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Abstract

This paper uses potential outcome time series to provide a nonparametric framework for quan-
tifying dynamic causal effects in macroeconometrics. This provides sufficient conditions for the
nonparametric identification of dynamic causal effects as well as clarify the causal content of sev-
eral common assumptions and methods in macroeconomics. Our key identifying assumption is
shown to be non-anticipating treatments which enables nonparametric inference on dynamic causal
effects. Next, we provide a formal definition of a “shock” and this leads to a shocked potential
outcome time series. This is a nonparametric statement of the Frisch-Slutzky paradigm. The com-
mon additional assumptions that the causal effects are additive and that the treatments are shocks
place substantial restrictions on the underlying dynamic causal estimands. We use this structure
to causally interpret several common estimation strategies. We provide sufficient conditions under
which local projections is causally interpretable and show that the standard assumptions for local
projections with an instrument are not sufficient to identify dynamic causal effects. We finally
show that the structural vector moving average form is causally equivalent to a restricted potential
outcome time series under the usual invertibility assumption.
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1 Introduction

Many of the most important empirical questions in macroeconomics center on dynamic causal effects.

A dynamic causal effect traces out the effect of some policy intervention or change in economic condi-

tions on observed macroeconomic variables over time. For example, suppose the Federal Open Market

Committee raises the target Federal funds rate by 25 basis points. How will this affect unemploy-

ment over the next several quarters? To answer this type of question, empirical macroeconomists

typically rely on models that are estimated on aggregate time series data. In this paper, we provide

a nonparametric framework for causal inference on macroeconomic time series data.

Conceptualizing and estimating dynamic causal effects from time series data is challenging. Dy-

namic feedback between the treatments and observed outcomes makes it difficult to disentangle causes

from effects. Therefore explicit assumptions about the timing of such responses are often necessary

(Sims, 1972, 1980). Additionally, the econometrician usually only observes several decades of monthly

time series data and so, obtaining precise estimates is difficult. Given these challenges, much of the

literature on dynamic causal effects in macroeconomics typically relies on parametric linear models.

Canonical examples are structural vector autoregressions (Sims, 1980) and local projections (Jordá,

2005).1 While tractable, the heavy emphasis on linear models has drawbacks. The strong functional

form assumptions may implicitly impose substantial restrictions on the underlying dynamic causal ef-

fects. If so, are these restrictions plausible in the empirical applications of interest? Moreover, the role

of particular sets of assumptions are often unclear in existing approaches. Is an assumption needed to

define a dynamic causal effect, identify a dynamic causal effect or simplify estimation? For example,

it is common in macroeconomics to restrict attention to the causal effects of “shocks” (Frisch, 1933;

Slutzky, 1937; Ramey, 2016). Is this a convenient choice or does it reflect something deeper?

We address each of these questions by building upon the nonparametric potential outcome time

series of Bojinov and Shephard (2019), which sought to analyze randomized experiments carried

out on time series. We extend this to common observational settings. Our setting is familiar to

macroeconomists. We have a time series observed over t = 1, . . . , T periods made up of a vector

of treatments Wt and a vector of outcomes Yt. Following the cross-sectional tradition (Imbens and

Wooldridge (2009); Imbens and Rubin (2015)), there is a vector of potential outcomes associated

with each outcome that describe what would have been observed along alternative dynamic treatment

1Structural vector autoregressions are typically motivated as a linear approximation to an equilibrium arising from an
underlying dynamic stochastic general equilibrium model such as Christiano et al. (1999, 2005), Smets and Wouters
(2003, 2007). However, there are exceptions such as Priestley (1988), Engle et al. (1990), Gallant et al. (1993), Koop
et al. (1996) that directly examine the impulse response functions of non-linear, multivariate time series models.
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paths. A dynamic causal effect is then generically defined as the comparison of potential outcomes

along different treatment paths at a fixed point in time. We believe that the potential outcome time

series framework provides a flexible, fully nonparametric foundation upon which to build new methods

and interpret existing methods for causal inference on time series.

With this as our starting point, we make four novel contributions to the macroeconometric lit-

erature. First, we introduce a variety of new concepts that deepen our understanding of dynamic

causal effects and suggest new ways of thinking about them. Many of these will extend ideas that are

well understood in cross-sectional work to the time series setting. For example, we discuss additional

restrictions on dynamic causal effects such as additivity that play an enormous role in existing em-

pirical work in macroeconomics. We also introduce several dynamic causal estimands. The estimands

differ based upon what is treated as random and therefore averaged over. For example, what we call

the “weighted causal effect” averages differences of potential outcomes over the random assignment

of the treatment paths holding the potential outcomes fixed, whereas the “causal response function”

averages over both the random treatment paths as well as the potential outcomes.

This distinction is a novel conceptual contribution. In particular, researchers currently attempt

to make causal statements that hold in all periods – e.g. “a 25 basis point increase in the Federal

funds rate causes unemployment to rise by 0.5 percentage points.” This is captured in the literature’s

primary focus on the impulse response function. Using microeconometric nomenclature, these are

statements about superpopulation causal effects. We introduce a tractable notion of a sample causal

effect into time series that involves no out-of-sample extrapolation – e.g. “a 25 basis point increase

in the Federal funds rate caused unemployment to rise on average by 0.5 percentage points in the

period over which we have data.” This subtle difference is commonly discussed in microeconometrics

(Aronow and Samii, 2016; Abadie et al., 2018). To the best of our knowledge, we are the first to

introduce this distinction into time series macroeconometrics.

Second, we provide sufficient conditions for the nonparametric identification of these dynamic

causal estimands. The identifying assumption is that the treatments are non-anticipating. That is,

the assignment mechanism of the current treatment does not depend on future potential outcomes

conditional on past outcomes and treatments. When this does not hold, inference on dynamic causal

effects becomes difficult as treatment in the current period is correlated with future outcomes and

so, comparisons of observed outcomes along different treatment paths is confounded. In this sense,

we think of non-anticipation as the time series version of unconfoundedness. When the treatments

are non-anticipating, we show that we can construct nonparametric estimators that are unbiased,
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consistent, asymptotically normally distributed and can be used to provide exact testing of sharp

nulls or asymptotically conservative tests of more general hypotheses.

Third, we make substantial progress towards clarifying the causal content of common assumptions

in applied macroeconometrics. As mentioned, macroeconomists typically focus on the dynamic causal

effects of shocks (Frisch, 1933; Slutzky, 1937). To understand why, we provide a definition of a shock

in the potential outcome time series framework that formalizes the popular heuristic that shocks are

“unpredictable” (Ramey, 2016; Stock and Watson, 2016). We thereby provide a causal nonparametric

formalization of the dominant Frisch (1933)-Slutzky (1937) paradigm and refer to this as a shocked

potential outcome time series. We show that assuming that the treatments are shocks enormously

simplifies the study of dynamic causal effects. If the treatments are shocks and the causal effects

are additive, a wide variety of dynamic causal estimands become equivalent. We emphasize that this

assumption plays no role in the identification of dynamic causal effects – the identifying assumption

remains non-anticipation. It only simplifies analysis by collapsing the differences between several

dynamic causal estimands. We believe that the typical focus on shocks is the core reason that much

of the existing macroeconometric literature on dynamic causal effects has overlooked the subtle yet

important differences between the estimands that we introduce.

Finally, we use the shocked potential outcome time series framework to clarify the causal content

of several common methods in macroeconometrics. We consider local projections (LP), which estimate

dynamic causal effects by directly regressing an observed treatment on the outcome of interest at a

variety of lags (Jordá, 2005), and provide sufficient conditions such that LP identifies a well-defined

causal effect. A recent generalization of local projections uses an instrumental variable as a proxy for

an unobserved treatment (Jordá et al., 2015; Stock and Watson, 2018). This is referred to as LP-IV and

we show that the existing assumptions of LP-IV are not sufficient to identify a dynamic causal effect

and provide the extra sufficient condition. We also consider structural vector autoregressions (SVAR) –

a foundational tool for causal inference in time series (Sims, 1980) – and place SVARs into the shocked

potential outcome time series framework. We show that an SVAR is causally equivalent to a restricted

form of the shocked potential outcome time series under the usual invertibility assumption. Taken

together, these results illustrate that the shocked potential outcome time series framework provides a

natural starting point for causally interpreting existing empirical techniques in macroeconometrics.

Our work does not appear in a vacuum. Over the last several decades, statisticians and applied

microeconometricians have made enormous progress by defining causal effects nonparametrically as

the comparison of potential outcomes (Imbens and Rubin, 2015). This has been used to explore
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the nonparametric causal content of well-established empirical strategies such instrumental variables

estimation (Imbens and Angrist, 1994; Angrist et al., 1996; Mogstad et al., 2018). It has also spurred

the development of new tools for estimation and inference. Athey and Imbens (2017) and Abadie and

Cattaneo (2018) provide recent reviews of this literature. Our work is closely related to the literature

on dynamic treatment effects in small-T , large-N panels. This work has been hugely inspiring for us

and we are particularly influenced by the groundbreaking work of Robins (1986). The literature on

causal inference in panel data is enormous. Canonical references in statistics and microeconometrics

include Murphy et al. (2001), Murphy (2003), Abbring and Heckman (2007) and Heckman and Navarro

(2007), while recent work includes Heckman et al. (2016), Boruvka et al. (2018), Blackwell and Glynn

(2018) and Hernan and Robins (2019). Throughout the paper, we will continue to connect our work

with important research on causal inference in cross-sectional and panel settings.

Inference on dynamic causal effects is one of the great themes of the broader time series literature.

Researchers quantify causality in time series in a variety of ways such as using “Granger causality”

(Wiener, 1956; Granger, 1969), highly structured models such as DSGE models in macroeconomics

(Herbst and Schorfheide, 2015), behavioral game theory (Toulis and Parkes, 2016), state space mod-

elling (Harvey and Durbin, 1986; Harvey, 1996; Bondersen et al., 2015), Bayesian structural models

(Brodersen et al., 2015) as well as intervention analysis (Box and Tiao, 1975). The closest work to this

paper is Angrist and Kuersteiner (2011) and Angrist et al. (2018), which also study time series using

potential outcomes (see also White and Lu (2010) and Lu et al. (2017)). That work is importantly

different from our own as it avoids discussion of treatment paths, defining potential outcomes as a

function of a single prior treatment and also focus only on superpopulation causal effects. In a similar

spirit, Kuersteiner et al. (2018) import methods from microeconometrics, extending the regression

discontinuity design to estimate impulse response functions in time series settings. However, that

work avoids discussion of potential outcomes altogether.

The rest of this paper is structured as follows. In Section 2, we establish our main causal framework

by defining a potential outcome time series and dynamic causal effects, as well as discuss important

concepts such as additive causal effects. We also introduce a series of causal estimands such as

the weighted causal effect, the causal response function and clarify the role of the impulse response

function. Section 3 develops a nonparametric estimator for dynamic causal effects, thereby illustrating

how the nonparametric potential outcome time series framework can be used to directly develop new

estimation and inference strategies. We then transition to linear methods. In Section 4, we introduce

the shocked potential outcome time series and discuss its close links to the Frisch (1933)-Slutzky (1937)
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macroeconomic paradigm. Section 5 causally interprets the LP and LP-IV methods using the shocked

potential outcome time series framework. Section 6 compares and contrasts the local projection and

nonparametric approaches on two well-known empirical examples. Section 7 discusses structural vector

autoregressions. Section 8 concludes. Unless stated otherwise, we place longer proofs in Appendix A

for ease of exposition. We also collect a series of additional results including a Monte Carlo study in

our Web Appendix, labelled here Appendix B. Throughout the paper, we use standard path notation.

For a time series {At : t = 1, 2, . . . T}, let A1:t ≡ (A1, . . . , At).

2 Potential outcome time series and causal effects

We begin by laying out the potential outcome time series framework that is largely established in

Bojinov and Shephard (2019) for experiments on time series and adapt it to the observational settings

that are common in macroeconomics. We extend it to multivariate treatments and outcomes as well

as specialize the non-anticipating treatment assumption in a manner that can be implemented in

observational settings.

2.1 Potential outcome time series

Suppose there is a single unit that is observed over t = 1, . . . , T periods. At each time period, the

unit receives a nw-dimensional vector of treatments Wt and we observe a ny-dimensional vector of

outcomes Yt. A potential outcome is associated with each observed outcome, which describes what

would be observed at time t for a particular path of treatments.

Definition 1. The time-t k-th potential outcome is written as Yk,t(w1:T ) for k = 1, 2, ..., ny, where

w1:T ∈ WT is a treatment path and wt ≡ (w1,t, . . . , wnw,t)
′ has compact support W ⊂ Rnw .

Write Yt(w1:T ) ≡ (Y1,t(w1:T ), . . . , Yny ,t(w1:T ))′. For each possible treatment path, there is a different

vector of potential outcomes.2

As initially defined, the potential outcomes can depend on future treatments. It will be useful to

restrict the potential outcomes to only depend on the sequence of treatments up to the current period.

2In cross-sectional and panel settings, it is familiar to interpret the potential outcomes for a particular unit as non-
random. Then uncertainty arises due to the random assignment of treatments. If the potential outcomes themselves
are modeled as random variables, this is typically due to random sampling from some population of interest. Abadie
et al. (2017) and Abadie et al. (2018) refer to the former view as “design-based” uncertainty and the latter view as
“sampling-based” uncertainty. Here we allow for the potential outcome functions to either be non-random or random
conditional on the treatments, which will depend on the underlying model for the time series in applications.
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Assumption 1 (Non-anticipating potential outcomes). For each t = 1, . . . , T , Yt(w1:t, wt+1:T ) =

Yt(w1:t, w
′
t+1:T ) for all w1:T ∈ WT , w′t+1:T ∈ WT−t.

With Assumption 1, we drop the potential outcomes dependence on future treatments and write

Yk,t(w1:t) for k = 1, . . . , ny and similarly Yt(w1:t). Think of Yt(w1:t) as the outcomes if the “state of

nature” followed the path w1:t. The collection of potential outcomes at time t is written as

Yt(•) ≡ {Yt(w1:t) : w1:t ∈ Wt}

and the potential outcome paths up to time t as Y1:t(•) ≡ {Y1(•), . . . , Yt(•)}. This describes the set

of all possible paths of potential outcomes, while y1:T (•) is the realized version of Y1:T (•).3

We next introduce an assumption on the treatment path assignment mechanism of W1:T and

assume that it is non-anticipating. That is, we restrict the treatment assignment mechanism to only

depend on past outcomes and treatments.

Assumption 2 (Non-anticipating treatment paths). For each t = 1, . . . , T and all wt ∈ W and w1:t−1

and y1:T (•), the treatments obey

Pr{Wt ≤ wt|W1:t−1 = w1:t−1, Y1:t−1(w1:t−1) = y1:t−1(w1:t−1), Yt:T (w1:t−1, •) = yt:T (w1:t−1, •)}

= Pr{Wt ≤ wt|W1:t−1 = w1:t−1, Y1:t−1(w1:t−1) = y1:t−1(w1:t−1)}.

The time-t treatment is conditionally independent from the current and future potential outcomes.4

In other words, this means that Yt:T (w1:t−1, •) does not Granger cause Wt (Sims, 1972; Chamberlain,

1982; Engle et al., 1983; Kuersteiner, 2010; Lechner, 2011; Hendry, 2017). We interpret Assumption

2 as the time-series analogue of unconfoundedness. It will allow us to develop estimators for a variety

3The attraction of using potential outcomes given treatment paths is deep, linking to Savage (1954) subjective probability
for each path. They have a storied history in econometrics and statistics (Neyman, 1923; Roy, 1951; Kempthorne, 1955;
Cox, 1958; Rubin, 1974; Robins, 1986). Textbook surveys include Angrist and Pischke (2009), Imbens and Rubin (2015)
and Hernan and Robins (2019). Robins (1986) pioneered the use of potential outcomes and treatment paths for panel
data. Robins et al. (1999) used them for binary time series and Bondersen et al. (2015) used them for state space
models. Recently, Bojinov and Shephard (2019) and Blackwell and Glynn (2018) use outcome and treatment paths in
more general settings. Similar in spirit to this work, Angrist and Kuersteiner (2011) and Angrist et al. (2018) also study
time series using potential outcomes but avoid paths, instead focusing on Yk,t(wt−p) for discrete policy treatments wt−p.
Dawid (2000) provides a classic critique of potential outcomes.

4In panel data settings, Robins (1994), Robins et al. (1999) and Abbring and van den Berg (2003) use this type of
“selection on observables” assumption for the treatment paths W1:T . Angrist and Kuersteiner (2011) and Angrist et al.
(2018) use a related assumption on time series but without treatment paths. Bojinov and Shephard (2019) use the
weaker assumption that : Pr(Wt ≤ wt|W1:t−1, Y1:T (•)) = Pr(Wt ≤ wt|W1:t−1, Y1:t−1(•)). The difference is unimportant,
but the one we use here is easier to implement in observational studies. The Bojinov and Shephard (2019) assumption
is equivalent to the “latent sequential ignorability” assumption of Ricciardi et al. (2016) when T = 2. In a broader
context, this type of assumption is called “latent ignorable” (Frangakis and Rubin, 1999).
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of dynamic causal estimands of interest that have desirable properties. Aside from Assumption 2, we

place no further restrictions on the treatment paths for now.

We finally make an assumption about the data that the econometrician observes. Denote the

observed treatment and outcome paths as wobs1:T and yobs1:T respectively.

Assumption 3 (Observed data). The observed outcome path obeys yobs1:T = y1:T (wobs1:T ).

We are now ready to state the basic causal framework for this paper.

Definition 2 (Potential outcome time series). A time series of treatments and potential outcomes

that satisfies Assumptions 1, 2 and 3 is a potential outcome time series.

Remark 2.1 (Expectations of future treatments and non-anticipation). Macroeconomists often con-

sider how treatment decisions today are influenced by the distribution of future outcomes and how they

in turn vary with treatments. For example, consumers and firms are modelled as forward-looking and

so, expectations about future outcomes influence behavior today. A simple optimization-based version

of this (e.g. in the tradition of Muth (1961), Lucas (1972), Sargent (1981)) is:

Wt = arg max
wt

E[ max
wt+1:T

U(Yt:T (w1:T ), wt:T ) |Y1:t−1(W1:t−1),W1:t−1 = w1:t−1], (1)

where U is a utility function of future outcomes and treatments. The expectation is over the law of

Yt:T (•). This decision rule delivers Wt, Yt(W1:t). This is a potential outcome time series, where non-

anticipation Assumptions 1 and 2 hold.5 In Equation (1), the treatment Wt is a deterministic function

of past data. The potential outcome time series framework that we laid out is more general.

Finally, we introduce an example of a dynamic causal effect in macroeconomics and place it in a

potential outcome time series to illustrate our core assumptions.

Example 1 (Monetary policy). Suppose the Federal Reserve raises the Federal funds rate by 25 basis

points. What is the dynamic causal effect of this change on unemployment, Yt? For now, treat the

Federal funds rate itself as the treatment Wt. The non-anticipating potential outcomes Assumption

1 restricts unemployment in the current period Yt to not depend on future realizations of the Federal

Funds rate Wt+1:T conditional on current and past realizations of W1:t. Expectations about future

values of the Federal Funds rate may affect the unemployment rate today. The non-anticipating treat-

ment Assumption 2 restricts the choice of the Federal Funds rate at time t to only depend on past

5The non-anticipation assumptions are similarly plausible if a different model for expectations is used. “Natural expecta-
tions” as in Fuster et al. (2010) or “diagnostic expectations” as in Bordalo et al. (2018) both only allow current decisions
to depend on (possibly biased) beliefs about future outcomes, not the exact realizations along alternative paths Yt(w1:t).
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potential outcomes of the unemployment rate Y1:t−1 and past choices W1:t−1. In observational data,

the treatments may not be non-anticipating and Assumption 2 may not hold. For instance, the Fed-

eral Reserve may have private information (e.g. information about the health of the financial system)

that helps predict future potential outcomes. However, by increasing the dimension of Yt to include

such observable financial information, Assumption 2 could be made to hold. The issue of unobserved

omitted variables is discussed more extensively in Section B.1 of the Web Appendix.

2.2 Time-t causal effects

2.2.1 General case

Causal effects are comparisons of potential outcomes at a particular point in time along different

treatment paths. We follow the formal definition provided in Bojinov and Shephard (2019). While

similar, this is different from Robins (1986) and subsequently Angrist and Kuersteiner (2011), Boruvka

et al. (2018) and Angrist et al. (2018). Each focus on a superpopulation version of causal effects that

are often referred to as “average causal effects.” In contrast, we work in the cross-sectional tradition

that manipulates causal effects without reference to superpopulations (Imbens and Rubin, 2015). This

will offer new opportunities in the context of time series.

Definition 3 (Causal effect). For a potential outcome time series, the time-t causal effect of W

on Y for treatment path w1:t and counterfactual path w′1:t is

τt(w,w
′) ≡ Yt(w1:t)− Yt(w′1:t).

The time-t causal effect on the k-th outcome is τk,t(w,w
′) ≡ Yk,t(w1:t)− Yk,t(w′1:t).

Suppose we move the j-th treatment at time t − p, wj,t−p, and measure the change in the k-th

outcome p ≥ 0 periods later, Yk,t(w1:t). Bojinov and Shephard (2019) refer to these as “p-lag causal

effects.” We consider two versions of the p-lag causal effect.

Definition 4 (k, j-th lag-p time-t causal effects). For a potential outcome time series and scalars

w,w′, let w1:t = (w1:t−p−1, w1:j−1,t−p, w, wj+1:nw,t−p, wt−p+1:t) be the treatment path and let w′1:t =

(w1:t−p−1, w1:j−1,t−p, w
′, wj+1:nw,t−p, w

∗
t−p+1:t) be the counterfactual treatment path. Then, the k, j-th

lag-p time-t causal effect is

τk,j,t(w,w
′)(p) ≡ Yk,t(w1:t)− Yk,t(w′1:t).
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When w∗t−p+1:t = wt−p+1:t, this is the k, j-th lag-p time-t impulse causal effect, denoted as

τ∗k,j,t(w,w
′)(p).

The impulse causal effect only allows the j-th treatment at time t− p to vary between the treatment

and counterfactual paths. The more general case, which was not discussed in Bojinov and Shephard

(2019) and is important for macroeconomic applications, allows the treatments to subsequently vary

after time t − p. Heuristically, we think of the time-t impulse causal effect as analogous to a partial

derivative and the general time-t causal effect as a total derivative.

2.2.2 Causal equivalence

To analyze the causal connections between alternative models we define “causal equivalence.”

Definition 5 (Causal equivalence). Assume {Y1:T (•), X1:T (•)} is a potential outcome time series. If,

for every treatment path w1:t and counterfactual path w′1:t, the time-t causal effects satisfy

Yt(w1:t)− Yt(w′1:t)
as
= Xt(w1:t)−Xt(w

′
1:t),

then Y1:t(•) and X1:t(•) are causally equivalent.

To understand causal equivalence, vary w1:t solely, keeping the counterfactual fixed at some refer-

ence path w̄1:t. If Y1:T (•) and X1:T (•) are causally equivalent, then Yt(w1:t) = Xt(w1:t) + Ut as w1:t

varies, where Ut = Yt(w̄1:t) − Xt(w̄1:t) is fixed and does not vary with w1:t. We label Ut a “causal

nuisance.” It may produce different time-series properties in Yt(w1:t) and Xt(w1:t) but it does not gen-

erate differing time-t causal effects. So, put in another way, if Y1:T (•), X1:T (•) are causally equivalent,

then they are equal up to a causal nusiance. Finally, causal equivalence depends on the scale of the

outcomes. That is, Yt(•) and cYt(•) are not causally equivalent unless the constant c = 1.

2.2.3 Additive casual effects

We sometimes specialize the time-t causal effects to the additive case to link our results to the existing

macroeconomic literature on dynamic causal effects, which relies heavily on linear models.

Definition 6 (Additive time-t causal effects and I-additivity). Assume a potential outcome time series.

If, for every treatment path w1:t and counterfactual path w′1:t,

τt(w,w
′) =

t−1∑
s=0

βs,t(wt−s − w′t−s),
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where βs,t are non-stochastic, ny×nw-dimensional matrices, then the time-t causal effects are additive.

The matrices βs,t are the causal coefficients. The causal effects are time-invariant additive or

I-additive if βs,t = βs for t = 1, 2, ..., T ,

To draw an analogy, additive time-t causal effects are the time series analogue of linear causal effects

in cross-sectional settings, Yi(t) = αi + βit for the i-th unit. Similarly, the restriction of I-additivity is

akin to the additional restriction that αi = α, βi = β for all units.

Before continuing, we state two immediate results.

Proposition 2.1. For a potential outcome time series, the following holds:

i. Under time-t additive causal effects, the k, j-th lag-p time-t causal effect is τk,j,t(w,w
′)(p) =

βp,k,j,t(w − w′) +
∑p

s=1

∑nw
i=1 βs,k,i,t(wi,t−p+s − w′i,t−p+s), where βp,k,j,t is the k, j-th element of

βp,t. The k, j-th lag-p time-t impulse causal effect is τ∗k,j,t(w,w
′)(p) = βp,k,j,t(w − w′).

ii. Assume {Y1:T (•), X1:T (•)} is a potential outcome time series with I-additive causal effects and let

βY0:T−1 and βX0:T−1 be their respective causal coefficients. Then, Y1:T (•) and X1:T (•) are causally

equivalent for t = 1, 2, ..., T if and only if βY0:T−1 = βX0:T−1.

2.2.4 Time-t weighted causal effects

We now introduce a series of causal estimands that are built upon the k, j-th lag-p time-t causal effects.

When we calculate τk,j,t(w,w
′)(p) = Yk,t(w1:t) − Yk,t(w′1:t) either using the impulse form or general

form, there are many possible treatments and counterfactual paths that are consistent with passing

through wj,t−p = w and w′j,t−p = w′. Each possible path leads to a valid time-t causal effect. Bojinov

and Shephard (2019) focus on k, j-th lag-p time-t causal effects of the form

τk,j,t(w,w
′)(p) = Yk,t(w

obs
1:t−p−1, wt−p:t)− Yk,t(wobs1:t−p−1, w

′
t−p:t), (2)

and then use freely selectable weights to summarize different possible paths from time t− p to time t.

The structure in Equation (2) uses the observed treatment path wobs1:t−p−1 in both the treatment and

counterfactual. The price paid for this simplification is that we restrict attention to causal effects along

the observed treatment path wobs1:t−p−1. The weights are then used to average over the time-t causal

effects along different, future treatment paths. The particular choice of the weights is application-

specific and chosen to produce the most relevant average for the application. Section B.2 discusses

general weight functions. Here we focus on one particular choice that we will focus on: the weighted

causal effect.
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Definition 7 (Weighted causal effect). For a potential outcome time series, the k, j-th lag-p time-t

weighted causal effect τ̄k,j,t(w,w
′)(p) is

EW |Y (•)[Yk,t(W1:t) |wobs1:t−p−1, y
obs
1:t−p−1,Wj,t−p = w]−EW |Y (•)[Yk,t(W1:t) |wobs1:t−p−1, y

obs
1:t−p−1,Wj,t−p = w′].

The expectation operator EW |Y (•)[ · ] is defined with respect to the law of

W−j,t−p:t | {wobs1:t−p−1, y
obs
1:t−p−1,Wj,t−p = w, Yt−p:t(•)},

where w−j,t−p:t = (w1:j−1,t−p, wj+1:nw,t−p, wt−p+1:t) denotes all elements of wt−p:t except wj,t−p.

In Definition 7, the averaging is over the random treatment path, conditional on some aspects of the

history of the treatments and varying the j-th treatment at time t− p. The potential outcomes here

are fixed. The average k, j-th lag-p weighted causal effect is simply a time average of the weighted

causal effects and is written as

τ̄k,j(w,w
′)(p) ≡ 1

T − p

T∑
t=p+1

τ̄k,j,t(w,w
′)(p).

2.2.5 Time-t causal response function

So far we have studied causal effects conditional on Yt−p:t(•). Now view Yt−p:t(•) as random, joining

the already random treatment path Wt−p:t, averaging the weighted causal effect τ̄k,j,t(w,w
′)(p) over

the potential outcomes Yt−p:t(•) holding fixed the observed outcomes yobs1:t−p−1. By applying iterative

expectations to the weighted causal effect, we get the following object.

Definition 8 (Causal response function). For a potential outcome time series, let the expectation

operator EW,Y denote the expectation over the joint law of the treatment path W1:t and the potential

outcomes Y1:t(•). Define the k, j-th lag-p time-t causal response function as

CRFk,j,t(w,w
′)(p) ≡ EW,Y (•)[τ̄k,j,t(w,w

′)(p) | yobs1:t−p−1, w
obs
1:t−p−1].

If the expectations exist, then CRFk,j,t(w,w
′)(p) can be written as

EW,Y (•)[Yk,t | yobs1:t−p−1, w
obs
1:t−p−1,Wj,t−p = w]− EW,Y (•)[Yk,t | yobs1:t−p−1, w

obs
1:t−p−1,Wj,t−p = w′],

where Yk,t = Yk,t(W1:t) as shorthand.
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The temporal average

CRFk,j(w,w
′)(p) ≡ 1

T − p

T∑
t=p+1

CRFk,j,t(w,w
′)(p),

is the average k, j-th lag-p causal response function. While similar, the causal response function is

different than the usual impulse response function defined in the macroeconometric literature as the

causal response function conditions on the observed treatment and outcome paths. We also note that

the causal response function is similar to the estimand of interest in Angrist et al. (2018).

2.2.6 Is the impulse response function causal?

We now turn to the dominant causal estimand of interest in the macroeconometric literature – the

impulse response function (IRF). It is standard to study dynamic causal effects through the IRF.

Definition 9 (Impulse response function). Assume Yk,t = Yk,t(W1:t) and Wj,t are jointly strictly

stationary and

IRFk,j(w,w
′)(p) ≡ E[Yk,t |Wj,t−p = w]− E[Yk,t |Wj,t−p = w′],

exists, where here E[·] is calculated from the joint law of Yk,t,Wj,t−p. Then, IRFk,j(w,w
′)(p) is an

impulse response function (IRF) as p varies.

IRFs were introduced by Sims (1980) for vector autoregressions. Reviews of this literature include

Kilian (2011), Ramey (2016), Stock and Watson (2016) and Kilian and Lutkepohl (2017). The IRF

is widely interpreted causally. As the index p changes, IRFs are viewed as tracing out the dynamic

causal effect of the j-th treatment on the k-th outcome (Stock and Watson, 2018).

However, without additional assumptions, the IRF has no causal meaning. It is just the difference

of two conditional expectations where the conditioning variable is evaluated at two different values.

Causal inference is about measuring what happens if Wj,t−p is moved from w to w′. The IRF does

not in general answer that question. This is well known in the literature, which typically works with

IRFs in the context of parametrized causal models such as the structural vector moving average in

Sims (1980). The additional parametric assumptions gave the IRFs causal content.

We can directly link the IRF to the CRF through the following result. This shows that the IRF

has a nonparametric causal meaning if phrased within the potential outcome time series framework

and we are able to use strict stationarity.
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Theorem 2.1. Assume a potential outcome time series and Yk,t := Yk,t(W1:t) and Wj,t are jointly

strictly stationary. Then, if the expectations exist, EW1:t−p−1,Y1:t−p−1 [CRFk,j,t(p)] = IRFk,j(w,w
′)(p).

Proof. If the expectations exist, then EW1:t−p−1,Y1:t−p−1 [CRFk,j,t(p)] = E[Yk,t(W1:t) |Wj,t−p = w] −

E[Yk,t(W1:t) |Wj,t−p = w′], and the RHS is the IRF.

In Theorem 2.1, the joint distribution of paths and outcomes is used to average over the older history

of the treatment path. In this sense, the IRF is attractive as it does not depend upon the time period

t, the observed outcomes yobs1:t−p nor the observed treatments wobs1:t−p. However, this averaging is a form

of extrapolation, assuming the form of causality seen in the sample holds universally over time. This

may be true but it is a substantial additional leap to make.

3 Nonparametric estimation of dynamic causal effects

In this section, we discuss nonparametric inference for dynamic causal estimands. Much of the existing

macroeconometric work focuses on two linear estimation methods – local projection and structural

vector autoregressions. Beginning in Section 4, we will directly discuss these linear approaches.

3.1 Background

Before continuing, we briefly discuss some existing causal work in macroeconomics as motivation.

On top of the usual problem of causal inference that it is not possible to observe both Yt(W1:t) and

Yt(W
′
1:t), there is an additional challenge in macroeconomics – the treatments of interest W1:t are hard

to measure. For example, a monetary policy shock refers to the “surprise” or “unexpected” component

of monetary policy announcements and so, measures of this shock must be constructed from data. The

same is true of technology shocks and energy price shocks. These constructed measures are then used

as an input to estimating dynamic causal effects. Putting these difficulties aside, it is common to

attempt to directly link treatments Wj,t−p to outcomes Yk,t in macroeconomics, assuming that the

treatment of interest is accurately measured.

One of the earliest attempts to directly measure macroeconomic shocks is Romer and Romer

(1989), which uses a “narrative approach”, scouring the minutes from Federal Reserve Open Market

Committee meetings to identify six post World War II cases in which the Federal Reserve intervened

in an attempt to reduce inflation by engineering a recession. The authors then use these historical

episodes to estimate the causal effect of monetary policy shocks on macroeconomic variables, Yk,t.

Following this, Romer and Romer (2004) construct a time series of monetary policy shocks over the
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period 1969-1996 using the narrative approach and Romer and Romer (2010) analyze presidential

speeches and congressional records to construct measures of fiscal policy shocks. Mertens and Ravn

(2013) also construct a series of narratively identified, exogenous federal tax liability changes.

In a similar spirit, Rudebusch (1998) constructs measures of monetary policy shocks by using

high-frequency changes in the rates of Federal funds futures contracts in a small window around

FOMC announcements. A large literature has since directly regressed a variety of real and financial

macroeconomic variables on such constructed shocks to study the causal effect of monetary policy

shocks on the macroeconomy (e.g. Kuttner (2001), Cochrane and Piazessi (2002), Faust et al. (2003),

Bernanke and Kuttner (2005), Gurkaynak et al. (2005) and recently Nakamura and Steinsson (2018)).

Hamilton (2003) and Kilian (2008) construct a measure of oil price shocks to estimate the “causal

effect” of oil price shocks on the macroeconomy. More recently, Ramey and Zubairy (2018) use

regressions to estimate fiscal multipliers on government spending by using historical information on

changes in defense spending to measure fiscal policy shocks.

3.2 Nonparametric estimator of the weighted causal effect

Suppose we observe both the outcome Yk,t = Yk,t(W1:t) and treatment of interest Wj,t−p. This is likely

after a great deal of measurement work. For each time period t, we develop an estimator of the k, j-th

time-t weighted causal effect τ̄k,j,t(w,w
′)(p) in Definition 7 and its temporal average τ̄k,j(w,w

′)(p).

The properties of the estimator will be derived by regarding the non-anticipating treatment path as

random holding the potential outcomes fixed.6

We use the triangular filtration notation FT,t (pg. 53 of Hall and Heyde (1980)) to denote the

history {wobs1:t , y
obs
1:t , Yt+1:T (•)}. We will also write the weighted causal effect τ̄k,j,t(w,w

′)(p) as

EW |Y (•)
T,t−p−1[Yk,t(w

obs
1:t−p−1,Wt−p:t) |Wj,t−p = w]− EW |Y (•)

T,t−p−1[Yk,t(w
obs
1:t−p−1,Wt−p:t) |Wj,t−p = w′] (3)

to emphasize that the expectation is taken conditional on this filtration.

In this subsection, we follow the vast bulk of the nonparametric causal literature in assuming that

the support of the treatments, W, is discrete. We will deal with the continuous treatment case later

in this subsection. To make progress, we additionally assume that the non-anticipating treatment is

probabilistic. Denote pj,t(w) ≡ Pr(Wj,t = w | FT,t−1).

6Fixing the potential outcomes follows in the microeconometrics tradition discussed by Imbens and Rubin (2015), Abadie
et al. (2017) and Abadie et al. (2018) and traces back to Fisher (1925, 1935) and Cox (1958). Bojinov and Shephard
(2019) first introduced this approach into time series experiments.
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Assumption 4 (Probabilistic treatment). For all t ≥ 1, FT,t−1 and w ∈ W, pj,t(w) > 0.

Assumption 4 is the analogue of the overlap assumption made in cross-sectional settings.7 We maintain

that the treatments are non-anticipating given in Assumption 2.

Define a Horvitz and Thompson (1952) style estimator

ˆ̄τk,j(w,w
′)(p) ≡ 1

T − p

T∑
t=p+1

ˆ̄τk,j,t(w,w
′)(p), ˆ̄τk,j,t(w,w

′)(p) ≡
yobsk,t

{
1(wobsj,t−p = w)− 1(wobsj,t−p = w′)

}
pj,t−p(wobsj,t−p)

.

(4)

This estimator appears in Angrist et al. (2018), but for a different estimand – which is closer to

CRFk,j(w,w
′)(p), the superpopulation estimand that additionally averages over the potential out-

comes. Here we focus on the weighted causal effect which fixes the potential outcomes. This type of

estimator also appeared in Bojinov and Shephard (2019). Here it is much simpler due to the choice of

the weight function which appears in the expectations in the definition of the weighted causal effect.

3.2.1 Properties of ˆ̄τk,j,t(w,w
′)(p) and ˆ̄τk,j(w,w

′)(p)

The following theorem shows that ˆ̄τk,j,t(w,w
′)(p)− τ̄k,j,t(w,w′)(p) has martingale difference errors and

hence ˆ̄τk,j(w,w
′)(p) is unbiased, consistent and asymptotically normal under minimal conditions.

Theorem 3.1 (Randomization properties of ˆ̄τk,j,t(w,w
′)(p)). Assume a potential outcome time series

and Assumption 4. Let uk,j,t−p := ˆ̄τk,j,t(w,w
′)(p) − τ̄k,j,t(w,w′)(p). Then, over the law of the non-

anticipating treatment path,

EW |Y (•)
T,t−p−1[uk,j,t−p | FT,t−p−1] = 0, and EW |Y (•)[ˆ̄τk,j(w,w

′)(p)] = τ̄k,j(w,w
′)(p). (5)

Further η2
k,j,t−p ≡ V arW |Y (•)[uk,j,t−p|FT,t−p−1], exists. If the non-anticipating treatment paths sat-

isfy limT→∞
1

T−p
∑T

t=p+1 EW |Y (•)[η2
k,j,t−p] < ∞, then ˆ̄τk,j(p) − τ̄k,j(p)

p→ 0 as T → ∞. Finally, if

1
T−p

∑T
t=p+1 η̄

2
k,j,t−p

p→ η2
k,j > 0, then, over the non-anticipating treatment path,

√
T
{ˆ̄τk,j(p)− τ̄k,j(p)}

ηk,j

d→ N(0, 1). (6)

7There is a large literature in cross-sectional causal inference that studies the overlap assumption. For example, D’Amour
et al. (2018) considers the implications of overlap in high dimensional settings, Busso et al. (2014) analyzes the finite
sample performance of estimators in the presence of limited overlap and finally, Khan and Tamer (2010) discuss how
the failure of overlap leads to “irregular identification.” Although we do not explore them here, these issues extend to
the potential outcome time series setting.
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Again, the only source of randomness here is the path of the treatments and so Theorem 3.1 describes

properties of the randomization distribution of the estimator ˆ̄τk,j(p).

Remark 3.1. Assume a potential outcome time series and Assumption 4. Then, note:

1. The estimation error uk,j,t−p is a triangular martingale difference with respect to the filtration

FT,t−p−1. The conditional variance η2
k,j,t−p in Theorem 3.1 must exist as we have conditioned

on the potential outcomes, the treatments are defined over a compact set and pj,t−p(w) > 0 by

Assumption 4. The proof of Theorem 3.1 shows η2
k,j,t−p is

EW |Y (•)
T,t−p−1

(
y2
k,t(w

obs
1:t−p−1,Wt−p:t)

pj,t−p(w)
|Wj,t−p = w

)
+EW |Y (•)

T,t−p−1

(
y2
k,t(w

obs
1:t−p−1,Wt−p:t)

pj,t−p(w′)
|Wj,t−p = w′

)
−τ̄2

j,k,t(p).

2. In general, we cannot compute η2
k,j,t−p as some of the potential outcomes are unobserved. How-

ever, η̇2
k,j,t−p = η2

k,j,t−p + τ̄2
j,k,t(p) is an upper bound which can be estimated. It is likely to be

quite good unless the causal effect is large. Then, an unbiased estimator of η̇2
k,j,t−p is

ˆ̇η2
k,j,t−p(w,w

′)(p) =

(yobsk,t )2

{
1(wobsj,t−p = w) + 1(wobsj,t−p = w′)

}
pj,t−p(wobsj,t−p)

2
.

3. In practice, proxy outcomes can be used to reduce the variance of ˆ̄τk,j,t(w,w
′)(p). In cross-

sectional work, this approach leads to doubly robust estimators (e.g. Raz (1990), Robins et al.

(1994), Rosenbaum (2002), Bang and Robins (2005), Hennessy et al. (2016)). Here we find a

proxy that approximates Yk,t given information available at time t−p−1. For example, we could

use yobsk,t−p−1 and so the estimator becomes

ˆ̄τk,j,t(p) =
(yobsk,t − yobsk,t−p−1)

pj,t−p(wobsj,t−p)

{
1(wobsj,t−p = w)− 1(wobsj,t−p = w′)

}
.

Again, this is unbiased under the treatment assignment process. In this example, an unbiased

estimator of the upper bound of the variance of the proxy is therefore

(yobsk,t − yobsk,t−p−1)2

pj,t−p(wobsj,t−p)
2

{
1(wobsj,t−p = w) + 1(wobsj,t−p = w′)

}
.

4. In Section B.3 of the Web Appendix, we extend the results in Theorem 3.1 to provide an unbiased,

nonparametric estimator of the causal response function defined in Definition 8.
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3.2.2 Testing for dynamic causal effects

One way of assessing the significance of the treatment on the outcome is through a sharp null hypothesis

(Fisher (1925, 1935), Bojinov and Shephard (2019)) of no temporal causal effect

H0 : Yk,t(w1:t) = Yk,t(w
′
1:t), for all w1:t, w

′
1:t, t = 1, ..., T, k = 1, ..., nw.

Under this sharp null, yobs1:T = y1:T (w1:T ) for all w1:T ∈ WT . Therefore, under the sharp null, all poten-

tial outcome paths are y1:T (•) known and so, it is possible to simulate the randomization distribution

of an estimator by simulating new treatment paths. New treatment paths can be simulated using the

prediction decomposition and the repeated application of Assumption 4 if the treatment probability

pj,t(w) is known.8 These simulations are used to compute the exact null distribution of any causal

test statistic against a portmanteaux alternative. In particular, we can compute the exact p-value of

the observed statistic and construct exact confidence intervals through test inversion.9

The sharp null rules out temporal causal effects at every time period (but see Wu and Ding

(2018)). A weaker version is the null hypothesis of no average temporal causal effect at lag-p of the

j-th treatment on the k-th outcome as we move the treatment from w to w′. This is written as

H0 : τ̄k,j(w,w
′)(p) = 0.

In cross-sectional work, this is often called a Neyman null (e.g. Ch. 6 of Imbens and Rubin (2015)).

We can test this null using the central limit theorem given in Theorem 3.1. Under the null H0,
√
T ˆ̄τk,j(w,w′)(p)
η̄k,j(w,w′)(p)

d→ N(0, 1) as T → ∞. This can be used to form a conservative test whose limiting

distribution can still be compared to a standard normal random variable. In particular, consider

Zk,j(w,w
′)(p) =

√
T ˆ̄τk,j(w,w

′)(p)

ˆ̇ηk,j
, ˆ̇η2

k,j =
1

T − p

T∑
t=p+1

ˆ̇η2
k,j,t−p.

8If pj,t(w) is only known up to a finite number of parameters, pj,t(w |λ), then posterior predictive P-values (Meng (1994))
can be exactly computed by also sampling (under the null) from the posterior λ |Y1:T (•),W1:T (based on the conditional
likelihood W1:T |λ, Y1:T (•) and a prior for λ) which gives posterior samples from pj,1:T (w |λ). This allows us to simulate
from W1:T |Y1:T (•) which determines the test statistic and so the posterior predictive P-value of the observed test
statistic. Notice this approach requires no modelling of the outcomes, only the j-th treatments. Alternative classical
inference based on parametrized models and nonparametric methods is discussed by, for example, Hirano et al. (2003).

9Extending this argument, suppose outcomes and treatments are univariate. Then define the lag-p additive hypothesis:

Hp
0 : Yt(w1:t) = Yt(w

′
1:t) + βp(wt−p − w′t−p), for all w1:t, w

′
1:t, t = 1, ..., T.

Fix βp and compute yt(w1:t) = yobst +βp(wt−p−wobs
t−p) for all w1:t and t. Then, we simulate from W1:T | {Y1:T (•), βp} to

evaluate the p-value of any test statistic given βp. Exact confidence regions for βp can be constructed via test inversion.
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We reject the null if Zk,j(w,w
′)(p) is significantly far from 0. This testing approach is nonparametric

and only assumes that the non-anticipating treatments are probabilistic. Much progress has been

made in the microeconometric literature by focusing attention on tests in this spirit even though they

are conservative and asymptotic.10

From a more fundamental methodological perspective, note that this test is conditional on the

potential outcomes. This is appropriate for testing for causal effects during the observed period of time.

Continuing an earlier example, it is reasonable to treat the potential outcomes as fixed when testing

the causal effect of changes in the Federal funds rate on unemployment during the 1980s. However,

this test provides no guarantees about the causal effects outside of the observed stretch of data. The

advantages and disadvantages of building econometric methods that do not attempt to extrapolate

beyond the current data is much discussed in the microeconometrics literature (e.g. Angrist and

Pischke (2010)). This strict non-extrapolation approach may be less appealing in macroeconometrics

(see the discussion in Sims (2010)) as replication of results with new datasets and summarizing the

results through meta-analysis is potentially more difficult in many applications of interest. However,

non-extrapolation of causal results may well make our causal statements more realistic. Using these

base results, we can also derive martingale difference based results for the causal response function.

The extension to that case is somewhat routine and is discussed in Section B.3.

3.2.3 Nonparametric estimator with continuous treatments

There is a modest literature on the nonparametric estimation of causal effects when treatments are

continuous in cross-sectional and panel settings. For example, Hirano and Imbens (2004) study con-

tinuous treatments using “generalized propensity scores.” Marginal structural models of Robins et al.

(2000) provide parametric and series based nonparametric strategies to deal with continuous treat-

ments. Cattaneo (2010) provides an extensive discussion of the multivalued case and the related

literature. Yang et al. (2016) is a recent paper on this topic.

Write Fj,t(w) = Pr(Wj,t ≤ w|FT,t−1). Then, using a bandwidth h > 0, define the time-t estimator

ˆ̄τk,j,t(w,w
′) ≡

yobsk,t

(
1(wobsj,t−p ∈ [w − h,w + h])− 1(wobsj,t−p ∈ [w′ − h,w′ + h])

)
Fj,t−p(wobsj,t−p + h)− Fj,t−p(wobsj,t−p − h)

. (7)

Its temporal average is ˆ̄τk,j(w,w
′)(p) := 1

T−p
∑T

t=p+1
ˆ̄τk,j,t(w,w

′)(p). This binned estimator is simply

10In Monte Carlo experiments, Bojinov and Shephard (2019) suggest that the distortion produced by the conservative
test is modest. This is encouraging evidence but will not hold universally. For example, the distortions may be sizable
if the true causal effects are very large.
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the difference of two kernel type estimator of the causal effect (e.g. Silverman (1986)). The vital

point is that the nonparametrics is only in the single dimension of Wj,t−p, so there is no “curse of

dimensionality” in this problem.

More formally, the optimal mean square error nonparametrics will typically reduce the rate of

convergence of ˆ̄τk,j(w,w
′)(p) from T−1 in the discrete case to T−4/5 for the continuous case. However,

this rate reduction holds uniformly across all of p, ny and nw. We formalize this statement in Section

B.4 in the Web Appendix. We compute the estimator’s bias, variance and the optimal selection of h to

optimize the mean square error under various smoothness assumptions.11 All of this work is routine

from the kernel literature. The results from a Monte Carlo experiment grounded in our empirical

results from Section 6 are given in Web Appendix Section B.6.

4 Frisch-Slutzky paradigm, shocks and SVMA

4.1 Background

In a potential outcome time series, the non-anticipating treatment path causally affects an outcome

path. In the literature on the Frisch (1933)-Slutzky (1937) paradigm in macroeconomics, we do not see

non-anticipation type assumptions. Instead, each treatment is assumed to be unpredictable given the

past, which is a significantly stronger assumption. We label such treatments “shocks.” For example,

typical shocks of interest are monetary policy shocks, oil price shocks or technology shocks. Here we

bring together the literature on shocks with the potential outcome time series.

4.2 Shocked potential outcome time series

When we map shocks to the nonparametric causal framework laid out in Section 2, we view a shock

as a particular type of non-anticipating treatment. Recall that under Assumption 2, non-anticipating

treatment paths are determined by the law of Wt |W1:t−1, Y1:t−1. We say the time-t treatment is

a shock if it is non-anticipating and additionally if it is a martingale difference with respect to the

filtration generated by the potential outcome time series (e.g. Hall and Heyde (1980)).

11A simple way to select the bandwidth is to minimize the sum of the squared bias plus con-
servative variance: hk(p)4b2k(p) + hk(p)−1 1

T−p
v2k(p), where the bias is, under linearity, b2k(p) =

β2
p,k

1
9(T−p)

∑T
t=p+1 (d log ft−p(w)/dw − d log ft−p(w′)/dw)

2
. So, the approximate sum of squared bias is large if

the density of the treatment is varying strongly and if the squared linear projection treatment effects are large. Hence

a reasonable choice is hk(p) = (T − p)−1/5
(
0.25v2k(p)b−2

k (p)
)1/5

. Therefore the bandwidth will be wide if the variance
is large compared to the sum of squared bias. We have used this approach in our empirical work discussed in Section
6 and Monte Carlo studies in the Web Appendix Section B.6.
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Definition 10 (Treatments as shocks). For a potential outcome time series, if, for all W1:t−1, Y1:t−1,

E[Wt |W1:t−1, Y1:t−1] = 0, and V ar(Wt |W1:t−1, Y1:t−1) = diag{σ2
1,t, . . . , σ

2
nw,t},

then the time-t treatment is a shock.

This provides the formal definition of a shock in a nonparametric causal framework. First, for

a potential outcome time series Wt is non-anticipating as defined in Assumption 2. Second, the

shock Wt is unpredictable. This is often described heuristically in the literature. For example, Stock

and Watson (2018) describe macroeconomic shocks as “unanticipated structural disturbances” that

produce “unexpected changes” in the macroeconomic outcomes of interest.12 We additionally assume

the elements of the shock are conditionally mutually uncorrelated. This is also a standard interpretation

of a shock in the macroeconomic literature (Stock and Watson, 2016; Ramey, 2016). Note that the

individual conditional variances are free to vary through time which is useful as time-varying volatility

is important in macroeconomics (e.g. Stock and Watson (2003) and Justiniano and Primiceri (2008)).

We now bring this together to give a modern causal statement of the Frisch-Slutzky paradigm.

Definition 11 (Shocked potential outcome time series). Assume a potential outcome time series

has treatments which are shocks following Definition 10. Then the system is a shocked potential

outcome time series.

To make this concrete, we now illustrate the definition of a shock.

Example 1 (continued). Returning to the monetary policy example, now interpret Wt to be a monetary

policy shock associated with the Federal Funds rate as defined in Assumption 10. Wt is a monetary

policy shock if it is unforecastable given the available information up to time t − 1, {W1:t−1, Y1:t−1},

which may include past values of the Federal Funds rate and a long vector of observable macroeconomic

indicators. In other words, the monetary policy shock Wt is the “surprise” change in monetary policy.

Now return to the causal effects and the associated causal estimands defined in Section 2 and

consider a shocked potential outcome time series. These objects are enormously simplified under

additive causality and the martingale difference assumption on the treatments. This is summarized in

the following theorem.

12Ramey (2016) also describes shocks as: (1) “exogenous with respect to the other current and lagged endogenous
variables,” (2) “uncorrelated with other exogenous shocks” and (3) “either unanticipated movements in exogenous
variables or news about future movements in exogenous variables.”
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Theorem 4.1. If a shocked potential outcome time series has additive causal effects, then

CRFk,j,t(p) = τ̄k,j,t(w,w
′)(p) = τ∗k,j,t(w,w

′)(p) = βp,k,j,t(w − w′),

for each t ≥ p + 1. If additionally {Yk,t(W1:t),Wj,t} is a jointly stationary stochastic process and the

causal effects are I-additive, then also

IRFk,j(w,w
′)(p) = βp,k,j(w − w′).

Proof. Given in the Appendix.

This is one of our key results. If the treatments are shocks and the causal effects are additive,

then the weighted causal effect in Definition 7 and causal response function in Definition 8 are equal.

So, it is enormously simplifying to restrict causal effects to be additive and treatments to be shocks.

In particular, the choice of causal estimand no longer matters as they all identify the same objects

– the causal coefficients. The core causal insights in Theorem 4.1 are driven by the properties of

the treatments and the additive causal effects, not the time series properties of the outcomes. If we

strengthen the assumptions on the observed outcomes and treatments and invoke stationarity, then the

impulse response function in Definition 9 also identifies the causal coefficients. In macroeconometric

research, the focus is typically on linear models with shocks and consequently on βp,k,j,t, the causal

coefficients. As a result, this will be our focus for the rest of the paper as we relate our causal

framework to common macroeconometric techniques.

4.3 Structural vector moving average form

We now turn to linear versions of the shocked potential outcome time series model. This will connect

to much of the existing work on dynamic causal effects in macroeconomics.

Suppose Yt(w1:t) is differentiable with respect to w1:t. Then, Taylor expanding about some fixed

w̄1:t and writing the ny × nw matrix Θs,t = ∂Yt(w̄1:t)/∂w
′
s produces the approximation of Yt(w1:t)

as Ŷt(w1:t) = Yt(w̄1:t) +
∑t−1

s=0 Θs,t(ws − w̄s) = UYt +
∑t−1

s=0 Θs,tws. Here UYt is a “causal nuisance”,

as defined in Section 2.2.2, so it does not impact the time-t causal effects. Note that Ŷt(w1:t) −

Ŷt(w
′
1:t) =

∑t−1
s=0 Θs,t(wt−s − w′t−s) so τ∗k,j,t(w,w

′)(p) = Θp,k,j,t, the k, j-th element of Θp,t. In general,

Θs,t will be stochastic with EW |Y (•)[Θs,tWs |W1:s−1, Y1:s−1] = 0, which follows as w̄1:t is fixed and

EW |Y (•)[Wt |W1:t−1, Y1:t−1] = 0 since Wt is a shock. In many time series models, Yt(w1:t) is non-
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stochastic and so the treatment path W1:t solely drives the stochastic behaviour of Yt(W1:t). In this

case, Θs,t is non-stochastic for all s, t.

A conceptually different approach is to directly assume that the shocked potential outcome time

series has time-t additive causal effects. With this, we can again write

Yt(w1:t) = UYt +
t−1∑
s=0

Θs,twt−s,

where now Θs,t is a ny × nw fixed matrix and UYt is again a causal nuisance. Strengthen this to

I-additivity and this simplifies as we can drop the time subscripts on the matrices, Θs,t = Θs.

Much of the macroeconometrics literature goes much further than a priori imposing I-additivity

and instead directly works with the structural vector moving average (SVMA) (e.g. Sims (1980),

Ramey (2016), Kilian and Lutkepohl (2017), Stock and Watson (2016), Stock and Watson (2018)).

Definition 12. Assume a shocked potential outcome time series and let Θ0, ...,Θt−1 be non-stochastic

matrices. If nw = ny and for each time period t, Yt(w1:t) = µ+
∑t−1

s=0 Θswt−s for all w1:t ∈ Wt, then

Y1:t(•) is a structural vector moving average.

Alternatively, we could have worked with Yt(w1:t) = µ +
∑∞

s=0 Θswt−s. Note that in the SVMA,

the potential outcomes Yt(w1:t) are non-random given the treatment. This is a canonical example

in macroeconomics in which the potential outcomes are a deterministic function of the treatment.

Note that while we take this as the starting point of analysis, the SVMA is typically motivated in

macroeconometrics as arising from an underlying structural model.

We now collect two useful results about the potential SVMA form.

Proposition 4.1. The following statements hold:

i. The SVMA has I-additive causal effects with τt(w,w
′) =

∑t−1
s=0 Θs(wt−s − w′t−s).

ii. The SVMA is causally equivalent to a potential outcome time series with I-additive causal effects.

Proof. Claims (i)-(ii) are immediate from the definitions provided in Section 2 and Proposition 2.1.

5 Local projection

Here we use the shocked potential outcome time series to provide a common causal foundation to

two common linear strategies in macroeconomics: local projection and local projection-IV. We begin
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by briefly reviewing each method and then we causally interpret them using the shocked potential

outcome time series model.

5.1 Local projection with observed treatments

Assume that, after a great deal of measurement work, we observe both Yk,t = Yk,t(W1:t) and Wj,t−p.

A natural strategy is to then directly regress the observed outcomes on the observed treatments at

a variety of lags. This strategy is referred to as “local projections” in econometrics (Jordá, 2005).13

Local projections are extremely common and have been highly influential in macroeconomics. The

empirical papers in Section 3.1 take the constructed shocks and then study the causal impacts of the

measured treatment Wj,k−p using local projections.

5.1.1 LP under additive causality

Our next theorem provides a formal causal interpretation of the local projection method.

Theorem 5.1 (Local projection). Assume a shocked potential outcome times series as in Definition

11, that p ≥ 0 and additionally that:

A. The causal effects are additive, given in Definition 6.

B. EY [Yk,t(w̄1:t)] = α, a time-invariant expectation, where w̄1:t = 0 is a fixed known treatment path.

C. V arW (Wt) <∞ and V arY (Yk,t(w̄1:t)) <∞ for all t.

Then, for p ≥ 0, the time-t causal regression of Yk,t on Wj,t−p can be written as

Yk,t(W1:t) = α+ βp,k,j,tWj,t−p + ηk,j,t, t = p+ 1, 2, ..., T, (8)

where βp,k,j,t is the causal coefficient introduced in Definition 6. Moreover, EW,Y [ηk,j,t] = 0 and

CovW,Y (Wj,t−p, ηk,j,t) = 0 if they exist.

Remark 5.1. From Theorem 5.1, we have the following notes:

1. The error ηk,j,t can depend upon all of W1:t except for Wj,t−p and its dependence on W1:t is made

explicit in the proof. Moreover, it is not in general a martingale difference nor even white noise.

13This is related to, but different from, the literature on direct forecasting, which forecasts Yt by regressing on Yt−p

rather than iterating one step ahead forecasts p times (Cox, 1961; Marcellino et al., 2006).
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2. If we strengthen Assumption A to I-additivity, then Equation (8) becomes

Yk,t(W1:t) = α+ βp,k,jWj,t−p + ηk,j,t. (9)

A natural estimator of the causal coefficient βp,k,j is the ordinary least squares estimator

β̂p,k,j =

∑T
t=p+1(Yk,t − Ȳk)(Wj,t−p − W̄j)∑T

t=p+1(Wj,t−p − W̄j)2
= βp,k,j +

1
T−p

∑T
t=p+1 ηk,j,t(Wj,t−p − W̄j)

1
T−p

∑T
t=p+1(Wj,t−p − W̄j)2

. (10)

The uncorrelatedness of ηk,j,t and Wj,t−p drives β̂p,k,j to be centered on βp,k,j. Consistency

and a central limit theory can be developed using standard, asymptotic techniques although ad-

ditional regularity conditions will need to be introduced. Because ηk,j,t may be serially corre-

lated, HAC/HAR inference techniques may be necessary (Newey and West, 1987; Kiefer et al.,

2002; Lazarus et al., 2018). Note that the assumptions of Theorem 5.1 do not imply that

EW,Y [ηk,j,t |Wj,t−p] = 0 and so, the OLS estimator will not in general be unbiased.

3. A possibly more efficient estimator can be found if there is a control variable Xk,j,t that is

correlated with the error ηk,j,t but unrelated to the treatment Wj,t−p. Then, we fit the model

Yk,t(W1:t) = α∗ + βp,k,jWj,t−p + γ′p,k,jXk,j,t + η∗k,j,t. Here γp,k,j is a nuisance parameter.

Theorem 5.1 states that if the researcher is willing to assume that the causal effects are additive and

that the treatment path is a sequence of shocks, then the local projection method provides information

about the causal coefficient βp,k,j,t under some mild side conditions. Moreover, we showed in Section

4 that when the treatments are shocks, βp,k,j,t is the coefficient of the weighted causal effect, the

causal response function as well as the impulse response function under the assumptions of Theorem

5.1. So, if these assumptions hold, the local projection method provides information on each of these

objects. In practice, researchers typically work with Equation (9) rather than Equation (8) and so,

they implicitly assume I-additive causal effects.

Remark 5.2. What does the OLS estimator identify if the causal effects are only additive but not

I-additive? In Proposition B.5 of our Web Appendix, we show that if the causal effects are additive but

not I-additive, then the OLS estimator identifies a time average of the k, j-th lag-p time-t causal coeffi-

cients. Additionally, if the causal effects are not additive, we show in Proposition B.6 and Proposition

B.7 that the LP estimand can be interpreted as the best linear approximation to the general non-linear

time-t causal effects.
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5.2 Local projection with instrumental variables

5.2.1 Background on measurement error

In local projections, we assume that Wj,t−p is observed. There is a concern that the economist’s

measurement Ŵj,t−p is in practice a noisy proxy for Wj,t−p rather than Wj,t−p itself. We now discuss

a recent econometric literature that treats the proxy as an instrument for Wj,t−p. This is referred

to as local projection with an instrumental variable (LP-IV) and proceeds in the measurement error

spirit of Durbin (1954) and Sargan (1958). Here we provide novel conditions under which this method

works. Before we do this, we take a step back and discuss some of the recent literature on this topic.

Since its initial development in Jordá et al. (2015), LP-IV has received much attention. For

example, Ramey and Zubairy (2018) estimate fiscal multipliers on government spending and Fieldhouse

et al. (2018) estimate the effects of historical credit shocks on asset prices and investment, both using

LP-IV methods on constructed measures of underlying shocks. Mertens and Olea (2018) use narratively

identified changes in the top marginal tax rate as an instrument in an LP-IV framework to measure the

dynamic causal effects on reported income, real GDP and unemployment and Stock and Watson (2018)

illustrate LP-IV using constructed high-frequency movements in the rates on federal funds contracts

around policy announcements to study the effects of monetary policy shocks. On top of these empirical

applications, there has been a recent surge in econometric work that focuses on LP-IV. For example,

Stock and Watson (2018) and Plagborg-Møller and Wolf (2018) study LP-IV econometrically and

consider the conditions under which the method identifies the usual macroeconometric objects of

interest such as the impulse response function of the SVMA form.

5.2.2 Potential outcome time series with added proxies

To use a proxy Ŵ1:T to make causal statements, we first integrate Ŵ1:T into our nonparametric

potential outcome time series framework.14 This is necessary to rule out that the proxy Ŵ1:T drives

future potential outcomes, otherwise the causal interpretation will be lost.

Definition 13. A proxy potential outcome time series obeys, for each t and all w1:t, ŵ1:T , ŵ
′
1:T :

A. The potential outcomes satisfy Y1:t(w1:t, ŵ1:T ) = Y1:t(w1:t, ŵ
′
1:T ). Subsequently we write Y1:t(w1:t)

and Y1:t(•) as before.

14While similar to the approach taken in Imbens and Angrist (1994) and Angrist et al. (1996) on cross-sectional IV,
this is importantly different as we do not define a potential treatment function. We proceed in this manner as the
instrument is a proxy for the treatment in these settings, not an encouragement.
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B. The non-anticipating treatment assumption is

Pr{Wt ≤ wt |W1:t−1 = w1:t−1, Ŵ1:t−1, Y1:t−1(w1:t−1), Yt:T (w1:t−1, •)}

= Pr{Wt ≤ wt |W1:t−1 = w1:t−1, Y1:t−1(w1:t−1)}.
(11)

C. Measurement Ŵt satisfies

Pr{Ŵt ≤ ŵt |W1:t = w1:t, Ŵ1:t−1, Y1:t−1(w1:t−1), Yt:T (w1:t−1, •)}

= Pr{Ŵt ≤ ŵt |W1:t = w1:t, Ŵ1:t−1, Y1:t−1(w1:t−1)}.
(12)

D. Finally: The equality yobs1:T = y1:T (wobs1:T ) holds and we observe yobs1:T and ŵobs1:T .

Assumption A excludes that the proxy for the treatment directly effects outcomes. Assumption B

enforces that the proxy provides no additional information on the next treatment beyond past treat-

ments and past potential outcomes. Finally, Assumption C says the proxy can be influenced by the

current treatment as well as past information.

With this in hand, we state a lemma that will be helpful later.

Lemma 5.1. Assume a proxy potential outcome time series. If Wt, Ŵt is a joint martingale difference

with respect to W1:t−1, Ŵ1:t−1, Y1:t−1, then, if they exist, the superpopulation moments obey:

i. EW,Ŵ [WtŴs] = 0, for all s, t where s 6= t.

ii. EY,Ŵ [Yt(w1:t)Ŵt−p] = 0, for all w1:t and p ≥ 0.

Claim (ii) in Lemma 5.1 is important. It states that the proxy estimators of the treatment, like the

treatments themselves, are uncorrelated with the future and current potential outcomes. In both

cases, they can be influenced by past potential outcomes only.

5.2.3 LP-IV under additive causality

The next theorem provides a causal interpretation of the LP-IV method using the proxy potential

outcome time series model. We focus on the case of additive causal effects.

Theorem 5.2 (LP-IV with shocks). Assume a proxy potential outcome time series and that

A. The causal effects are additive, given in Definition 6.

B. (Wt, Ŵt) is a joint martingale difference with respect to W1:t−1, Ŵ1:t−1, Y1:t−1.
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C. EW,Ŵ [WtŴs] and EY,Ŵ [Yt(w1:t)Ŵt−p] exists for fixed w1:t.

D. EW,Ŵ [Wi,tŴj,t] = 1i=jγj.

Then, for p ≥ 0, EY,W,Ŵ [Yk,t(W1:t)Ŵj,t−p] = βp,k,j,tγj.

Remark 5.3. From Theorem 5.2, we have the following points.

1. Theorem 5.2 implies that the Wald estimand

EY,W,Ŵ [Yk,t(W1:t)Ŵj,t−p]

EY,W,Ŵ [Yj,t−p(W1:t−p)Ŵj,t−p]
=
βp,k,j,t
β0,j,j,t

. (13)

Stock and Watson (2018) a priori impose a “unit effect normalization,” which restricts the

contemporaneous effect of the j-th treatment on the j-th outcome to be β0,j,j,t = 1.15 Then the

ratio in Equation (13) identifies the causal coefficient of the additive causal effect βp,k,j,t.

2. When we strengthen Assumption B to I-additive causal effects, then the Wald estimand becomes

EY,W,Ŵ [Yk,t(W1:t)Ŵj,t−p]

EY,W,Ŵ [Yj,t−p(W1:t−p)Ŵj,t−p]
=
βp,k,j
β0,j,j

.

The usual Wald estimator is then

β̄p,k,j =

∑T
t=p+1(Yk,t − Ȳk)(Ŵj,t−p − ¯̂

Wj)∑T
t=p+1(Yj,t−p − Ȳj)(Ŵj,t−p − ¯̂

Wj)
,

where we can rewrite this as

β̄p,k,j = βp,k,j

∑T
t=p+1Wj,t−p(Ŵj,t−p − ¯̂

Wj)∑T
t=p+1(Yj,t−p − Ȳj)(Ŵj,t−p − ¯̂

Wj)
+

∑T
t=p+1 ηk,j,t(Ŵj,t−p − ¯̂

Wj)∑T
t=p+1(Yj,t−p − Ȳj)(Ŵj,t−p − ¯̂

Wj)
.

With additional regularity conditions, conventional asymptotic methods can be used to study the

joint limiting dist of the three averages 1
T−p

∑T
t=p+1Wj,t−p(Ŵj,t−p− ¯̂

Wj),
1

T−p
∑T

t=p+1 ηk,j,t(Ŵj,t−p−
¯̂
Wj) and 1

T−p
∑T

t=p+1(Yj,t−p − Ȳj)(Ŵj,t−p − ¯̂
Wj). The three equations are centered on γj, 0 and

β0,j,jγj respectively. Once again, HAC/HAR inference techniques may be required. There is an

additional worry that the measured proxy Ŵj,t−p is a weak instrument for the observed outcome

Yj,t−p (Staiger and Stock, 1997; Andrews et al., 2018).
15The unit-effect normalization is introduced as the shocks of interest are unobserved and so, it is scale normalization.

Alternatively, the macroeconometric literature often adopts a unit standard deviation normalization, which imposes
that EW [WtW

′
t ] = Inw . See Stock and Watson (2016) for a detailed discussion of these normalizations.
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We next connect the result in Theorem 5.2 to the existing literature on LP-IV in the macroecono-

metric literature. We show that the existing LP-IV assumptions are not sufficient to identify a dynamic

causal effect. In the LP-IV literature, it is typical to consider a weaker assumption than Assumption

B in Theorem 5.2. Instead of the treatment and proxy being a joint martingale difference sequences, it

is common to assume that the proxy satisfies lead-lag exogeneity. As we formalize in Proposition B.8

of the Web Appendix, this alone is not sufficient to identify a dynamic causal effect in the potential

outcome time series framework. In particular, an additional assumption, EY,Ŵ [Yt(w̄1:t)Ŵt−p] = 0, for

p ≥ 0 is needed. This restricts the joint distribution of the unobserved counterfactual and the proxy.

To the best of our knowledge, this additional necessary condition is not mentioned in the existing

LP-IV literature.16

Remark 5.4. In Proposition B.9 of the Web Appendix, we show that the IV estimator identifies a

time-weighted average of the k, j-th lag-p time-t causal coefficients if the causal effects are additive but

not I-additive. In this result, we still restrict the correlation between the proxy Ŵj,t and the treatment

Wj,t to be time invariant – that is, EW,Ŵ [Wj,tŴj,t] = γj does not depend on t.

6 Empirical illustration: nonparametrics and local projections

In this section, we compare the nonparametric approach discussed in Section 3 to the local projection

approach discussed in Section 5 in a well-known empirical application that studies the causal effects

of monetary policy. This is not to emphasize the differences in conclusions but rather show that the

nonparametric approach is feasible, simple to implement yet requires the researcher to think carefully

about the causal effects that can be feasibly estimated in the available data.

Here we replicate an analysis in Ramey (2016). We begin by reproducing local projection estimates

of the causal effect of monetary policy on several macroeconomic outcomes using a well-known measure

of monetary policy shocks – the series constructed in Romer and Romer (2004) (“Romer-Romer

shocks”).17 We use this shock series as the observed treatments Wt in the nonparametric estimator of

the weighted causal effect that we analyzed in Section 3.

16In private conversations, James H. Stock told us that Gary Chamberlain had mentioned the necessity of making an
assumption about how the proxy and counterfactual vary together during a 2018 Harvard-MIT seminar presentation
of Stock and Watson (2018).

17The Romer-Romer shocks are the residuals of a regression of the Federal funds target rate on Greenbook forecasts of
economic conditions at each FOMC meetings. See Romer and Romer (2004) for details.
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6.1 Local projection estimates

We begin by constructing local projection estimates of the causal effects of monetary policy. The

analysis here reproduces Figure 3.2B in Ramey (2016).

To construct the local projection estimates, we estimate the regression specification

Yk,t = αp,k + βp,kWt−p +X ′t−pλp,k + εp,k,t for p = 1, . . . , P. (14)

Here we have dropped from the notation j as we only have a single treatment at time t − p. Yk,t

is the k-th macroeconomic outcome, Wt−p is the measured treatment, Xt−p is a vector of additional

controls. The objects of interest are the coefficients βp,k, which are commonly interpreted as tracing

out the impulse response function in Definition 9 for Wt−p = 1,W ′t−p = 0. In the potential outcome

time series, we think of βp,k as tracing out the causal coefficients in Definition 6 as p varies with w = 1

and w′ = 0, provided the causal effects are I-additive.

The treatment Wt−p is the Romer-Romer shock. The outcomes of interest are the log of Industrial

Production (IP), the log of the Consumer Price Index (CPI), the unemployment rate and the Federal

funds rate. The additional controls Xt−p include two lags of the Romer-Romer shocks, the log of

Industrial Production (IP), the log of the Consumer Price Index (CPI), the unemployment rate, the

Federal funds rate and the log of the Commodity Price Index as well as contemporaneous values of the

the log of Industrial Production (IP), the log of the Consumer Price Index (CPI), the unemployment

rate and the log of the Commodity Price Index. The local projections using the Romer-Romer shocks

are estimated over monthly data from January 1969 to December 2007. We estimate the specification

in Equation (14) for p = 1, . . . , 24 and report the results in Figure 2.

By the Frisch-Waugh Theorem, the local projection specification in Equation (14) is estimated

using the residual variation in the measured treatments Wt−p net of the variation explained by the

included controls Xt−p. As a result, we treat W̃t−p as the treatment of interest in the nonparametric

estimates, where W̃t−p = Wt−p − Proj(Wt−p|Xt−p) is the residuals of the measured treatment from a

linear projection on the controls.

Figure 1 plots the observed distributions of the residualized shocks. Note how little remaining

variation remains after we have residualized the measured shocks. Most of the data are concentrated

between values of −0.25 and 0.25. Examining this distribution suggests the local projection estimates

at Wt−p = w = 1, Wt−p = w′ = 0 involves substantial, out-of-sample extrapolation. This extrapolation

is possible due to its assumed linear functional form. On the other hand, if the chosen treatments and
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Figure 1: Romer-Romer shocks: distribution of residualized shocks: W̃t−p. These figures report the
distribution of residualized shock estimates, which are constructed from the residuals of a regression
of the shock on the included controls in Equation (14).

counterfactuals lie in sparse regions of the support of W̃t−p, the nonparametric estimates will be quite

noisy. For this reason, we restrict attention to treatments and counterfactuals that lie close to zero.

6.2 Nonparametric estimates

We now turn to constructing estimates of the time-t k-th lag-p weighted causal effect τ̄k,t(w,w
′)(p) as

well as the average k-th lag-p weighted causal effect τ̄k(w,w
′)(p). In doing so, we aim to transparently

show how to translate the mechanics of the local projection estimates into the nonparametric style

estimator defined in Equation (7).

The first step for the residualized Romer-Romer shocks, is to set w,w′. As mentioned earlier, we

choose treatments and counterfactuals close to zero due to limited, observed variation in the data.

and so, we consider the treatment and counterfactual w = 0.1, w′ = −0.1. If the causal effects are

I-additivity τ̄k(w,w
′)(p) = 0.2βp,k as w − w′ = 0.2. So, we might expect the effects we see from our

nonparametrics to be only 20% those familiar from the local projection analysis.

The second step is to estimate the treatment distribution function Ft−p given past information.

The local projection specification suggests that W̃t are difficult to predict given past data. Given

this, we simply follow Hirano and Imbens (2004) and specify a parametric distribution for W̃t−p. For
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simplicity, we model W̃t−p ∼ N(γ, σ2) and estimate the parameters via maximum likelihood. Let

Ft−p(w) denote the distribution function of N(γ̂, σ̂2) evaluated at W̃t−p = w.

The nonparametric estimator for τ̄k,t(w,w
′)(p) is then ˆ̄τk(w,w

′)(p) which is implemented as

1

(T − p)

T∑
t=p+1

(Yk,t − Yk,t−p−1)
(
1(W̃t−p ∈ [w − h,w + h])− 1(W̃t−p ∈ [w′ − h,w′ + h])

)
Ft−p(W̃t−p + h)− Ft−p(W̃t−p − h)

. (15)

and its conservative variance estimator is h−1v2
k(p)/(T − p) where

v2
k(p) =

1

(T − p)

T∑
t=p+1

(Yk,t − Yk,t−p−1)2
(
1(W̃t−p ∈ [w − h,w + h]) + 1(W̃t−p ∈ [w′ − h,w′ + h])

)
ft−p(W̃t−p)2

.

(16)

where h is the bandwidth parameter. In practice, we allow the bandwidth to vary over k, p, so we write

this as hk(p). We select it using the simple method discussed in Section 3.2.3. Note that ˆ̄τk,t(w,w
′) is

the doubly robust estimator. This is particularly useful to further reduce the variance of the estimator

and obtain informative confidence intervals.

Figure 2b plots the estimates of τ̄k,j(w,w
′)(p) for p = 1, . . . , 24 of the residualized Romer-Romer

shocks. It is important to emphasize that these figures plot a different object than the Figure 2a.

Under the standard assumptions in the macroeconometric literature, the local projection coefficients

βp are the coefficients of the impulse response function and as we show in Theorem 5.2, they are also

the causal coefficients under weaker assumptions. τ̄k(w,w
′)(p) is the average weighted causal effect,

which is causally interpretable without any additional assumptions such as additivity or I-additivity.

As mentioned earlier, if the causal effects were I-additive, we would expect the point estimates of

the local projection to be about 5 times larger than the nonparametric point estimates. This does

not appear to be true in this example, which suggests non-linearity in the underlying causal effects.

That being said, the broad patterns appear similar – the monetary policy shock has a small positive

effect on the Federal funds rate that decays over time and it slightly raises unemployment. However,

the nonparametric estimates suggest that the data contain little conclusive information on the causal

effect of monetary policy on industrial production and inflation as indicated by the large confidence

intervals.

Taken together, this empirical application demonstrates that the nonparametric approach is both

feasible and simple to implement. In particular, it weakens the typical assumptions used in empirical

work and requires the researcher to be transparent about the sources of treatment variation in thee
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(b) Nonparametric estimates

Figure 2: Romer-Romer shocks: estimated dynamic causal effects for p = 1, . . . , 24. Panel (a) plots
estimated β̂p,k for the LP method from Equation (14). Panel (b) plots nonparametric version: esti-
mated τ̄k(w,w

′)(p). The solid black line plots the point estimates and the dotted red lines plot the
point-wise 95% CI. For the LP regression, the standard errors are constructed using the Newey-West
HAC estimator. Under linearity, the point estimates in Panel (a) should be 5 times larger than the
estimates in Panel (b).

data. We believe that both are desirable features of the nonparametric approach.

7 A model-based approach: structural vector autoregression

As we discussed, causal inference in macroeconomics is particularly challenging because the treatment

path W1:t is often unobserved. Another traditional approach to solving this problem is to use a model

that a priori links the observed outcomes to the unobserved shocks. The chosen model thereby allows

the researcher to use the observed outcomes yobs1:T to construct estimates of dynamic causal effects

without any data on the treatments. This is a very large step. Any resulting causal inferences are

inevitably fragile as they rely on many a priori modelling assumptions (see Sims (2010) who strongly

advocates for this extensive modelling approach).
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7.1 SVAR and VAR

An influential example of this approach uses a structural vector autoregression (SVAR) to infer impulse

response functions out of only observed outcomes yobs1:T . This was pioneered by Sims (1980). We now

define a SVAR and the associated vector autoregression (VAR) for the potential outcome time series.

This will frame the assumptions that are built into the SVAR approach and connect them to the

potential outcome time series approach.

Definition 14 (SVAR and VAR). Assume a potential outcome time series and that ny = nw. Let

Γ0, . . . ,Γt−1 be non-stochastic ny × ny matrices. If for all treatment paths w1:t and each t,

Γ(L)t{Yt(w1:t)− µ} = wt, where Γ(L)t = Γ0 − Γ1L− . . .− Γt−1L
t−1,

is the associated lag polynomial and L is the lag operator, then Y1:t(•) is a structural vector au-

toregression. Additionally, let A0, . . . , At−1 be non-stochastic ny × ny matrices. If for all treatment

paths w1:t and each t,

A(L)t{Yt(w1:t)− µ} = Θ0wt, where A(L)t = I −A1L− . . .−At−1L
t−1

is the associated lag polynomial, then Y1:t(•) is a vector autoregression.

The typical definition of SVAR and VAR will almost always include the assumption that {Wt}

is sequence of shocks. We will make progress without that assumption. The SVAR and VAR forms

are very strong assumptions. They state that the coefficients in the polynomials are time-invariant,

although here the length of the polynomial grows with t. It additionally restricts that nw = ny. That

is, the number of treatments are equal to the number of outcomes and the outcomes are measured

without noise. While this is a strong assumption, it is also a common, starting assumption in the

existing SVAR literature.18

7.2 SVAR and causal equivalence

We begin with two propositions that will state several properties of the potential structural vector au-

toregression as well as a new property for potential outcome time series with I-additive causal effects.

The results are mathematically trivial to deduce from the definitions provided, but are methodolog-

18While we do not discuss the case nw 6= ny, recent work in Plagborg-Møller (2019) makes progress on that case.
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ically important. They will be used to establish the connections between these approaches to causal

inference in time series.

Proposition 7.1. Assume a potential outcome time series is a SVAR. Additionally assume that the

matrix Γ0 is invertible. Then,

i. Y1:t can be written as a VAR with As = Γ−1
0 Γs for s = 1, 2, . . . , t− 1 and Θ0 = Γ−1

0 .

ii. The time-t causal effects of Y1:t follow the recursion A(L)t{Yt(w1:t) − Yt(w′1:t)} = Θ0(wt − w′t).

So, Y1:t has I-additive causal effects. Moreover, the time-t lag-p causal coefficients of Y1:t satisfy

βp = A1βp−1 + ...+Apβ0 for p = 1, 2, . . . , t− 1 with β0 = Θ0.

As SVAR time-t causal effects are I-additive, all of the earlier results we derived in Section 2 using

additive causal effects apply as well. We next turn to the potential outcome time series with I-additive

causal effects.

Proposition 7.2. Assume a potential outcome time series Y1:t has I-additive causal effects and that β0

is invertible. Then, the time-t causal effect follows a VAR with A(L)t{Yt(w1:t)−Yt(w′1:t)} = β0(wt−w′t),

where the VAR coefficients follow the recursion Ap = (βp −A1βp−1 − . . .−Ap−1β1)β−1
0 .

With these results, we can state the main result of this section, which proves the causal equivalence

of the potential SVAR and a potential outcome time series with I-additive causal effects.

Theorem 7.1. A structural vector autoregression with invertible Γ0 is causally equivalent to a potential

outcome time series with I-additive causal effects and invertible β0.

Proof. This follows from Proposition 7.1 and Proposition 7.2.

Theorem 7.1 states a SVAR form with invertible Γ0 is causally equivalent to the potential outcome

time series with I-additive causal effects and an invertible matrix of contemporaneous causal coefficients

β0. Notice equivalence holds without any assumption on the treatment path.

This causal equivalence is a foundational point for macroeconometrics. As discussed in Section

4, a modern version of the Frisch (1933)-Slutzky (1937) paradigm is the shocked potential outcome

time series. Hence, if we are willing to make the additional assumptions of I-additive causal effects

and an invertible matrix of contemporaneous causal coefficients β0, then we can translate the Frisch

(1933)-Slutzky (1937) paradigm to a causally equivalent SVAR form with invertible Γ0. There is no

reason to separately introduce the structural vector moving average form. This is important for the

SVMA form is often expressed as the basic primitive assumption following Sims (1980).19

19See also the introduction of Ramey (2016) for a discussion of this view.
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Finally, this result is related to independent and concurrent work by Plagborg-Møller and Wolf

(2019), which shows that SVARs and local projections estimate the same impulse response function in

population. Provided that the causal effects are additive, Theorem 7.1 along with Theorem 5.1 show

that the SVAR and LP approaches both identify the causal coefficients.

7.3 Causal equivalence and time series invertibility

Before concluding this section, we briefly discuss the connection between the causal equivalence result

in Theorem 7.1 and “time series invertibility.” This will clarify the context of our result in relation to

the existing macroeconometric literature.

As mentioned, the existing macroeconometrics literature usually begins with the SVMA form in

Definition 12 and the SVAR form provides a strategy for estimating the coefficients of the SVMA.

Given that the SVMA is their primitive model, the first step in the existing literature is to provide

sufficient assumptions that allow the SVMA to be transformed into an SVAR. The critical assumption

in the literature is time series invertibility (Kilian and Lutkepohl, 2017; Stock and Watson, 2018).

Definition 15 (Time series invertibility). The SVMA in Definition 12 is invertible if ny = nw and

the lag polynomial Θ(L)t = Θ0 −Θ1L− . . .−ΘtL
t is invertible.

If time series invertibility holds, then the SVMA in Definition 12 can be transformed into the SVAR

in Definition 14 by inverting the lag polynomial and vice versa. Stock and Watson (2018) show that,

in the context of linear models such as the SVMA, time series invertibility is equivalent to ηt = Θ0wt

and Θ−1
0 existing, where ηt is the reduced form errors from the VAR.

While it may appear that time series invertibility is a stronger assumption than the conditions

in Theorem 7.1, they are equivalent and any difference is due to our focus on the finite case with

T <∞. To see this, recall from Section 4 that the SVMA form is causally equivalent to any I-additive

potential outcome time series by setting Θs = βs for s = 1, . . . , t. With this in mind, Theorem 7.1

can be re-stated as: A SVAR form with invertible Γ0 is causally equivalent to the SVMA form with

an invertible Θ0. The details of the SVAR and VAR forms in Definition 14 impose the restriction

that the reduced form errors from the VAR are a linear combination the treatments. As a result, the

assumption that Θ0 = β0 is invertible is then equivalent to invertibility in Definition 15.

So, the typical invertibility assumption in the literature implies the causal equivalence between the

SVAR and the potential outcome time series with I-additive causal effects.
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8 Conclusion

In this paper, we established a nonparametric foundation to formalize dynamic causal effects in time

series data. We did so by extending the potential outcome time series to suit the observational time

series settings that are common in macroeconomics. We used this framework to develop nonpara-

metric estimators of dynamic causal effects as well as formalize the causal content of several common

estimation strategies in macroeconometrics.

In Section 2, we defined a dynamic causal effect as the comparison of potential outcomes at

a fixed point in time along different treatment paths. These dynamic causal effects served as the

basis for a series of causal estimands such as the weighted causal effect, the causal response function

and the impulse response function. These estimands differed from one another as they average over

different objects. For example, the weighted causal effect held the potential outcomes fixed, while the

causal response function treated both the treatments and potential outcomes as random. In defining

these estimands, we distinguished between superpopulation causal effects and sample causal effects, a

difference that is well understood and frequently discussed in the microeconometris literature.

Our key identifying assumption in this paper is non-anticipation (Assumption 2). That is, the

current treatments are independent of future potential outcomes conditional on past outcomes and

treatments. With this assumption in hand, we turned to the nonparametric identification of the

dynamic causal estimands. In Section 3, we introduced a nonparametric estimator for dynamic causal

effects. This estimator is unbiased and we developed tools for exact and asymptotic inference under

the randomization distribution. This work illustrated how the potential outcome time series model

can be used to develop new estimation methods for dynamic causal effects. At a more fundamental

level, our nonparametric estimator highlights that non-anticipation is sufficient to identify dynamic

causal estimands in a potential outcome time series.

We placed the potential outcome time series framework into the context of existing work in macroe-

conometrics. In particular, we considered treatment paths that are sequences of shocks in Section 4

and provided a definition that formalizes the common heuristic that shocks are unpredictable. We

showed that assuming that the treatments are shocks together with an assumption that the causal

effects are additive dramatically simplifies causal analysis on time series data as under them, several

dynamic causal estimands are equivalent. However, neither of these assumptions are necessary for

identification. Clarifying the role of these assumptions is an important contribution of this paper.

Finally, we argued that the shocked potential outcome time series can be thought of as a non-

parametric causal formalization of the Frisch (1933)-Slutzky (1937) paradigm and therefore be used
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to deepen our understanding of existing estimation methods. For example, in Section 5, we provided

a formal causal interpretation of LP and LP-IV. We showed that if the causal effects are additive and

some additional conditions hold, LP identifies the causal coefficients that trace out the lag-p causal

effects and if the causal effects are also I-additive, this can be directly implemented via ordinary least

squares. We also showed that the existing LP-IV conditions in the literature are not sufficient to

identify a causal effects in the potential outcome time series model and provided an alternative set of

sufficient conditions. We discussed SVARs in Section 7 and showed that an SVAR is causally equivalent

to an I-additive potential outcome time series under the usual time series invertibility condition.

Taken together, we believe that nonparametric potential outcome time series provides a unified

foundation for the analysis of dynamic causal effects in macroeconomics.
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A Mathematical appendix

This appendix provides the proofs for the main results in the body of the paper.

A.1 Results in Section 3: nonparametric estimation

Proof of Theorem 3.1

To focus on ideas, suppress in the notation references to t, p and conditioning variables wobst−p−1 and

FT,t−p−1 as these are held constant. Write W = Wj,t−p and U = W1:j−1,t−p,Wj+1:nw,t−p,Wt−p+1:t.

Now sample V from p(w, u) then the Horvitz and Thompson (1952) type estimator we study takes on

the form

τ̂ =
∑
u

{cw,u1V=(w,u) − cw′,u1V=(w′,u)}

where cw,u = y(w, u)/p(w) is non-stochastic (that is V is the only random object here). The estimand

is the weighted causal effect

τ̄ =
∑
u

{y(w, u)p(u|w)− y(w′, u)p(u|w′)}

Now, as p(u|w) = p(w, u)/p(w), we immediately see that

EV (τ̂) =
∑
u

{cw,up(w, u)− cw′,up(w′, u)} =
∑
u

{y(w, u)p(u|w)− y(w′, u)p(u|w′)}

So the estimator is conditionally unbiased and this shows the first result. It has error

R = τ̂ − E(τ̂) =
∑
u

{
cw,u(1V=(w,u) − p(w, u))− cw′,u(1V=(w′,u) − p(w′, u))

}
.

This has zero mean and variance V ar(R), which is the double sum
∑

u

∑
u′ of

cw,ucw,u′E[(1V=(w,u) − p(w, u))(1V=(w,u′) − p(w, u′))]

−cw,ucw′,u′E[(1V=(w,u) − p(w, u))(1V=(w′,u′) − p(w′, u′))]

−cw′,ucw,u′E[(1V=(w′,u) − p(w′, u))(1V=(w,u′) − p(w, u′))]

+cw′,ucw′,u′E[(1V=(w′,u) − p(w′, u))(1V=(w′,u′) − p(w′, u′))].
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Then note that

E[(1V=(w,u) − p(w, u))(1V=(w,u′) − p(w, u′))]

= 1u=u′p(w, u)− p(w, u)p(w, u′)− p(w, u)p(w, u′) + p(w, u)p(w, u′)

= 1u=u′p(w, u)− p(w, u)p(w, u′).

So, we conclude

E[(1V=(w′,u) − p(w′, u))(1V=(w′,u′) − p(w′, u′))] = 1u=u′p(w
′, u)− p(w′, u)p(w′, u′).

Likewise, if w 6= w′, then

E[(1V=(w,u) − p(w, u))(1V=(w′,u′) − p(w′, u′))]

= −p(w, u)p(w′, u′)− p(w, u)p(w′, u′) + p(w, u)p(w′, u′) = −p(w, u)p(w′, u′)

and similarly,

E[(1V=(w′,u) − p(w′, u))(1V=(w,u′) − p(w, u′))] = −p(w, u′)p(w′, u).

Thus,

V ar(R) =
∑

u

(
c2
w,up(w, u) + c2

w′,up(w
′, u)

)
−
∑

u

∑
u′

(
cw,ucw′,u′p(w, u)p(w′, u′) + cw′,ucw,u′p(w

′, u)p(w, u′)

+cw′,ucw′,u′p(w
′, u)p(w′, u′) + cw,ucw,u′p(w, u)p(w, u′)

)
.

Now,

c2
w,up(w, u) =

p(u|w)y(w, u)2

p(w)
, c2

w′,up(w
′, u) =

p(u|w′)y(w′, u)2

p(w′)
, cw,up(w, u) = p(u|w)y(w, u).

So, putting this all together,

V ar(R) =
∑

u

(
p(u|w)y(w,u)2

p(w) + p(u|w′)y(w′,u)2

p(w′)

)
−
∑

u

∑
u′

(
p(u|w)y(w, u)p(u′|w′)y(w′, u′)− p(u|w′)y(w′, u)p(u′|w)y(w, u′)

−p(u|w′)y(w′, u)p(u′|w′)y(w′, u′) + p(u|w)y(w, u)p(u′|w)y(w, u′)

)
.
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V ar(R) =
∑

u

(
p(u|w)y(w,u)2

p(w) + p(u|w′)y(w′,u)2

p(w′)

)
−
(∑

u p(u|w)y(w, u)− p(u|w′)y(w′, u)

)(∑
u′ p(u

′|w)y(w, u′)− p(u′|w′)y(w′, u′)

)
,

and the result follows from the definition of τ̂ .

The CLT result is now relatively simple. It follows from an application of the triangular martingale

array central limit theory given in Theorem 3.2 of Hall and Heyde (1980). The Lindeberg condition

must hold due to compactness of the set of possible treatments and the conditioning on the potential

outcome paths.

A.2 Result in Section 4: Frisch-Slutzky paradigm

Proof of Theorem 4.1

First we establish the following general result.

Proposition A.1. Assume a potential outcome time series Y1:t(•) with additive causal effects. Then,

i. Weighted causal effect is τ̄k,j,t(w,w
′)(p) = βp,k,j,t(w − w′) +

∑p
s=1

∑nw
i=1 βs,k,i,tV̄s,i,j,t−p(w,w

′),

with V̄s,i,j,t(w,w
′) = EW |Y (•)[Wi,t+s |wobs1:t−1,Wj,t = w]− EW |Y (•)[Wi,t+s |wobs1:t−1,Wj,t = w′].

ii. Causal response function is CRFk,j,t(w,w
′)(p) = βp,k,j,t(w−w′)+

∑p
s=1

∑nw
i=1 βs,k,i,tV̇s,i,j,t−p(w,w

′),

with V̇s,i,j,t(w,w
′) = E[Wi,t+s | yobs1:t−1, w

obs
1:t−1,Wj,t = w]− E[Wi,t+s | yobs1:t−1, w

obs
1:t−1,Wj,t = w′].

Proof. Recall the form of τk,j,t(w,w
′)(p) from Proposition 2.1. Applying the definitions of the weighted

and dynamic causal effects produces the results in claims (i)-(ii) by conditional expectations.

Now apply the martingale property of the treatments to Proposition A.1. The MD property implies

that all the V̇s,i,j,t(w,w
′) and V̄s,i,j,t(w,w

′) terms are zero. This delivers the result.

A.3 Results in Section 5: Local projections

Proof of Theorem 5.1

For a potential outcome time series, imagine a fixed known counterfactual w̄1:t = 0. Then,

Yt(W1:t) = Yt(w̄1:t) + τt(W1:t, w̄1:t).
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By the Assumption A of additive causal effects and by the Assumption B of the existence of the mean

of the counterfactual outcome, we can decompose

Yk,t(W1:t) = EY [Yk,t(w̄1:t)] + βp,k,j,tWj,t−p + ηk,j,t, (17)

where

ηk,j,t = Yk,t(w̄1:t)− EY [Yk,t(w̄1:t)] +
∑nw

i=1;i 6=j βp,k,iWi,t−p +
∑t−1

s=0;s 6=p
∑nw

i=1 βs,k,i,tWi,t−s. (18)

The shock property means the treatments are martingale differences and so, if it exists, EW,Y (ηk,j,t) = 0

for all k, j, t. Now

EY,W (Yt(w̄1:t)Wt−p) = EY {Yt(w̄1:t)EW |Y (•)(Wt−p|Yt(w̄1:t), Yt−p−1(w̄1:t))}, by iterated expectation,

= EY {Yt(w̄1:t)EW |Y (•)(Wt−p|Yt−p−1(w̄1:t))}, by non-anticipating treatments,

= 0, by MD assumption on treatments.

(19)

The properties of a shock in Definition 10 then imply that CovW,Y (Wj,t−p, ηk,j,t) = 0, if this covariance

exists. The existence of the moments is guaranteed by Assumption C.

Proof of Lemma 5.1

Claim (i) is standard from the martingale difference assumption. Claim (ii)

EY,Ŵ [Yt(w1:t)Ŵt−p]

(1)
= EY {Yt(w1:t)EŴ |Y [Ŵt−p|Y1:t(w1:t)]}
(1)
= EY {Yt(w1:t)EW1:t−p,Ŵ1:t−p−1|Y EŴ |Y,W [Ŵt−p|Ŵ1:t−p−1,W1:t−p, Y1:t(w1:t)]}
(2)
= EY {Yt(w1:t)EW1:t−p,Ŵ1:t−p−1|Y EŴ |Y,W [Ŵt−p|Ŵ1:t−p−1,W1:t−p, Y1:t−p−1(w1:t−p−1)]}
(3)
= EY {Yt(w1:t)EW1:t−p−1,Ŵ1:t−p−1|Y EŴ |Y [Ŵt−p|Ŵ1:t−p−1,W1:t−p−1, Y1:t−p−1(w1:t−p−1)]}
(4)
= 0,

(20)

where (1) is by iterated expectations, (2) is by non-anticipation of Ŵt, (3) integrates out Wt−p and

(4) is by the martingale differences assumption.
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Proof of Theorem 5.2

Using the definition of additive causality in Definition 6, for any non-stochastic counter-factual w̄1:t,

Yk,t(W1:t) = βp,k,j,tWj,t−p + ηk,j,t, where

ηk,j,t = Yk,t(w̄1:t) +
∑nw

i=1;i 6=j βp,k,i,tWi,t−p +
∑t−1

s=0;s 6=p
∑nw

i=1 βs,k,i,tWi,t−s.
(21)

Then, the result follows by checking off all the terms using Assumption D and using the results from

Lemma 5.1, which can be used under the assumptions of this Theorem. �

A.4 Results in Section 7: Structural vector autoregression

Proof of Proposition 7.1

Claim (i) is immediate from Definition 14. We now prove claim (ii). From the definition of the VAR,

A(L)t{yt(w1:t)− µ} −A(L)t{yt(w′1:t)− µ} = Θ0(wt − w′t).

But the left hand side simplifies, as µ cancels. We are left with

A(L)t{yt(w1:t)− yt(w′1:t)} = Θ0(wt − w′t)

as claimed. To be explicit about the solution, write τt = yt(w1:t)− yt(w′1:t)

τ1 = Θ0(w1 − w′1)

τ2 = A1{y1(w1)− y1(w′1)}+ Θ0(w2 − w′2)

= Θ0(w2 − w′2) +A1Θ0(w1 − w′1)

τ3 = A1{y2(w1:2)− y2(w′1:2)}+A2{y1(w1)− y1(w′1)}+ Θ0(w3 − w′3)

= Θ0(w3 − w′3) +A1{Θ0(w2 − w′2) +A1Θ0(w1 − w′1)}+A2{Θ0(w1 − w′1)}

= Θ0(w3 − w′3) +A1β0(w2 − w′2) + (A1β1 +A2β0)(w1 − w′1),

and so on. Reading off the coefficients in front of wt − w′t gives us the result in claim (ii). �
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Proof of Proposition 7.2

This follows from the recursion in claim (ii) of Proposition 7.1. We now write

Apβ0 − βp = A1βp−1 − . . .−Ap−1β1.

With β0 invertible, we arrive at the claimed result. �
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