Lecture 11: Unemployment Insurance, Disability Insurance, and Workers’ Compensation

Stefanie Stantcheva

Fall 2017
INSTITUTIONAL FEATURES

Unemployment insurance, workers’ compensation, and disability insurance are three social insurance programs in the United States, and they share many common features.

Unemployment insurance (UI): A federally mandated, state-run program in which payroll taxes are used to pay benefits to unemployed workers laid off by companies.

Disability insurance (DI): A federal program in which a portion of the Social Security payroll tax is used to pay benefits to workers who have suffered a medical impairment that leaves them permanently unable to work.

Workers’ compensation (WC): State-mandated insurance, which firms generally buy from private insurers, that pays for medical costs and lost wages associated with an on-the-job injury.
Comparison of the Features of UI, DI, and WC

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>UI</th>
<th>DI</th>
<th>WC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualifying Event</td>
<td>Job loss, job search</td>
<td>Disability</td>
<td>On-the-job injury</td>
</tr>
<tr>
<td>Duration</td>
<td>26-65 weeks</td>
<td>Indefinite</td>
<td>Indefinite (if verified)</td>
</tr>
<tr>
<td>Difficulty of verification</td>
<td>Job loss: easy Search: impossible</td>
<td>Somewhat difficult</td>
<td>Very difficult</td>
</tr>
<tr>
<td>Average after tax replacement rate</td>
<td>47%</td>
<td>60%</td>
<td>89%</td>
</tr>
<tr>
<td>Variation across states</td>
<td>Benefits and other rules</td>
<td>Only disability determination</td>
<td>Benefits and other rules</td>
</tr>
</tbody>
</table>
Unemployment Insurance

Unemployment insurance is a major social insurance program in the U.S.

Substantial size: $50 bn/year in normal times ($150bn/year during Great Recession)

Macroeconomic importance in stabilization/stimulus

Like other social programs, triggered by an event

In this case, involuntary job loss

Controversial debate about unemployment benefits

Benefit: helps people in a time of need

Cost: reduces incentive to search for work while unemployed

What is the optimal design of UI system given this tradeoff?
Institutional Features of Unemployment Insurance

UI is a federally mandated, state-run program

Although UI is federally-mandated, each state sets its own parameters on the program.

This creates a great deal of variation across states

Useful as a “laboratory” for empirical work

⇒ UI is a heavily studied program
Financing of UI Benefits

1) UI is financed through a payroll tax on employers:
⇒ an employee will not see a deduction for UI on his or her paycheck.
This payroll tax averages 1-2% of earnings

2) UI is partially experience-rated on firms
⇒ the tax that finances the UI program rises as firms have more layoffs, but not on a one-for-one basis
Eligibility Requirements and Benefits

1) Individuals must have earned a minimum amount over the previous year.

2) Unemployment spell must be a result of a layoff, rather than from quitting or getting fired for cause (easy to check)

3) Individual must be actively seeking work and willing to accept a job comparable to the one lost (hard to check)

These eligibility requirements mean that not all of the unemployed actually collect benefits.

Even among eligible, 50% do not take up the UI benefit (Lack of information about eligibility, stigma from collecting a government handout, or transaction costs)
UI Benefits

UI benefits are a function of previous earnings

These benefits vary by state.

The replacement rate is the amount of previous earnings that is replaced by the UI system.

\[R = \frac{B}{W} \]

Replacement rates vary from 35% to 55% of earnings
Unemployment Benefit Schedule for Michigan
UI Benefits Duration

In general, one can collect UI for 6 months.

In recessions, benefits are automatically extended to 9 months or 12 months.

In deep recessions, benefits can be further extended (23 months in 2008-13).

Duration of UI benefits typically much higher in European countries.
APPLICATION: The Duration of Social Insurance Benefits around the World
Analysis of Optimal Unemployment Insurance

Which system is the best?

First need to define what we mean by “best”–what is the objective function?

Typical objective considered by economists: maximize agent’s welfare

In this case, because there is uncertainty, welfare is given by expected utility

Use a formal mathematical model to tackle the problem and get a number for the optimal benefit
Expected Utility Model

Individual’s expected utility:

$$EU = (1 - p)u(c_e) + pu(c_u) = (1 - p)u(w - t) + pu(b)$$

p: probability of being unemployed

$c_e = $ consumption when employed,

$c_u = $ consumption when unemployed

$w = $ wage when working

$t = $ tax used to finance program,

$b = $ UI benefit

Government needs to balance budget (taxes fund benefits):

$$(1 - p) \cdot t = p \cdot b \quad \Rightarrow \quad t = \left(\frac{p}{1 - p}\right) \cdot b$$
Optimal UI with no moral hazard

No moral hazard means that p is not affected by UI

Plugging in govt. budget constraint, rewrite individual’s expected utility as:

$$EU = (1 - p)u(w - (p/(1 - p))b) + pu(b)$$

Government’s problem: find b that maximizes EU.

Optimal benefit b^* will be b such that: $c_u = c_e$

This is **full insurance** (as we saw earlier in class)
Optimal UI with moral hazard

With moral hazard, p increases with b as more generous benefits deter job search and hence increase unemployment.

Government now chooses b to maximize EU but taking into account that p is a function of b in the budget constraint:

$$EU = (1 - p(b))u(w - [p(b)/(1 - p(b))]b) + p(b)u(b)$$

Take FOC wrt b (derivative of everything that depends on b):

$$\frac{dp}{db} \left(u(c_u) - u(c_e) - (1 - p)u'(c_e) \frac{1}{(1 - p)^2} b \right) - (1 - p)u'(c_e) \frac{p}{1 - p} + pu'(c_u) = 0$$

Individual maximization: (individual doesn’t care about govt BC! Takes t, w and b as given).

$$\max_p (1 - p)u(c_e) + pu(c_u) \Rightarrow u(c_e) = u(c_u)$$
Optimal UI with moral hazard

\[-\frac{dp}{db} u'(c_e) \frac{1}{(1-p)} b + p(u'(c_u) - u'(c_e)) = 0\]

Multiply and divide by \(\frac{b}{p} \) (trick) to make an elasticity appear.

\[-\frac{dp}{db} \frac{b p}{b} u'(c_e) \frac{1}{(1-p)} b + p(u'(c_u) - u'(c_e)) = 0\]

\[-\varepsilon_{p,b} u'(c_e) \frac{p}{(1-p)} + p(u'(c_u) - u'(c_e)) = 0\]

Divide everything by \(p \).

\[-\varepsilon_{p,b} u'(c_e) \frac{1}{(1-p)} + (u'(c_u) - u'(c_e)) = 0\]

Rearrange:

\[\frac{u'(c_u) - u'(c_e)}{u'(c_e)} = \frac{1}{1-p} \varepsilon_{p,b}\]
Optimal UI with moral hazard

New formula:

$$\frac{u'(c_u) - u'(c_e)}{u'(c_e)} = \frac{1}{1 - p} \varepsilon_{p,b} \text{ with } \varepsilon_{p,b} = \frac{b}{p} \cdot \frac{dp}{db}$$

$\varepsilon_{p,b} > 0$ is the elasticity of unemployment rate with respect to benefits (captures size of moral hazard effects)

Now $0 < c_u < c_e < w$: partial insurance is optimum. Optimum level increases with curvature of $u(.)$ but decreases with elasticity $\varepsilon_{p,b}$.
Empirical Estimation of Effects of UI

Moral hazard in UI manifests itself in the duration of the unemployment spell.

Economists ask whether the unemployed find jobs more slowly when benefits are higher.

Key challenge: need to use quasi-experiments to identify these effects.

One common empirical approach (Meyer 1990): difference-in-difference.

Exploit changes in UI laws that affect a “treatment” group and compare to a “control” group.
EVIDENCE: Moral Hazard Effects of Unemployment Insurance

[Graph showing the weekly benefit amount for different groups based on high quarter earnings.]
Empirical Estimation of Effects of UI: Evidence

Meyer (1990) and many other implement this method using data on unemployment durations in the U.S. and state-level reforms.

General finding: benefit elasticity of 0.4-0.6

10% rise in unemployment benefits leads to about a 4-6% increase in unemployment durations.

More recent empirical approach: **regression discontinuity**

Card-Chetty-Weber (2007) use the fact that in Austria, you get up to 30 weeks of benefits when you have been employed for 36+ months in last 5 years (instead of up to 20 weeks)

Can look at duration of unemployment based on how long you have worked in last 5 years ⇒ Finds somewhat smaller elasticity around 0.3

Effect of Benefit Extension on Unemployment Durations
Evidence on Consumption-Smoothing

Difference-in-difference strategy has been used to examine how UI benefits affects consumption.

Gruber (1997) finds that consumption falls on average when people lose their job by about 10-15%.

1 increase in UI benefits increases consumption by 30 cents.

Much less than 1-1 because savings behavior changes, spousal labor supply, borrowing from friends, etc. (this is called self-insurance).
Does UI have Long-Term Benefits?

Another potential benefit of UI, neglected in simple model above: improvements in **match quality**

Are people forced to take worse jobs because they have to rush back to work to put food on the table?

E.g. engineer starts working at McDonalds.

Can examine this using similar data

Look at whether people who got higher benefits and took longer to find a job are better off years later

Card-Chetty-Weber (2007) exploit again the **regression discontinuity** and find no long-term match benefit on subsequent wage or subsequent job duration
Effect of Extended Benefits on Subsequent Wages
Effect of Extended Benefits on Subsequent Job Duration

Summary of Empirical Findings on UI

1. Higher benefit level \Rightarrow longer unemployment durations (moral hazard cost)

2. Higher benefit level \Rightarrow more consumption while unemployed (consumption smoothing benefit)

3. UI benefits have no beneficial effects on long-term job outcomes

\Rightarrow Model implies that providing some UI is desirable but UI replacement rate should be only around 50% based on those empirical findings
Should UI Benefits be Extended during Recessions?

US extends UI benefits during recessions. Extensions ended in 2014 (controversial policy debate)

1) Social Justice: Harder to find jobs in recessions ⇒ being unemployed is less of a choice ⇒ Extending benefits is desirable

2) Efficiency: In recessions, the job market is too slack [too hard to find jobs, too easy for firms to find workers].

 a) If longer UI benefits decrease slack in labor market then longer UI benefits desirable [this is the case if UI benefits stimulate aggregate demand or if job seekers compete for a fixed number of jobs in recession, this is the left-wing view]

 b) If longer UI benefits increase slack in labor market then shorter UI benefits desirable [this is the case if longer UI benefits increase the bargaining power of workers and hence increase wages further reducing labor demand, this is the right-wing view]

Economists try to tell apart a) from b) using empirical evidence
DISABILITY INSURANCE

Disability is conceptually close to retirement: some people become unable to work before old age (due to accidents, medical conditions, etc.)

All advanced countries offer public disability insurance almost always linked to the public retirement system

Disability insurance allows people to get retirement benefits before the “Early Retirement Age” if they are unable to work due to disability
US DISABILITY INSURANCE

1) Federal program funded by OASDI payroll tax, pays SS benefits to disabled workers under retirement age.

2) Program started in 1956 and became more generous over time (age 50+ condition removed, definition of disability liberalized, replacement rate has grown)

3) Eligibility: Medical proof of being unable to work for at least a year, Need some prior work experience, 5 months waiting period with no earnings required (screening device)

4) Social security examiners rule on applications. Appeal possible for rejected applicants. Imperfect process with big type I and II errors (Parsons AER’91) ⇒ Scope for Moral Hazard

5) DI tends to be an absorbing state (very few go back to work)
US DISABILITY INSURANCE

1) In 2016, about 10.5m DI beneficiaries (not counting widows+children), about 5-6% of working age (20-64) population

2) Very rapid growth: In 1960, less than 1% of working age population was on DI

3) Growth particularly strong during recessions: early 90s, late 00s

Key empirical question: Are DI beneficiaries unable to work? or are DI beneficiaries not working because of DI.
Chart 2. All Social Security disabled beneficiaries in current-payment status, December 1970–2010

The number of disabled workers grew steadily until 1978, declined slightly until 1983, started to increase again in 1984, and began to increase more rapidly beginning in 1990. The growth in the 1980s and 1990s was the result of demographic changes, a recession, and legislative changes. The number of disabled adult children has grown slightly, and the number of disabled widow(er)s has remained fairly level. In December 2010, slightly over 8.2 million disabled workers, over 949,000 disabled adult children, and just under 245,000 disabled widow(er)s received disability benefits.

Source: SSA DI annual report
In 2010, 1,026,988 disabled workers were awarded benefits. Among those awardees, the most common impairment was diseases of the musculoskeletal system and connective tissue (32.5 percent), followed by mental disorders (21.4 percent), circulatory problems (10.2 percent), neoplasms (9.0 percent), and diseases of the nervous system and sense organs (8.2 percent). The remaining 18.7 percent of awardees had other impairments.

Source: SSA DI annual report
US DISABILITY INSURANCE

Detecting disability is challenging, particularly for back injuries and mental health conditions

One way to quantify difficulty in assessment: audit study

Take a set of disability claims that was initially reviewed by a state panel

One year later, resubmit them to the panel as anonymous new claims.

Compare decisions on the same cases

⇒ Substantial evidence of Type I errors (incorrect rejection of a disabled person) and Type II errors (letting a non-disabled person on the program)
Table 1—Reassessments of Initial Social Security Determinations

A. Bureau of Disability Insurance Review One Year After Initial Determination (Percentages):

<table>
<thead>
<tr>
<th>BDI assessment</th>
<th>Allowance</th>
<th>Denial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowance</td>
<td>78.8</td>
<td>21.1</td>
</tr>
<tr>
<td>Denial</td>
<td>22.5</td>
<td>77.5</td>
</tr>
</tbody>
</table>

Note: The sample sizes are 250 initial allowances and 248 initial denials.

Nonparticipation and Recipiency Rates, Men 45-54 Years Old

Source: Parsons 1984 Table A1
Parallel growth of DI recipients and non-participation rates among men aged 45-54 but causality link not clear

Cross-Sectional Evidence (Parsons ’80): Does potential DI replacement rate have an impact on labor force participation (LFP) decision?

Uses cross-sectional variation in potential replacement rates

Survey data on men aged 45-59 from 1966-69

OLS regression

$$NLFP_i = \alpha + \beta DIrephrase_i + \epsilon_i$$

Large effect that can fully explain decline in LFP among men 45+
DI EMPIRICAL EFFECTS: OBSERVATIONAL STUDIES

Issues with Cross-Sectional Evidence:

1) $Dlrepre_{i}$ depends on wages (higher for low wage earners) and likely to be correlated with ε_{i} (likelihood to become truly disabled)

2) Impossible to control fully for wages in regression because all variation in $Dlrepre_{i}$ is due to wages

3) Bound AER’89 replicates Parson’s regression on sample that never applied to DI and obtains similar effects implying that the OLS correlation not driven by DI
Bound AER'89 proposes a technique to bound effect of DI on LFP rate

Uses data on LFP on (small sample of) rejected applicants as a counterfactual

Idea: If rejected applicants do not work, then surely DI recipients would not have worked \(\Rightarrow\) Rejected applicants’ LFP rate is an upper bound for LFP rate of DI recipients absent DI

Results: Only 30% of rejected applicants return to work and they earn less than half of the mean non-DI wage

\(\Rightarrow\) at most 1/3 of the trend in male LFP decline can be explained by shift to DI

Von Waechter-Manchester-Song AER’11 replicate Bound using full pop SSA admin data and confirm his results
Table 2—Employment, Earnings, and Other Characteristics of Rejected Disability Insurance Applicants

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent Employed</td>
<td>77.7</td>
<td>32.6</td>
<td>3.2</td>
<td>69.3</td>
<td>28.7</td>
<td>2.3</td>
</tr>
<tr>
<td>Percent Worked 71/77</td>
<td>91.9</td>
<td>45.0</td>
<td>7.5</td>
<td>86.7</td>
<td>40.4</td>
<td>5.5</td>
</tr>
<tr>
<td>Percent Full Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(≥ 50 Weeks)</td>
<td>76.8</td>
<td>47.4</td>
<td>31.4</td>
<td>83.5</td>
<td>41.2</td>
<td>22.2</td>
</tr>
<tr>
<td>Percent Full Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(≥ 35 Hours)</td>
<td>95.4</td>
<td>75.9</td>
<td>25.0</td>
<td>92.4</td>
<td>79.6</td>
<td>38.3</td>
</tr>
<tr>
<td>Earnings Among Positive Earners</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Annual Earnings, 71/77</td>
<td>$9000</td>
<td>$4000</td>
<td>$700</td>
<td>$14000</td>
<td>$5300</td>
<td>$1000</td>
</tr>
</tbody>
</table>

Source: Bound 1991
DI EMPIRICAL EFFECTS: REJECTED APPLICANTS

Maestas-Mullen-Strand AER’13 obtain causal effect of DI on LFP using natural variation in DI examiners’ stringency and large SSA admin data linking DI applicants and examiners

Idea: (a) Random assignment of DI applicants to examiners and (b) examiners vary in the fraction of cases they reject ⇒ Valid instrument of DI receipt

Result 1: DI benefits reduce LFP of applicants by 28 points ⇒ DI has an impact but fairly small (consistent with Bound AER’89)

Result 2: DI has heterogeneous impact: small effect on those severely impaired but big effect on less severely impaired

Tough judges marginal cases unlikely to work without DI, lenient judges marginal cases somewhat likely to work without DI
for stratification of examiners across DDS offices. We display t-statistics in parentheses, where robust standard errors are computed and clustered by DDS examiner. Column 1 shows the first-stage coefficient on EXALLOW from a regression with no additional covariates. In both years, a 10 percentage point increase in initial examiner allowance rate leads to an approximately 3 percentage point increase in the probability of ultimately receiving SSDI.

Adding covariates sequentially to the regression allows us to indirectly test for random assignment on the basis of observable characteristics because only covariates that are correlated with EXALLOW will affect the estimated coefficient on EXALLOW when included. Based on our interviews with DDS managers (see Section I), we expect the additions of the body system and terminal illness indicators to potentially affect the coefficient on EXALLOW, since they are case assignment variables, but no other variables should affect the coefficient. The coefficient on EXALLOW falls from 0.29 to 0.24 with the addition of body system codes and is not significantly affected by the addition of any other variables, including the TERI flag. Thus, our results are consistent with random assignment of applicants to examiners within DDS office, conditional on body system code and alleged terminal illness.40

40 We also experimented with a different measure of initial allowance rate to test the implication of the monotonicity assumption that generic allowance rates can be used to instrument for any type of case. For this measure, we constructed the initial allowance rate leaving out all cases with the same body system code as the applicant (instead of just the applicant’s own case). Table A1 in the online Appendix presents these results. For all impairments but one (“special/other” cases, around 4 percent of the sample), this alternative measure of EXALLOW is positively and significantly associated with increased SSDI receipt. (We replicated our analysis of labor supply effects dropping this

![Figure 4. SSDI Receipt and Labor Supply by Initial Allowance Rate](image)

Figure 4. SSDI Receipt and Labor Supply by Initial Allowance Rate

Notes: Ninety-five percent confidence intervals shown with dashed lines. Employment measured in the second year after the initial decision. Bandwidth is 0.116 for DI and 0.130 for labor force participation.

Workers Compensation: Institutional Features

Workers compensation is insurance for injuries on the job, mainly temporary injuries that prevent work (short-term).

Workers Compensation is a state-level program.

Two components: medical and indemnity.

Indemnity payment replaces roughly two-thirds of lost wages.

Unlike UI, WC payments are untaxed, leading to a higher replacement that is near 90% on average.

Substantial variation across states in benefit levels.
Workers Compensation (WC): Institutional Features

1) Workers comp is a mandated benefit; no explicit tax but firms required by law to provide this benefit to workers

Most firms choose to buy coverage from private insurers

Premiums are more tightly experience rated than UI because they are determined by private sector

Insurance companies charge high-risk firms more.

2) Important feature of WC: no-fault insurance.

When there is a qualifying injury, WC benefits paid regardless of whether the injury was the worker’s or the firm’s fault.

Idea: reduce inefficiency of tort system (legal costs) by having fixed rules and not worrying about liability
Moral Hazard in Workers? Compensation

Moral hazard in WC can manifest itself in reported injuries, injury durations, and types of injuries reported.

E.g. easier to report back pain—very hard to verify

Huge issue in CA–companies paid high workers comp rates

Governor Schwarzenegger reform in 2004 cut benefits sharply, claiming to reduce injuries and “open CA for business”

Is it true that there is substantial moral hazard?

Again, consider several pieces of evidence

Strategy 1: Timing of injuries. “Monday effect” (faking week-end injuries into work injuries)
Figure 1. Distribution of Weekday Injuries.

Source: Card and McCall 1996
Moral Hazard in Workers? Compensation

Strategy 2: examine effect of workers comp benefit levels on durations using a diff-in-diff strategy (Meyer, Viscusi, Durbin 1995)

Reforms in Kentucky and Michigan that increased benefits for high-earning workers (but not low-earning workers) in late 1980s

Compare changes in injury durations and medical costs for high-earners vs. low earners in those states before and after reform
<table>
<thead>
<tr>
<th>Variable</th>
<th>Kentucky</th>
<th></th>
<th>Michigan</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before increase (1)</td>
<td>After increase (2)</td>
<td>Percentage change (3)</td>
<td>Before increase (4)</td>
</tr>
<tr>
<td>Maximum benefit ($)</td>
<td>131.00</td>
<td>217.00</td>
<td>65.65</td>
<td>181.00</td>
</tr>
<tr>
<td>Replacement rate, high earnings (percent)</td>
<td>32.70 (0.25)</td>
<td>51.02 (0.37)</td>
<td>56.02 (1.65)</td>
<td>30.01 (0.35)</td>
</tr>
<tr>
<td>Replacement rate, low earnings (percent)</td>
<td>66.42 (0.20)</td>
<td>66.66 (0.22)</td>
<td>0.36 (0.44)</td>
<td>66.64 (0.24)</td>
</tr>
</tbody>
</table>

Source: Meyer, Viscusi, Durbin 1995
Table 4—Kentucky and Michigan: Duration and Medical Costs of Temporary Total Disabilities During the Years Before and After Benefit Increases

<table>
<thead>
<tr>
<th>Variable</th>
<th>High earnings</th>
<th></th>
<th>Low earnings</th>
<th></th>
<th>Differences</th>
<th></th>
<th>Difference in differences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before increase</td>
<td>After increase</td>
<td>Before increase</td>
<td>After increase</td>
<td>[(2) – (1)]</td>
<td>[(4) – (3)]</td>
<td>[(5) – (6)]</td>
</tr>
<tr>
<td>Mean duration (weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kentucky</td>
<td>11.16</td>
<td>12.89</td>
<td>6.25</td>
<td>7.01</td>
<td>1.72</td>
<td>0.76</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>(0.83)</td>
<td>(0.83)</td>
<td>(0.30)</td>
<td>(0.41)</td>
<td>(1.17)</td>
<td>(0.51)</td>
<td>(1.28)</td>
</tr>
<tr>
<td>Michigan</td>
<td>14.76</td>
<td>19.42</td>
<td>10.94</td>
<td>13.64</td>
<td>4.66</td>
<td>2.70</td>
<td>1.96</td>
</tr>
<tr>
<td></td>
<td>(2.25)</td>
<td>(2.67)</td>
<td>(1.09)</td>
<td>(1.56)</td>
<td>(3.49)</td>
<td>(1.90)</td>
<td>(3.97)</td>
</tr>
<tr>
<td>Median duration (weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kentucky</td>
<td>4.00</td>
<td>5.00</td>
<td>3.00</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.20)</td>
<td>(0.11)</td>
<td>(0.12)</td>
<td>(0.25)</td>
<td>(0.16)</td>
<td>(0.29)</td>
</tr>
<tr>
<td>Michigan</td>
<td>5.00</td>
<td>7.00</td>
<td>4.00</td>
<td>4.00</td>
<td>2.00</td>
<td>0.00</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>(0.45)</td>
<td>(0.67)</td>
<td>(0.22)</td>
<td>(0.28)</td>
<td>(0.81)</td>
<td>(0.35)</td>
<td>(0.89)</td>
</tr>
<tr>
<td>Median medical cost (dollars)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kentucky</td>
<td>393.51</td>
<td>411.49</td>
<td>238.96</td>
<td>254.40</td>
<td>17.98</td>
<td>15.44</td>
<td>2.55</td>
</tr>
<tr>
<td></td>
<td>(19.29)</td>
<td>(22.72)</td>
<td>(8.48)</td>
<td>(9.11)</td>
<td>(29.80)</td>
<td>(12.44)</td>
<td>(32.30)</td>
</tr>
<tr>
<td>Michigan</td>
<td>689.73</td>
<td>765.00</td>
<td>390.63</td>
<td>435.00</td>
<td>75.27</td>
<td>44.38</td>
<td>30.89</td>
</tr>
<tr>
<td></td>
<td>(77.30)</td>
<td>(134.53)</td>
<td>(32.80)</td>
<td>(33.09)</td>
<td>(155.16)</td>
<td>(46.59)</td>
<td>(162.00)</td>
</tr>
</tbody>
</table>

Source: Meyer, Viscusi, Durbin 1995
Moral Hazard in Workers’ Compensation

Result: 10% increase in WC benefit raises out-of-work duration due to injury by 4%

Again, need to weigh this against benefits to reach policy conclusions

Give people more time to heal after injury without rushing them back to work

Higher consumption while out of work

No evidence yet on these issues
CONCLUSION

Individuals clearly value the consumption smoothing provided by social insurance programs.

In each case there are moral hazard costs associated with the provision of the insurance.

Empirical analyses of all three programs can be used to inform policymakers’ decisions as program reforms move forward.
REFERENCES

