Econometric analysis of potential outcomes time series: instruments, shocks, linearity and the causal response function

Ashesh Rambachan¹ Neil Shephard²

¹Department of Economics, Harvard University

²Department of Economics and Department of Statistics, Harvard University

June 27, 2020

Big picture

- The three great tasks of statistics are:
 - description (Y);
 - prediction (Y|W);
 - causality (change in Y if W is moved).
- Most empirical economics research is about causality:
 - highly structured models (e.g. I.O.);
 - randomized experimental methods (e.g. development economics);
 - observational methods; mimicking experiments (everywhere, e.g. corporate finance).
- Here build dynamic causality methods for observational time series:
 - mimicking potential outcome time series for randomized dynamic experiments;
 - core observational methods: causal response function, shocks, linear potential outcome time series, instrumented potential outcome time series;
 - relate to: impulse response function, local projection, local projection-IV.

Bojinov, Rambachan and Shephard (2020) extend to panel data experiments.

Time series & causality: what we are not doing

Researchers quantify causality in time series in a variety of ways

- Model-free "Granger causality" (Wiener(1956), Granger(1969)). Famously, but this is about forecasting, not causality.
- Model-based:
 - highly structured models such as DSGE models (Herbst & Schorfheide(2015)), game theory (Toulis & Parkes(2016));
 - state space modelling (Harvey and Durbin(1986), Harvey(1996), Bondersen et al (2015));
 - intervention analysis (Box & Tiao(75));
 - linear models, VMA, VAR, IRF (Sims (1980)), local projection (Jorda(2005)), IV-local projection (Jorda et al (2015)).

The potential outcome time series is distinct from each of those approaches. It is model-free. Closest to Angrist and Kurnsteiner(2011) and Angrist, Jorda, Kurnsteiner(2018). Much like cross-sectional causal studies.

Main contributions of this paper

- Define causal response function, useful for observational studies:
 - give model-free causal meaning to "generalized impulse response function";
 - give model-free causal meaning to "impulse response function".
- Define a shock, linearity and instruments for potential outcome time series.
- Understand what local projection & LP-IV estimate:
 - usually studied under VMA models (impose shocks, linearity and causality all at once);
 - unpick where identification comes from, seperating it out from precision;
 - shocks help precision, not identification.

Potential outcome time series (Bojinov & Shephard (2020, JASA))

Defn: Treatment path is the stochastic process $W_{1:T}$, where $W_t \in \mathcal{W}$. Potential outcome path, for any deterministic $w_{1:T} \in \mathcal{W}^T$, is the stochastic process

$$Y_{1:T}(w_{1:T}) = (Y_1(w_{1:T}), Y_2(w_{1:T}), ..., Y_T(w_{1:T})).$$

Assumptions

1. "Non-anticipating POs": $Y_t(w_{1:T}) = Y_t(w_{1:t}, w'_{t+1:T})$ for all $w_{1:T}, w'_{t+1:T}$. Write:

$$Y_{1:T}(w_{1:T}) = (Y_1(w_1), Y_2(w_{1:2}), ..., Y_T(w_{1:T})).$$

- 2. "Outcomes": See $W_{1:T}$ & $Y_{1:T} = Y_{1:T}(W_{1:T})$. Write \mathcal{F}_t generated by $W_{1:t}, Y_{1:t}$.
- 3. "Non-anticipating treatments": For each *t*:

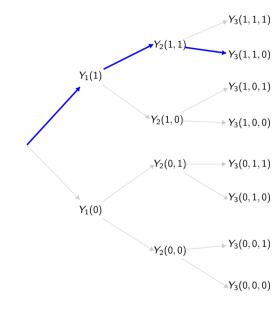
$$(\{Y_{t:T}(W_{1:t-1}, w_{t:T}), w_{t:T} \in \mathcal{W}^{T-t+1}\} \perp \!\!\! \perp W_t)|\mathcal{F}_{t-1}.$$

Defn: $W_{1:T}$ & $Y_{1:T}$ that satisfy Ass 1, 2 & 3 are "potential outcome time series". Ass 1: time series non-interference (Cox(1958)). Ass 3: time series unconfoundedness.

 $\{Y_{1:3}(w_{1:3}), w_{1:3} \in \{0,1\}^3\}.$ $Y_3(1,1,1)$ $Y_2(1, 1)$ $Y_3(1,1,0)$ $Y_{1}(1)$ $Y_3(1,0,1)$ $^{*}Y_{2}(1,0)$ $Y_3(1,0,0)$ $_{x}Y_{2}(0,1)$ $Y_3(0,1,1)$ $^{\lambda}Y_3(0,1,0)$ $Y_1(0)$ $Y_3(0,0,1)$ $^{*}Y_{2}(0,0)$

 $Y_3(0,0,0)$

 $W_{1:3} = (1,1,0), Y_{1:3} = Y_{1:3}(W_{1:3}) = Y_{1:3}(1,1,0).$



Example (Linear process)

Let $Y_t = Y_t(W_{1:t})$ where for all $w_{1:t} \in \mathcal{W}^t$,

$$\begin{pmatrix} Y_{t}(w_{1:t}) \\ W_{t} \end{pmatrix} = \begin{pmatrix} \mu + \phi Y_{t-1}(w_{1:t-1}) + \beta_{0}w_{t} \\ \gamma + \theta W_{t-1} + \delta Y_{t-1}(W_{1:t-1}) \end{pmatrix} + \begin{pmatrix} \epsilon_{t} \\ \eta_{t} \end{pmatrix}, \quad \begin{pmatrix} \epsilon_{t} \\ \eta_{t} \end{pmatrix} \stackrel{iid}{\sim} N \begin{pmatrix} 0, \begin{pmatrix} \sigma_{\epsilon}^{2} & \rho \sigma_{\epsilon} \sigma_{\eta} \\ \rho \sigma_{\epsilon} \sigma_{\eta} & \sigma_{\eta}^{2} \end{pmatrix} \end{pmatrix}.$$

$$\tag{1}$$

- Not a potential outcome time series, as ϵ_t and η_t are contemporaneously correlated disallows Assumption 3.
- If $\rho = 0$ then this is a potential outcome time series.

Example (Forward looking expectations)

$$W_{t} = \arg\max_{w_{t}} \left(\max_{w_{t+1:T}} E[U^{*}(Y_{t:T}(W_{1:t-1}, w_{t:T}), w_{t:T}) | \mathcal{F}_{t-1}] \right), \tag{2}$$

where U^* is a utility function of future outcomes and treatments. This decision rule delivers W_t and thus $Y_t(W_{1:t})$.

Is a potential outcome time series.

Causal effect

Assume a potential outcome time series. Have seen $W_{1:t-p-1}$, $p \ge 0$. Bojinov and Shephard (2020) define causal effect of treatment $w_{t-p:t}$ compare to $w'_{t-p:t}$ as

$$\tau_t = Y_t(W_{1:t-p-1}, w_{t-p:t}) - Y_t(W_{1:t-p-1}, w'_{t-p:t}).$$

Usually place structure on $w_{t-p:t}$ and $w'_{t-p:t}$. We here introduce:

Definition

Assume a potential outcome times series and write $Y'_t := Y_t(W_{1:t-p-1}, W'_{t-p:t})$, recalling $Y_t := Y_t(W_{1:t})$. The **causal response function** is, if it exists,

$$CRF_{t,p}(w,w') := \mathbb{E}\left[\left(Y_t - Y_t'\right) \mid W_{t-p} = w, W_{t-p}' = w', \mathcal{F}_{t-p-1}\right],$$
 (3)

where the expectation is generated by $\{Y_t, W_{t-p:t}, Y'_t, W'_{t-p:t}\}|\mathcal{F}_{t-p-1}$.

Then our causal estimand is: $\overline{CRF}_p(w, w') = \frac{1}{T-p} \sum_{t=p+1}^T CRF_{t,p}(w, w')$.

Generalized impulse response function

For a potential outcome time series assume additionally that

$$\{Y_t', W_{t-p:t}'\}|\mathcal{F}_{t-p-1} \stackrel{L}{=} \{Y_t, W_{t-p:t}\}|\mathcal{F}_{t-p-1}, \text{ and }$$

$$(\{Y_t, W_{t-p:t}\} \perp \!\!\! \perp W'_{t-p})|\mathcal{F}_{t-p-1}, \text{ and } (\{Y'_t, W'_{t-p:t}\} \perp \!\!\! \perp W_{t-p})|\mathcal{F}_{t-p-1}.$$

Then

$$CRF_{t,p}(w,w') := E[Y_t | W_{t-p} = w, \mathcal{F}_{t-p-1}] - E[Y_t | W_{t-p} = w', \mathcal{F}_{t-p-1}].$$

- When w' = 0 this is the "generalized impulse response function" of Koop, Pesaran and Potter (1996). Gives nonparametric causal meaning to GIRF.
- $CRF_{t,p}(w,w')$ is our favorite summary measure for practical causal studies of observational time series.

Identifying dynamic causal effects

$$CRF_{t,p}(w,w') := E[Y_t | W_{t-p} = w, \mathcal{F}_{t-p-1}] - E[Y_t | W_{t-p} = w', \mathcal{F}_{t-p-1}].$$

For potential outcome time series, the central causal estimand is

$$\overline{\mathit{CRF}}_p(w,w') = \frac{1}{T-p} \sum_{t=p+1}^T \mathit{CRF}_{t,p}(w,w').$$

- A $T^{2/5}$ -consistent kernel estimator of $\bar{\tau}_p(w,w')$ is given for continuous w,w'.
- Implications:
 - Average dynamic causal effects can be nonparametrically identified solely from assuming a potential outcome time series.
 - Identifying causal effects by "shocks", as econometricians often do through "Frisch-Slutsky paradigm", misses the point.
 - Later we will define a shock. It helps statistical precision, not identification!

Impulse response function

Definition (Impulse response function)

Assume $\{Y_t, W_t\}$ is strictly stationary and

$$IRF_p(w, w') := E[Y_t \mid W_{t-p} = w] - E[Y_t \mid W_{t-p} = w'],$$

exists, where $E[\cdot]$ is calculated from the law of Y_t , W_{t-p} . Then, $IRF_p(w, w')$ is called "impulse response function".

Classically, this has no causal content.

Thm: Assume $\{Y_t, W_t\}$ is stationary POTS. Then, if the expectations exist,

$$E[CRF_{t,p}(w,w')] = IRF_p(w,w'),$$

where the expectation is generated by the stationary distribution of treatments and outcomes. Again $T^{2/5}$ rate. Gives nonparametric causal meaning to IRF.

Special cases of POTS — searching for more precision

Definition (Linear potential outcome time series)

For a potential outcome time series, if, for every $w_{1:t}$,

$$Y_t(w_{1:t}) = U_t + \sum_{s=0}^{t-1} \beta_{t,s} w_{t-s},$$

where $\beta_{t,s}$ are non-stochastic, then $\{Y_t, W_t\}$ is linear potential outcome time series.

Note, this does not need that $\{Y_t, W_t\}$ is a linear process!

Definition (Shocked potential outcome time series)

For a potential outcome time series, if,

$$E[W_t \,|\, \mathcal{F}_{t-1}] = 0,$$

then W_t is called a **shock** and $\{Y_t, W_t\}$ is **shocked potential outcome time series**.

Linear, shocked POTS

Recall, linear POTS has $Y_t(w_{1:t}) = U_t + \sum_{s=0}^{t-1} \beta_{t,s} w_{t-s}$, so $Y_t(w_{1:t}) - Y_t(w'_{1:t}) = \sum_{s=0}^{t-1} \beta_{t,s} (w_{t-s} - w'_{t-s})$. Under linear, shocked POTS,

$$\overline{CRF}_{p}(w,w') = (w-w')\overline{\beta}_{p}, \quad \overline{\beta}_{p} = \frac{1}{T-p} \sum_{t=p+1}^{T} \beta_{t,p}.$$

Estimand is time-averaged of time-t causal effect! Local projection estimator:

$$\hat{\beta}_{p}^{OLS} = \frac{\sum_{t=p+1}^{T} Y_{t} W_{t-p}}{\sum_{t=p+1}^{T} W_{t-p}^{2}} \xrightarrow{p} \frac{\lim_{t \to \infty} \frac{1}{T-p} \sum_{t=p+1}^{T} \beta_{t,p} E(W_{t-p}^{2})}{\lim_{T \to \infty} \frac{1}{T-p} \sum_{t=p+1}^{T} E(W_{t-p}^{2})}.$$

Typically $T^{1/2}$ consistent. Linearity & shocks makes inference more precise. Under stationary, linear, shocked POTS:

$$\hat{\beta}_p^{OLS} \xrightarrow{p} \beta_p.$$

Special cases of POTS — instrumental variables

Definition (Instruments)

Assume $\{Y_t, V_t\}$ is a potential outcome time series, where $V_t = (W'_t, Z'_t)'$. Additionally:

- **1** Exclusion condition: $Y_t(w_1, z_1, ..., w_t, z_t) = Y_t(w_1, z_1', ..., w_t, z_t')$ for all $w_{1:t}, z_{1:t}, z_{1:t}'$.
- **②** Relevance condition: $Z_t \not\perp \!\!\! \perp W_t \mid \mathcal{F}_{t-1}$.

Then $\{Y_{1t}, V_t\}$ is "instrumented potential outcome time series", $Z_{1:t}$ is "instrument path."

Example

 Y_t is a macro aggregate, W_t is a monetary policy shock, but cannot see it. $Z_t = \hat{W}_t$ is estimate of monetary policy shock! Here: assume actual shock impacts economy not estimated shock; estimate is not independent of shock.

Focus of the local projection-IV literature, e.g. Jorda et al (2015), Stock & Waton (2018) and Plagborg & Wolf (2018). Discussion there is in terms of linear models, based on shocks and stationarity.

Local projection-IV

Assume $\{Y_{1t}, (W_t, \hat{W}_t)\}$ is "instrumented potential outcome time series", $\hat{W}_{1:t}$ is "instrument path."

Define

$$\hat{\beta}_{p}^{IV} = \frac{\sum_{t=p+1}^{T} Y_{t} \hat{W}_{t-p}}{\sum_{t=p+1}^{T} Y_{t-p} \hat{W}_{t-p}}$$

Then, under a linear, shocked, instrumented potential outcome time series

$$\hat{\beta}_{p}^{IV} \xrightarrow{p} \frac{\lim_{T \to \infty} \frac{1}{T-p} \sum_{t=p+1}^{T} \beta_{t,p} E(W_{t-p} \hat{W}_{t-p})}{\lim_{T \to \infty} \frac{1}{T-p} \sum_{t=p+1}^{T} \beta_{t,0} E(W_{t-p} \hat{W}_{t-p})}.$$

$$(4)$$

In the LP-IV literature, conventional to assume $\beta_{t,0} = 1$ (Stock and Watson (2018)).

Linear projection

Shocked POTS where $E(Y_t^2) < \infty$, $0 < E(W_{t-p}^2) < \infty$, define "local" & "universal"

$$eta_{t,p}^L := rg \min_{eta} \left[\min_{lpha} E(Y_t - lpha - eta W_{t-p})^2
ight],$$

$$\beta_p^U := \arg\min_{\alpha} \min_{T \to \infty} \frac{1}{T - p} \sum_{t=p+1}^{T} E(Y_t - \alpha - \beta W_{t-p})^2.$$

Then, writing $\alpha_t = E(Y_t)$,

$$Y_t^L(w_{1:t}) := \alpha_t + \sum_{s=0}^{t-1} \beta_{t,s}^L w_{t-s}, \text{ and } Y_t^U(w_{1:t}) := \alpha + \sum_{s=0}^{t-1} \beta_s^U w_{t-s},$$

$$\beta_{p}^{U} = \frac{\lim_{T \to \infty} \frac{1}{T - p} \sum_{t=p+1}^{I} \beta_{t,p}^{L} E(W_{t-p}^{2})}{\lim_{T \to \infty} \frac{1}{T - p} \sum_{t=p+1}^{T} E(W_{t-p}^{2})}.$$

(5)

Conclusion

- ullet Formal model-free definition of causality in times series: POTS and au_t .
- Form favorite practical measure for observational time series:

$$CRF_{t,p}(w,w') = E[Y_t|W_{t-p} = w, \mathcal{F}_{t-p-1}] - E[Y_t|W_{t-p} = w', \mathcal{F}_{t-p-1}].$$

Gives nonparametric causal meaning to GIRF.

- Can nonparametrically estimate $\overline{CRF}_p(w, w')$ at $T^{2/5}$.
- Stationarity + POTS implies:
 - $CRF_p(w, w') = IRF_p(w, w') = E[Y_t | W_{t-p} = w] E[Y_t | W_{t-p} = w'].$
 - Gives nonparametric causal meaning to IRF.
 - Nonparametrically still $T^{2/5}$.
- Linearity + POTS, then estimate at $T^{1/2}$.
- Local projection: linearity + shocks + POTS: estimate weighted causal quantities.
- ullet LP-IV: linearity + shocks + instrumented POTS: estimate weighted causal quantities.