Today:
□ Double integrals: Set up and evaluate an iterated integral for the integral of a function of two variables.
□ Triple integrals: Set up and evaluate an iterated integral for the integral of a function of three variables.
□ Mean value via integral: Find the mean value of a function using integration.

Example (iterated integrals).

Divide a rectangular region into \(m \times n \) boxes \((m\) intervals along \(x \) and \(n \) intervals along \(y \)). Let \((u_{ij}, v_{ij})\) be a point in the box \(ij \) where \(1 \leq i \leq m \) indicates the \(x \)-interval associated with the box and \(1 \leq j \leq n \) indicates the \(y \)-interval associated with the box. In the example below, \(m = 2 \) and \(n = 4 \).

Our Riemann sum is
\[
\sum_{\text{all boxes}} f(u_{ij}, v_{ij}) \Delta A = \sum_{\text{all boxes}} f(u_{ij}, v_{ij}) \Delta x \Delta y = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} f(u_{ij}, v_{ij}) \Delta x \right) \Delta y
\]

Taking limits to make \(\Delta x \) and \(\Delta y \) infinitesimal, we have
\[
\int_{R} f \, dA = \int_{y=d}^{y=c} \left(\int_{x=b}^{x=a} f(x, y) \, dx \right) \, dy.
\]

We usually write \(\int_{c}^{d} \int_{a}^{b} f(x, y) \, dx \, dy \) for this.

We have two options for the order of integration:
- (horizontal strips) integrating first in \(x \) and then integrating the resulting function in \(y \). See center figure
- (vertical strips) integration first in \(y \) and then integrating the resulting function in \(x \). See right hand figure

By convention, \(\int_{R} f \, dA \) always denotes that the integral is taking from left to right in \(x \) and from bottom to top in \(y \).

Example (rectangular region). Set up an iterated integral for \(\int_{R} (x^2 + y^2) \, dA \) where \(R \) is the rectangular region \(1 \leq x \leq 5, -2 \leq y \leq 2 \).
Example (triangular region). Set up an iterated integral for $\int_{R} f \, dA$ where f is an unknown function of two variables and R is the triangular region shown below. pollen

Example (half-disk region). Set up an iterated integral for $\int_{R} x \, dA$ where f is as given in the integral, and R is the half-disk shown below. pollen

Example (function of three variables).

<table>
<thead>
<tr>
<th>function of integration</th>
<th>region of integration</th>
<th>pieces of region</th>
<th>possible orders of integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>$f(x, y)$</td>
<td>dx, short line segments</td>
<td>1 option</td>
</tr>
<tr>
<td>$f(x, y)$</td>
<td>$f(x, y, z)$</td>
<td>$dA = dxdy$, small squares</td>
<td>2 options</td>
</tr>
<tr>
<td>$f(x, y, z)$</td>
<td></td>
<td>$dV = dxdydz$, small cubes</td>
<td>6 options</td>
</tr>
</tbody>
</table>
Example (tetrahedron). Consider the tetrahedron bounded by in the first octant and below the plane $3x + y + z = 1$. Set up an integral to find V, the volume of the tetrahedron. *poll*Q

Example (tetrahedron). Consider the tetrahedron bounded by in the first octant and below the plane $3x + y + z = 1$. Let the density of this tetrahedron be $\rho \text{ g/cm}^3$ with position values x, y, z measured in cm. Set up an integral to find M, the mass of the tetrahedron. *poll*Q

Example (tetrahedron). For the tetrahedron above, find the mean density. *poll*Q
Learning Objectives

These objectives are associated with Class 18 + Problem Set 7 questions + Quiz 5 + Workshop + Section + Office hours.

Students will be asked to
• define: triple integral
• sketch the region of integration for an iterated triple integral (§16.3 5-13)
• determine the sign of a triple integral by reasoning about the integrand and region of integration (§26.3 14-26)
• find bounds for a region of integration specified by the intersection of surfaces or by a plot of the region (§16.3 28-58)
• change the order of integration for a triple integral (§16.3 60-62, 64)
• identify when it would be appropriate to choose a single, double, or triple integral to compute a quantity
• use triple integrals to compute volume, mass, average value of a function, center of mass, or moment of inertia (§16.3 28-38, 43-53, 57, 59, 63, 65-69)