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Synopsis
Magnetic resonance imaging (MRI) of bones has added value for fracture risk assessment in osteoporosis, a disease of weak bones. However, manual
segmentation of bone images is time-intensive, causing slow throughput for test results and ine�cient risk assessment for patients. In this work, we
implemented an automatic proximal femur segmentation algorithm by modeling a convolutional neural network (CNN) as a pixel-wise binary
classi�cation. The accuracy of automatic segmentation was investigated by analyzing similarity between automatic and manual ground-truth
segmentation. In addition, we compared the time required for manual �ne-tuning of the CNN segmentation with original manual segmentation.

Purpose
To evaluate bone quality and assess fracture risk, segmentation of the whole proximal femur is required by a feature extraction algorithm. Segmentation
of the proximal femur is achieved by manual selection of the periosteal or endosteal borders of bone on MR images by an expert . Recently,
convolutional neural networks (CNN) have been successfully used for automatic segmentation of MR images of biological tissues, such as brain  and
cartilage . In this work, we developed an automatic proximal femur segmentation algorithm using CNN. Successful implementation of the algorithm is
expected to 1) decrease test result turnaround time and ine�ciency in fracture risk assessment for patients and 2) mitigate inter-rater disagreement
errors.

Methods
The study had institutional review board approval and written informed consent was obtained from all subjects.

The 7-layer CNN was developed using the MatConvNet deep learning platform . The proposed CNN utilized convolutional (3x3 kernels), pooling, dropout,
and loss layers as shown in Figure 1. We used the weight initialization method proposed by Glorot and Bengio . For non-linear activation, recti�ed linear
units (ReLU)  were used. Dropout  was used on convolutional and fully connected layers. L2 regularization was used on kernel weights. We minimized
the binary log-loss when classes are de�ned "not bone" and "bone" using stochastic gradient descent with momentum as an optimization algorithm . We
extracted axial, coronal, and sagittal 32x32 patches centered at each voxel to generate a patch based dataset re�ecting 2.5D representation  and using
2D convolution kernels in CNN. Training parameters are outlined in Table 1.

High resolution MR hip microarchitecture FLASH images (TR/TE=31/4.92ms; �ip angle, 25°; in-plane voxel size, 0.234 x 0.234 mm; section thickness,
1.5mm; number of coronal sections, 60; acquisition time, 25 minutes 30 seconds; bandwidth, 200Hz/pixel) from n=61 volunteers were used for training
the CNN. Images were obtained using commercial 3T MR scanner (Skyra, Siemens, Erlangen) with a 26-element radiofrequency coil setup (18-element
Siemens commercial �exible array and 8-elements from the Siemens commercial spine array). Trained CNN was tested on 25 subjects whose data was
not used in training to identify the model.

We performed post-processing on the segmentation results to remove small clusters of misclassi�ed bone regions and adjust for prior knowledge. We
imposed volumetric constraints by removing clusters smaller than prede�ned thresholds. We also performed basic morphological operations, such as
�lling holes and opening.

Results
Figure 2 represents the original axial MR image (2a), the ground-truth segmentation (2b), a probability map output of the network (2c), and the network
output projection after post-processing (2d). Receiver operator characteristics (ROC) on the probability maps across 29 slices in 25 cases were used to
obtain the optimal cuto� value of .9266 for separating bone/non-bone regions (Figure 3). AUC, sensitivity, and speci�city values from test cases were
0.933, 0.611, and 0.971, respectively with the proposed model.

Figure 4 shows DSC scores case-wise with overall DSC score across all cases superposed. The proposed algorithm has a mean DSC score of 70.2±11.3%
from 25 test cases. Overall positive predictive value (PPV) and sensitivity scores were 58.5±15.0% and 92.6±4.70%, respectively.

We performed manual �ne-tuning on CNN segmentation results to investigate if the CNN model had reduced the time required for manual
segmentation. Manual �ne-tuning on CNN segmentations resulted in 40% decrease in total segmentation time compared to manual segmentation alone
(8 minutes versus 14 minutes 30 seconds).

Discussion and Conclusions
We implemented and tested a CNN for automatic proximal femur image segmentation. High ROC speci�city scores indicate the network's e�cacy in
predicting non-bone elements. Moderate ROC sensitivity scores suggest that errors are from false negative results, which agrees with prior expectation
since non-bone elements comprised the majority of training data. In future implementations, we will incorporate imbalanced class information directly
into the loss function during training, improving the ROC sensitivity score and segmentation �delity. We plan to improve the model implementation by
incorporating postprocessing by introducing conditional random �eld (CRF) at the output of the CNN.
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Both peak and average �delity scores are aligned with those produced by state-of-the-art leaders in the �eld,  reinforcing that deep learning is a
pro�cient proximal femur segmentation option. Mean DSC similarity scores can be further improved above the 70.2% mean when removing outlier cases
below DSC=50% (2 cases). Trends in low DSC score cases will be further analyzed to determine ine�ciencies in the CNN deployment.
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Figures

Table 1: Hyperparameters for CNN Training

Figure 1: Network Architecture - A combination of convolutional, max pooling, dropout, fully connected, and loss layers were used to generate probability
output at the voxel of interest location. Stochastic gradient descent with momentum was utilized to back-propagate through network during learning.

Figure 2: 3T MR image shown along with the results of both manual and automatic segmentation. Probability maps were generated at the voxel level,
and threshold values calculated using ROC analysis. Scores: DSC=91.6%, PPV=92.3%, SENS=90.9%
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Figure 3: ROC to determine optimal probability cuto� on testing cases 1 → 25. Sensitivity of classi�cation also calculated at the output. — Threshold:

.9266, AUC: 0.933, Sensitivity: 0.611, Speci�city: 0.971

Figure 4: DSC scores for 25 test cases. Superposed is e�ective mean DSC score across all test cases. DSC: 70.2 ± 11.3%, PPV: 58.5 ± 15.0%, SENS: 92.6 ±

4.70%


