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Big picture

The three great tasks of statistics are:

description (Y );
prediction (Y |W );
causality (change in Y if W is moved).

Most empirical economics research is about causality:

highly structured models (e.g. I.O.);
randomized experimental methods (e.g. development economics);
observational methods; mimicking experiments (everywhere, e.g. corporate finance).

Here build dynamic causality methods for observational time series:

mimicking potential outcome time series for randomized dynamic experiments;
core observational methods: causal response function, shocks, linear potential outcome time
series, instrumented potential outcome time series;
relate to: impulse response function, local projection, local projection-IV.

Bojinov, Rambachan and Shephard (2020) extend to panel data experiments.
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Time series & causality: what we are not doing

Researchers quantify causality in time series in a variety of ways

Model-free “Granger causality” (Wiener(1956), Granger(1969)). Famously, but this is
about forecasting, not causality.

Model-based:

highly structured models such as DSGE models (Herbst & Schorfheide(2015)), game theory
(Toulis & Parkes(2016));
state space modelling (Harvey and Durbin(1986), Harvey(1996), Bondersen et al (2015));
intervention analysis (Box & Tiao(75));
linear models, VMA, VAR, IRF (Sims (1980)), local projection (Jorda(2005)), IV-local
projection (Jorda et al (2015)).

The potential outcome time series is distinct from each of those approaches. It is model-free.
Closest to Angrist and Kurnsteiner(2011) and Angrist, Jorda, Kurnsteiner(2018). Much like
cross-sectional causal studies.
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Main contributions of this paper

Define causal response function, useful for observational studies:

give model-free causal meaning to “generalized impulse response function”;
give model-free causal meaning to “impulse response function”.

Define a shock, linearity and instruments for potential outcome time series.

Understand what local projection & LP-IV estimate:

usually studied under VMA models (impose shocks, linearity and causality all at once);
unpick where identification comes from, seperating it out from precision;
shocks help precision, not identification.
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Potential outcome time series (Bojinov & Shephard (2020, JASA))

Defn: Treatment path is the stochastic process W1:T , where Wt ∈ W. Potential outcome
path, for any deterministic w1:T ∈ WT , is the stochastic process

Y1:T (w1:T ) = (Y1(w1:T ),Y2(w1:T ), ...,YT (w1:T )).

Assumptions

1. “Non-anticipating POs”: Yt(w1:T ) = Yt(w1:t ,w
′
t+1:T ) for all w1:T ,w

′
t+1:T . Write:

Y1:T (w1:T ) = (Y1(w1),Y2(w1:2), ...,YT (w1:T )).

2. “Outcomes”: See W1:T & Y1:T = Y1:T (W1:T ). Write Ft generated by W1:t ,Y1:t .

3. “Non-anticipating treatments”: For each t:

({Yt:T (W1:t−1,wt:T ),wt:T ∈ WT−t+1} ⊥⊥Wt)|Ft−1.

Defn: W1:T & Y1:T that satisfy Ass 1, 2 & 3 are “potential outcome time series”.
Ass 1: time series non-interference (Cox(1958)). Ass 3: time series unconfoundedness.
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{Y1:3(w1:3),w1:3 ∈ {0, 1}3}.

Y1(1)

Y1(0)

Y2(1, 1)

Y2(1, 0)

Y2(0, 1)

Y2(0, 0)

Y3(1, 1, 1)

Y3(1, 1, 0)

Y3(1, 0, 1)

Y3(1, 0, 0)

Y3(0, 1, 1)

Y3(0, 1, 0)

Y3(0, 0, 0)

Y3(0, 0, 1)
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W1:3 = (1, 1, 0),Y1:3 = Y1:3(W1:3) = Y1:3(1, 1, 0).

Y1(1)

Y1(0)

Y2(1, 1)

Y2(1, 0)

Y2(0, 1)

Y2(0, 0)

Y3(1, 1, 1)

Y3(1, 1, 0)

Y3(1, 0, 1)

Y3(1, 0, 0)

Y3(0, 1, 1)

Y3(0, 1, 0)

Y3(0, 0, 0)

Y3(0, 0, 1)
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Example (Linear process)

Let Yt = Yt(W1:t) where for all w1:t ∈ Wt ,(
Yt(w1:t)

Wt

)
=

(
µ+ φYt−1(w1:t−1) + β0wt

γ + θWt−1 + δYt−1(W1:t−1)

)
+

(
εt
ηt

)
,

(
εt
ηt

)
iid∼ N

(
0,

(
σ2ε ρσεση

ρσεση σ2η

))
.

(1)

Not a potential outcome time series, as εt and ηt are contemporaneously correlated —
disallows Assumption 3.

If ρ = 0 then this is a potential outcome time series.
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Example (Forward looking expectations)

Wt = arg max
wt

(
max
wt+1:T

E [U∗(Yt:T (W1:t−1,wt:T ),wt:T ) | Ft−1]

)
, (2)

where U∗ is a utility function of future outcomes and treatments. This decision rule delivers
Wt and thus Yt(W1:t).

Is a potential outcome time series.
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Causal effect

Assume a potential outcome time series. Have seen W1:t−p−1, p ≥ 0. Bojinov and Shephard
(2020) define causal effect of treatment wt−p:t compare to w ′t−p:t as

τ t = Yt(W1:t−p−1,wt−p:t)− Yt(W1:t−p−1,w
′
t−p:t).

Usually place structure on wt−p:t and w ′t−p:t . We here introduce:

Definition

Assume a potential outcome times series and write Y ′t := Yt(W1:t−p−1,W
′
t−p:t), recalling

Yt := Yt(W1:t). The causal response function is, if it exists,

CRFt,p(w ,w ′) := E
[(
Yt − Y ′t

)
|Wt−p = w ,W ′

t−p = w ′,Ft−p−1
]
, (3)

where the expectation is generated by {Yt ,Wt−p:t ,Y
′
t ,W

′
t−p:t}|Ft−p−1.

Then our causal estimand is: CRF p(w ,w ′) = 1
T−p

∑T
t=p+1 CRFt,p(w ,w ′).
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Generalized impulse response function

For a potential outcome time series assume additionally that

{Y ′t ,W ′
t−p:t}|Ft−p−1

L
= {Yt ,Wt−p:t}|Ft−p−1, and

({Yt ,Wt−p:t} ⊥⊥W ′
t−p)|Ft−p−1, and ({Y ′t ,W ′

t−p:t} ⊥⊥Wt−p)|Ft−p−1.

Then

CRFt,p(w ,w ′) := E [Yt |Wt−p = w ,Ft−p−1]− E
[
Yt |Wt−p = w ′,Ft−p−1

]
.

When w ′ = 0 this is the “generalized impulse response function” of Koop, Pesaran and
Potter (1996). Gives nonparametric causal meaning to GIRF.

CRFt,p(w ,w ′) is our favorite summary measure for practical causal studies of
observational time series.
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Identifying dynamic causal effects

CRFt,p(w ,w ′) := E [Yt |Wt−p = w ,Ft−p−1]− E
[
Yt |Wt−p = w ′,Ft−p−1

]
.

For potential outcome time series, the central causal estimand is

CRF p(w ,w ′) =
1

T − p

T∑
t=p+1

CRFt,p(w ,w ′).

A T 2/5-consistent kernel estimator of τ̄p(w ,w ′) is given for continuous w ,w ′.

Implications:

Average dynamic causal effects can be nonparametrically identified solely from assuming a
potential outcome time series.
Identifying causal effects by “shocks”, as econometricians often do through “Frisch-Slutsky
paradigm”, misses the point.
Later we will define a shock. It helps statistical precision, not identification!
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Impulse response function

Definition (Impulse response function)

Assume {Yt ,Wt} is strictly stationary and

IRFp(w ,w ′) := E [Yt |Wt−p = w ]− E [Yt |Wt−p = w ′],

exists, where E [·] is calculated from the law of Yt ,Wt−p. Then, IRFp(w ,w ′) is called “impulse
response function”.

Classically, this has no causal content.
Thm: Assume {Yt ,Wt} is stationary POTS. Then, if the expectations exist,

E [CRFt,p(w ,w ′)] = IRFp(w ,w ′),

where the expectation is generated by the stationary distribution of treatments and outcomes.
Again T 2/5 rate. Gives nonparametric causal meaning to IRF.
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Special cases of POTS — searching for more precision

Definition (Linear potential outcome time series)

For a potential outcome time series, if, for every w1:t ,

Yt(w1:t) = Ut +
t−1∑
s=0

βt,swt−s ,

where βt,s are non-stochastic, then {Yt ,Wt} is linear potential outcome time series.

Note, this does not need that {Yt ,Wt} is a linear process!

Definition (Shocked potential outcome time series)

For a potential outcome time series, if,

E [Wt | Ft−1] = 0,

then Wt is called a shock and {Yt ,Wt} is shocked potential outcome time series.

Only properties of treatments!
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Linear, shocked POTS

Recall, linear POTS has Yt(w1:t) = Ut +
∑t−1

s=0 βt,swt−s , so

Yt(w1:t)− Yt(w
′
1:t) =

∑t−1
s=0 βt,s(wt−s − w ′t−s). Under linear, shocked POTS,

CRF p(w ,w ′) = (w − w ′)β̄p, β̄p =
1

T − p

T∑
t=p+1

βt,p.

Estimand is time-averaged of time-t causal effect! Local projection estimator:

β̂
OLS
p =

∑T
t=p+1 YtWt−p∑T
t=p+1W

2
t−p

p−→
lim

T→∞
1

T−p
∑T

t=p+1 βt,pE (W 2
t−p)

lim
T→∞

1
T−p

∑T
t=p+1 E (W 2

t−p)
.

Typically T 1/2 consistent. Linearity & shocks makes inference more precise.
Under stationary, linear, shocked POTS:

β̂
OLS
p

p−→ βp.
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Special cases of POTS — instrumental variables

Definition (Instruments)

Assume {Yt ,Vt} is a potential outcome time series, where Vt = (W ′
t ,Z

′
t)
′. Additionally:

1 Exclusion condition: Yt(w1, z1, ...,wt , zt) = Yt(w1, z
′
1, ...,wt , z

′
t) for all w1:t , z1:t , z

′
1:t .

2 Relevance condition: Zt 6⊥⊥Wt | Ft−1.

Then {Y1t ,Vt} is “instrumented potential outcome time series”, Z1:t is “instrument path.”

Example

Yt is a macro aggregate, Wt is a monetary policy shock, but cannot see it. Zt = Ŵt is
estimate of monetary policy shock! Here: assume actual shock impacts economy not
estimated shock; estimate is not independent of shock.
Focus of the local projection-IV literature, e.g. Jorda et al (2015), Stock & Waton (2018) and
Plagborg & Wolf (2018). Discussion there is in terms of linear models, based on shocks and
stationarity.
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Local projection-IV

Assume {Y1t , (Wt , Ŵt)} is “instrumented potential outcome time series”, Ŵ1:t is “instrument
path.”
Define

β̂
IV
p =

∑T
t=p+1 YtŴt−p∑T

t=p+1 Yt−pŴt−p

Then, under a linear, shocked, instrumented potential outcome time series

β̂
IV
p

p−→
lim

T→∞
1

T−p
∑T

t=p+1 βt,pE (Wt−pŴt−p)

lim
T→∞

1
T−p

∑T
t=p+1 βt,0E (Wt−pŴt−p)

. (4)

In the LP-IV literature, conventional to assume βt,0 = 1 (Stock and Watson (2018)).
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Linear projection

Shocked POTS where E (Y 2
t ) <∞, 0 < E (W 2

t−p) <∞, define “local” & “universal”

βLt,p := arg min
β

[
min
α

E (Yt − α− βWt−p)2
]
,

βUp := arg min
β

min
α

lim
T→∞

1

T − p

T∑
t=p+1

E (Yt − α− βWt−p)2.

Then, writing αt = E (Yt),

Y L
t (w1:t) := αt +

t−1∑
s=0

βLt,swt−s , and Y U
t (w1:t) := α +

t−1∑
s=0

βUs wt−s ,

βUp =
lim

T→∞
1

T−p
∑T

t=p+1 β
L
t,pE (W 2

t−p)

lim
T→∞

1
T−p

∑T
t=p+1 E (W 2

t−p)
. (5)
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Conclusion

Formal model-free definition of causality in times series: POTS and τ t .

Form favorite practical measure for observational time series:

CRFt,p(w ,w ′) = E [Yt |Wt−p = w ,Ft−p−1]− E
[
Yt |Wt−p = w ′,Ft−p−1

]
.

Gives nonparametric causal meaning to GIRF.

Can nonparametrically estimate CRF p(w ,w ′) at T 2/5.

Stationarity + POTS implies:

CRFp(w ,w ′) = IRFp(w ,w ′) = E [Yt |Wt−p = w ]− E [Yt |Wt−p = w ′] .
Gives nonparametric causal meaning to IRF.
Nonparametrically still T 2/5.

Linearity + POTS, then estimate at T 1/2.

Local projection: linearity + shocks + POTS: estimate weighted causal quantities.

LP-IV: linearity + shocks + instrumented POTS: estimate weighted causal quantities.
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