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Big picture

@ The three great tasks of statistics are:

o description (Y);

o prediction (Y|W);

o causality (change in Y if W is moved).
@ Most empirical economics research is about causality:

e highly structured models (e.g. 1.0.);

o randomized experimental methods (e.g. development economics);

o observational methods; mimicking experiments (everywhere, e.g. corporate finance).
@ Here build dynamic causality methods for observational time series:

e mimicking potential outcome time series for randomized dynamic experiments;

e core observational methods: causal response function, shocks, linear potential outcome time

series, instrumented potential outcome time series;

o relate to: impulse response function, local projection, local projection-1V.

Bojinov, Rambachan and Shephard (2020) extend to panel data experiments.
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Time series & causality: what we are not doing

Researchers quantify causality in time series in a variety of ways

@ Model-free “Granger causality” (Wiener(1956), Granger(1969)). Famously, but this is
about forecasting, not causality.
@ Model-based:
o highly structured models such as DSGE models (Herbst & Schorfheide(2015)), game theory
(Toulis & Parkes(2016));
e state space modelling (Harvey and Durbin(1986), Harvey(1996), Bondersen et al (2015));
o intervention analysis (Box & Tiao(75));
o linear models, VMA, VAR, IRF (Sims (1980)), local projection (Jorda(2005)), IV-local
projection (Jorda et al (2015)).
The potential outcome time series is distinct from each of those approaches. It is model-free.
Closest to Angrist and Kurnsteiner(2011) and Angrist, Jorda, Kurnsteiner(2018). Much like
cross-sectional causal studies.
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Main contributions of this paper

@ Define causal response function, useful for observational studies:
e give model-free causal meaning to “generalized impulse response function”;
e give model-free causal meaning to “impulse response function”.

@ Define a shock, linearity and instruments for potential outcome time series.

@ Understand what local projection & LP-IV estimate:

o usually studied under VMA models (impose shocks, linearity and causality all at once);
e unpick where identification comes from, seperating it out from precision;
o shocks help precision, not identification.
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Potential outcome time series (Bojinov & Shephard (2020, JASA))

Defn: Treatment path is the stochastic process Wi.t, where W, € W. Potential outcome
path, for any deterministic wi.7 € W7, is the stochastic process

Yir(wit) = (Ya(wi.T), Yo(wi.T), ..., YT (wi.7)).
Assumptions
1. "Non-anticipating POs": Yy(wi.7) = Ye(wi.e, wyq.7) for all wi.r, wi ;.. Write:
Yir(wi.t) = (Yi(wr), Yo(wi:2), ..., Y7 (wi.T)).

2. "Outcomes”: See Wi.T & Yi.7 = Yl:T(Wl:T)- Write F; generated by Wi, Y1:t.

3. “Non-anticipating treatments”: For each t:

{Yer(Wae1, wer), wer € WTTHL 1L W) | Fry.

Defn: Wi.T & Yi.7 that satisfy Ass 1, 2 & 3 are “potential outcome time series”.
Ass 1: time series non-interference (Cox(1958)). Ass 3: time series unconfoundedness.
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Wiz = (1,1,0), Y13 = Y1.3(Wi3) = Y1:3(1,1,0).
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Example (Linear process)
Let Y; = Yi(Whi.t) where for all wy., € WE,

(Yt(Wl:t)) _ ( w4 oYeo1(wie—1) + Bowe )+<et> <et> iid ) <0 ( o? paea,,))
W; Y+ OW_1 + 5Yt—l(‘/Vl:if—l) Nt ’ T ’ POOy 0'727 i
(1)

@ Not a potential outcome time series, as ¢; and 71, are contemporaneously correlated —
disallows Assumption 3.

@ If p = 0 then this is a potential outcome time series.
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Example (Forward looking expectations)
Wi = argmx o E[U"(Yer (Wae-, wer), wer) | Fect]). @
73 Wit1:

where U* is a utility function of future outcomes and treatments. This decision rule delivers
W; and thus Yi(Wi.t).

@ Is a potential outcome time series.
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Causal effect

Assume a potential outcome time series. Have seen Wi.;_,_1, p > 0. Bojinov and Shephard
(2020) define causal effect of treatment w;_p.+ compare to w;_,, as

/
Tt = Yt(Wl:t—p—la Wt—p:t) - Yt(let—p—h Wt—p:t)'
Usually place structure on w; .+ and w;_, .. We here introduce:
Definition

Assume a potential outcome times series and write Yy := Yy(Wy.rp-1, W;_ ), recalling
Y: := Yi(Wi.t). The causal response function is, if it exists,

CRFep(w,w') :=E[(Ye = Y{) | Weep =w, W], =W, Fr_p1], (3)

where the expectation is generated by { Yy, W;_p.e, Y{, W{_,  HFt—p-1.

Then our causal estimand is: CRF ,(w,w’) = ﬁ ZtT:p+1 CRF p(w, w').
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Generalized impulse response function
For a potential outcome time series assume additionally that
L
(YL Wi HFe—p—1 = {Ye, Weepie }| Fr—p-1, and
({Ye, Wempie} L W) Fep1, and  ({Y{, Wi} L Wep)[Fep.

Then

Cll'-\>Ft7p(W7 W/) =E [Yt‘ Wt—p = Waft—p—l] —E [Yt‘ Wt—p = Wlaft—p—l] .

@ When w’ = 0 this is the “generalized impulse response function” of Koop, Pesaran and
Potter (1996). Gives nonparametric causal meaning to GIRF.

e CRF; ,(w,w') is our favorite summary measure for practical causal studies of
observational time series.
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Identifying dynamic causal effects

CRFtyP(W7 W/) = E [Yt| Wtfp = W,ftfpf]_] — E [Yt‘ Wtfp = W/7]:t7p71} .
For potential outcome time series, the central causal estimand is

T

— 1
C.ll?l‘:p(W7 W,) = ﬁ Z CRFtvP(W7 W/).
t=p+1

o A T?/>-consistent kernel estimator of 7,(w, w’) is given for continuous w, w’.
@ Implications:

e Average dynamic causal effects can be nonparametrically identified solely from assuming a
potential outcome time series.

o ldentifying causal effects by “shocks”, as econometricians often do through “Frisch-Slutsky
paradigm”, misses the point.

o Later we will define a shock. It helps statistical precision, not identification!
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Impulse response function

Definition (Impulse response function)

Assume {Y;, W;} is strictly stationary and
IRFp(w,w') := E[Y¢ | We—p = w] — E[Yi| Wi = v],

exists, where E[-] is calculated from the law of Y, Wi_,. Then, IRF,(w, w’) is called “impulse
response function” .

4

Classically, this has no causal content.
Thm: Assume {Y;, W;} is stationary POTS. Then, if the expectations exist,

E[CRF; p(w, w')] = IRFp(w, w'),

where the expectation is generated by the stationary distribution of treatments and outcomes.
Again T?2/° rate. Gives nonparametric causal meaning to IRF.

13/19



Special cases of POTS — searching for more precision

Definition (Linear potential outcome time series)

For a potential outcome time series, if, for every wi .,

t—1

Yi(wie) = U + Z B sWt—s,

s=0

where 3, ¢ are non-stochastic, then {Y;, W;} is linear potential outcome time series.

Note, this does not need that {Y;, W;} is a linear process!

Definition (Shocked potential outcome time series)

For a potential outcome time series, if,
E[W: | Fea] =0,

then W; is called a shock and {Y;, W;} is shocked potential outcome time series.




Linear, shocked POTS

Recall, linear POTS has Yi(wi.¢) = U + Z;é B sWt—s, SO

Ye(wit) — Ye(wi,) = 15 t.s(We—s — w{_¢). Under linear, shocked POTS,

Wp(w, w') = (w— W/)Bp, Z Btp

t p+1

Estimand is time-averaged of time-t causal effect! Local projection estimator:

2
~»OLS ZZ—Zp—&-l YeWip LN Thm T— sz P+1Btp (W )

pore = =t
8 Zt:p—i—l t—p lim Ti—pzt:p—‘rl E(Wtz—p)

T—oo

Typically T1/2 consistent. Linearity & shocks makes inference more precise.
Under stationary, linear, shocked POTS:

~OLS p

Bo = Py
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Special cases of POTS — instrumental variables

Definition (Instruments)

Assume {Y;, V;} is a potential outcome time series, where V; = (W/, Z])'. Additionally:
@ Exclusion condition: Yi(w1,z1, ..., we, z¢) = Ye(wa, 21, ..., we, ;) for all wi.e, 214, 21 .
@ Relevance condition: Z; /L W, | Fr—_1.

Then {Yi¢, Vi} is “instrumented potential outcome time series”, Zy.+ is “instrument path.”

| A

Example

Y: is a macro aggregate, W; is a monetary policy shock, but cannot see it. Z; = W, is
estimate of monetary policy shock! Here: assume actual shock impacts economy not
estimated shock; estimate is not independent of shock.

Focus of the local projection-1V literature, e.g. Jorda et al (2015), Stock & Waton (2018) and
Plagborg & Wolf (2018). Discussion there is in terms of linear models, based on shocks and
stationarity.
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Local projection-IV

Assume { Yi¢, (W, W;)} is “instrumented potential outcome time series”, Wi.; is *

instrument
path.”
Define . )
BIV - Zt:p+1 YiWep
P T T ~
Zt:pﬂ YepWep
Then, under a linear, shocked, instrumented potential outcome time series
AV p TII_'T' T— PZt p+lﬁtp (We—pWep) @
- 4
P
I’m T pzt p+1ﬁt0E(Wt th p)

In the LP-1V literature, conventional to assume 3, = 1 (Stock and Watson (2018)).
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Linear projection
Shocked POTS where E(Y?) < 00, 0 < E(WZ ) < oo, define “local” & “universal”

5%,, = arg min [min E(Y:—a-— ﬁWt_p)z] ,
bl 6 6%

-
1
ﬁg ‘= argminmin lim —— E(Yt—a—BWt,p)2.
Jé] a T—ool —p tepil
Then, writing oy = E(Y%),
t—1 t—1
YtL(Wl:t) =aQp + Zﬁéswt—sy and YtU(Wl:t) =a+ ZﬁgWr_s,
s=0 s=0

lim % ZtT:erl /Blt_,pE( Wt27p)

gy = o= Ty - ©)
T/Tmﬂ >t—pt1 E( Wt2—p)
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Conclusion

@ Formal model-free definition of causality in times series: POTS and 7.

@ Form favorite practical measure for observational time series:
CRFtvP(W7 W/) =E [Yt‘ Wt—p = W,.Ft_p_]_] — E [Yt’ Wt—p = W/,.Ft_p_]_] .

Gives nonparametric causal meaning to GIRF.
o Can nonparametrically estimate CRF ,(w, w’) at T2/
@ Stationarity + POTS implies:
o CRFy(w,w') = IRFy(w,w') = E[Ye| We_p = w] — E[Yi| Wip = w'].
o Gives nonparametric causal meaning to IRF.
o Nonparametrically still T%/5.

o Linearity + POTS, then estimate at 71/2.
@ Local projection: linearity + shocks + POTS: estimate weighted causal quantities.
@ LP-1V: linearity + shocks + instrumented POTS: estimate weighted causal quantities.
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