Hopenhayn et al. (2019).
From Population Growth to Firm Demographics: Implications for Concentration, Entrepreneurship and the Labor Share

Martin Aragoneses Jeffrey Wang

Macro Reading Group
Introduction

- Aggregate trends in the economy: increase in concentration, decrease in entrepreneurship rate, decrease in labor share
- Hypothesis: driven by aging firm distribution, which can be explained by change in labor force growth
- Construct a model of firm dynamics in which changes in labor force growth lead to changes in firm demographics
- Show that labor force growth provides a unified explanation of the aggregate trends
Roadmap

1. Data and Aggregate Trends
2. Model
3. Calibration
4. Discussion and Comments
Data

- Business Dynamics Statistics (BDS) data from Census; publicly available
- Covers almost all private sector US firms from 1977-2014
- Aggregate statistics by group (age, size, sector, etc.) but no firm-level data
- Interested in three aggregate trends:
 - Concentration: share of employment by firms with 250+ employees
 - Average firm size: number of employees per firm
 - Aggregate exit rate
Aggregate Trends

Figure: Concentration and average firm size on a steady rise; exit rate falling in recent decade

![Graphs showing trends in concentration, average firm size, and exit rate from 1980 to 2010.](image_url)
Breaking Down by Firm Age

Figure: Trends by age are generally flat
Figure: Regression of concentration on year, with and without age controls

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>0.003***</td>
<td>-0.000</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>AGE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 0</td>
<td>0.666</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.439)</td>
<td></td>
</tr>
<tr>
<td>Age 1</td>
<td>0.730*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.439)</td>
<td></td>
</tr>
<tr>
<td>Age 2</td>
<td>0.740*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.440)</td>
<td></td>
</tr>
<tr>
<td>Age 3</td>
<td>0.756*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.440)</td>
<td></td>
</tr>
<tr>
<td>Age 4</td>
<td>0.772*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.440)</td>
<td></td>
</tr>
<tr>
<td>Age 5</td>
<td>0.786*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.440)</td>
<td></td>
</tr>
<tr>
<td>Age 6 to 10</td>
<td>0.839*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.440)</td>
<td></td>
</tr>
<tr>
<td>Age 11 to 15</td>
<td>0.928**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.441)</td>
<td></td>
</tr>
<tr>
<td>Age 16 to 20</td>
<td>1.017**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.441)</td>
<td></td>
</tr>
<tr>
<td>Age 21 to 25</td>
<td>1.115**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.442)</td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>0.080</td>
<td>0.976</td>
</tr>
<tr>
<td>Observations</td>
<td>301</td>
<td>301</td>
</tr>
</tbody>
</table>
What is driving aggregate trends, then?

Figure: Firm aging could be an explanation

Figure 3: Share of Firms of Age 11+
Labor Force Growth

Figure: Growth rate of civilian labor force; in decline since the 1980s
Model Overview and Problems

- Hopenhayn-style tradition in Macro-IO – Hopenhayn-Rogerson

Claims. Can match dynamism/concentration/labor share trends as GE outcomes from a L supply transition...

... in a perfect competition, friction-less, inelastic labor world

Problems. More PE mechanics than GE economics.

- Limited interaction between aggregates and heterogeneity
- Neither real wages nor selection affected at all
- L movements just affects the scale, not shape of size dist.
- They hold interest rates fixed along the transition!
- Wages equalized along production and investment!

Illustration. My own notation and simulations.

- Endogenous competition induces interactions between firm heterogeneity and GE macro variables, which they miss...
- Accounting for GE properly fits many more facts! Channels?
Heterogeneous Firm GE Model Setup

- Homogeneous good produced by heterogeneous s firms

\[C = Y = \left[\int_s y(s) \cdot M(s) \right], \quad y(s) = s \cdot f(l) \]

- Inelastic labor supply for production and investment

\[\bar{L} = L_P + L_X \]

- \(s_{it} \) not only heterogeneous, but stochastic

- Draw from common \(G_0(s) \) on entry, i.i.d. Markov after

\[\pi(s, p, w) = \max_l p \cdot s \cdot f(l) - w \cdot l(\varphi) - w \cdot c_f, \quad s_{it} \sim F(s_{t+1} | s_t) \]

- Firms are \(p \) takers – key aggregate \(\frac{w}{p}, w = 1 \)

- Go over steps to solve for recursive competitive equilibrium
Option Value and Investment

- \(\pi(s, p) \) flow profits, \(\nu(s, p) = V(s, p, w)/w \) value function

 \[
 \pi(s, p, w) = \max_l p \cdot s \cdot f(l) - w \cdot l(\varphi) - w \cdot c_f
 \]

 \[
 \nu(s, p_t) = \max \{0, \pi(s, p_t) + \beta E_{s'} \nu(s', p_{t+1}|s)\}
 \]

- Survival investment follows an optimal cutoff rule

 \[
 \chi(s \geq s^*_t(p_t)) = 1 \iff 0 \leq \pi(s, p_t) + \beta E_{s'} \nu(s', p_{t+1}|s)
 \]

- Entry investment yields ex-ante net profits

 \[
 \nu^e(p_t) = \int \nu(s, p_t) \cdot G(s) - c_e
 \]

- Step 1. Solve value and policy functions for any \(p \).
- Step 2. Solve for \(p \) that satisfies Free Entry.
Option Value and Selection (Threshold Rule)
Law of Motion of the Firm-size Distribution

\[M_{t+1}(s') = \int_s \chi \left(s' \geq s^*_{t+1}(p_{t+1}) \right) \cdot F(s'|s) \cdot M_t(s) \]

\[+ \chi \left(s' \geq s^*_{t+1}(p_{t+1}) \right) \cdot \left[M^e_{t+1} G(s') \right] \]

- \(M_e \) entrants automatically produce (no time-to-build)
- \(M_t = \int_s M_t(s) \) total mass of firms’ in equilibrium
- Iterate on it to find the fixed point where time-invariant

\[\mathbf{M} = M^e \tilde{\mathbf{M}} = M^e [I - \mathbf{T}_M]^{-1} \chi \mathbf{G} \]

- Step 3. Given policies and shocks, solve for \(\tilde{\mathbf{M}} \).
Equilibrium Stationary Distribution of Firms.
Recursive Competitive Equilibrium

- All firms optimize (investment and production) given p

$$L_p(p_t) \equiv \int_s l(s, p_t) M_t(s)$$

- Labor market clears (by Walras law, so does goods market)

$$L_p(p_t) + M_t c_f + M^e c_e = L_t$$

 - Producing Firms
 - Entrants
 - Supply

- Free entry yields complementary slackness

$$\nu^e(p_t) \cdot M^e_t = 0, \quad M^e_t > 0 \iff \int \nu(s, p_t) \cdot G(s) - w \cdot c_e = 0$$

- M_t distribution of firms defined recursively

$$M_{t+1} = T_{t, t+1} M_t + M^e_{t+1} \chi_{t+1} G$$
Central Result: L Affects Nothing but the Scale

- Stationary \(\frac{w}{p} \) pinned down by Free Entry alone
 \[
 \int \nu \left(s, \frac{p}{w} \right) \cdot G(s) = c_e \implies \frac{p^*}{w^*}
 \]

- Stationary \(p = p^* \) imply a stationary threshold \(s^*(p^*) = s^* \)
 \[
 \pi (s^*(p), p) + \beta E_s' \nu (s', p|s(p)) = 0
 \]

- \(M_t^e \), and thus mass of firms \(M_t \), will be the only thing growing with labor - no effects on the shape nor factor prices
 \[
 M_t^e \cdot \left(\int_s \left[l(s, p) + c_f \right] \tilde{M}(s) + c_e \right) = L_t
 \]

- Their key result from a slowdown in population growth leading to slowdown in entry follows immediately.

- No economics, just mechanics
Why? Macro and Micro Separability.

- Firm-level variables (log)-separable from aggregates. HR:

\[
\pi(s, \tau | p, w) = \left[\eta \cdot w^{-\eta} \cdot p \right] \frac{1}{1-\eta} \left(\frac{1}{\eta} - 1 \right) \cdot (1 - \tau) \frac{1}{1-\eta} \cdot s^{\frac{1}{1-\eta}}
\]

- Macro Factors: \(\Pi(p, w) \)
- Firm-level Factors: \(s^{\frac{1}{1-\eta}} \)

- Pervasive feature of heterogeneous firm dynamics lit.

- Carries over to CES monopolistic competition. AB:

\[
\pi(s | Y, w, P) = \left(1 - \frac{1}{\mu} \right) \left(\frac{1}{\mu} \right)^{\sigma-1} \left(\frac{w}{P} \right)^{1-\sigma} PY \cdot s^{\sigma-1}
\]

- Macro Factors: \(\Pi(Y, w, P) \)
- Firm-Level Factors: \(s^{\sigma-1} \)

- Breaks down when you go beyond CES

\[
\pi(s | Y, w, P, \Theta) = PY\Theta \left(1 - \frac{\eta}{\mu (s | S)} \right) \gamma' \left(\frac{s \cdot I(s)^{\eta}}{Y} \right) \frac{s \cdot I(s)^{\eta}}{Y}
\]

- Macro States: \(\Pi(S) \)
- Firm-level Factors: \(s \cdot I(s)^{\eta} \)
Only Scale of Firm Size Distribution Changes.

Figure: Limits interactions between firm heterogeneity & macro
Sloppy Approach to GE Transition?

- In a GE transition, the interest is dynamic

\[(1 + r_t) = R_{t,t+1} = \frac{1}{\beta} \left(\frac{C_{t+1}}{C_t} \right) \implies R_{t,t+T} = \prod_{\tau=t}^{T} R_{\tau,\tau+1}\]

- Firms discount at the real interest rate. Loose stationarity

\[v^+_t \left(s, \frac{w_t}{p_t}, r_t \right) = \pi_t \left(s, \frac{w_t}{p_t} \right) + \frac{1}{R_{t,t+1}} E_{s'|s} v_{t+1} \left(s', \frac{w_{t+1}}{p_{t+1}}, r_{t+1} \right)\]

- Entry capital pre-determined at steady state value initially

- Better approach to transitions (Atkeson-Burstein, 2012)

\[\frac{1}{R_{t,t+T}} \cdot \int_s v \left(s, \frac{w_t}{p_t}, r_t \right) \cdot G(s) - w_t \cdot c_e \to 0, \quad t \geq T > 0\]

- Compare evolution of relevant time series with data to evaluate model performance
Calibration

- Assume that US economy is in stationary equilibrium before 1940
- Match civilian labor force growth rate in the data starting in 1940
- Calibrate model parameters to target moments in 1978
- Compare evolution of relevant time series with data to evaluate model performance
Assumptions

- Production function of a firm:

\[f(s, n) = sn^\alpha \]

- Firm Productivity follows AR(1) process

\[\log(s_{t+1}) = \mu_s + \rho \log(s_t) + \varepsilon_{t+1}; \quad \varepsilon_{t+1} \sim \mathcal{N}(0, \sigma_\varepsilon^2) \]

- Distribution of startup productivities \(G \) is lognormal with mean \(s_0 \) and \(\sigma_\varepsilon^2/(1 - \rho^2) \)

- Overhead labor increases linearly with firm size

\[c_f(n) = c_{fa} + c_{fb} \cdot n \]
Calibration

Figure: Calibrated parameters and targeted moments

<table>
<thead>
<tr>
<th>Assigned</th>
<th>Value</th>
<th>Definition</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.96</td>
<td>Discount factor</td>
<td>Annual real interest rate of 4%</td>
</tr>
<tr>
<td>α</td>
<td>0.64</td>
<td>Worker’s share of output</td>
<td>Standard</td>
</tr>
<tr>
<td>g</td>
<td>0.01</td>
<td>Labor force growth rate (SS)</td>
<td>Standard</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calibrated</th>
<th>Value</th>
<th>Definition</th>
<th>Target</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_e</td>
<td>0.0003</td>
<td>Entry cost</td>
<td>$p^* = 1$</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>c_{fa}</td>
<td>4.05</td>
<td>Operating cost intercept</td>
<td>Average firm size in 1978</td>
<td>19.50</td>
<td>19.58</td>
</tr>
<tr>
<td>c_{fb}</td>
<td>0.06</td>
<td>Operating cost slope</td>
<td>OP covariance 1993-2001</td>
<td>0.51</td>
<td>0.51</td>
</tr>
<tr>
<td>s_0</td>
<td>-3.28</td>
<td>Mean of G</td>
<td>Average startup size</td>
<td>6.05</td>
<td>6.01</td>
</tr>
<tr>
<td>μ_s</td>
<td>0.0006</td>
<td>Drift in AR(1)</td>
<td>Startup rate in 1978</td>
<td>14.52 %</td>
<td>14.59%</td>
</tr>
<tr>
<td>ρ</td>
<td>0.97</td>
<td>Persistence of AR(1)</td>
<td>5-year growth rate</td>
<td>72.00 %</td>
<td>74.78%</td>
</tr>
<tr>
<td>σ^2_ε</td>
<td>0.046</td>
<td>Variance of shocks</td>
<td>5-year exit rate</td>
<td>51.61 %</td>
<td>57.29%</td>
</tr>
</tbody>
</table>
Matching Startup Rate

Figure: Model matches startup rate in non-targeted years fairly well
Matching Exit Rate and Average Firm Size

Figure: Exit rate and average firm size by age in the data and model

<table>
<thead>
<tr>
<th>Age</th>
<th>Exit rate</th>
<th>Average firm size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data(%)</td>
<td>Model(%)</td>
</tr>
<tr>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>21.85</td>
<td>25.57</td>
</tr>
<tr>
<td>2</td>
<td>15.86</td>
<td>17.20</td>
</tr>
<tr>
<td>3</td>
<td>13.43</td>
<td>13.43</td>
</tr>
<tr>
<td>4</td>
<td>11.68</td>
<td>11.24</td>
</tr>
<tr>
<td>5</td>
<td>10.48</td>
<td>9.79</td>
</tr>
<tr>
<td>6-10</td>
<td>8.30</td>
<td>7.58</td>
</tr>
<tr>
<td>11-15</td>
<td>6.40</td>
<td>5.68</td>
</tr>
<tr>
<td>16-20</td>
<td>5.56</td>
<td>4.83</td>
</tr>
<tr>
<td>21-25</td>
<td>4.99</td>
<td>4.36</td>
</tr>
</tbody>
</table>
Matching Firm Aging

Figure: Share of 11+ years old firms, data and model
Matching Concentration (Non-targeted)

Figure: Change in share of employment from 1987-2014, by age and by size

<table>
<thead>
<tr>
<th>Category</th>
<th>Data (pp.)</th>
<th>Model (pp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small</td>
<td>-11.06</td>
<td>-10.46</td>
</tr>
<tr>
<td>Large</td>
<td>-3.09</td>
<td>-0.29</td>
</tr>
<tr>
<td>Mature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small</td>
<td>4.51</td>
<td>3.33</td>
</tr>
<tr>
<td>Large</td>
<td>9.63</td>
<td>7.41</td>
</tr>
</tbody>
</table>
Aggregate Labor Share

- Widely documented that aggregate labor share has declined since the 1980s
- In the model, share paid to production workers is fixed by α in equilibrium, so all differences come from the share paid to overhead labor
- Labor share of a firm i is given by

$$\text{labor share of firm } i = \alpha \left(1 + \frac{c_f}{n_i} \right) = \alpha \left(1 + \frac{c_{fa} + c_{fb} \cdot n_i}{n_i} \right)$$

- Firm-level labor share declines with firm size, and thus with firm age
- Firm aging \Rightarrow increase in weight of larger firms \Rightarrow Decline in aggregate labor share
Decline in Aggregate Labor Share

Figure: Model matches decline in aggregate labor share, and in overhead to employment ratio
Counterfactuals

- Two channels driving the decline in startup rate
 - Firm demographics: older firms have higher size and lower exit rate ⇒ feedback effect of aging ⇒ lower exit and higher average size ⇒ lower startup rate
 - Initial rise in labor force growth: initial rise ⇒ expansion of pool of incumbents ⇒ labor force growth slows down ⇒ incumbent growth leaves less room for new firms

- Case 1: shut down i.i.d productivity process and assume that firms carry productivity at birth forever
- Case 2: shut down initial rise in labor force growth and assume that economy is at stationary equilibrium in 1977
Counterfactual: Shutting down channels

Figure: Firm demographics plays an important role for decline in entry rate