process on \(\mathbb{N}\) with the following transition rates,

\[
\tilde{r}_{k \to k+1} = m \quad \text{and} \quad \tilde{r}_{k \to k-1} := k
\]

(A.6)

It is well known (see e.g. (Grimmett and Stirzaker, 1992, p. 249-250)) that \(\tilde{Z}_t\) has a stationary distribution if and only if

\[
\sum_{k=1}^{\infty} \frac{\tilde{r}_0 \to 1 \tilde{r}_1 \to 2 \cdots \tilde{r}_{k-1} \to k}{\tilde{r}_1 \to 0 \cdots \tilde{r}_{k} \to k-1} < \infty.
\]

Using (A.6) we have

\[
\sum_{k=1}^{\infty} \frac{\tilde{r}_0 \to 1 \tilde{r}_1 \to 2 \cdots \tilde{r}_{k-1} \to k}{\tilde{r}_1 \to 0 \cdots \tilde{r}_{k} \to k-1} = \sum_{k=1}^{\infty} \frac{m^k}{k!} = e^m - 1 < \infty
\]

Therefore, \(\tilde{Z}_t\) has a stationary distribution. The ergodic theorem (Norris, 1998, Theorem 3.8.1) entails that every state in the support of the stationary distribution is positive recurrent. Thus, state 0 is positive recurrent under \(\tilde{Z}_t\). This proves (A.5), so \(Z_t\) is an ergodic Markov Chain.

A.1.2 Upper bounding the Mixing Times

In this part we complete the proof of Theorem 7 and provide an upper bound the mixing of Markov Chain \(Z_t\) for the Greedy and Patient algorithms. Let \(\pi(.)\) be the stationary distribution of the Markov Chain.
Mixing time of the Greedy Algorithm. We use the *coupling* technique (see (Levin et al., 2006, Chapter 5)) to get an upper bound for the mixing time of the Greedy algorithm. Suppose we have two Markov Chains Y_t, Z_t (with different starting distributions) each running the Greedy algorithm. We define a joint Markov Chain $(Y_t, Z_t)_{t=0}^\infty$ with the property that projecting on either of Y_t and Z_t we see the stochastic process of Greedy algorithm, and that they stay together at all times after their first simultaneous visit to a single state, i.e.,

$$\text{if } Y_{t_0} = Z_{t_0}, \text{ then } Y_t = Z_t \text{ for } t \geq t_0.$$

Next we define the joint chain. We define this chain such that for any $t \geq t_0$, $|Y_t - Z_t| \leq |Y_{t_0} - Z_{t_0}|$. Assume that $Y_{t_0} = y, Z_{t_0} = z$ at some time $t_0 \geq 0$, for $y, z \in \mathbb{N}$. Without loss of generality assume $y < z$ (note that if $y = z$ there is nothing to define). Consider any arbitrary labeling of the agents in the first pool with a_1, \ldots, a_y, and in the second pool with b_1, \ldots, b_z. Define $z + 1$ independent exponential clocks such that the first z clocks have rate 1, and the last one has rate m. If the i-th clock ticks for $1 \leq i \leq y$, then both of a_i and b_i become critical (recall that in the Greedy algorithm the critical agent leaves the market right away). If $y < i \leq z$, then b_i becomes critical, and if $i = z + 1$ new agents a_{y+1}, b_{z+1} arrive to the markets. In the latter case we need to draw edges between the new agents and those currently in the pool. We use z independent coins each with parameter d/m. We use the first y coins to decide simultaneously on the potential transactions (a_i, a_{y+1}) and (b_i, b_{z+1}) for $1 \leq i \leq y$, and the last $z - y$ coins for the rest. This implies that for any $1 \leq i \leq y$, (a_i, a_{y+1}) is an acceptable transaction iff (b_i, b_{z+1}) is acceptable. Observe that if a_{y+1} has at least one acceptable transaction then so has b_{z+1} but the converse does not necessarily hold.

It follows from the above construction that $|Y_t - Z_t|$ is a non-increasing function of t. Furthermore, this value decreases when either of the agents b_{y+1}, \ldots, b_z become critical (we note that this value may also decrease when a new agent arrives but we do not exploit this situation here). Now suppose $|Y_0 - Z_0| = k$. It follows that the two chains arrive to the same state when all of the k agents that are not in common become critical. This has the same distribution as the maximum of k independent exponential random variables with rate 1. Let E_k be a random variable that is the maximum of k independent exponentials of rate 1. For any $t \geq 0$,

$$\mathbb{P}[Z_t \neq Y_t] \leq \mathbb{P}[E_{|Y_0 - Z_0|} \geq t] = 1 - (1 - e^{-t})^{|Y_0 - Z_0|}.$$

Now, we are ready to bound the mixing time of the Greedy algorithm. Let $z_t(.)$ be the
distribution of the pool size at time t when there is no agent in the pool at time 0 and let $\pi(.)$ be the stationary distribution. Fix $0 < \epsilon < 1/4$, and let $\beta \geq 0$ be a parameter that we fix later. Let (Y_t, Z_t) be the joint Markov chain that we constructed above where Y_t is started at the stationary distribution and Z_t is started at state zero. Then,

$$\|z_t - \pi\|_{\text{TV}} \leq \mathbb{P}[Y_t \neq Z_t] = \sum_{i=0}^{\infty} \pi(i) \mathbb{P}[Y_t \neq Z_t | Y_0 = i]$$

$$\leq \sum_{i=0}^{\infty} \pi(i) \mathbb{P}[E_i \geq t]$$

$$\leq \sum_{i=0}^{\beta m/d} (1 - (1 - e^{-t})^{\beta m/d}) + \sum_{i=\beta m/d}^{\infty} \pi(i) \leq \frac{\beta^2 m^2}{d^2} e^{-t} + 2e^{-m(\beta-1)^2/2d}$$

where the last inequality follows by equation (G.4) and Proposition 12. Letting $\beta = 1 + \sqrt{2 \log(2/\epsilon)}$ and $t = 2 \log(\beta m/d) \cdot \log(2/\epsilon)$ we get $\|z_t - \pi\|_{\text{TV}} \leq \epsilon$, which proves the theorem.

Mixing time of the Patient Algorithm. It remains to bound the mixing time of the Patient algorithm. The construction of the joint Markov Chain is very similar to the above construction except some caveats. Again, suppose $Y_{t_0} = y$ and $Z_{t_0} = z$ for $y, z \in \mathbb{N}$ and $t_0 \geq 0$ and that $y < z$. Let a_1, \ldots, a_y and b_1, \ldots, b_z be a labeling of the agents. We consider two cases.

Case 1) $z > y + 1$. In this case the construction is essentially the same as the Greedy algorithm. The only difference is that we toss random coins to decide on acceptable bilateral transactions at the time that an agent becomes critical (and not at the time of arrival). It follows that when new agents arrive the size of each of the pools increase by 1 (so the difference remains unchanged). If any of the agents b_{y+1}, \ldots, b_z become critical then the size of second pool decrease by 1 or 2 and so is the difference of the pool sizes.

Case 2) $z = y + 1$. In this case we define a slightly different coupling. This is because, for some parameters and starting values, the Markov chains may not visit the same state for a long time for the coupling defined in Case 1. If $z \gg m/d$, then with a high probability any critical agent gets matched. Therefore, the magnitude of $|Z_t - Y_t|$ does not quickly decrease (for a concrete example, consider the case where $d = m$, $y = m/2$ and $z = m/2 + 1$). Therefore, in this case we change the coupling. We use $z + 2$ independent clocks where the first z are the same as before, i.e., they
Figure 3: A three state Markov Chain used for analyzing the mixing time of the Patient algorithm.

have rate 1 and when the \(i \)-th clock ticks \(b_i \) (and \(a_i \) if \(i \leq y \)) become critical. The last two clocks have rate \(m \), when the \(z + 1 \)-st clock ticks a new agent arrives to the first pool and when \(z + 2 \)-nd one ticks a new agent arrives to the second pool.

Let \(|Y_0 - Z_0| = k \). By the above construction \(|Y_t - Z_t| \) is a decreasing function of \(t \) unless \(|Y_t - Z_t| = 1 \). In the latter case this difference goes to zero if a new agent arrives to the smaller pool and it increases if a new agent arrives to the bigger pool. Let \(\tau \) be the first time \(t \) where \(|Y_t - Z_t| = 1 \). Similar to the Greedy algorithm, the event \(|Y_t - Z_t| = 1 \) occurs if the second to maximum of \(k \) independent exponential random variables with rate 1 is at most \(t \). Therefore,

\[
\mathbb{P}[\tau \leq t] \leq \mathbb{P}[E_k \leq t] \leq (1 - e^{-t})^k
\]

Now, suppose \(t \geq \tau \); we need to bound the time it takes to make the difference zero. First, note that after time \(\tau \) the difference is never more than 2. Let \(X_t \) be the (continuous time) Markov Chain illustrated in Figure 3 and suppose \(X_0 = 1 \). Using \(m \geq 1 \), it is easy to see that if \(X_t = 0 \) for some \(t \geq 0 \), then \(|Y_{t+\tau} - Z_{t+\tau}| = 0 \) (but the converse is not necessarily true). It is a simple exercise that for \(t \geq 8 \),

\[
\mathbb{P}[X_t \neq 0] = \sum_{k=0}^{\infty} \frac{e^{-t}t^k}{k!} 2^{-k/2} \leq \sum_{k=0}^{t/4} \frac{e^{-t}t^k}{k!} + 2^{-t/8} \leq 2^{-t/4} + 2^{-t/8}. \tag{A.7}
\]

Now, we are ready to upper-bound the mixing time of the Patient algorithm. Let \(z_t(.) \) be the distribution of the pool size at time \(t \) where there is no agent at time 0, and let \(\pi(.) \) be the stationary distribution. Fix \(\epsilon > 0 \), and let \(\beta \geq 2 \) be a parameter that we fix later. Let \((Y_t, Z_t) \) be the joint chain that we constructed above where \(Y_t \) is started at the stationary
distribution and Z_t is started at state zero.

\[
\|z_t - \pi\|_{TV} \leq \mathbb{P}[Z_t \neq Y_t] \leq \mathbb{P}[\tau \leq t/2] + \mathbb{P}[X_t \leq t/2]
\]

\[
\leq \sum_{i=0}^{\infty} \pi(i)\mathbb{P}[\tau \leq t/2|Y_0 = i] + 2^{-t/8+1}
\]

\[
\leq 2^{-t/8+1} + \sum_{i=0}^{\infty} \pi(i)(1 - (1 - e^{-t/2})^i)
\]

\[
\leq 2^{-t/8+1} + \sum_{i=0}^{\beta m} (it/2) + \sum_{i=\beta m}^{\infty} \pi(i) \leq 2^{-t/8+1} + \frac{\beta^2 m^2 t}{2} + 6e^{-(\beta-1)m/3}.
\]

where in the second to last equation we used equation (G.4) and in the last equation we used Proposition 16. Letting $\beta = 10$ and $t = 8 \log(m) \log(4/\epsilon)$ implies that $\|z_t - \pi\|_{TV} \leq \epsilon$ which proves Theorem 7.

B Greedy and Patient: Performance Analysis

In this section we upper bound $L(Greedy)$ and $L(Patient)$ as a function of d, and we upper bound $L(Patient(\alpha))$ as a function of d and α.

We prove the following three theorems.\(^{18}\)

Theorem 8. For any $\epsilon \geq 0$ and $T > 0$,

\[
L(Greedy) \leq \frac{\log(2)}{d} + \frac{\tau_{\text{mix}}(\epsilon)}{T} + 6\epsilon + O\left(\frac{\log(m/d)}{\sqrt{dm}}\right),
\]

where $\tau_{\text{mix}}(\epsilon) \leq 2 \log(m/d) \log(2/\epsilon)$.

Theorem 9. For any $\epsilon > 0$ and $T > 0$,

\[
L(Patient) \leq \max_{z \in [1/2,1]} \left(z + O(1/\sqrt{m})\right)e^{-zd} + \frac{\tau_{\text{mix}}(\epsilon)}{T} + \frac{\epsilon m}{d^2} + 2/m,
\]

where $\tau_{\text{mix}}(\epsilon) \leq 8 \log(m) \log(4/\epsilon)$.

\(^{18}\)We use the operators O and \tilde{O} in the standard way. That is, $f(m) = O(g(m))$ iff there exists a positive real number N and a real number m_0 such that $|f(m)| \leq N|g(m)|$ for all $m \geq m_0$. \tilde{O} is similar but ignores logarithmic factors, i.e. $f(m) = \tilde{O}(g(m))$ iff $f(m) = O(g(m) \log^k g(m))$ for some k.

32
Theorem 10. Let $\bar{\alpha} := 1/\alpha + 1$. For any $\epsilon > 0$ and $T > 0$,

$$L(\text{Patient}(\alpha)) \leq \max_{z \in [1/2, 1]} \left(z + \bar{O}(\sqrt{\alpha/m}) \right) e^{-zd/\bar{\alpha}} + \frac{\tau_{\text{mix}}(\epsilon)}{\bar{\alpha}T} + \frac{\epsilon m \bar{\alpha}}{d^2} + 2\bar{\alpha}/m,$$

where $\tau_{\text{mix}}(\epsilon) \leq 8 \log(m/\bar{\alpha}) \log(4/\epsilon)$.

Note that setting ϵ small enough such that $\epsilon m \to 0$ (e.g. $\epsilon = 1/m^2$ or $\epsilon = 2^{-m}$) implies the second part of Theorem 1.

We will prove Theorem 8 in Subsection B.1, Theorem 9 in Subsection B.2 and Theorem 10 in ??, Note that the limit results of Section 3 are derived by taking limits from Equation B.1 and Equation B.2 (as $T, m \to \infty$).

B.1 Loss of the Greedy Algorithm

In this part we upper bound $L(\text{Greedy})$. We crucially exploit the fact that Z_t is a Markov Chain and has a unique stationary distribution, $\pi : \mathbb{N} \to \mathbb{R}_+$. Our proof proceeds in three steps: First, we show that $L(\text{Greedy})$ is bounded by a function of the expected pool size. Second, we show that the stationary distribution is highly concentrated around some point k^*, which we characterize. Third, we show that k^* is close to the expected pool size.

Let $\zeta := \mathbb{E}_{Z \sim \mu}[Z]$ be the expected size of the pool under the stationary distribution of the Markov Chain on Z_t. First, observe that if the Markov Chain on Z_t is mixed, then the agents perish at the rate of ζ, as the pool is almost always an empty graph under the Greedy algorithm. Roughly speaking, if we run the Greedy algorithm for a sufficiently long time then Markov Chain on size of the pool mixes and we get $L(\text{Greedy}) \approx \frac{\zeta}{m}$. This observation is made rigorous in the following lemma. Note that as T and m grow, the first three terms become negligible.

Lemma 11. For any $\epsilon > 0$, and $T > 0$,

$$L(\text{Greedy}) \leq \frac{\tau_{\text{mix}}(\epsilon)}{T} + 6\epsilon + \frac{1}{m}2^{-6m} + \frac{\mathbb{E}_{Z \sim \pi}[Z]}{m}.$$

The theorem is proved in the Appendix E.1.

The proof of the above lemma involves lots of algebra, but the intuition is as follows: The $\frac{\mathbb{E}_{Z \sim \pi}[Z]}{m}$ term is the loss under the stationary distribution. This is equal to $L(\text{Greedy})$ with two approximations: First, it takes some time for the chain to transit to the stationary distribution. Second, even when the chain mixes, the distribution of the chain is not exactly
Figure 4: An illustration of the transition paths of the Z_t Markov Chain under the Greedy algorithm equal to the stationary distribution. The $\frac{\tau_{\text{mix}}(\epsilon)}{T}$ term provides an upper bound for the loss associated with the first approximation, and the term $(6\epsilon + \frac{1}{m}2^{-6m})$ provides an upper bound for the loss associated with the second approximation.

Given Lemma 11, in the rest of the proof we just need to get an upper bound for $\mathbb{E}_{Z_t \sim \pi} [Z]$. Unfortunately, we do not have any closed form expression of the stationary distribution, $\pi(\cdot)$. Instead, we use the balance equations of the Markov Chain defined on Z_t to characterize $\pi(\cdot)$ and upper bound $\mathbb{E}_{Z_t \sim \pi} [Z]$.

Let us rigorously define the transition probability operator of the Markov Chain on Z_t. For any pool size k, the Markov Chain transits only to the states $k+1$ or $k-1$. It transits to state $k+1$ if a new agent arrives and the market-maker cannot match her (i.e., the new agent does not have any edge to the agents currently in the pool) and the Markov Chain transits to the state $k-1$ if a new agent arrives and is matched or an agent currently in the pool gets critical. Thus, the transition rates $r_{k \rightarrow k+1}$ and $r_{k \rightarrow k-1}$ are defined as follows,

$$r_{k \rightarrow k+1} := m \left(1 - \frac{d}{m} \right)^k$$

$$r_{k \rightarrow k-1} := k + m \left(1 - \left(1 - \frac{d}{m} \right) \right).$$

In the above equations we used the fact that agents arrive at rate m, they perish at rate 1 and the probability of an acceptable transaction between two agents is d/m.

Let us write down the balance equation for the above Markov Chain (see equation (A.3) for the full generality). Consider the cut separating the states $0, 1, 2, \ldots, k-1$ from the rest (see Figure 4 for an illustration). It follows that,

$$\pi(k-1)r_{k-1 \rightarrow k} = \pi(k)r_{k \rightarrow k-1}.$$

Now, we are ready to characterize the stationary distribution $\pi(\cdot)$. In the following
proposition we show that there is a number $k^* \leq \log(2)m/d$ such that under the stationary distribution, the size of the pool is highly concentrated in an interval of length $O(\sqrt{m/d})$ around k^*.\footnote{In this paper, $\log x$ refers to the natural log of x.}

Proposition 12. There exists $m/(2d+1) \leq k^* < \log(2)m/d$ such that for any $\sigma > 1$,

$$
\mathbb{P}_\pi \left[k^* - \sigma \sqrt{2m/d} \leq Z \leq k^* + \sigma \sqrt{2m/d} \right] \geq 1 - O(\sqrt{m/d})e^{-\sigma^2}.
$$

Proof. Let us define $f : \mathbb{R} \to \mathbb{R}$ as an interpolation of the difference of transition rates over the reals,

$$
f(x) := m(1 - d/m)x - (x + m(1 - (1 - d/m)^x)).
$$

In particular, observe that $f(k) = r_{k\to k+1} - r_{k\to k-1}$. The above function is a decreasing convex function over non-negative reals. We define k^* as the unique root of this function. Let $k_{\min}^* := m/(2d+1)$ and $k_{\max}^* := \log(2)m/d$. We show that $f(k_{\min}^*) \geq 0$ and $f(k_{\max}^*) \leq 0$. This shows that $k_{\min}^* \leq k^* < k_{\max}^*$.

$$
\begin{align*}
f(k_{\min}^*) &\geq -k_{\min}^* - m + 2m(1 - d/m)k_{\min}^* \geq 2m \left(1 - \frac{k_{\min}^*d}{m}\right) - k_{\min}^* - m = 0, \\
f(k_{\max}^*) &\leq -k_{\max}^* - m + 2m(1 - d/m)k_{\max}^* \leq -k_{\max}^* - m + 2me^{-(k_{\max}^*)d/m} = -k_{\max}^* \leq 0.
\end{align*}
$$

In the first inequality we used equation (G.4) from Appendix G.

It remains to show that π is highly concentrated around k^*. In the following lemma, we show that stationary probabilities decrease geometrically.

Lemma 13. For any integer $k \geq k^*$

$$
\frac{\pi(k+1)}{\pi(k)} \leq e^{-(k-k^*)d/m}.
$$

And, for any $k \leq k^*$, $\pi(k-1)/\pi(k) \leq e^{-(k^*-k+1)d/m}$.

This has been proved in Subsection E.2.

By repeated application of the above lemma, for any integer $k \geq k^*$, we get\footnote{[\lceil k^* \rceil] indicates the smallest integer larger than k^*.}
\[
\pi(k) \leq \frac{\pi(k)}{\pi(k^*)} \leq \exp \left(-\frac{d}{m} \sum_{i=k^*}^{k-1} (i - k^*) \right) \leq \exp(-d(k - k^* - 1)^2/2m). \tag{B.6}
\]

We are almost done. For any \(\sigma > 0\),
\[
\sum_{k=k^*+1+\sigma\sqrt{2m/d}}^\infty \pi(k) \leq \sum_{k=k^*+1+\sigma\sqrt{2m/d}}^\infty e^{-d(k-k^*-1)^2/2m} = \sum_{k=0}^\infty e^{-d(k+\sigma\sqrt{2m/d})^2/2m} \leq e^{-\sigma^2 \min\{1/2, \sigma d/2m\}}
\]

The last inequality uses equation (G.1) from Appendix G. We can similarly upper bound \(\sum_{k=0}^{k^*-\sigma\sqrt{2m/d}} \pi(k)\).

Proposition 12 shows that the probability that the size of the pool falls outside an interval of length \(O(\sqrt{m/d})\) around \(k^*\) drops exponentially fast as the market size grows. We also remark that the upper bound on \(k^*\) becomes tight as \(d\) goes to infinity.

The following lemma exploits **Proposition 12** to show that the expected value of the pool size under the stationary distribution is close to \(k^*\).

Lemma 14. For \(k^*\) as in **Proposition 12** ,
\[
\mathbb{E}_{Z \sim \pi}[Z] \leq k^* + O(\sqrt{m/d \log(m/d)}).
\]

This has been proved in Subsection E.3.

Now, **Theorem 8.** follows immediately by **Lemma 11** and **Lemma 14** because we have
\[
\frac{\mathbb{E}_{Z \sim \pi}[Z]}{m} \leq \frac{1}{m}(k^* + O(\sqrt{m \log m})) \leq \frac{\log(2)}{d} + o(1)
\]

B.2 Loss of the Patient Algorithm

Let \(\pi : \mathbb{N} \to \mathbb{R}_+\) be the unique stationary distribution of the Markov Chain on \(Z_t\), and let \(\zeta := \mathbb{E}_{Z \sim \pi}[Z]\) be the expected size of the pool under that distribution.

Once more our proof strategy proceeds in three steps. First, we show that \(\mathbf{L}(\text{Patient})\) is bounded by a function of \(\mathbb{E}_{Z \sim \pi}[Z(1 - d/m)^{Z-1}]\). Second, we show that the stationary dis-
distribution of Z_t is highly concentrated around some point k^*. Third, we use this concentration result to produce an upper bound for $\mathbb{E}_{Z \sim \pi} [Z(1 - d/m)^{Z - 1}]$.

By Proposition 6, at any point in time G_t is an Erdős-Rényi random graph. Thus, once an agent becomes critical, he has no acceptable transactions with probability $(1 - d/m)^{Z_t - 1}$. Since each agent becomes critical with rate 1, if we run Patient for a sufficiently long time, then $L(Patient) \approx \frac{\zeta_m}{m} (1 - d/m)^{Z_t - 1}$. The following lemma makes the above discussion rigorous.

Lemma 15. For any $\epsilon > 0$ and $T > 0$,

$$L(Patient) \leq \frac{1}{m} \mathbb{E}_{Z \sim \pi} [Z(1 - d/m)^{Z - 1}] + \frac{\tau_{\text{mix}}(\epsilon)}{T} + \frac{\epsilon m}{d^2}.$$

Proof. See Appendix E.4.

So in the rest of the proof we just need to lower bound $\mathbb{E}_{Z \sim \pi} [Z(1 - d/m)^{Z - 1}]$. As in the Greedy case, we do not have a closed form expression for the stationary distribution, $\pi(\cdot)$. Instead, we use the balance equations of the Markov Chain on Z_t to show that π is highly concentrated around a number k^* where $k^* \in [m/2, m]$.

Let us start by defining the transition probability operator of the Markov Chain on Z_t. For any pool size k, the Markov Chain transits only to states $k + 1$, $k - 1$, or $k - 2$. The Markov Chain transits to state $k + 1$ if a new agent arrives, to the state $k - 1$ if an agent gets critical and the planner cannot match him, and it transits to state $k - 2$ if an agent gets critical and the planner matches him.

Remember that agents arrive with the rate m, they become critical with the rate of 1 and the probability of an acceptable transaction between two agents is d/m. Thus, the transition rates $r_{k \to k+1}$, $r_{k \to k-1}$, and $r_{k \to k-2}$ are defined as follows,

$$r_{k \to k+1} := m$$

$$r_{k \to k-1} := k \left(1 - \frac{d}{m}\right)^{k-1}$$ \hspace{1cm} (B.7) \hspace{1cm} (B.8)

$$r_{k \to k-2} := k \left(1 - \left(1 - \frac{d}{m}\right)^{k-1}\right).$$ \hspace{1cm} (B.9)

Let us write down the balance equation for the above Markov Chain (see equation (A.3) for the full generality). Consider the cut separating the states 0, 1, 2, . . . , k from the rest (see Figure 5 for an illustration). It follows that

$$\pi(k)r_{k \to k+1} = \pi(k + 1)r_{k+1 \to k} + \pi(k + 1)r_{k+1 \to k-1} + \pi(k + 2)r_{k+2 \to k}$$ \hspace{1cm} (B.10)
Figure 5: An illustration of the transition paths of the Z_t Markov Chain under the Patient Algorithm

Now we can characterize $\pi(\cdot)$. We show that under the stationary distribution, the size of the pool is highly concentrated around a number k^* where $k^* \in [m/2 - 2, m - 1]$. Remember that under the Greedy algorithm, the concentration was around $k^* \in [\frac{m}{2d+1}, \frac{\log(2)m}{d}]$, whereas here it is at least $m/2$.

Proposition 16 (Patient Concentration). There exists a number $m/2 - 2 \leq k^* \leq m - 1$ such that for any $\sigma \geq 1$,

$$
P_\pi \left[k^* - \sigma \sqrt{4m} \leq Z \right] \geq 1 - 2\sqrt{me}^{-\sigma^2}, \quad P_\pi \left[Z \leq k^* + \sigma \sqrt{4m} \right] \geq 1 - 8\sqrt{me}^{-\frac{\sigma^2\sqrt{m}}{d^2 + \sqrt{m}}}.
$$

Proof Overview. The proof idea is similar to Proposition 12. First, let us rewrite (B.10) by replacing transition probabilities from (B.7), (B.8), and (B.9):

$$m\pi(k) = (k + 1)\pi(k + 1) + (k + 2) \left(1 - \left(1 - \frac{d}{m} \right)^{k+1} \right) \pi(k + 2) \quad \text{(B.11)}$$

Let us define a continuous $f : \mathbb{R} \rightarrow \mathbb{R}$ as follows,

$$f(x) := m - (x + 1) - (x + 2)(1 - (1 - d/m)^{x+1}). \quad \text{(B.12)}$$

It follows that

$$f(m - 1) \leq 0, f(m/2 - 2) > 0,$$

so $f(\cdot)$ has a root k^* such that $m/2 - 2 < k^* < m$. In the rest of the proof we show that the states that are far from k^* have very small probability in the stationary distribution, which completes the proof of Proposition 16. This part of the proof involves lost of algebra and is essentially very similar to the proof of the Proposition 12. We refer the interested reader to the Subsection E.5 for the complete proof of this last step.
Since the stationary distribution of \(Z_t \) is highly concentrated around \(k^* \in [m/2 - 2, m - 1] \) by the above proposition, we derive the following upper bound for \(\mathbb{E}_{Z \sim \pi} [Z(1 - d/m)^Z] \), which is proved in the Appendix E.6.

Lemma 17. For any \(d \geq 0 \) and sufficiently large \(m \),

\[
\mathbb{E}_{Z \sim \pi} [Z(1 - d/m)^Z] \leq \max_{z \in [m/2, m]} (z + \tilde{O} \sqrt{m})(1 - d/m)^z + 2.
\]

Now Theorem 9 follows immediately by combining Lemma 15 and Lemma 17.

C Performance of the Optimum Algorithms

In this section we lower-bound the loss of the optimum solutions. In particular, we prove the following theorems.

Theorem 18. If \(m > 10d \), then for any \(T > 0 \)

\[
L(OPT) \geq \frac{1}{2d + 1 + d^2/m}.
\]

Theorem 19. If \(m > 10d \), then for any \(T > 0 \),

\[
L(OMN) \geq \frac{e^{-d-d^2/m}}{d + 1 + d^2/m}.
\]

Before proving the above theorems, it is useful to study the evolution of the system in the case of the inactive algorithm, i.e., where the online algorithm does nothing and no agents ever get matched. We later use this analysis in this section, as well as Appendix A and Appendix B.

We adopt the notation \(\tilde{A}_t \) and \(\tilde{Z}_t \) to denote the agents in the pool and the pool size in this case. Observe that by definition for any matching algorithm and any realization of the process,

\[
Z_t \leq \tilde{Z}_t. \tag{C.1}
\]

Using the above equation, in the following fact we show that for any matching algorithm \(\mathbb{E} [Z_t] \leq m \).
Proposition 20. For any \(t_0 \geq 0 \),
\[
\mathbb{P} \left[\tilde{Z}_{t_0} = \ell \right] \leq \frac{m^\ell}{\ell!}.
\]

Therefore, \(\tilde{Z}_t \) is distributed as a Poisson random variable of rate \(m(1 - e^{-t_0}) \), so
\[
\mathbb{E} \left[\tilde{Z}_{t_0} \right] = (1 - e^{-t_0})m.
\]

Proof. Let \(K \) be a random variable indicating the number agents who enter the pool in the interval \([0, t_0]\). By Bayes rule,
\[
\mathbb{P} \left[\tilde{Z}_{t_0} = \ell \right] = \sum_{k=0}^{\infty} \mathbb{P} \left[\tilde{Z}_{t_0} = \ell, K = k \right] = \sum_{k=0}^{\infty} \mathbb{P} \left[\tilde{Z}_{t_0} = \ell | K = k \right] \cdot \frac{(mt_0)^k e^{-mt_0}}{k!},
\]
where the last equation follows by the fact that arrival rate of the agents is a Poisson random variable of rate \(m \).

Now, conditioned on the event that an agent \(a \) arrives in the interval \([0, t_0]\), the probability that she is in the pool at time \(t_0 \) is at least,
\[
\mathbb{P} \left[X_a = 1 \right] = \int_{t_0}^{t_0} \frac{1}{t_0} \mathbb{P} \left[s(a_i) \geq t_0 - t \right] dt = \frac{1}{t_0} \int_{t=0}^{t_0} e^{t-t_0} dt = \frac{1 - e^{-t_0}}{t_0}.
\]

Therefore, conditioned on \(K = k \), the distribution of the number of agents at time \(t_0 \) is a Binomial random variable \(B(k, p) \), where \(p := (1 - e^{-t_0})/t_0 \). Let \(\mu = m(1 - e^{-t_0}) \), we have
\[
\mathbb{P} \left[\tilde{Z}_{t_0} = \ell \right] = \sum_{k=\ell}^{\infty} \binom{k}{\ell} \cdot p^\ell \cdot (1 - p)^{k-\ell} \frac{(mt_0)^k e^{-mt_0}}{k!} \]
\[
= \sum_{k=\ell}^{\infty} \frac{m^k e^{-mt_0}}{\ell!(k-\ell)!} (1 - e^{-t_0})^\ell (t_0 - 1 + e^{-t_0})^{k-\ell} \]
\[
= \frac{m^\ell e^{-mt_0} \mu^\ell}{\ell!} \sum_{k=\ell}^{\infty} \frac{(mt_0 - \mu)^{k-\ell}}{(k-\ell)!} = \frac{\mu^\ell e^{-\mu}}{\ell!}.
\]

Substituting \(\mu = m(1 - e^{-t_0}) \) into the above equation and noting that \((1 - e^{-t_0}) < 1\) proves the claim. \(\square \)
C.1 Loss of OPT

In this section, we prove Theorem 18. Let \(\zeta \) be the expected pool size of the OPT,

\[
\zeta := E_{t \sim \text{unif}[0,T]} [Z_t]
\]

Since OPT does not know \(A^c_t \), each critical agent perishes with probability 1. Therefore,

\[
\mathbf{L}(\text{OPT}) = \frac{1}{m} \cdot T \cdot E \left[\int_{t=0}^{T} Z_t dt \right] = \frac{\zeta T}{mT} = \zeta/m.
\] (C.2)

To finish the proof we need to lower bound \(\zeta \) by \(m/(2d + 1 + d^2/m) \). We provide an indirect proof by showing a lower-bound on \(\mathbf{L}(\text{OPT}) \) which in turn lower-bounds \(\zeta \).

The key idea is to lower-bound the probability that an agent does not have any acceptable transactions throughout her sojourn, and this directly gives a lower-bound on \(\mathbf{L}(\text{OPT}) \) as those agents cannot be matched under any algorithm, so they will all perish, except those who belong to \(A_T \).

Since a conservative upper bounds for \(E[A_T] \) is \(m \), we will then have that the expected number of perished agents is at least \(\mathbb{P}[N(a) = \emptyset] (mT - m) \), so

\[
\mathbf{L}(\text{OPT}) \geq \mathbb{P}[N(a) = \emptyset] (1 - 1/T). \]

Since we are main stating our results for large values of \(T \), we continue this proof by taking the limit and assuming that \(1 - 1/T \simeq 1 \), and then will discuss how this will change the final result when we include it explicitly.

Fix an agent \(a \in A \). Say \(a \) enters the market at a time \(t_0 \sim \text{unif}[0,T] \), and \(s(a) = t \), we can write

\[
\mathbb{P}[N(a) = \emptyset] \geq \int_{t=0}^{\infty} \mathbb{P}[s(a) = t] \cdot E[(1 - d/m)^{|A_{t_0}|}] \cdot E[(1 - d/m)^{|A_{t_0+t,t}|}] dt \quad \text{(C.3)}
\]

To see the above, note that \(a \) does not have any acceptable transactions, if she doesn’t have any neighbors upon arrival, and none of the new agents that arrive during her sojourn are not connected to her. Using the Jensen’s inequality, we have

\[
\mathbb{P}[N(a) = \emptyset] \geq \int_{t=0}^{\infty} e^{-t} \cdot (1 - d/m)^{Z_{t_0}} \cdot (1 - d/m)^{|A_{t_0,t+t_0}|} dt
\]

\[
= \int_{t=0}^{\infty} e^{-t} \cdot (1 - d/m)^{\zeta} \cdot (1 - d/m)^{mt} dt
\]

The last equality follows by the fact that \(E[|A^n_{t_0,t+t_0}|] = mt \). Since \(d/m < 1/10 \), \(1 - d/m \geq

\[21\] We thank the anonymous referee who pointed this last point about agents in \(A_T \) to us.
\[e^{-d/m-d^2/m^2}, \]

\[L(\text{OPT}) \geq \mathbb{P} [N(a) = \emptyset] \geq e^{-\zeta(d/m+d^2/m^2)} \int_{t=0}^{\infty} e^{-t(1+d+d^2/m)} \, dt \geq \frac{1 - \zeta(1+d/m)d/m}{1 + d + d^2/m} \quad (C.4) \]

Putting (C.2) and (C.4) together, for \(\beta := \zeta d/m \) we get

\[L(\text{OPT}) \geq \max \{ \frac{1 - \beta(1 + d/m)}{1 + d + d^2/m}, \beta \} \geq \frac{1}{2d + 1 + 2d^2/m} \]

where the last inequality follows by letting \(\beta = \frac{d}{2d+1+2d^2/m} \) be the minimizer of the middle expression.

If we do not drop the \(1 - 1/T \) term, then the only change would be that the first term inside the max function has an additional \(1 - 1/T \) term. This changes the final bound to

\[L(\text{OPT}) \geq \frac{1}{(1 + \frac{d}{T})d+1+(1+\frac{d}{T})d^2/m}, \]

which goes to \(\frac{1}{2d+1+2d^2/m} \) as \(T \) grows.

C.2 Loss of OMN

In this section, we prove Theorem 19. This demonstrates that no expansion of the planner’s information can yield a faster-than-exponential decrease in losses.

The proof is very similar to Theorem 18. Let \(\zeta \) be the expected pool size of the OMN,

\[\zeta := \mathbb{E}_{t \sim \text{unif}[0,T]} [Z_t]. \]

By (C.1) and Proposition 20,

\[\zeta \leq \mathbb{E}_{t \sim \text{unif}[0,T]} [\tilde{Z}_t] \leq m. \]

Note that (C.2) does not hold in this case because the omniscient algorithm knows the set of critical agents at time \(t \).

Now, fix an agent \(a \in A \), and let us lower-bound the probability that \(N(a) = \emptyset \). Say \(a \) enters the market at time \(t_0 \sim \text{unif}[0,T] \) and \(s(a) = t \), then

\[\mathbb{P} [N(a) = \emptyset] = \int_{t=0}^{\infty} \mathbb{P} [s(a) = t] \cdot \mathbb{E} [(1-d/m)^{Z_{t_0}}] \cdot \mathbb{E} [(1-d/m)^{A_{t_0,t_0+t_0}}] \, dt \]

\[\geq \int_{t=0}^{\infty} e^{-t(1-d/m)\zeta^{+mt}} \, dt \geq \frac{e^{-\zeta(1+d/m)d/m}}{1 + d + d^2/m} \geq \frac{e^{-d-d^2/m}}{1 + d + d^2/m}, \]

where the first inequality uses the Jensen’s inequality and the second inequality uses the fact
that when $d/m < 1/10$, $1 - d/m \geq e^{-d/m - d^2/m^2}$.

D Incentive-Compatible Mechanisms

In this section we design a dynamic mechanism to elicit the departure times of agents. As alluded to in Section 5, we assume that agents only have statistical knowledge about the rest of the market: That is, each agent knows the market parameters $(m, d, 1)$, her own status (present, critical, perished), and the details of the dynamic mechanism that the market-maker is executing. Agents do not observe the graph G_t and their prior belief is the stationary distribution.

Each agent a chooses a mixed strategy, that is she reports getting critical at an infinitesimal time $[t, t + dt]$ with rate $c_a(t)dt$. In other words, each agent a has a clock that ticks with rate $c_a(t)$ at time t and she reports criticality when the clock ticks. We assume each agent’s strategy function, $c_a(\cdot)$ is well-behaved, i.e., it is non-negative, continuously differentiable and continuously integrable. Note that since the agent can only observe the parameters of the market $c_a(\cdot)$ can depend on any parameter in our model but this function is constant in different sample paths of the stochastic process.

A strategy profile C is a vector of well-behaved functions for each agent in the market, that is, $C = [c_a]_{a \in A}$. For an agent a and a strategy profile C, let $\mathbb{E}[u_C(a)]$ be the expected utility of a under the strategy profile C. Note that for any C, a, $0 \leq \mathbb{E}[u_C(a)] \leq 1$. Given a strategy profile $C = [c_a]_{a \in A}$, let $C - c_a + \tilde{c}_a$ denote a strategy profile same as C but for agent a who is playing \tilde{c}_a rather than c_a. The following definition introduces our solution concept.

Definition 5. A strategy profile C is a strong ϵ-Nash equilibrium if for any agent a and any well-behaved function $\tilde{c}_a(\cdot)$, $$1 - \mathbb{E}[u_C(a)] \leq (1 + \epsilon)(1 - \mathbb{E}[u_{C-c_a+\tilde{c}_a}]).$$

Note that the solution concept we are introducing here is slightly different from the usual definition of an ϵ-Nash equilibrium, where the condition is either $\mathbb{E}[u_C(a)] \geq \mathbb{E}[u_{C-c_a+\tilde{c}_a}] - \epsilon$, or $\mathbb{E}[u_C(a)] \geq (1 - \epsilon)\mathbb{E}[u_{C-c_a+\tilde{c}_a}]$. The reason that we are using $1 - \mathbb{E}[u_C(a)]$ as a measure of distance is because we know that under Patient(α) algorithm, $\mathbb{E}[u_C(a)]$ is very close to 1, so $1 - \mathbb{E}[u_C(a)]$ is a lower-order term. Thus, this definition restricts us to a stronger equilibrium concept, which requires us to show that in equilibrium agents can neither increase their
utilities, nor the lower-order terms associated with their utilities by a factor of more than \(\epsilon \).

Throughout this section let \(k^* \in [m/2 - 2, m - 1] \) be the root of \((B.12)\) as defined in Proposition 16, and let \(\beta := (1 - d/m)^{k^*} \). In this section we show that if \(r \) (the discount rate) is no more than \(\beta \), then the strategy vector \(c_a(t) = 0 \) for all agents \(a \) and \(t \) is an \(\epsilon \)-mixed strategy Nash equilibrium for \(\epsilon \) very close to zero. In other words, if all other agents are truthful, an agent’s utility from being truthful is almost as large as any other strategy.

Theorem 21. If the market is at stationary and \(r \leq \beta \), then \(c_a(t) = 0 \) for all \(a, t \) is a strong \(O(d^4 \log^3(m)/\sqrt{m}) \)-Nash equilibrium for Patient-Mechanism(\(\infty \)).

By our market equivalence result (??), Theorem 21 leads to the following corollary.

Corollary 22. Let \(\bar{\alpha} = 1/\alpha + 1 \) and \(\beta(\alpha) = \bar{\alpha}(1 - d/m)^{m/\bar{\alpha}} \). If the market is at stationary and \(r \leq \beta(\alpha) \), then \(c_a(t) = 0 \) for all \(a, t \) is a strong \(O((d/\bar{\alpha})^4 \log^3(m/\bar{\alpha})/\sqrt{m/\bar{\alpha}}) \)-Nash equilibrium for Patient-Mechanism(\(\alpha \)).

The proof of the above theorem is involved but the basic idea is very easy. If an agent reports getting critical at the time of arrival she will receive a utility of \(1 - \beta \). On the other hand, if she is truthful (assuming \(r = 0 \)) she will receive about \(1 - \beta/2 \). In the course of the proof we show that by choosing any strategy vector \(c(\cdot) \) the expected utility of an agent interpolates between these two numbers, so it is maximized when she is truthful.

The precise proof of the theorem is based on Lemma 23. In this lemma, we upper-bound the the utility of an agent for any arbitrary strategy, given that all other agents are truthful.

Lemma 23. Let \(Z_0 \) be in the stationary distribution. Suppose \(a \) enters the market at time 0. If \(r < \beta \), and \(10d^4 \log^3(m) \leq \sqrt{m} \), then for any well-behaved function \(c(\cdot) \),

\[
\mathbb{E}[u_c(a)] \leq \frac{2(1 - \beta)}{2 - \beta + r} + O\left(d^4 \log^3(m)/\sqrt{m}\right) \beta,
\]

Proof. In this section, we present the full proof of Lemma 23. We prove the lemma by writing a closed form expression for the utility of \(a \) and then upper-bounding that expression.

In the following claim we study the probability \(a \) is matched in the interval \([t, t + \epsilon]\) and the probability that it leaves the market in that interval.
Claim 24. For any time \(t \geq 0 \), and \(\epsilon > 0 \),

\[
\mathbb{P}[a \in M_{t,t+\epsilon}] = \epsilon \cdot \mathbb{P}[a \in A_t] (2 + c(t)) \mathbb{E} \left[1 - (1 - d/m)^{Z_t} | a \in A_t \right] \pm O(\epsilon^2) \quad (D.1)
\]

\[
\mathbb{P}[a \notin A_{t+\epsilon}, a \in A_t] = \mathbb{P}[a \in A_t] (1 - \epsilon (1 + c(t) + \mathbb{E} [1 - (1 - d/m)^{Z_{t-1}} | a \in A_t]) \pm O(\epsilon^2)) \quad (D.2)
\]

Proof. The claim follows from two simple observations. First, \(a \) becomes critical in the interval \([t, t + \epsilon]\) with probability \(\epsilon \cdot \mathbb{P}[a \in A_t] (1 + c(t)) \) and if he is critical he is matched with probability \(\mathbb{E} [(1 - (1 - d/m)^{Z_{t-1}} | a \in A_t)] \). Second, \(a \) may also get matched (without getting critical) in the interval \([t, t + \epsilon]\). Observe that if an agent \(b \in A_t \) where \(b \neq a \) gets critical she will be matched with \(a \) with probability \((1 - (1 - d/m)^{Z_{t-1}})/(Z_t - 1) \). Therefore, the probability that \(a \) is matched at \([t, t + \epsilon]\) without getting critical is

\[
\mathbb{P}[a \in A_t] \cdot \mathbb{E} \left[\epsilon \cdot (Z_t - 1) \frac{1 - (1 - d/m)^{Z_{t-1}}}{Z_t - 1} | a \in A_t \right]
= \epsilon \cdot \mathbb{P}[a \in A_t] \mathbb{E} \left[1 - (1 - d/m)^{Z_{t-1}} | a \in A_t \right]
\]

The claim follows from simple algebraic manipulations. \(\square \)

We need to study the conditional expectation \(\mathbb{E} [1 - (1 - d/m)^{Z_{t-1}} | a \in A_t] \) to use the above claim. This is not easy in general; although the distribution of \(Z_t \) remains stationary, the distribution of \(Z_t \) conditioned on \(a \in A_t \) can be a very different distribution. So, here we prove simple upper and lower bounds on \(\mathbb{E} [1 - (1 - d/m)^{Z_{t-1}} | a \in A_t] \) using the concentration properties of \(Z_t \). By the assumption of the lemma \(Z_t \) is at stationary at any time \(t \geq 0 \). Let \(k^* \) be the number defined in Proposition 16, and \(\beta = (1 - d/m)^{k^*} \). Also, let \(\sigma := \sqrt{6 \log(8m/\beta)} \). By Proposition 16, for any \(t \geq 0 \),

\[
\mathbb{E} [1 - (1 - d/m)^{Z_{t-1}} | a \in A_t] \leq \mathbb{E} [1 - (1 - d/m)^{Z_{t-1}} | Z_t < k^* + \sigma \sqrt{4m}, a \in A_t] + \mathbb{P} [Z_t \geq k^* + \sigma \sqrt{4m} | a \in A_t]
\]

\[
\leq 1 - (1 - d/m)^{k^* + \sigma \sqrt{4m}} + \frac{\mathbb{P} [Z_t \geq k^* + \sigma \sqrt{4m}]}{\mathbb{P}[a \in A_t]} \leq 1 - \beta + \beta (1 - (1 - d/m)^{\sigma \sqrt{4m}}) + \frac{8\sqrt{me^{-\sigma^2/\beta}}}{\mathbb{P}[a \in A_t]}
\]

\[
\leq 1 - \beta + \frac{2\sigma d \beta}{\sqrt{m}} + \frac{\beta}{m^2 \cdot \mathbb{P}[a \in A_t]} \quad (D.3)
\]
In the last inequality we used (G.4) and the definition of \(\sigma \). Similarly,

\[
\mathbb{E} \left[1 - (1 - d/m) Z_{t-1} | a \in A_t \right] \geq \mathbb{E} \left[1 - (1 - d/m) Z_{t-1} | Z_t \geq k^* - \sigma \sqrt{4m}, a \in A_t \right] \\
\cdot \Pr \left[Z_t \geq k^* - \sigma \sqrt{4m} | a \in A_t \right] \\
\geq (1 - (1 - d/m) k^* - \sigma \sqrt{4m}) \frac{\Pr [a \in A_t] - \Pr [Z_t < k^* - \sigma \sqrt{4m}]}{\Pr [a \in A_t]} \\
\geq 1 - \beta - \beta ((1 - d/m) - \sigma \sqrt{4m} - 1) - \frac{2 \sqrt{me - \sigma^2}}{\Pr [a \in A_t]} \\
\geq 1 - \beta - \frac{4d \sigma \beta}{\sqrt{m}} - \frac{\beta^3}{m^3} \cdot \Pr [a \in A_t] \\
(D.4)
\]

where in the last inequality we used (G.4), the assumption that \(2d \sigma \leq \sqrt{m} \) and the definition of \(\sigma \).

Next, we write a closed form upper-bound for \(\Pr [a \in A_t] \). Choose \(\tau^* \) such that \(\int_{t=0}^{\tau^*} (2 + c(t))dt = 2 \log(m/\beta) \). Observe that \(\tau^* \leq \log(m/\beta) \leq \sigma^2/6 \). Since \(a \) leaves the market with rate at least \(1 + c(t) \) and at most \(2 + c(t) \), we can write

\[
\frac{\beta^2}{m^2} = \exp \left(- \int_{t=0}^{\tau^*} (2 + c(t))dt \right) \leq \Pr [a \in A_{	au^*}] \leq \exp \left(- \int_{t=0}^{\tau^*} (1 + c(t))dt \right) \leq \frac{\beta}{m} \\
(D.5)
\]

Intuitively, \(\tau^* \) is a moment where the expected utility of that \(a \) receives in the interval \([\tau^*, \infty)\) is negligible, i.e., in the best case it is at most \(\beta/m \).

By Claim 24 and (D.4), for any \(t \leq \tau^* \),

\[
\frac{\Pr [a \in A_{t+\epsilon}] - \Pr [a \in A_t]}{\epsilon} \leq -\Pr [a \in A_t] \left(2 + c(t) - \beta - \frac{4d \sigma \beta}{\sqrt{m}} - \frac{\beta^3}{m^3} \cdot \Pr [a \in A_t] \right) \pm O(\epsilon) \\
\exp \left(- \int_{t=0}^{t} (2 + c(t))dt \right) \leq \exp \left(- \int_{t=0}^{t} (1 + c(t))dt \right) \leq \frac{\beta}{m} \\
(D.6)
\]

where in the last inequality we used (D.5). Letting \(\epsilon \to 0 \), for \(t \leq \tau^* \), the above differential equation yields,

\[
\Pr [a \in A_t] \leq \exp \left(- \int_{t=0}^{t} (2 + c(\tau) - \beta - \frac{5d \sigma \beta}{\sqrt{m}})d\tau \right) \leq \exp \left(- \int_{t=0}^{t} (2 + c(\tau) - \beta) d\tau \right) + \frac{2d \sigma^3 \beta}{\sqrt{m}}. \\
(D.6)
\]

where in the last inequality we used \(\tau^* \leq \sigma^2/6 \), \(e^x \leq 1 + 2x \) for \(x \leq 1 \) and lemma’s assumption \(5d \sigma^2 \leq \sqrt{m} \).
Let \(\tilde{c} \geq t\) be a function that maximizes \(c \) maximized by letting \(\tilde{c} \) be the following function,

\[
\tilde{c}(\tau) = \begin{cases}
 c(\tau) & \text{if } \tau < t, \\
 0 & \text{if } t \leq \tau \leq t + \epsilon, \\
 c(\tau) + c(\tau - \epsilon) & \text{if } t + \epsilon \leq \tau \leq t + 2\epsilon, \\
 c(\tau) & \text{otherwise.}
\end{cases}
\]

In words, we push the mass of \(c(.) \) in the interval \([t, t + \epsilon]\) to the right. We remark that the above function \(\tilde{c}(.) \) is not necessarily continuous so we need to smooth it out. The latter can be done without introducing any errors and we do not describe the details here. Let \(U_c(a) \) be the right hand side of the above equation. Next, we show that \(U_c(a) \) is maximized by letting \(c(t) = 0 \) for all \(t \). This will complete the proof of Lemma 23. Let \(c \) be a function that maximizes \(U_c(a) \) which is not equal to zero. Suppose \(c(t) \neq 0 \) for some \(t \geq 0 \). We define a function \(\tilde{c} : \mathbb{R}_+ \to \mathbb{R}_+ \) and we show that if \(r < \beta \), then \(U_{\tilde{c}}(a) > U_c(a) \). Let \(\tilde{c} \) be the following function,

\[
\tilde{c}(\tau) = \begin{cases}
 c(\tau) & \text{if } \tau < t, \\
 (2 + c(t)) \exp \left(- \int_{\tau=0}^t (2 + c(\tau) - \beta) d\tau \right) & \text{if } t \leq \tau \leq t + \epsilon, \\
 c(\tau) + c(\tau - \epsilon) & \text{if } t + \epsilon \leq \tau \leq t + 2\epsilon, \\
 c(\tau) & \text{otherwise.}
\end{cases}
\]

In the first inequality we used equation (D.3), in second inequality we used equation (D.6), and in the last inequality we use the definition of \(t^* \). We have finally obtained a closed form upper-bound on the expected utility of \(a \).

Now, we are ready to upper-bound the utility of \(a \). By (D.5) the expected utility that \(a \) gains after \(t^* \) is no more than \(\beta/m \). Therefore,

\[
\mathbb{E}[u_c(a)] \leq \frac{\beta}{m} + \int_{t=0}^{t^*} (2 + c(t)) \mathbb{E}[1 - (1 - d/m)^{Z_i - 1}|a \in A_t] \mathbb{P}[a \in A_t] e^{-rt} dt
\]

\[
\leq \frac{\beta}{m} + \int_{t=0}^{t^*} (2 + c(t))((1 - \beta)\mathbb{P}[a \in A_t] + \beta/\sqrt{m}) e^{-rt} dt
\]

\[
\leq \frac{\beta}{m} + \int_{t=0}^{t^*} (2 + c(t))((1 - \beta)\exp \left(- \int_{\tau=0}^t (2 + c(\tau) - \beta) d\tau \right) + \frac{3d\sigma^3}{\sqrt{m}}) e^{-rt} dt
\]

\[
\leq \frac{2d\sigma^5}{\sqrt{m}} \beta + \int_{t=0}^{\infty} (1 - \beta)(2 + c(t)) \exp \left(- \int_{\tau=0}^t (2 + c(\tau) - \beta) d\tau \right) e^{-rt} dt.
\]

In words, we push the mass of \(c(.) \) in the interval \([t, t + \epsilon]\) to the right. We remark that the above function \(\tilde{c}(.) \) is not necessarily continuous so we need to smooth it out. The latter can be done without introducing any errors and we do not describe the details here. Let \(S := \int_{\tau=0}^t (1 + c(t) + \beta) d\tau \). Assuming \(\tilde{c}'(t) \ll 1/\epsilon \), we have

\[
U_{\tilde{c}}(a) - U_c(a) \geq -\epsilon \cdot c(t)(1 - \beta)e^{-S}e^{-rt} + \epsilon \cdot c(t)(1 - \beta)e^{-S-\epsilon(2-\beta)}e^{-r(t+\epsilon)}
\]

\[
+ \epsilon(1 - \beta)(2 + c(t + \epsilon))(e^{-S-\epsilon(2-\beta)}e^{-r(t+\epsilon)} - e^{-S-\epsilon(2+c(t) - \beta)}e^{-r(t+\epsilon)})
\]

\[
= -\epsilon^2 \cdot c(t)(1 - \beta)e^{-S-rt}(2 - \beta + r) + \epsilon^2(1 - \beta)(2 + c(t + \epsilon))e^{-S-rt}c(t)
\]

\[
\geq \epsilon^2 \cdot (1 - \beta)e^{-S-rt} c(t)(\beta - r).
\]
Since \(r < \beta \) by the lemma’s assumption, the maximizer of \(U_c(a) \) is the all zero function. Therefore, for any well-behaved function \(c(.) \),

\[
\mathbb{E}[u_c(a)] \leq \frac{2d\sigma^5}{\sqrt{m}} \beta + \int_{t=0}^{\infty} 2(1 - \beta) \exp\left(-\int_{\tau=0}^{t} (2 - \beta)d\tau\right)e^{-rt}dt \\
\leq O\left(\frac{d^4 \log^3(m)}{\sqrt{m}}\right) \beta + \frac{2(1 - \beta)}{2 - \beta + r}.
\]

In the last inequality we used that \(\sigma = O(\sqrt{\log(m/\beta)}) \) and \(\beta \leq e^{-d} \). This completes the proof of Lemma 23.

The proof of Theorem 21 follows simply from the above analysis.

Proof of Theorem 21. All we need to do is to lower-bound the expected utility of an agent \(a \) if she is truthful. We omit the details as they are essentially similar. So, if all agents are truthful,

\[
\mathbb{E}[u(a)] \geq \frac{2(1 - \beta)}{2 - \beta + r} - O\left(\frac{d^4 \log^3(m)}{\sqrt{m}}\right) \beta.
\]

This shows that the strategy vector corresponding to truthful agents is a strong \(O(d^4 \log^3(m)/\sqrt{m}) \)-Nash equilibrium.

E Proofs from Section B

E.1 Proof of Lemma 11

Proof. By Proposition 20, \(\mathbb{E}[Z_t] \leq m \) for all \(t \), so

\[
L(\text{Greedy}) = \frac{1}{m \cdot T} \mathbb{E}\left[\int_{t=0}^{T} Z_t dt\right] = \frac{1}{mT} \int_{t=0}^{T} \mathbb{E}[Z_t] dt \\
\leq \frac{1}{mT} m \cdot \tau_{\text{mix}}(\epsilon) + \frac{1}{mT} \int_{t=\tau_{\text{mix}}(\epsilon)}^{T} \mathbb{E}[Z_t] dt \quad (E.1)
\]

where the second equality uses the linearity of expectation. Let \(\tilde{Z}_t \) be the number of agents in the pool at time \(t \) when we do not match any pair of agents. By (C.1),

\[
P[Z_t \geq i] \leq P[\tilde{Z}_t \geq i].
\]
Therefore, for \(t \geq \tau_{\text{mix}}(\epsilon) \),

\[
\mathbb{E} [Z_t] = \sum_{i=1}^{\infty} \mathbb{P} [Z_t \geq i] \leq \sum_{i=0}^{6m} \mathbb{P} [Z_t \geq i] + \sum_{i=6m+1}^{\infty} \mathbb{P} [\tilde{Z}_t \geq i]
\]
\[
\leq \sum_{i=0}^{6m} (\mathbb{P} \sim_{\pi} [Z \geq i] + \epsilon) + \sum_{i=6m+1}^{\infty} \sum_{\ell=i}^{m} \frac{m^\ell}{\ell!}
\]
\[
\leq \mathbb{E}_{Z \sim \pi} [Z] + \epsilon 6m + \sum_{i=6m+1}^{\infty} \frac{2m^i}{i!}
\]
\[
\leq \mathbb{E}_{Z \sim \pi} [Z] + \epsilon 6m + \frac{4m^{6m}}{(6m)!} \leq \mathbb{E}_{Z \sim \pi} [Z] + \epsilon 6m + 2^{-6m}. \tag{E.2}
\]

where the second inequality uses \(\mathbb{P} [\tilde{Z}_t = \ell] \leq m^\ell/\ell! \) of Proposition 20 and the last inequality follows by the Stirling’s approximation\(^{22}\) of \((6m)!\). Putting (E.1) and (E.2) proves the lemma. \(\square \)

E.2 Proof of Lemma 13

Proof. For \(k \geq k^* \), by (B.3), (B.4), (B.5),

\[
\frac{\pi(k)}{\pi(k+1)} = \frac{(k+1) + m(1 - (1-d/m)^{k+1})}{m(1-d/m)^k} = \frac{k - k^* + 1 - m(1-d/m)^{k+1} + 2m(1-d/m)^k^*}{m(1-d/m)^k}
\]

where we used the definition of \(k^* \). Therefore,

\[
\frac{\pi(k)}{\pi(k+1)} \geq -(1-d/m) + \frac{2}{(1-d/m)^{k-k^*}} \geq \frac{1}{(1-d/m)^{k-k^*}} \geq e^{-(k^*-k)d/m}
\]

where the last inequality uses \(1-x \leq e^{-x} \). Multiplying across the inequality yields the claim. Similarly, we can prove the second conclusion. For \(k \leq k^* \),

\[
\frac{\pi(k-1)}{\pi(k)} = \frac{k - k^* - m(1-d/m)^k + 2m(1-d/m)^{k^*}}{m(1-d/m)^{k-1}} \leq -(1-d/m) + 2(1-d/m)^{k^*-k+1} \leq (1-d/m)^{k^*-k+1} \leq e^{-(k^*-k+1)d/m},
\]

\(^{22}\)Stirling’s approximation states that

\[
n! \geq \sqrt{2\pi n} \left(\frac{n}{e} \right)^n.
\]

49
where the second to last inequality uses $k \leq k^*$.

E.3 Proof of Lemma 14

Proof. Let $\Delta \geq 0$ be a parameter that we fix later. We have,

$$
\mathbb{E}_{Z \sim \pi}[Z] \leq k^* + \Delta + \sum_{i=k^*+\Delta+1}^{\infty} i\pi(i).
$$

(E.3)

By equation (B.6),

$$
\sum_{i=k^*+\Delta+1}^{\infty} i\pi(i) = \sum_{i=\Delta+1}^{\infty} e^{-d(i-1)^2/2m}(i + k^*)
= \sum_{i=\Delta}^{\infty} e^{-di^2/2m}(i - 1) + \sum_{i=\Delta}^{\infty} e^{-di^2/2m}(k^* + 2)
\leq \frac{e^{-d(\Delta-1)^2/2m}}{d/m} + (k^* + 2) \min\{1/2, d\Delta/2m\},
$$

(E.4)

where in the last step we used equations (G.1) and (G.2). Letting $\Delta := 1 + 2\sqrt{m/d} \log(m/d)$ in the above equation, the right hand side is at most 1. The lemma follows from (E.3) and the above equation.

E.4 Proof of Lemma 15

Proof. By linearity of expectation,

$$
L(\text{Patient}) = \frac{1}{m \cdot T} \mathbb{E}\left[\int_{t=0}^{T} Z_t(1 - d/m)^{Z_t-1} dt \right] = \frac{1}{m \cdot T} \int_{t=0}^{T} \mathbb{E}\left[Z_t(1 - d/m)^{Z_t-1} \right] dt.
$$

Since for any $t \geq 0$, $\mathbb{E}\left[Z_t(1 - d/m)^{Z_t-1} \right] \leq \mathbb{E}\left[Z_t \right] \leq \mathbb{E}\left[Z_t^* \right] \leq m$, we can write

$$
L(\text{Patient}) \leq \frac{\tau_{\text{mix}}(\epsilon)}{T} + \frac{1}{m \cdot T} \int_{t=\tau_{\text{mix}}(\epsilon)}^{T} \sum_{i=0}^{\infty} (\pi(i) + \epsilon)i(1 - d/m)^{i-1} dt
\leq \frac{\tau_{\text{mix}}(\epsilon)}{T} + \mathbb{E}_{Z \sim \pi}\left[Z(1 - d/m)^{Z-1} \right] \frac{\epsilon m}{d^2}
$$

where the last inequality uses the identity $\sum_{i=0}^{\infty} i(1 - d/m)^{i-1} = m^2/d^2$. □
E.5 Proof of Proposition 16

Let us first rewrite what we derived in the proof overview of this proposition in the main text. The balance equations of the Markov chain associated with the Patient algorithm can be written as follows by replacing transition probabilities from (B.7), (B.8), and (B.9) in (B.10):

\[m\pi(k) = (k + 1)\pi(k + 1) + (k + 2)\left(1 - \left(1 - \frac{d}{m}\right)^{k+1}\right)\pi(k + 2) \quad (E.5) \]

Now define a continuous \(f: \mathbb{R} \to \mathbb{R} \) as follows,

\[f(x) := m - (x + 1) - (x + 2)(1 - (1 - d/m)^{x+1}). \quad (E.6) \]

It follows that

\[f(m - 1) \leq 0, f(m/2 - 2) > 0, \]

which means that \(f(.) \) has a root \(k^* \) such that \(m/2 - 2 < k^* < m \). In the rest of the proof we show that the states that are far from \(k^* \) have very small probability in the stationary distribution.

In order to complete the proof of Proposition 16, we first prove the following useful lemma.

Lemma 25. For any integer \(k \leq k^* \),

\[\frac{\pi(k)}{\max\{\pi(k + 1), \pi(k + 2)\}} \leq e^{-(k^* - k)/m}. \]

Similarly, for any integer \(k \geq k^* \),

\[\frac{\min\{\pi(k+1), \pi(k+2)\}}{\pi(k)} \leq e^{-(k^* - k)/(m+k-k^*)}. \]

Proof. For \(k \leq k^* \), by equation (B.11),

\[\frac{\pi(k)}{\max\{\pi(k + 1), \pi(k + 2)\}} \leq \frac{(k + 1) + (k + 2)(1 - (1 - d/m)^{k+1})}{m} \]
\[\leq \frac{(k - k^*) + (k^* + 1) + (k^* + 2)(1 - (1 - d/m)^{k^*+1})}{m} \]
\[= 1 - \frac{k^* - k}{m} \leq e^{-(k^* - k)/m}, \]

where the last equality follows by the definition of \(k^* \) and the last inequality uses \(1 - x \leq e^{-x} \).
The second conclusion can be proved similarly. For $k \geq k^*$,
\[
\min\left\{ \frac{\pi(k+1)}{\pi(k)}, \frac{\pi(k+2)}{\pi(k)} \right\} \leq \frac{m}{(k+1) + (k+2)(1-(1-d/m)^{k+1})} \leq \frac{m}{(k-k^*) + (k^*+1) + (k^*+2)(1-(1-d/m)^{k^*+1})} = \frac{m}{m + k - k^*} = 1 - \frac{k - k^*}{m + k - k^*} \leq e^{-(k-k^*)/(m+k-k^*)},
\]
where the equality follows by the definition of k^*.

Now, we use the above claim to upper-bound $\pi(k)$ for values k that are far from k^*. First, fix $k \leq k^*$. Let n_0, n_1, \ldots be sequence of integers defined as follows: $n_0 = k$, and $n_{i+1} := \arg\max\{\pi(n_i+1), \pi(n_i+2)\}$ for $i \geq 1$. It follows that,
\[
\pi(k) \leq \prod_{i: n_i \leq k^*} \frac{\pi(n_i)}{\pi(n_{i+1})} \leq \exp\left(-\sum_{i: n_i \leq k^*} \frac{k^* - n_i}{m}\right) \leq \exp\left(-\sum_{i=0}^{(k^*-k)/2} \frac{2i}{m}\right) \leq e^{-(k^*-k)^2/4m}, \tag{E.7}
\]
where the second to last inequality uses $|n_i - n_{i-1}| \leq 2$.

Now, fix $k \geq k^* + 2$. In this case we construct the following sequence of integers, $n_0 = \lfloor k^* + 2 \rfloor$, and $n_{i+1} := \arg\min\{\pi(n_i+1), \pi(n_i+2)\}$ for $i \geq 1$. Let n_j be the largest number in the sequence that is at most k (observe that $n_j = k - 1$ or $n_j = k$). We upper-bound $\pi(k)$ by upper-bounding $\pi(n_j)$,
\[
\pi(k) \leq \frac{m \cdot \pi(n_j)}{k} \leq 2 \prod_{i=0}^{j-1} \frac{\pi(n_i)}{\pi(n_{i+1})} \leq 2 \exp\left(-\sum_{i=0}^{j-1} \frac{n_i - k^*}{m + k - k^*}\right) \leq 2 \exp\left(-\sum_{i=0}^{(j-1)/2} \frac{2i}{m + k - k^*}\right) \leq 2 \exp\left(\frac{-(k - k^* - 1)^2}{4(m + k - k^*)}\right). \tag{E.8}
\]
To see the first inequality note that if $n_j = k$, then there is nothing to show; otherwise we have $n_j = k - 1$. In this case by equation (B.11), $m\pi(k-1) \geq k\pi(k)$. The second to last inequality uses the fact that $|n_i - n_{i-1}| \leq 2$.

We are almost done. The proposition follows from (E.8) and (E.7). First, for $\sigma \geq 1$, let
\[\Delta = \sigma \sqrt{4m}, \text{then by equation (G.1)} \]

\[\sum_{i=0}^{k^* - \Delta} \pi(i) \leq \sum_{i=\Delta}^{\infty} e^{-i^2/4m} \leq \frac{e^{-\Delta^2/4m}}{\min\{1/2, \Delta/4m\}} \leq 2\sqrt{m} e^{-\sigma^2}. \]

Similarly,

\[\sum_{i=k^* + \Delta}^{\infty} \pi(i) \leq 2 \sum_{i=\Delta+1}^{\infty} e^{-(i-1)^2/4(i+m)} \leq 2 \sum_{i=\Delta}^{\infty} e^{-i/(4+\sqrt{4m}/\sigma)} \]

\[\leq 2 e^{-\Delta/(4+\sqrt{4m}/\sigma)} \leq 8 \sqrt{m} e^{-\sigma^2 \sqrt{m}}. \]

This completes the proof of Proposition 16.

E.6 Proof of Lemma 17

Proof. Let \(\Delta := 3\sqrt{m} \log(m) \), and let \(\beta := \max_{z \in [m/2-\Delta, m+\Delta]} z (1 - d/m)^z \).

\[E_{Z \sim \pi} [Z(1 - d/m)^Z] \leq \beta + \sum_{i=0}^{m/2-\Delta-1} \frac{m}{2} \pi(i) (1 - d/m)^i + \sum_{i=m+\Delta}^{\infty} i \pi(i) (1 - d/m)^m \quad (E.9) \]

We upper bound each of the terms in the right hand side separately. We start with upper bounding \(\beta \). Let \(\Delta' := 4(\log(2m) + 1)\Delta \).

\[\beta \leq \max_{z \in [m/2, m]} z (1 - d/m)^z + m/2(1 - d/m)^{m/2}((1 - d/m)^{-\Delta} - 1) + (1 - d/m)^m \Delta \]

\[\leq \max_{z \in [m/2, m]} (z + \Delta' + \Delta)(1 - d/m)^z + 1. \quad (E.10) \]

To see the last inequality we consider two cases. If \((1 - d/m)^{-\Delta} \leq 1 + \Delta'/m \) then the inequality obviously holds. Otherwise, (assuming \(\Delta' \leq m \)),

\[(1 - d/m)^\Delta \leq \frac{1}{1 + \Delta'/m} \leq 1 - \Delta'/2m, \]

By the definition of \(\beta \),

\[\beta \leq (m + \Delta)(1 - d/m)^{m/2-\Delta} \leq 2m(1 - \Delta'/2m)^{m/2\Delta - 1} \leq 2me^{\Delta'/4\Delta - 1} \leq 1. \]

It remains to upper bound the second and the third term in (E.9). We start with the
second term. By Proposition 16,
\[
 \sum_{i=0}^{m/2-\Delta-1} \pi(i) \leq \frac{1}{m^{3/2}}.
\] \hfill (E.11)
where we used equation (G.1). On the other hand, by equation (E.8)
\[
 \sum_{i=m+\Delta}^{\infty} i\pi(i) \leq e^{-\Delta/(2+\sqrt{m})} \left(\frac{m}{1 - e^{-1/(2+\sqrt{m})}} + \frac{2\Delta + 4}{1/(2 + \sqrt{m})^2} \right) \leq \frac{1}{\sqrt{m}}.
\] \hfill (E.12)
where we used equation (G.3).

The lemma follows from (E.9), (E.10), (E.11) and (E.12). \hfill \Box

\section{Small Market Simulations}

In Proposition 12 and Proposition 16, we prove that the Markov chains of the Greedy and Patient algorithms are highly concentrated in intervals of size $O(\sqrt{m/d})$ and $O(\sqrt{m})$, respectively. These intervals are plausible concentration bounds when m is relatively large. In fact, most of our theoretical results are interesting when markets are relatively large. Therefore, it is natural to ask: What if m is relatively small? And what if the d is not small relative to m?

Figure 6 depicts the simulation results of our model for small m and small T. We simulated the market for $m = 20$ and $T = 100$ periods, repeated this process for 500 iterations, and computed the average loss for the Greedy, Patient, and the Omniscient algorithms. As it is clear from the simulation results, the loss of the Patient algorithm is lower than the Greedy for any d, and in particular, when d increases, the Patient algorithm’s performance gets closer and closer to the Omniscient algorithm, whereas the Greedy algorithm’s loss remains far above both of them.
Figure 6: Simulated Losses for $m = 20$. For very small market sizes and even for relatively large values of d, the Patient algorithm outperforms the Greedy Algorithm.
G Auxiliary Inequalities

In this section we prove several inequalities that are used throughout the paper. For any $a, b \geq 0$,$$
\sum_{i=a}^{\infty} e^{-b i^2} = \sum_{i=0}^{\infty} e^{-b(i+a)^2} \leq \sum_{i=0}^{\infty} e^{-ba^2-2iab} = e^{-ba^2} \sum_{i=0}^{\infty} (e^{-2ab})^i = \frac{e^{-ba^2}}{1 - e^{-2ab}} \leq \frac{e^{-ba^2}}{\min\{ab, 1/2\}}. \quad (G.1)
$$
The last inequality can be proved as follows: If $2ab \leq 1$, then $e^{-2ab} \leq ab$, otherwise $e^{-2ab} \leq 1/2$.

For any $a, b \geq 0$,$$
\sum_{i=a}^{\infty} (i-1) e^{-b i^2} \leq \int_{a-1}^{\infty} x e^{-bx^2} dx = \left. \frac{-1}{2b} e^{-bx^2} \right|_{a-1}^{\infty} = \frac{e^{-b(a-1)^2}}{2b}. \quad (G.2)
$$

For any $a \geq 0$ and $0 \leq b \leq 1$,$$
\sum_{i=a}^{\infty} i e^{-bi} = e^{-ba} \sum_{i=0}^{\infty} (i+a) e^{-bi} = e^{-ba} \left(\frac{a}{1-e^{-b}} + \frac{1}{(1-e^{-b})} \right) \leq \frac{e^{-ba}(2ba + 4)}{b^2}. \quad (G.3)
$$
The Bernoulli inequality states that for any $x \leq 1$, and any $n \geq 1$,$$(1-x)^n \geq 1-xn. \quad (G.4)$$
Here, we prove for integer n. The above equation can be proved by a simple induction on n. It trivially holds for $n = 0$. Assuming it holds for n we can write,$$(1-x)^{n+1} = (1-x)(1-x)^n \geq (1-x)(1-xn) = 1 - x(n+1) + x^2 n \geq 1 - x(n+1).$$