Diagnostic bubbles

Pedro Bordaloa, Nicola Gennaiolib, Spencer Yongwook Kwonc, Andrei Shleiferd,\textsterisk{e}

a Said Business School, University of Oxford, Park End St, Oxford, OX1 1HP, UK
b Bocconi University and IGIER, Via Roberto Saffiati, 25, 20100 Milano, MI, Italy
c Harvard Business School, Soldiers Field, Boston, MA 02163, USA
d Harvard University, 1805 Cambridge Street, Cambridge, MA 02138, USA

\textbf{ARTICLE INFO}

\textbf{Article history:}
Received 17 December 2018
Revised 19 September 2019
Accepted 29 November 2019
Available online 30 June 2020

\textbf{JEL classification:}
G11
G12
G14

\textbf{Keywords:}
Bubble
Speculation
Diagnostic expectations

\textbf{ABSTRACT}

We introduce diagnostic expectations into a standard setting of price formation in which investors learn about the fundamental value of an asset and trade it. We study the interaction of diagnostic expectations with learning from prices and speculation (buying for resale). With diagnostic (but not with rational) expectations, these mechanisms lead to price paths exhibiting three phases: initial underreaction, then overshooting (the bubble), and finally a crash. With learning from prices, the model generates price extrapolation as a by-product of beliefs about fundamentals, lasting only as the bubble builds up. When investors speculate, even mild diagnostic distortions generate substantial bubbles.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The financial crisis of 2007–2008 has revived academic interest in price bubbles. Shiller (2015) created a famous graph of home prices in the United States over the course of a century, which shows prices being relatively stable during most of the 20th century and then doubling over the ten-year period after 1996, only to collapse in the crisis and begin recovering after 2011. There is also growing evidence of speculation such as buying for resale in the housing market (DeFusco et al., 2018; Mian and Sufi, 2018) and of increasing leverage of both homeowners and financial institutions tied to rapid home price appreciation. The collapse of the housing bubble is at the heart of every major narrative of the financial crisis and the Great Recession because it entailed massive losses for homeowners, holders of mortgage backed securities, and financial institutions (Mian and Sufi, 2014). Nor is the US experience unique. Leverage expansions and subsequent crises are often tied to bubbles in housing and other markets (Jorda et al., 2015).

Despite the revival of academic interest, asset price bubbles remain controversial. Although economic historians tend to see bubbles as self-evident (Mackay, 1841; Bagehot, 1873; Galbraith, 1954; Kindleberger, 1978; Shiller, 2000), Fama (2014) raised the critical question of whether they even exist in the sense of predictability of future negative returns after prices have increased substantially. Interestingly, since Smith et al. (1988), predictably negative returns are commonly found in laboratory experiments even when markets have finite horizons. Greenwood et al. (2019) address Fama’s challenge in industry stock return data around the world and find that although past returns alone are very noisy indicators...
of bubbles, other measures of overpricing do forecast poor returns going forward.\footnote{A closely related literature examines the overpricing of small growth stocks with extremely optimistic analyst forecasts of future growth, and predictably poor returns (Lakonishok et al., 1994; La Porta, 1996; Bordalo et al., 2019b).}

Early theoretical research has focused on rational price bubbles that do not violate (some definitions of) market efficiency (Blanchard and Watson, 1982; Tirole, 1985; Martin and Ventura, 2012), but these models are not consistent with the available evidence on prices (Giglio et al., 2016). They are also rejected by the striking evidence of excessively optimistic investor expectations in bubble episodes (Case et al., 2012; Greenwood et al., 2019), which also shows up in experimental data (e.g., Haruvy et al., 2007). Because of such evidence, research has moved to behavioral models of bubbles, which emphasize factors such as overconfidence and short sales constraints (Scheinkman and Xiong, 2003), neglect of entry (Glaeser et al., 2008; Glaeser and Nathanson, 2017; Greenwood and Hanson, 2014), and price extrapolation (e.g., Cutler et al., 1990; DeLong et al., 1990b; Barsky and De Long, 1993; Hong and Stein, 1999; Barberis and Shleifer, 2003; Hirshleifer et al., 2015; Greenwood and Shleifer, 2014; Glaeser and Nathanson, 2017; Barberis et al., 2015; Barberis et al., 2018).

The focus on price extrapolation overlooks one further potentially important driver of bubbles: excessively optimistic beliefs about the fundamental value of an asset. This mechanism features prominently in historical accounts of bubbles, which note the euphoria accompanying new technologies such as railroads, the internet, etc. This paper explores the connection between excessive optimism about fundamentals and asset price bubbles. We introduce nonrational beliefs about fundamentals in an otherwise standard asset pricing model and ask three questions. First, when does excessive optimism arise and how far can it go in accounting for inflated asset prices? Second, can this mechanism create self-reinforcing price growth when traders seek to learn fundamental values from prices themselves? And third, how does optimism about fundamentals interact with traders’ speculation for quick resale in sustaining price growth?

To address these questions, we introduce diagnostic expectations (see Bordalo et al., 2018, hereafter BGS, 2018; Bordalo et al., 2019, hereafter BGLS, 2019; and Bordalo et al., 2020, hereafter BGMS, 2020), into a standard finite horizon model of a market for one asset, in which a continuum of investors receive noisy private information every period about the termination value of that asset. The asset is valuable (above the prior) so that traders, on average, receive good news about fundamentals every period. Because traders receive different noisy signals, they hold heterogeneous beliefs. This generates trading volume, which is an important feature of bubbles (Scheinkman and Xiong, 2003; Hong and Stein, 2007). Unlike some previous models, such as Harrison and Kreps (1978) and Scheinkman and Xiong (2003), we do not need to assume short sale constraints. In this setup, we assess how distorted beliefs about fundamentals interact with two key mechanisms: learning from prices and speculation.\footnote{We do not examine leverage and other factors that link the collapses of bubbles to financial fragility and economic recessions (see, e.g., Gennaioli et al., 2012; Reinhart and Rogoff, 2000; Gennaioli and Shleifer, 2018). We leave the analysis of the role of leverage to future work.} With rational expectations, in this model the average price path rises from the prior to the fundamental value, without overshooting. There are no price bubbles in equilibrium.

Under diagnostic expectations, traders update their beliefs excessively in the direction of the states of the world whose objective likelihood has increased the most in light of recent news. After good news, right-tail outcomes become representative and are overweighted in expectations, while left-tail outcomes become nonrepresentative and are neglected. But how does this affect the price of the asset over time?

We find that, in line with Kindleberger’s (1978) narrative, the equilibrium price evolves over three stages. The first stage is displacement. A beneficial economic innovation (see, e.g., Pastor and Veronesi, 2006) entails a sequence of good fundamental news. Such good news eventually leads to excess optimism. As traders grow more optimistic, the demand for the asset soars, creating a sustained price increase.

The second and crucial stage is the acceleration of price growth. In this stage, price increases themselves encourage buying that leads to further price increases, and prices reach levels substantially above fundamental values. This second stage is not due to diagnostic expectations alone but to their interaction with learning from prices and speculation. Consider learning from prices first. Because diagnostic traders update expectations excessively in the direction of information, they act more aggressively on their private signals. This feature makes prices more informative than under the rational benchmark. As a consequence, traders react even more aggressively to prices. As good news arrives, prices rise and quickly swamp the less informative private signals. Through rising prices, a public signal, the overoptimism of some traders infects the entire market. As all traders become excessively optimistic, price growth accelerates, resulting in convex price paths. It looks like investors are extrapolating price trends, even though they are merely watching prices to learn about fundamentals: recent price increases lead traders to upgrade (too much) their expectations of fundamental value and thus of the future price.

Speculation, when interacted with diagnostic expectations, adds fuel to the bubble. Buying for resale compounds overreaction: traders are not only too optimistic about fundamentals, but they also exaggerate the possibility of reselling the asset to traders who are even more optimistic than them. Following a beauty context logic, a trader who believes that the asset is the next Google thinks that future diagnostic traders will receive extremely positive signals and will thus be even more optimistic about the asset. The expectation of reselling the asset to very bullish traders further inflates the price today. As a result, even a small degree of diagnosticity compounds into strong price extrapolation and large price dislocations.
The third and final phase is the collapse of the bubble. Under diagnostic expectations, two mechanisms are responsible for the crash. First, because good news become increasingly marginal over time, they cannot sustain the extent of overreaction. The bubble collapses because of bad news but because traders’ over-reaction relies on recent good news and as such eventually runs out of steam. Second, as the terminal date approaches, there are fewer opportunities to resell to an overly optimistic trader. This reduces the current demand for the asset, causing the bubble to collapse today.

Our analysis shows how diagnostic expectations interact with learning from prices and speculation to create fundamentals-based boom bust price dynamics. The spreading of optimism about fundamentals through the market endogenously generates, as a by-product, key previously recognized features of bubbles, such as a form of time-varying price extrapolation, growing trading volume, and high price volatility near the peak. Throughout the paper, we discuss the central role of diagnostic expectations in generating these features when paired with learning from prices or with a speculative motive as well as its distinctive predictions relative to mechanical price extrapolation.

The paper proceeds as follows. In Section 2 we present the model of diagnostic expectations and show its implications for the dynamics of beliefs, absent any market mechanism. In Section 3 we isolate the role of learning from prices by introducing diagnostic expectations into a standard Grossman–Stiglitz setup in which traders have no speculative motives. In Section 4 we isolate the role of speculation by introducing diagnostic expectations into a standard beauty contest model in which learning from prices is absent. In Section 5 we present and simulate the full model with diagnostic expectations, learning from prices, and speculation. Section 6 concludes.

2. Learning from good shocks and diagnostic expectations

Traders learn about the value of a new asset over a finite number of periods \(t = 0, \ldots, T \). The asset yields a payoff \(V \). The value of \(V \) is drawn from a normal distribution with mean 0 and variance \(\sigma^2_V \) at \(t = 0 \), but it is only revealed at the terminal date \(T \). In line with Kindelberger’s (1978) description of a positive displacement as the trigger of bubble episodes, we focus on the case of a valuable innovation, \(V > 0 \). Our model is entirely symmetric for \(V < 0 \), in which case negative bubbles arise. Symmetry naturally breaks down if one introduces short sales constraints, which we abstract from here.

In each period \(t \), each trader \(i \) (in measure one) receives a private signal \(S_{it} = V + \epsilon_{it} \) of the asset’s value. Noise \(\epsilon_{it} \) is independently and identically distributed across traders and over time and is normally distributed with mean zero and variance \(\sigma^2_{\epsilon} \). Because the new asset is valuable, \(V > 0 \), traders are repeatedly exposed to good news, in that signals are, on average, positive relative to their priors, capturing the initial displacement. Moreover, the assumption of dispersed information generates variation in expectations and creates a motive for trading.

In this section, we do not consider trading and describe instead how diagnostic expectations about fundamentals evolve solely based on the arrival of noisy private signals. This is useful for two reasons. First, in this setting with learning and dispersed information, diagnostic expectations behave differently than in prior finance applications (BGS, 2018; BGLS, 2019). Second, by separately characterizing the dynamics of expectations about fundamentals, we can better understand their interaction with market forces such as trading, learning from prices, and speculation, which we introduce in Sections 3 and 4.

A rational trader observing a history of signals \((s_{i1}, \ldots, s_{iT})\) forms an expectation about \(V \) given by

\[
E_t(V) = \pi_t \frac{\sum_{\tau=1}^{T} s_{\tau}}{t},
\]

where \(\pi_t \equiv \frac{\epsilon^2}{\sigma^2 + \epsilon^2} \) is the signal-to-noise ratio. The consensus expectation under rationality is given by

\[
\int E_t^d(V) d\tau = \pi_t V,
\]

lower than the full information benchmark. The rational consensus has two important properties. First, it is always below the rational benchmark because \(\pi_t \leq 1 \). Rational traders discount their noisy signals, which implies that average information, always equal to \(V \), is also discounted. Second, the rational consensus gradually improves over time because the signal-to-noise ratio \(\pi_t \) rises, in a concave way, toward one. As traders see more and more signals, their uncertainty falls, inducing them to weigh their evidence more heavily.

As in rational inattention models (Woodford, 2003), optimal information processing by individuals who observe noisy signals creates sluggishness in consensus expectations: because individual expectations discount private signals to account for noise, the consensus moves less than under the benchmark of full information. This sluggishness is central in thinking about price formation in rational expectations models. As we show in Sections 3 and 4, even with learning from prices and speculation, rational updating causes the consensus expectation as well as the price of the asset to underreact to the fundamental value \(V \), monotonically converging to it from below.

Consider now updating under diagnostic expectations (DE). This model of belief formation captures Kahneman and Tversky (1972) representativeness heuristic.\(^3\) Representativeness refers to the notion that, in forming probabilistic assessments, decision makers put too much weight on outcomes that are likely not in absolute terms but rather relative to some reference or baseline level. For example, many people significantly overestimate the probability that a person’s hair is red when told that the person is Irish. The share of red-haired Irish, at 10%, is a small minority, but red hair is much more common among the Irish than among other Europeans, let alone

\(^3\) According to Kahneman and Tversky (1972), the reliance on representativeness as a proxy for likelihood is a central feature of probabilistic judgments. An outcome “is representative of a class if it’s very diagnostic”; i.e., if its “relative frequency is much higher in that class than in the relevant reference class” (Tversky and Kahneman, 1983).
in the world as a whole. The overestimation of the prevalence of representative types distorts beliefs and accounts for many systematic errors in probabilistic judgments documented experimentally (Gennaioli and Shleifer, 2010). It also delivers a theory of stereotypes consistent with both field and experimental evidence, including gender stereotypes in assessments of ability (Bordalo et al., 2016; Bordalo et al., 2019), racial stereotypes in decisions about bail (Arnold et al., 2018), and popular beliefs about immigrants (Alesina et al., 2018).

In an intertemporal setting like the current one, DE capture the idea that investors overweight the probability of events that have become more likely in light of recent news. For instance, after observing a period of positive earnings growth, DE overweight the probability that the firm may be the next Google. This event is highly unlikely in absolute terms, but it has become more likely in light of the strong earnings growth. As a consequence, the perceived probability of such an event is inflated.

To see this formally, consider an agent forecasting at time \(t \) random variable \(X_{t+1} \). As shown in BGS (2018), if \(X_{t+1} \) is conditionally normal, the diagnostic distribution of beliefs is also normal. Furthermore, if \(E_t(X_{t+1}) \) is the rational expectation at time \(t \), then the diagnostic expectation at time \(t \) is

\[
E^D_t(X_{t+1}) = E_{t-k}(X_{t+1}) + (1 + \theta)[E_t(X_{t+1}) - E_{t-k}(X_{t+1})].
\]

(2)

DE are forward-looking: they update in the correct direction and nest rational expectations as a special case for \(\theta = 0 \). Crucially, however, DE overreact to information by exaggerating the difference between current conditions \(E_t(X_{t+1}) \) and normal conditions \(E_{t-k}(X_{t+1}) \) by a factor of \((1 + \theta) \). As good news arrives, the right tail of \(X_{t+1} \) becomes fatter, while still unlikely, it is very representative because its prior probability was so low. As a result, investors overweight the right tail and neglect the risk in the left tail. For normal distributions, this reweighting results in an excessive rightward shift of the believed mean.

In Eq. (2), lag \(k \) defines which recent news investors overreact to. For \(k = 1 \), investors only overreact to news received in the current period. For \(k > 1 \), the investor overreacts to the last \(k \) pieces of news. This captures a realistic sluggishness in the perception of normal conditions: new evidence becomes normal only after enough time has passed. Put differently, the investor observing a sequence of good news takes a while to adapt to them.

BGS (2019) show that in a setting where traders learn from homogeneous information, DE obtained from Eq. (2) account well for the link between listed firms’ performance and equity analysts’ expectations of their future earnings growth as well as, crucially, for the link between expectations and the predictability of their stock returns. They estimate the model and find that, with quarterly data, \(\theta \approx 1 \) and \(k \approx 3 \) years. A similar value of \(\theta \) has been estimated using expectations of credit spreads by BGS (2018) and using macroeconomic forecasts by BGMS (2020). Later, we use \(k \approx 3 \) years in our simulation exercises.

The case \(k > 1 \) is not only qualitatively but also qualitatively different from the case \(k = 1 \). When \(k = 1 \), the law of iterated expectations holds, in the sense that \(E^D_t(X_{t+1}) = E^D_t[E_t(X_{t+1})] \). When \(k > 1 \), the law of iterated expectations fails, so it matters whether expectations are computed following the “short route,” as a sequence of one step diagnostic forecasts, or the “long route,” as a long-term diagnostic forecast. We assume that expectations are computed following the “long route” so that the expectation of terminal value at time \(t \) is computed as \(E^D_t(V) \). This is intuitive and analytically convenient. We believe, however, that results are qualitatively similar if the short route is followed.

The assumption that \(k > 1 \) is important. It implies that investors overreact to news accrued over several periods and thus allows for persistent overvaluation of the asset. When \(k = 1 \) investors over-react only to the most recent news, overvaluation is temporary. Persistent overvaluation is consistent with the evidence on price bubbles, which display a sustained buildup. It also squares with the evidence from the cross section of stock returns and beliefs about fundamentals (BGLS, 2019). Evidence from both beliefs and asset prices also points to violations of the law of iterated expectations. BGMS (2020) and D’Arienzo (2020) show that analyst expectations about long-term interest rates overreact more than their expectations about short-term rates. Giglio and Kelly (2018) show that long term rates are excessively volatile relative to short term rates. In a conventional affine term structure model, D’Arienzo (2020) shows that these findings point to a violation of the law of iterated expectations. Indeed, because overreaction is stronger at long horizons, computing expectations over the long-versus-short route will typically yield different results.

Relative to the earlier finance applications of DE, and in particular relative to BGLS (2019), the current model introduces two new ingredients. First, each trader observes a different noisy signal of the truth \(V \). Second, the state \(V \) does not change over time, reflecting learning about, say, the potential of a new technological innovation. This perspective is central to thinking about bubbles.

Given the heterogeneity of information at time \(t \), each trader \(i \) has a different diagnostic expectation \(E^D_{it}(V) \). As before, we focus on the consensus diagnostic expectation. This is given by

\[
\int \frac{E^D_{it}(V)}{dV} = \begin{cases}
(1 + \theta) \pi_t V & \text{for } t \leq k \\
[\pi_t + (\pi_t - \pi_{t-k})]V & \text{for } t > k
\end{cases}
\]

(3)

In particular, in the current setting overvaluation would be strongest in the first period, when the news is biggest and then monotonically decline over time.
Eq. (3) implies that, under DE, consensus expectations exhibit boom bust dynamics.

Proposition 1. If \(\theta \in \left(1, \frac{\sigma^2}{\sigma_k^2} \right) \), the consensus diagnostic expectation \(\psi_k^\theta(V) \) exhibits three phases:

1. **Delayed overreaction:** \(\psi_k^\theta(V) \) starts below \(V \) and then increases to its peak \(\psi_k^\theta(V) = (1 + \theta)\pi_tV \) at \(t = k \).
2. **Bust:** There is a time \(t^* > k + 1 \) such that \(\psi_k^\theta(V) \) drops from \(t = k + 1 \) to \(t^* \), reaching its minimum at \(\psi_k^\theta(V) < V \). The length of the bust phase, \(t^* - k \), is increasing in \(\theta \).
3. **Recovery:** \(\psi_k^\theta(V) \) gradually recovers for \(t > t^* \), asymptotically converging to the fundamental \(V \).

In a noisy environment, adding a modicum of overreaction \(\theta \) to recent signals upsets the monotone convergence of prices that occurs under rational expectations, yielding rich beliefs dynamics. Early on, consensus opinion reacts to the fundamental displacement, \(\psi_k^\theta(V) < V \), so that in this range the behavior of DE is qualitatively similar to rational learning. Because diagnostic traders are forward-looking, they discount the noise in their signals. Initially, uncertainty about \(V \) is large, so this discounting is sufficiently strong that it counters the tendency of each individual to overact (as long as overreaction is moderate; \(\theta < \frac{\sigma^2}{\sigma_k^2} \)). As a result, in early stages, consensus beliefs about \(V \) increase slowly, gradually incorporating the good signals of traders.

The possibility that in a noisy environment individual overreaction is consistent with sluggishness of consensus expectations is not just theoretical. BGMS (2020) show this phenomenon in professional forecasts of macroeconomic variables.

As traders receive good signals, however, they grow more confident about the value of the asset. As a result, they incorporate their signals more aggressively into their beliefs. At some point, their signal-to-noise ratio \(\pi_t \) becomes sufficiently high that, for a given amount of diagnosticity \(\theta \) we have

\[
(1 + \theta)\pi_t > 1,
\]

which implies that consensus underreaction turns to overreaction. The condition \(\theta > \frac{1}{k} \frac{\sigma^2}{\sigma_k^2} \) ensures that this occurs at least at the peak, when \(t = k \). Displacement causes traders to be so confident that beliefs overshoot the fundamental; \(\psi_k^\theta(V) > V \). Overshooting of fundamentals stands in stark contrast not only to the rational benchmark but also to any model of misspecified learning in which beliefs are a convex combination of priors and new information, including overconfidence (Daniel et al., 1998).\(^6\) This distinctive feature reflects the fact that DE generate disproportional and asymmetric weight on tail events: if traders focus on the right tail and neglect the left tail, then in some sense “the sky is the limit”; sufficiently many good signals about \(V \) bring to mind stratospheric values, above the new information itself. Each fast-growing firm is believed to be a new Google, and trees are expected to grow to the sky. This is in line with standard narratives of bubbles, in which displacement leads investors to believe in a “paradigm shift” capturing the most optimistic scenarios that could result from the innovation.\(^7\)

Beliefs revert after \(k \) periods, when overreaction to early signals wanes. After a while, traders view these signals as normal and focus on the information contained in the new, most recent, signals. Because these signals have a smaller and smaller incremental value (\(V \) is finite), they cannot sustain the exorbitant optimism of the boom. As a result, beliefs start deflating. The bust here is due not to bad news but to the declining pace at which good news arrive, which causes optimism to run out of steam. After the bust, when expectations reach their trough and get close to rational beliefs, overreaction to good news is negligible (because good news are minor), and the consensus converges to \(V \) from below.

The condition \(\theta \in \left(\frac{1}{k} \frac{\sigma^2}{\sigma_k^2}, \frac{\sigma^2}{\sigma_k^2} \right) \) entails this path for consensus beliefs is intuitive. If diagnosticity is very strong, \(\theta > \frac{\sigma^2}{\sigma_k^2} \), the consensus opinion is excessively optimistic from the start at \(t = 1 \). Here the initial underreaction phase is absent, but boom bust dynamics are preserved. If instead diagnosticity is very weak, \(\theta < \frac{1}{k} \frac{\sigma^2}{\sigma_k^2} \), overshooting never occurs. In this case, the consensus belief never exhibits a bubble; it slowly converges to fundamentals from below (see the proof of Proposition 1 for details).

In sum, by introducing some overreaction to recent news in an otherwise standard noisy information model, DE can account for initial rigidity of consensus expectations, delayed overreaction of beliefs to fundamental news, and subsequent reversals as dramatic good news stop coming. This mechanism seems promising for thinking about bubbles. Insofar as prices reflect consensus beliefs, DE may account for sluggish boom-bust price dynamics that cannot be obtained under rationality. Still, some features of Eq. (3) are hard to reconcile with bubbles. First, expectations of fundamentals improve in a concave way, which is hard to square with the observed convex price paths during bubbles (Greenwood et al., 2019). Second, for realistic parameter values, overoptimism about fundamentals is small relative to the price inflation observed in bubble episodes. Using \(\theta = 1 \) as estimated using expectations of earnings growth (BGLS, 2019), and of macroeconomic time series (BGMS, 2020), suggests that valuation at the peak is bounded above by \(2V \). In some historical episodes, such as the internet bubble, prices reached multiple times the plausible measures of fundamentals.

The key question is whether the more realistic feature of price behavior during bubbles can be obtained once diagnostic beliefs are combined with standard market mechanisms such as learning from prices and speculative

\(^6\) Overconfidence is a different form of overreaction to private news in which traders exaggerate the precision of their private signals. It implies an inflated signal-to-noise ratio relative to rational expectations. However, the relative weight on the signal still lies below one, so that any trader’s beliefs lie between his private signal and the public signal.

\(^7\) In Pastor and Veronesi (2009), a successful innovation is not initially overpriced but instead becomes central enough to the economy that the risk associated with it becomes systematic, which in turn depresses prices.
trading. In the rest of the paper we show that this is indeed the case. Price growth becomes convex and disconnected from fundamentals, and the bubble can become very large even for small degrees of diagnosticity \(\theta \). To illustrate these results most clearly, we break down the analysis. In Section 3 we consider learning from prices but abstract from speculative motives. In Section 4 we consider speculation without learning from prices. In Section 5 we combine the two ingredients.

3. Diagnostic learning from prices

We now analyze trading and price formation. Learning from prices enables traders to extract from price changes the information that other traders have about fundamentals. Starting with Grossman (1976) and Grossman and Stiglitz (1980), learning from prices plays an important role in formal analyses of rational expectations equilibria in financial markets. Here we study its consequences under DE.

At each time \(t = 0, 1 \ldots \) traders exchange the asset and determine its price. They learn about the fundamental \(V \) from current and past private signals as well as from all prices observed up to the last period.\(^8\) Traders are risk averse with CARA utility \(u(c) = -e^{-\gamma c} \), and they have long horizons, in that they value the asset by its assessment of its fundamental value \(V \). There is no time discounting.

To determine the demand for the asset at time \(t \), suppose that trader \(i \) believes that \(V \) is normally distributed with mean \(\mathbb{E}_t^i(V) \) and variance \(\sigma_t^2(V) \), where \(\theta \) denotes DE.\(^9\) With exponential utility and normal beliefs, his preferences are described in terms of mean and variance. Trader \(i \)'s demand \(D_i \) of the asset maximizes the mean-variance objective function:

\[
D_i = \arg \max_{D_i} \left[\mathbb{E}_t^i(V) - p_i \right] \tilde{D}_i - \frac{\gamma}{2} \sigma_t^2(V) \tilde{D}_i^2,
\]

where \(\gamma \) captures risk aversion. Trader \(i \)'s demand \(D_i \) is then given by

\[
D_i = \frac{\mathbb{E}_t^i(V) - p_i}{\gamma \sigma_t^2(V)}.
\]

Intuitively, demand increases in the difference between the trader’s valuation and the market price.

To make learning from prices nondegenerate, we follow the literature and assume that the supply \(S_t \) of the asset is random, i.i.d. normal with mean zero and variance \(\sigma_S^2 \) (without common supply shocks, \(V \) is learned in one period by the law of large numbers). The classical justification here is the presence of noise or liquidity traders who demand/supply the assets for nonfundamental reasons (Black, 1986; Grossman and Miller, 1988; DeLong et al., 1990a). The implication is that price is no longer fully revealing: high price today may be due either to a low unobserved supply \(S_t \) shock or to a high average private signal \(V \).

By aggregating individual demands in Eq. (4) and by equating to supply we find

\[
p_t = \mathbb{E}_t^i(V) di - \gamma \sigma_t^2(V) S_t.
\]

To solve for the equilibrium in Eq. (5), we must compute the diagnostic consensus expectation at time \(t \), recognizing that it depends on both private signals and past prices. Because DE are forward-looking, it is possible to amend the consensus beliefs in Eq. (3) to reflect diagnostic learning from prices. As in rational expectations models (Grossman and Stiglitz, 1980), we first conjecture that, at each time \(t \), price is a linear function of the state variables of the economy, which include the fundamental \(V \). Second, we assume that traders use this linear rule to make inferences about \(V \) in light of the current and past prices. Third, we determine at each time \(t \) the coefficients of the pricing function that equilibrate demand and supply so that the resulting rule yields the equilibrium price.

Denote by \(\mathbb{E}(V|R) \) the rational expectation of \(V \) based solely on the history of prices up to \(t \), formally \(R = (p_1, \ldots, p_{t-1}) \). Then, our conjectured pricing rule takes the form\(^10\)

\[
p_t = a_{1t} + a_{2t} \mathbb{E}(V|R) + a_{3t} \mathbb{E}(V|P_{t-k}) + b_t \left(V - \frac{C_t}{B_t} S_t \right).
\]

Eq. (6) is reminiscent of rational expectations models. The current price reflects consensus expectations derived from all prices up to date \(t \) as well as the average private signal. Because DE combine current and lagged rational forecasts, the lagged forecast is also added as a state variable.

To solve for the diagnostic expectations equilibrium (DEE), we must find the coefficients \((a_{1t}, a_{2t}, a_{3t}, b_t, c_t) \geq 1 \) that equate supply with demand when traders make diagnostic inferences from prices. We now sketch the logic of the result and leave a fuller account to the proof in Online Appendix A.

First, consider how traders learn in light of the pricing rule. Because diagnostic traders overreact to news, they overreact also to the shared news coming from prices. To compute the DE with learning from prices, we proceed in two steps. We compute the rational expectations when prices are generated by Eq. (6), and then apply the diagnostic transformation of Eq. (2).\(^11\)

The rational news conveyed by price at time \(t \) is captured by the term \(p_t - a_{1t} - a_{2t} \mathbb{E}(V|P_{t-k}) - a_{3t} \mathbb{E}(V|P_{t-k}) \) as well as by the coefficients \(b_t \) and \(c_t \), which are known by all (in equilibrium). That is, observing \(p_t \) effectively

\(^8\) If investors learn also from the current price, the equilibrium may fail to exist for \(t > k \). If the equilibrium exists, the model behaves very similarly to our benchmark case here. To study speculation, because we set \(k \) to be high, existence is guaranteed and so we allow investors to learn from the current price.

\(^9\) As we discussed in Section 2, diagnostic beliefs are normal. This is shown in the Online Appendix, where we also show that the variance \(\sigma_t^2(V) \) is not distorted under our specification.

\(^10\) The price could equivalently be assumed to be linear in the diagnostic expectation \(\mathbb{E}(V|P_{t-k}) \) held by traders based solely on the information from public prices (i.e., assuming that private signals are neutral).

\(^11\) In the Online Appendix we show that the DE so obtained are equivalent to those obtained by applying the distorted distribution of footnote 4 to the true distribution \(f(V|B_t, S_t, P_t) \) conditional on private signals and prices.
endows all traders with the following unbiased public signal of V:

$$s_t^p = V - \left(\frac{c_t}{b_t} \right) S_t. \tag{7}$$

The variance of the signal, which is the inverse of its precision, is equal to $(c_t/b_t)^2 \sigma^2_{\epsilon}$. Intuitively, the price is more informative when it is more sensitive to the persistent fundamental than to the transient supply shock, namely when c_t/b_t is lower. This price sensitivity is an endogenous part of the equilibrium, and later we characterize it in terms of primitives.

Since private and public signals s_t and s_t^p are normally distributed, conditional on a history of signals $(s_{t1}, \ldots, s_{tk}, s_{t1}^p, \ldots, s_{tk}^p)$, a rational trader’s beliefs about V are normal with mean

$$E_{s_{t+1}}(V) = \tilde{s}_{t+1} + \mathbb{E}(V|P_t)(1 - z_t), \tag{9}$$

where

$$\tilde{s}_{t+1} = \frac{1}{t+1} \sum_{j=1}^{t+1} s_j \quad \text{and} \quad \mathbb{E}(V|P_t) = \frac{1}{\sigma^2_{\epsilon}} + \sum_{j=1}^{t} \frac{1}{\sigma^2_{\epsilon}} \left(\frac{b_j}{c_j} \right)^2, \tag{10}$$

The rational inference combines the private signals with the price signals embodied in $\mathbb{E}(V|P_t)$. The weight z_t attached to the private signals is given by

$$z_t = \frac{t + 1}{2 \sigma^2_{\epsilon}} \left[\frac{t}{\sigma^2_{\epsilon}} + \frac{1}{\sigma^2_{\epsilon}} \mathbb{E}(V|P_t) \right]^{-1}, \tag{11}$$

where $\sigma^2_{\epsilon}(V)$ is the variance of the fundamental conditional only on prices. The weight z_t attached to private signals is higher when the informativeness of prices is low (when $\sigma^2_{\epsilon}(V)$ is high).

To compute diagnostic consensus beliefs, we need to i) compute diagnostic beliefs by transforming rational beliefs in $\mathbb{E}(V|P_t)$ according to $\mathbb{E}(V|P_t)$ and ii) aggregate the resulting beliefs into the consensus. The implied consensus dynamics works as follows:

$$\int \mathbb{E}(V|P_t) \, di = \begin{cases} (1 + \theta) \left((1 - z_t) \mathbb{E}(V|P_t) + Vz_t \right) & \text{for } t \leq k \\ (1 + \theta) \left((1 - z_{t-k}) \mathbb{E}(V|P_{t-k}) - \theta (1 - z_{t-k})E(V|P_{t-k}) + [(1 + \theta)z_t - \theta z_{t-k}]V \right) & \text{for } t > k \end{cases}$$

DE exaggerate the information revealed by prices, not only private information. This exaggeration comes from the amplification $(1 + \theta)$ of the impact of the current price-based estimate $\mathbb{E}(V|P_t)$ and from the reversal of past price inferences $\mathbb{E}(V|P_{t-k})$. This is another difference from overconfidence, in which public information—including that coming from prices—is underweighted. Because a price increase says that positive information about fundamentals is dispersed in the economy, it renders the right tail representative, causing overreaction in beliefs.

If prices become very informative over time, the weight z_t attached to private signals falls and that attached to prices rises. All traders then overreact to the common market signals, the effects of information dispersion subside, so the dynamics of beliefs and prices may be very different from that in Section 2.

3.1. The boom phase

To assess the consequences of learning from prices, we need to solve for the coefficient of price informativeness b_t/c_t. The key question is whether diagnosticity increases or reduces price informativeness, boosting or moderating the reaction to price signals. To understand this, we need to find a fixed point at which consensus beliefs are consistent with market equilibrium in Eq. (5). Here the key result comes from considering the equilibrium for the boom phase of the bubble, $t \leq k$.

Proposition 2. With learning from prices and $t \leq k$, the average consensus belief about V is higher than the average consensus belief formed when investors learn from private information alone. The precision of the equilibrium price signal increases over time as

$$p_t = (1 + \theta) \frac{t/\sigma^2_{\epsilon} + (1 + \theta)p_{t-1}/\sigma^2_{\epsilon}}{(t+1)\sigma^2_{\epsilon}/6} \tag{12}$$

As in the consensus expectations described in Section 2, the equilibrium price grows in the boom phase $t \leq k$, before investors adapt to the displacement. The price in Eq. (12) increases over time. If θ is in the range of Proposition 1, the price starts below the fundamental V. This initial underreaction is due to the same reason that consensus beliefs underreact: traders discount the noise in their signals, so the good news they, on average, receive is not incorporated into prices.

As time goes by, the price increases due to two forces. First, as traders accumulate private signals, they gain confidence about the innovation and revise their beliefs upward. This effect is captured by the term t/σ^2_{ϵ} in Eq. (12). Second, the observation of prices provides, on average, additional good news about displacement, which makes all traders more confident at the same time. As a result, the consensus estimate of V increases relative to the case in which only private signals are observed, and the price booms. The effect of learning from prices is captured by the second term in the numerator of Eq. (12). At some point, traders become so confident that the price overreacts, overshooting the fundamental V.

How does diagnosticity interact with learning from prices in shaping beliefs about fundamentals? And how does learning from prices contribute to the price path? To answer the first question, consider Eq. (11). Stronger diagnosticity θ increases the informativeness of prices. When

12 The variance of V is equal to $\sigma^2_{\epsilon}(V) = \frac{t}{\sigma^2_{\epsilon} + (1 + \theta)p_{t-1}/\sigma^2_{\epsilon}}$. $\sigma^2_{\epsilon}(V)$ decreases in the precision of the public signals observed up to t. See the Online Appendix for details.
We now describe our choice of parameters. We normalize \(V \) to 1. To capture that displacement is a fairly rare event, we assume \(\sigma_V = 0.5 \), so \(V \) is two standard deviations away from the mean. The dispersion of trader’s private signals is set at \(\sigma_\epsilon = 12.5 \), which is in the ballpark of estimates obtained from the quarterly dispersion of professional forecasts (BGMS, 2020).\(^{13}\) We set \(\theta = 0.8 \), in line with the quarterly estimates from macroeconomic and financial survey data. For the model without speculation, we take a time period to be a quarter, set the sluggishness of diagnostic beliefs at \(k = 12 \) (in line with BGLS, 2019), and run the model for \(T = 24 \) periods (i.e. 6 years). We set the volatility of supply shocks at \(\sigma_s = 0.5 \).

Fig. 1 reports the actual price for the average path (no supply shocks) both under DE \((\theta = 0.8)\) and under rational expectations \((\theta = 0)\). Under DE, the equilibrium price exhibits the typical boom bust pattern, where the boom is driven by overreaction to private signals and prices, while the bust is due to the reversal of expectations at \(t = k = 12 \). In the rational model, by contrast, the price monotonically converges to \(V \) from below.

As we discussed in Section 2, rational expectations cannot produce overreaction and price inflation because they constrain assessed fundamentals to always stay between the prior of zero and the true value \(V \). The same is true for overconfidence (which generates bubbles only in the presence of short sales constraints, e.g., Harrison and Kreps, 1978). In our model, a displacement drives continued good news, resulting in a price boom. This leads traders to focus on the right tail of \(V \) and think that the innovation is truly exceptional, causing prices to overreact.

The bust occurs after time \(t = k + 1 \), when investors adapt to the displacement, starting to view the innovative asset or technology as the new norm. Here the length \(k \) of the boom phase is deterministic, but the model could be made more realistic by having \(k \) stochastic (and even heterogeneous across investors). As in Proposition 1, adaptation to early news causes excess optimism to run out of steam, generating the bust. Reversal of expectations and prices due to disappointment of prior optimism can help account for the slowdown of some bubbles, but it is not the only mechanism behind a bust; other factors including bad news (the housing bubble deflating from 2006 onward), as well as the proximity of a terminal trading date (crucial in experimental findings), are surely significant. We consider the latter mechanism in Section 4.

Because traders observe independent signals, they have heterogeneous beliefs about the value of the asset. This creates room for disagreement and trading (Scheinkman and Xiong, 2003). Barberis et al. (2018) show that disagreement tends to rise in the boom phase. Our model can create very similar effects. As time goes by, traders become more confident in their information, which causes them to place stronger weight on private signals. This effect tends to foster disagreement. At some point, the

\(^{13}\) In BGMS (2020), the estimated signal-to-noise ratio of the average macroeconomic series was between 3.5 and 4. In the current setting, this should be compared to the precision \(\frac{1}{\sqrt{\sigma_\epsilon^2}} \) of the signals received by the traders over some natural time scale \(r \). Picking this time scale to be around \(k \), we get \(\sigma_\epsilon \) between 12 and 14.
common price shock becomes so strong that disagreement declines. Fig. 2 plots the standard deviation of investor beliefs: disagreement rises in the early part of the boom but falls as the public signal dominates the private information.

We can also use simulations to describe the dynamics of expectations of future prices. Under mechanical extrapolation, traders project past price increases into the future using the updating rule:

$$E_t(p_{t+1}) = p_t + \beta(p_t - p_{t-1}).$$ \hspace{1cm} \text{(13)}$$

where $\beta > 0$ captures the fixed degree of price extrapolation. In our model, in contrast, traders watch prices to infer fundamentals. As a result, price extrapolation arises because high past prices signal high fundamentals and hence even higher future expected prices.

In Hong and Stein (1999), extrapolation is due to underreaction, which makes it optimal for momentum traders to chase the upward trend in prices. In that model, momentum traders form expectations of future price changes by running simple univariate regressions of current prices on past price growth. In Glaeser and Nathanson (2017), investors believe that the price reflects fundamental value. An increase in price is then interpreted as stronger fundamentals and leads to extrapolation of high prices into the future. In both models, as in adaptive expectations, extrapolation is due to the use of simplified (or wrong) models.

This logic suggests a testable difference between mechanical extrapolation and price learning under DE. Whereas mechanical extrapolation models impose β as a constant, price extrapolation arises endogenously in our model as a product of the distorted inference process.

Fig. 1. Average price path.
Plot of the price paths for the model in Section 3. The x-axis is time, and the y-axis is the price in multiples of the fundamental value V. The red curve represents the diagnostic case, which lies above the blue curve representing the rational case. For both curves, we set the parameter values as follows: $(\sigma_v = 0.5, \sigma_e = 12.5, k = 12, T = 24, \sigma_s = 0.5)$, and set the diagnostic parameter $\theta = 0.8$ for the DE curve.

Fig. 2. Model-implied belief dispersion.
Plot of the dispersion of fundamental beliefs for the diagnostic model in Section 3. The x-axis is time, and the y-axis is the standard deviation in E_i, V across the continuum of agents. Overlaid in the dotted blue curve is the DE price path from Fig. 1.
Fig. 3. Model-implied extrapolation coefficient. Plots of the densities of the aggregate extrapolation coefficient β in the regression $\mathbb{E}(p_{t+1}) = p_t + \beta(p_t - p_{t-1})$. The blue density to the left centered near zero is the rational case, while the red density to the right is the diagnostic case. To obtain these densities, we simulate 5000 price paths and expected future price paths averaged across the traders.

Fig. 4. Time-dependent extrapolation. Plot of the time-varying extrapolation coefficient β in the regression $\mathbb{E}(p_{t+1}) = p_t + \beta(p_t - p_{t-1})$. We pool the aggregate time period into 6 consecutive buckets, simulate 5000 price paths and expected future price paths averaged across the traders, and compute the confidence intervals of the resulting coefficients for each bucket. We also overlay in the dotted blue curve the average price path.

Thus, the degree of extrapolation depends on the degree of fundamental uncertainty. In terms of Eq. (13), our model predicts that the updating coefficient β should be positive at the early stages of the bubble when price movements convey information about fundamentals, but should fall to zero as learning accelerates.

We evaluate these ideas by simulating the model. We run regression (13) using a time series of the model simulated using the parameters above. We produce 2000 such time series and plot in Fig. 3 the histogram of estimated coefficients for both the diagnostic and the rational model.

The coefficient of price extrapolation implied by the model is positive, between 0.5 and 2.0. Even though our investors are entirely forward-looking, they appear to mechanically extrapolate past prices. This is not the case under rational expectations, where the coefficient is almost 0, slightly negative because of rational supply shock effects that are dominated by extrapolation in the diagnostic case.

While DE entail a positive extrapolation coefficient β, on average, across the entire bubble episode (as does mechanical extrapolation), that coefficient is the highest when prices are most informative, which in this case is at the peak of the bubble. Fig. 4 reports the average estimates of β in each of six buckets, capturing growth, overshooting, and collapse. The results confirm that price extrapolation is strongest in the making of the bubble when learning is rapid (the first phase highlighted in blue). This occurs because prices are most informative (relative to the private signal) in that range, which induces diagnostic traders to update upward more aggressively after a price rise. At the peak of the bubble, expectations of future prices are significantly above actual prices. After the bubble bursts, traders adjust their expectations downward significantly but not fast enough to converge to the actual prices. Thus, in this period extrapolation appears negative. Finally, as learning subsides, extrapolation goes to zero, just as in the rational case.

As Figs. 3 and 4 show, this model can produce some price convexity and moderate overvaluation. However, this model precludes large bubbles because for reasonable values of θ, prices are tethered to V. In contrast, prices sometimes strongly overshoot sensible measures of...
fundamentals. In addition, while learning from prices generates some convexity in the price path, it does not create enough acceleration to generate increasing growth rate of prices (accelerating returns) seen in the data (Greenwood et al., 2019). We next show that both features can be attained by adding speculation to our model.

4. Speculation

To introduce speculation, we assume that traders have short horizons in the sense that their objective function at each time \(t \) is to resell the asset at time \(t + 1 \). In the model of Section 5 we relax this assumption and allow traders to choose optimally whether to sell the asset or not. The trading game lasts for \(T \) rounds. The traders holding the asset in the terminal date receive \(V \). We take \(T \) to be exogenously given and deterministic, as in laboratory experiments of bubbles. In real markets, there is no such thing as a terminal date, but taking a fixed \(T \) is a convenient approximation to a setting in which there is a certain probability that at some point the “speculation game” ends in the sense that most traders attend to fundamentals.

With speculation, DE generate price paths with significantly larger overvaluation than in the previous models, followed by a price collapse as the terminal date approaches. This occurs because speculators not only overreact to good fundamental news but also expect to resell to overreacting buyers in the future, which drives the price today higher. As \(T \) approaches, the prospects for re-trading fade and the bubble bursts. These dynamics are very different from those obtained under rationality.

Traders continue to have mean-variance preferences. Away from the terminal date, \(t < T \), trader \(i \) chooses demand \(D_{it} \) to maximize \(\bar{E}_{it}(p_{t+1}) - p_tD_{it} - \frac{1}{2} \text{Var}_t(p_{t+1})D_{it}^2 \), while his objective at time \(T \) is fundamental based as before. Demand in each period is then given by

\[
D_{it} = \frac{\bar{E}_{it}(p_{t+1}) - p_t}{\gamma \text{Var}_t(p_{t+1})}, \quad \text{for } t = 1, \ldots, T - 1, \tag{14}
\]

\[
D_{iT} = \frac{\bar{E}_{iT}(V) - p_T}{\gamma \text{Var}_T(p_{t+1})}, \quad \text{for } t = T. \tag{15}
\]

With speculation, demand increases in the expected capital gain \(\bar{E}_{it}(p_{t+1}) - p_t \) except in the last period \(t = T \), in which traders buy the asset to hold it.

We illustrate the key consequences of speculation this Section by ruling out learning from prices, which we then re-introduce in Section 5 along with dynamic optimization. We also simplify the analysis by assuming that the diagnostic reference is very sluggish, \(k > T \), so that information about the asset's value is always assessed compared to the prior \(V = 0 \). The reason is that, as we will see, speculation itself creates a reason for the bubble to deflate as the terminal date \(T \) approaches.

Without learning from prices, we do not need a supply shock, so we assume that supply is equal to zero. Aggregating the individual demand functions, prices are pinned down by the conditions:

\[
p_T = \int \bar{E}_{iT}(p_{t+1})di, \quad \text{for } t = 1, \ldots, T - 1, \tag{16}
\]

\[
p_T = \int \bar{E}_{iT}(V)di. \tag{17}
\]

In the final period \(T \), the consensus fundamental value is \(\bar{E}_{iT}(V) = (1 + \theta)\pi_T V \), as per Eq. (3), leading to the terminal price \(p_T = (1 + \theta)\pi_T V \). Under the assumption \(\theta \in \left(\frac{\sigma^2}{\sigma^2 + \frac{k^2}{2k^2}} \right) \) of Proposition 1, which we maintain, this price is above the fundamental, \((1 + \theta)\pi_T > 1 \).

Consider now the price at \(T - 1 \). By Eq. (16), this price is the consensus expectation as of \(T - 1 \) of the terminal price \(p_T \). To compute this consensus, consider first the expectation held at \(T - 1 \) by a generic trader \(j \). When forecasting the terminal price, this trader must make two assessments.

First, he must assess the fundamental value \(V \). Second, he must forecast how traders at \(T \) will react to noisy signals of the same fundamental value. Because the beliefs of future traders are a random variable, trader \(j \) forecasts them using the very same diagnostic formula of Eq. (2). One can interpret this forecasting process in two ways. First, one can view trader \(j \) as placing himself in the shoes of future traders receiving different signals, predicting that these traders will behave the way he would behave in light of the same signals. Alternatively, one can view trader \(j \) as forecasting the behavior of others with the understanding that they will update diagnostically. In both cases, we continue to rule out the possibility that any trader is sophisticated enough to be aware of his own diagnosticy; otherwise he would de-bias his beliefs about himself and others.

Consider how trader \(j \) forecasts the beliefs at \(T \) of a generic trader \(i \) who has observed an average signal \(\frac{s_j t - 1}{\sqrt{T}} \) from the initial date to the terminal period. Trader \(j \) knows that trader \(i \) overreacts to all signals received, forming a terminal estimate \(\bar{E}_{iT}(V) = (1 + \theta)\pi_T \sum_{j = 1}^T s_j \), with averaging across all traders \(i \), trader \(j \) knows that if the fundamental value is \(V \), the consensus estimate, and hence the equilibrium price at \(T \), is equal to

\[
p_T = (1 + \theta)\pi_T V. \tag{18}
\]

This prediction is based on the fact that trader \(j \) knows that whichever signals are received by individual traders, they will average out to the true \(V \). Of course, trader \(j \) does not know the true value of \(V \) at \(T - 1 \); he only has an estimate of it, based on the signals \(\sum_{j = 1}^{T - 1} s_j \) observed up to that period. This \(T - 1 \) estimate of fundamentals is of course diagnostic and is equal to

\[
\bar{E}_{jT - 1}^0(V) = (1 + \theta)\pi_T \sum_{j = 1}^{T - 1} s_j. \tag{19}
\]

The diagnostic expectation held at \(T - 1 \) by trader \(j \) about the terminal price is then given by

\[
\bar{E}_{jT - 1}^0[V] = (1 + \theta)\pi_T \bar{E}_{jT - 1}^0(V) = (1 + \theta)^2 \pi_T \pi_T - 1 \sum_{j = 1}^{T - 1} s_j. \tag{20}
\]

Trader \(j \) at \(T - 1 \) uses his signals, but he compounds diagnosticity twice. First, he diagnostically overreacts to his

\[15\text{ Recall that in this Section we shut down the adaptation of diagnostic expectations by setting } k > T.\]
signal, creating an inflated estimate of fundamentals. Second, he expects future traders to overreact to signals generated by the inflated fundamentals. To see the intuition, imagine that j overestimates the share of future Googles in the population of tech firms to be 7%. He then expects future traders to overreact relative to his assessment and estimate the share of Googles to be, say, 10%. In this way, overreaction to news compounds as the current forecast is projected into the future.

Because every trader j repeats the same logic, by averaging across all of them, the consensus forecast held at time $T − 1$ about the terminal price, and thus the equilibrium price at $T − 1$, is given by

$$p_{T-1} = (1 + \theta)^2 \pi T \pi_{T-1} V. \quad (18)$$

To gauge the role of DE, suppose that traders are rational, so $\theta = 0$. In this case, the price at $T − 1$ is equal to $p_{T-1} = \pi T \pi_{T-1} V$, while the price at T is equal to $p_T = \pi V$. Critically, because $\pi_{T-1} < 1$, the price at $T − 1$ is lower than the terminal price: $p_{T-1} < p_T$. This captures a broader and well-known point (Allen et al., 2006): under rationality, speculation leads the price to initially increase slowly over time and then to increase faster as the terminal date approaches. However, there is neither overvaluation nor collapse. The intuition is that rational traders discount their signals and expect future traders to do the same. As a result, they do not expect to be able to resell the asset for a very high price, which keeps the current price low. As the terminal date approaches, this mechanism becomes weaker, so the price increases faster to the consensus terminal belief about V.

Crucially, even a modicum of diagnosticity $\theta > 0$ dramatically changes the calculus. To begin, note that when $\theta > 0$, it is entirely possible that the price drops at the terminal date. This is true if and only if

$$p_{T-1} > p_T \iff (1 + \theta)\pi_{T-1} > 1.$$

If traders overestimate the fundamental value at time $T − 1$, i.e., $(1 + \theta)\pi_{T-1} > 1$, then the price at $T − 1$ is above both fundamentals and the terminal price. The intuition goes as follows. By overestimating V, traders at $T − 1$ believe that future traders will overreact to this estimate, compounding overreaction twice. But then, the expectation to sell to these bullish traders in the future raises the price of the asset in $T − 1$ itself. This leads to a first important remark: in sharp contrast with the rational case, which leads to a monotone rising price path, DE introduce the opposite effect. By creating overreaction, they imply that prices decline toward the terminal date, reflecting an initial strong overvaluation of the asset.

To study the implications of $\theta > 0$ fully, we need to iterate the same logic backward to earlier periods until the initial date $t = 1$. It is immediate to see that the full path of equilibrium prices obtained by iterating Eq. (18) backwards is described by:

$$p_t = (1 + \theta)^{T-t+1} \prod_{t=1}^{T} \pi_t V, \quad (19)$$

which implies the following result.

Proposition 4. Define the geometric average of all signal-to-noise ratios $\bar{\pi} = \prod_{t=1}^{T} \pi_t$. Then, if $\theta \in \left(\frac{\sigma^2}{\pi^2}, \frac{1-\pi}{\pi}\right)$, where $\frac{1-\pi}{\pi} < \frac{\sigma^2}{\pi^2}$, the speculative price dynamics exhibit the three bubble phases. In particular,

1. The price starts below fundamental, $p_1 < V$, and gradually increases above fundamentals, reaching its maximum at the smallest time t for which $(1 + \theta)\pi_t > 1$.
2. From $t = \hat{T}$ onwards, the price monotonically declines toward p_r.

With DE, speculative dynamics can generate both the sluggish upward price adjustment typical of underreaction (provided θ is not too large), the price inflation relative to fundamentals typical of overreaction (provided θ is not too small), and the bust phase in which prices collapse, which here is driven by the reduction in the available rounds of reselling.

Because $(1 + \theta)\bar{\pi}^T < 1$, individual traders underreact to the aggregate information in the first period. The logic is the same as before: individual uncertainty about V is still very large. Traders are not only cautious in estimating V but also think that next period buyers will be cautious as well. This effect curtails the expected resale price and demand for the asset today, keeping its price low. As time goes by, traders acquire more information, become more confident, and start using it more aggressively. They become more optimistic about the signals future buyers will get more confident about future buyers’ overoptimism, and the price starts increasing. As traders gain confidence, the possibility of multiple rounds of reselling to overreacting traders dramatically boosts price, which overshoots V. The price then starts declining as the terminal date T approaches because there are fewer and fewer rounds of trading and thus less scope for reselling to overreacting buyers. Once again, the dynamics of speculation under rationality are very different: they display momentum but not overshooting or reversal (Allen et al., 2006).

Another important consequence of speculation is that it can greatly exacerbate the overshooting of fundamentals, relative to the benchmark model of Section 3. Eq. (19) shows how speculation fuels bubbles under DE and can cause strong price inflation even with small diagnostic distortions θ. Consider the ratio of price under speculation to consensus expectations of fundamentals (which equals price in the absence of speculation). At the peak of the bubble, which occurs at $t = \hat{T} = \frac{1}{1 + \theta}$, this ratio is inflated relative to the rational benchmark as follows:

$$\frac{p_{t}(\theta)}{p_{t}(0)} = \frac{(1 + \theta)^{T-\hat{T}} \bar{\pi}^{\hat{T}} p_{t}(0)}{\bar{\pi}^{\hat{T}} p_{t}(0)}$$

While under DE, beliefs about fundamentals are inflated by a linear factor of θ, namely $\frac{p_{t}(\theta)}{p_{t}(V)} = 1 + \theta$, when speculation is included, the inflation of price relative to beliefs grows as a power of $1 + \theta$. Even a small departure θ from rationality can fuel large bubbles. This much stronger growth reflects the compounding effect of overoptimism about selling to overreacting investors until the horizon T. Increasing θ increases optimism, which also implies that
5. The full model: forward-looking speculation and learning from prices

We now combine all the ingredients by introducing DE into the dynamic trading model of He and Wang (1995). In this setting, at each time t, each investor i chooses how many units of the asset to buy or sell so as to maximize the expected utility of final consumption:

$$
\max_{s.t. \ W_{t+1}^i=W_0^i+\sum_{j=0}^{t} (p_{t+j} - p_t)} \mathbf{E}_{\text{q}}^{P_t} \left[-e^{-\gamma W_t^i} \right].
$$

(20)

where the law of motion of individual wealth W_t^i depends on X_t^i, the holdings of the risky asset optimally chosen by the investor at time t, and on $(p_{t+1} - p_t)$, which is next period’s capital gain on this asset (remember that the dividend is paid at the end and $p_T = V$).

The diagnostic expectation $\mathbf{E}_{\text{q}}^{P_t}(\cdot)$ is formed on the basis of the private signals described in Section 2 and on the public signals obtained from price movements as shown in Section 3 (again, to obtain gradual learning from prices, we allow for i.i.d. supply shocks S_t). The trader’s speculative motive comes from his individual expectations of capital gains and capital losses, which affects the evolution of his wealth. Critically, the trader is not forced to sell all of the risky asset at $t-1$. This flexibility is valuable. For instance, it allows a trader expecting strong price increases in the distant future to buy now and sell then.

To solve this model under DE, we follow the methodology of He and Wang, adapting it only to the fact that in our model expectations are diagnostic. To quickly review, He and Wang show that under rational expectations, solving Eq. (20) entails maximizing the expectation of the value function:

$$
J(W_{t+1}^i, \Psi_{t+1}^i) = -\exp \left[-\gamma W_{t+1}^i - \frac{1}{2} (\Psi_{t+1}^i)^\prime U_{t+1} \Psi_{t+1}^i \right],
$$

(21)

which depends on the trader’s current wealth W_{t+1}^i and on the vector of trader-specific beliefs:

$$
\Psi_{t+1}^i = \left[1, \ E_{t+1}^i(V), \ E_{t+1}^i(V)^\alpha, \ E_{t+1}^i(V)^\beta \right],
$$

which include the trader’s rational expectation of fundamentals computed solely on the basis of his private signals, $E_{t+1}^i(V)$, the trader as well as the market rational expectation of fundamental computed solely on the basis of public price signals $E_{t+1}^i(V)$, and the past value of such public expectation $E_{t+1}^i(V)$.

The term $(\Psi_{t+1}^i)^\prime U_{t+1} \Psi_{t+1}^i$ in Eq. (21) captures dynamic trading motives. When the trader is much more optimistic than the market, $E_{t+1}^i(V) > E_{t+1}^i(V)$, the term $(\Psi_{t+1}^i)^\prime U_{t+1} \Psi_{t+1}^i$ is high. As a result, the trader’s marginal utility of current wealth is low, which makes it optimal for him to buy the asset. When instead the trader is much more pessimistic than the market, the term $(\Psi_{t+1}^i)^\prime U_{t+1} \Psi_{t+1}^i$ is low. Here the marginal utility of current wealth is high, which causes the trader to sell the asset. He and Wang further show that the matrix of coefficients U_{t+1} regulating dynamic incentives can be recursively determined.

Here we follow the same approach but allow expectations to be diagnostic. Specifically, we assume that the generic trader maximizes the objective:

$$
E_{\text{q}}^{P_t} J(W_{t+1}^i, \Psi_{t+1}^i)
$$

$$
= \mathbf{E}_{\text{q}}^{P_t} \left[-\exp \left[-\gamma W_{t+1}^i - \frac{1}{2} (\Psi_{t+1}^i)^\prime U_{t+1} \Psi_{t+1}^i \right] \right],
$$

(22)

where DE are, for simplicity, specified for the case in which $k>T$. To solve the problem, we use the values U_{t+1} computed in the rational expectations solution and diagnostically distort only the random variables, in particular, future wealth and beliefs. This approach greatly simplifies computation and can be interpreted as a diagnostic perturbation of the dynamic rational expectations equilibrium.

Online Appendix B describes the implementation of this approach in detail, including the trader’s optimal portfolio choice, the market clearing condition, and the recursive definition for U_{t+1}. The model is complex and the resulting equilibrium can only be solved numerically.10 To characterize its properties, we simulate it at the benchmark parameter values $\sigma_V = 0.5$, $\sigma_\delta = 0.2$, $\sigma_\gamma = 9.5$, $\gamma = 0.12$, $\theta = 0.8$, and $T = 15$. These parameter values are very close to those used in Section 3, except that we have increased the informativeness of private signals and lowered the volatility of supply shocks. This allows us to bolster the effect of dynamic trading, which would otherwise matter very little for high σ_γ. We examine the following key outcomes: the average price path, price volatility, investor disagreement, trading volume, and time-varying average price extrapolation. For the average price path and disagreement, we derive the values directly from the equilibrium coefficients, whereas we simulate 1000 price paths to compute the time-varying volatility, volume, and extrapolation.

Consider first the key outcome: the average price path, which is the price path for the case in which the supply shock S_t is zero in all periods. As our equilibrium is linear in supply, this also is the unconditional expected price path $E(p_t)$ for $t = 1, 2, \ldots, T$. To assess the role of dynamic trading in isolation, we also evaluate and report the price path in a model in which traders are myopic, as in Section 4, but learn from prices.17 To assess the role of diagnostic beliefs, we report the price path under rational expectations (with and without dynamic trading). The simulation results are presented in Fig. 5.

Panel A reports the outcome under DE, plotting the dynamic trading case with the dashed line and the myopic expectation. Similarly to Section 3, the full model is characterized by the equilibrium-price coefficients (a_i, b_i, c_i) for $t = 1, 2, \ldots, T$, where $p_t = a_i E_i(V|\mathcal{F}_t) + b_i (V - \mathcal{F}_t S_t)$. As shown in the Online Appendix, one can recursively solve for the equilibrium coefficients given a guess for the final precision of the public signals $\sigma_{V_T} = \sigma_{\psi_T} + 1 \sum_{t=1}^{T} (\sigma_{\psi_t})^2$. The equilibrium is then numerically pinned down by the final precision that implies $\sigma_{\psi_T} = \frac{1}{\gamma - 1}$.

10 Similarly to Section 3, the full model is characterized by the equilibrium-price coefficients (a_i, b_i, c_i) for $t = 1, 2, \ldots, T$, where $p_t = a_i E_i(V|\mathcal{F}_t) + b_i (V - \mathcal{F}_t S_t)$. As shown in the Online Appendix, one can recursively solve for the equilibrium coefficients given a guess for the final precision of the public signals $\sigma_{V_T} = \sigma_{\psi_T} + 1 \sum_{t=1}^{T} (\sigma_{\psi_t})^2$. The equilibrium is then numerically pinned down by the final precision that implies $\sigma_{\psi_T} = \frac{1}{\gamma - 1}$.

17 The myopic problem is a special case of Eq. (2) in which, instead of optimizing $\mathbf{E}_{\text{q}}^{P_t} J(W_{t+1}^i, \Psi_{t+1}^i) = \mathbf{E}_{\text{q}}^{P_t} \left[-\exp \left[-\gamma W_{t+1}^i - \frac{1}{2} (\Psi_{t+1}^i)^\prime U_{t+1} \Psi_{t+1}^i \right] \right]$, the individual optimizes $\frac{1}{\gamma} \mathbf{E}_{\text{q}}^{P_t} \left[-\exp \left[-\gamma W_{t+1}^i - \frac{1}{2} (\Psi_{t+1}^i)^\prime U_{t+1} \Psi_{t+1}^i \right] \right]$, or equivalently myopically maximizes next period’s wealth assuming immediate resale of asset.
Intuitively, the price of the asset is most volatile in periods leading up to the peak of the bubble, and it becomes extremely stable as we converge to the final period. Around the peak of the bubble, in fact, prices are most informative, and even a slight supply shock may lead to a dramatic change in beliefs, trading strategies, and prices. This outcome underscores the fragility of bubbles in our model and how—through sudden changes in expectations—they can turn into busts even with small changes in market conditions.

Consider next disagreement. We compute the dispersion of traders’ beliefs from the equilibrium coefficients directly. There are two relevant types of disagreement. First, individuals may disagree about fundamentals. Second, this disagreement translates to a disagreement about next period prices, which is more directly relevant for trading. The two measures are not redundant: disagreement about next period prices depends on both disagreement about fundamentals as well as how much this disagreement is amplified into next period prices. Fig. 7 reports the result on both fundamental and next period price disagreement.

Disagreement about both fundamentals and next period prices peaks near the peak of the bubble and drops toward zero as traders progressively learn. This is due to two counteracting forces. On the one hand, as traders acquire information, their uncertainty falls. As a result, they update more aggressively on their private signals and
disagreement increases. On the other hand, information becomes more common across traders, also because more price signals are observed over time. This causes disagreement to fall and to eventually disappear altogether. Interestingly, whereas disagreement on fundamentals rise relatively quickly, disagreement on prices rises with a lag, as fundamentals are weakly reflected into prices at the beginning of the bubble. Thus, disagreement about prices is decoupled from disagreement about fundamentals.

We next investigate trading volume. As our equilibrium is linear, market clearing implies that the portfolio holding of individual i is given by $X_i^t = g_t (S_i^t - V) + S_t$, where g_t captures the strength of the strategic trading motives, and is endogenously determined in equilibrium. This
would expect trading volume to fall due to falling disagreement after the peak of the bubble (see Fig. 7).

This is not what is shown in Fig. 8, in which trading volume monotonically increases, even after the collapse of the bubble. This is due to a countervailing effect: price volatility. After the peak of the bubble, price volatility swiftly drops, as shown in Fig. 8. This reduction in price risk encourages risk-averse traders to aggressively trade on the basis of their heterogeneous beliefs. In other words, lower price volatility has reduced the risk of speculation, which raises the strategic adjustment term. It is true that disagreement has fallen, but in our simulation the reduction in price volatility dominates, leading to monotonically increasing trading volume over time.

Due to this second force, the current simulation of the model does not yield the decline in trading volume observed after bubbles collapse (Barberis et al., 2018).²⁰ One solution to this problem would be to introduce traders with heterogenous risk aversion: the drop in the price of the bubble can reduce the wealth of risk-seeking traders, thereby reducing their ability to aggressively trade. Progressive entry of more risk-seeking and less informed market participants seems relevant in several bubble episodes, as narratively documented (Galbraith, 1954), and it may help our model generate richer dynamics of trading volume.

Finally, consider time-varying extrapolation. We simulate coefficient βk in Eq. (13) for the full model.²¹ Fig. 9 below shows the coefficients for both models.

As in Section 3, the model generates positive extrapolation in the early stages of the bubble. Forward-looking traders react strongly to their private signals, as they foresee large opportunities to speculate in the future. Hence, price informativeness increases, causing diagnostic traders to expect a large future price increase after observing a current price increase. This mechanism, which creates a semblance of price extrapolation, becomes weaker over time because learning slows down. Furthermore, unlike Section 3, extrapolation is strongest at the early stages of the bubble. This is because as we approach the peak, speculation causes prices to adjust contemporaneously to expectations of future prices (see Section 4), causing the difference between the two to be less predictable by recent price innovation. In contrast with mechanical price extrapolation models, our model demonstrates that apparent price extrapolation can arise endogenously from an inference of fundamentals and the exact dynamics of price extrapolation may depend on the horizon and trading behavior of the speculators.

²⁰ While volume rising at the end of the bubble seems counterfactual, there is also documentation of elevated volume during market crashes (Galbraith 1954, Kindleberger 1978).

²¹ We rely on simulations to compute the extrapolation coefficients, generating 1,000 sample paths. There are two main approaches to compute βt. First, one could pool \(p_t - p_{t-1} \), \(E[p_{t+1} - p_t] \) over \(n \) for each \(t \) and compute the regression coefficients (pooling). Alternatively, one can subdivide \([1, 2, \ldots T]\) into contiguous buckets \(b_1, \ldots, b_k \), compute the regression coefficients \(\beta_k \), and average over \(n \) to obtain \(\beta_k = \frac{1}{n} \sum_n \beta_k^{(n)} \) (averaging). The two approaches produce mostly similar coefficients. We report the results from the first approach.

implying that the individual portfolio adjustment \(\Delta X_t^i \) can be broken down into three components:

\[
\Delta X_{t+1}^i = X_{t+1}^i - X_t^i = \left(S_{t+1} - S_t \right) \text{ supply adjustment} + g_{t+1} \left(\bar{S}_{t+1} - \bar{S}_t \right) \text{ learning adjustment} + \left(g_{t+1} - g_t \right) \left(\bar{S}_t - V \right) \text{ strategic adjustment}
\]

(23)

The first component is due to an overall shift in portfolio holdings due to supply adjustment. The second learning component captures the standard trading motives explained directly by the change in a trader’s beliefs. The final term captures strategic adjustment motives: controlling for relative optimism/pessimism, the trader faces time-varying incentives to trade that depend on expectations of risk and return of speculation. Fig. 8 reports the evolution of aggregate trading volume over time.¹⁹

Trading volume monotonically increases over time. This is due to two forces. First, and crucially, disagreement increases as we approach the peak of the bubble. Greater disagreement induces pessimistic traders to sell and optimistic traders to buy, raising the volume. Furthermore, the upward price path increases the returns to speculation, which contributes to the strategic adjustment component of Eq. (22), also creating a stronger incentive to trade. This mechanism continues for a while. Eventually, however, we

¹⁹ We directly compute \(g_t \) from equilibrium coefficients and estimate \(\text{Volume} = \frac{1}{2} \sum |\Delta X_t| \) by simulating the supply shocks and the average signals in Eq. (23).
Fig. 9. Time-varying extrapolation.
Plot of the time-varying extrapolation coefficient β in the regression $\mathbb{E}_{-t}(p_{t+1}) = p_t + \beta(p_t - p_{t-1})$. We rely on simulations to compute the extrapolation coefficients, generating 1000 sample paths. We pool $(p^0_t - p^{n-1}_t, \mathbb{E}[p^0_{t+1} - p^0_t])$ over n for each t and compute the regression coefficients. We overlay the average price path in the solid curve.

To summarize, we have examined the implications of our model on a rich set of observables, including average prices, volatility, trading, disagreement, and extrapolation. By combining DE of fundamentals with standard mechanisms such as learning from prices and speculation, our model generates some salient aspects of the Kindleberger narrative and other empirically realistic features of bubbles.

6. Conclusion

In this paper, we brought a micro-founded model of beliefs, diagnostic expectations, to the problem of modeling bubbles. We have considered two formulations: belief formation about fundamentals with learning from prices and also speculation, whereby investors focus on reselling the asset next period. We showed that both of these formulations exhibit the central features of bubbles as conceived by Kindleberger (1978): displacement, price acceleration, and a crash. Moreover, these models deliver extrapolative beliefs and overreaction to information during the later stages of the bubble that are so central both to the Kindleberger narrative and empirical facts about bubbles.

Our micro-founded model of beliefs, based on expectations about fundamentals, delivers two further insights into the anatomy of bubbles. First, it connects overreaction to fundamental news, which is the central implication of diagnostic expectations, to price extrapolation, which has been increasingly seen as a key feature of bubbles (see Barberis et al., 2018). In our model, price extrapolation is far from constant over the course of the bubble, as in mechanical models of adaptive expectations, but in fact emerges as a by-product of DE during the rapid price growth stage of the bubble. In fact, the bubble collapses in part because the psychological mechanisms that entail price extrapolation run out of steam.

Second, our model illustrates the centrality of speculation for bubbles. Bubbles exist in specifications where traders focus on the final liquidation value of the asset. But bubbles are much more dramatic when traders focus on the resale next period because their valuations are no longer tethered to liquidation values, and they bid up the asset’s price based on the expectation of other traders’ optimism next period. Indeed, we show that in a model with speculation, but not otherwise, even a small amount of diagnosticity in belief formation can lead to extremely large overvaluation during the rapid growth stage of the bubble. Even a mild departure from rational expectations, when combined with speculation, can entail extreme overvaluation.

These insights into the structure of asset price bubbles would not be obtained without modeling beliefs explicitly from fundamental psychological assumptions and combining this with standard neoclassical mechanisms, such as learning from prices and speculation. But while this approach advances our understanding of the anatomy of price bubbles, it is only a first step. On the one hand, our theoretical setup is quite simple, and we did not perform a full quantitative assessment of our mechanism. Furthermore, we have not considered further critical features of price bubbles, emphasized by Kindleberger but also obviously critical to the financial crisis of 2008 as well as to other crises (Gennaioli and Shleifer, 2018). These include leverage as well as the central involvement of banks and other financial institutions in the bubble episode. Introducing these elements into a model of bubbles with diagnostic expectations would get us closer to understanding the structure of financial fragility, beginning with basic features of expectations.

References
