Social Preferences: Theory

Stefanie Stantcheva

Fall 2022
GOALS OF THIS LECTURE

(1) Theory of social preferences: a new, tractable way to capture fairness and justice principles. Applicable to way more than taxation (e.g.: IO problems, trade problems, macro problems).

(2) Empirical evidence on social preferences.

(3) Methodological tool: Online experiments.
Theory

Standard Welfarist Approach: Critiques and Puzzles

- Maximize concave function or weighted sum of individual utilities.

\[
\max_{T(.)} \text{SWF} = \max_{T(.)} \int \omega_i \cdot u_i
\]

- Special case: utilitarianism, \(\omega_i = 1 \).

- Cannot capture elements important in tax practice:
 - Source of income: earned versus luck.
 - Counterfactuals: what individuals \textit{would} have done absent tax system.
 - Horizontal Equity concerns that go against “tagging.”

- Utilitarianism critique: 100% redistribution optimal with concave \(u(.) \) and no behavioral responses.

- Methodological and conceptual critique: Policy makers use reform-approach rather than posit and maximize objective.
A Novel Approach to Model Social Preferences

- **Tax reform approach:** weighs gains and losses from tax changes.

 \[
 \text{Change in welfare: } - \int_i g_i \cdot \delta T(z_i) \text{ with } g_i \equiv g(c_i, z_i; x_i^s, x_i^b).
 \]

- Replace restrictive social welfare weight by **generalized social marginal welfare weights.**
 - \(g_i \) measures social value of $1 transfer for person \(i \).
 - Specified to directly capture fairness criteria.
 - Not necessarily derived from SWF.
Generalized social welfare weights approach

\[u_i = u(c_i - v(z_i; x^u_i, x^b_i)) \]
\[g_i = g(c_i, z_i; x^s_i, x^b_i) \]
General Model

- Mass 1 of individuals indexed by i.

- Utility from consumption c_i and income z_i (no income effects):
 \[
 u_i = u(c_i - v(z_i; x^u_i, x^b_i))
 \]
 where x^u_i and x^b_i are vectors of characteristics

- $u(.)$ increasing, v decreasing in z_i.

- Typical income tax: $T(z)$, hence $c_i = z_i - T(z_i)$.
 - More general tax systems, with conditioning variables possible, depending on what is observable and politically feasible.
Generalized social welfare weights approach

Definition

The generalized social marginal welfare weight on individual i is:

$$ g_i = g(c_i, z_i; x^s_i, x^b_i) $$

g is a function, x^s_i is a vector of characteristics which only affect the social welfare weight, while x^b_i is a vector of characteristics which also affect utility.

- Recall utility is: $u_i = u(c_i - v(z_i; x^u_i, x^b_i))$
- Characteristics x^s_i, x^u_i, x^b_i may be unobservable to the government.
 - x^b: fair to redistribute, enters utility – e.g. ability to earn
 - x^s: fair to redistribute, not in utility – e.g. family background
 - x^u: unfair to redistribute, enters utility – e.g. taste for work
Aggregating Standard Weights at Each Income Level

Taxes depend on z only: express everything in terms of observable z. $H(z)$: CDF of earnings, $h(z)$: PDF of earnings [both depend on $T(.)$]

Definition

$	ilde{G}(z)$ is the (relative) average social marginal welfare weight for individuals earning at least z:

$$\tilde{G}(z) \equiv \frac{\int_{\{i: z_i \geq z\}} g_i}{\text{Prob}(z_i \geq z) \cdot \int_i g_i}$$

$\check{g}(z)$ is the average social marginal welfare weight at z defined so that

$$\int_z^\infty \check{g}(z') dH(z') = \tilde{G}(z)[1 - H(z)]$$
Nonlinear Tax Formula Expressed with Welfare Weights

Proposition

The optimal marginal tax at z:

$$T'(z) = \frac{1 - \bar{G}(z)}{1 - \bar{G}(z) + \alpha(z) \cdot e(z)}$$

$e(z)$: average elasticity of z_i w.r.t $1 - T'$ at $z_i = z$

$\alpha(z)$: local Pareto parameter $zh(z)/[1 - H(z)]$.

Proof follows the same “small reform” approach of Saez (2001): increase T' in a small band $[z, z + dz]$ and work out effect on budget and weighted welfare.
Proof

- Reform $\delta T(z)$ increases marginal tax by $\delta \tau$ in small band $[z, z + dz]$.
- Mechanical revenue effect: extra taxes $dz \delta \tau$ from each taxpayer above z: $dz \delta \tau [1 - H(z)]$ is collected.
- Behavioral response: those in $[z, dz]$, reduce income by $\delta z = -ez \delta \tau / (1 - T'(z))$ where e is the elasticity of earnings z w.r.t $1 - T'$. Total tax loss $-dz \delta \tau \cdot h(z)e(z)zT'(z)/(1 - T'(z))$ with $e(z)$ the average elasticity in the small band.
- Net revenue collected by the reform and rebated lump sum is:
 $$dR = dz \delta \tau \cdot \left[1 - H(z) - h(z) \cdot e(z) \cdot z \cdot \frac{T'(z)}{1 - T'(z)} \right].$$
- Welfare effect of reform: $- \int_i g_i \delta T(z_i)$ with $\delta T(z_i) = -dR$ for $z_i \leq z$ and $\delta T(z_i) = \delta \tau dz - dR$ for $z_i > z$. Net effect on welfare is
 $$dR \cdot \int_i g_i - \delta \tau dz \int_{\{i: z_i \geq z\}} g_i.$$
- Setting net welfare effect to zero, using
 $$(1 - H(z))\tilde{G}(z) = \int_{\{i: z_i \geq z\}} g_i / \int_i g_i$$ and $\alpha(z) = zh(z)/(1 - H(z))$, we obtain the tax formula.
Linear Tax Formula Expressed with Welfare Weights

The optimal linear tax rate, such that \(c_i = z_i \cdot (1 - \tau) + \tau \cdot \int_i z_i \) can also be expressed as a function of an income weighted average marginal welfare weight (Piketty and Saez, 2013).

Proposition

The optimal linear income tax is:

\[
\tau = \frac{1 - \bar{g}}{1 - \bar{g} + e} \quad \text{with} \quad \bar{g} \equiv \frac{\int_i g_i \cdot z_i}{\int_i g_i \cdot \int_i z_i}
\]

\(e \): elasticity of \(\int_i z_i \) w.r.t \((1 - \tau) \).
Applying Standard Formulas with Generalized Weights

- Individual weights need to be “aggregated” up to characteristics that tax system can conditioned on.
 - E.g.: If \(T(z, x^b) \) possible, aggregate weights at each \((z, x^b) \rightarrow \bar{g}(z, x^b) \).
 - If standard \(T(z) \), aggregate at each \(z \): \(\bar{G}(z) \) and \(\bar{g}(z) \).

- Then apply standard formulas. Nests standard approach.

- If \(g_i \geq 0 \) for all \(i \), (local) Pareto efficiency guaranteed.

- Can we back out weights? Optimum \(\Leftrightarrow \max SWF = \int_i \omega_i \cdot u_i \) with Pareto weights \(\omega_i = g_i / u_{ci} \geq 0 \) where \(g_i \) and \(u_{ci} \) are evaluated at the optimum allocation
 - Impossible to posit correct weights \(\omega_i \) without first solving for optimum
1. Optimal Tax Theory with Fixed Incomes

Modelling fixed incomes in our general model.

- Focus on redistributive issues.
- $z = z_i$ is fixed for each individual (fully inelastic labor supply).
- Concave uniform utility $u_i = u(c_i)$

Standard utilitarian approach.

- Optimum: $c = z - T(z)$ is constant across z, full redistribution.
- Is it acceptable to confiscate incomes fully?
- Very sensitive to utility specification
- Heterogeneity in consumption utility? $u_i = u(x_i^c \cdot c_i)$
1. Tax Theory with Fixed Incomes: Generalized Weights

Definition

Let $g_i = g(c_i, z_i) = \tilde{g}(c_i, z_i - c_i)$ with $\tilde{g}_c \leq 0$, $\tilde{g}_{z-c} \geq 0$.

i) Utilitarian weights: $g_i = g(c_i, z_i) = \tilde{g}(c_i)$ for all z_i, with $\tilde{g}(\cdot)$ decreasing.

ii) Libertarian weights: $g_i = g(c_i, z_i) = \tilde{g}(z_i - c_i)$ with $\tilde{g}(\cdot)$ increasing.

- Weights depend negatively on c – “ability to pay” notion.
- Depend positively on tax paid – taxpayers contribute socially more.
- Optimal tax system: weights need to be equalized across all incomes z:

$$\tilde{g}(z - T(z), T(z))$$ constant with z.
Proposition

The optimal tax schedule with no behavioral responses is:

\[T'(z) = \frac{1}{1 - \tilde{g}_{z-c}/\tilde{g}_c} \quad \text{and} \quad 0 \leq T'(z) \leq 1. \]

(1)

Corollary

Standard utilitarian case, \(T'(z) \equiv 1 \). Libertarian case, \(T'(z) \equiv 0 \).

- Empirical survey shows respondents indeed put weight on both disposable income and taxes paid.
- Between the two polar cases,
 \[g(c, z) = \tilde{g}(c - \alpha(z - c)) = \tilde{g}(z - (1 + \alpha)T(z)) \]
 with \(\tilde{g} \) decreasing.
- Can be empirically calibrated and implied optimal tax derived.
1. Libertarianism and Rawlsianism

Libertarianism:

- Principle: “Individual fully entitled to his pre-tax income.”
- Morally defensible if no difference in productivity, but different preferences for work.
- \(g_i = g(c_i, z_i) = \tilde{g}(c_i - z_i) \), increasing (\(x_i^s \) and \(x_i^b \) empty).
- Optimal formula yields: \(T'(z_i) \equiv 0 \).

Rawlsianism:

- Principle: “Care only about the most disadvantaged.”
- \(g_i = g(u_i - \min_j u_j) = 1(u_i - \min_j u_j = 0) \), with \(x_i^s = u_i - \min_j u_j \) and \(x_i^b \) is empty.
- If least advantaged people have zero earnings independently of taxes, \(\bar{G}(z) = 0 \) for all \(z > 0 \).
- Optimal formula yields: \(T'(z) = 1/[1 + \alpha(z) \cdot e(z)] \) (maximize demogrant \(-T(0)) \).
3. Transfers and Free Loaders: Setting

- Behavioral responses closely tied to social weights: biggest complaint against redistribution is “free loaders.”
- Generalized welfare weights can capture “counterfactuals.”
- Consider linear tax model where τ funds demogrant transfer.

$$u_i = u(c_i - v(z_i; \theta_i)) = u(c_{zi} - \theta_i \cdot z_i) \quad \text{with} \quad z_i \in \{0, 1\}.$$

- Individuals can choose to not work, $z = 0$, $c_i = c_0$.
- If they work, earn $z = 1$, consume $c_1 = (1 - \tau) + c_0$.
- Cost of work θ, with cdf $P(\theta)$, is private information.
- Individual: work iff $\theta \leq c_1 - c_0 = (1 - \tau)$.
- Fraction working: $P(1 - \tau)$.
- e: elasticity of aggregate earnings $P(1 - \tau)$ w.r.t $(1 - \tau)$.
3. Transfers and Free Loaders: Optimal Taxation

Apply linear tax formula:

- \(\tau = (1 - \bar{g}) / (1 - \bar{g} + e) \)

- In this model, \(\bar{g} = \int_i g_i z_i / (\int_i g_i \cdot \int_i z_i) = \bar{g}_1 / [P \cdot \bar{g}_1 + (1 - P) \cdot \bar{g}_0] \) with: \(\bar{g}_1 \) the average \(g_i \) on workers, and \(\bar{g}_0 \) the average \(g_i \) on non-workers.

Standard Approach:

- \(g_i = u'(c_0) \) for all non-workers so that \(\bar{g}_0 = u'(c_0) \).

- Hence, approach does not allow to distinguish between the deserving poor and free loaders.

- We can only look at actual situation: work or not, not “why” one does not work.

- Contrasts with public debate and historical evolution of welfare.
3. Transfers and Free Loaders: Generalized Welfare Weights

- Distinguish people according to what would have done absent transfer.

- **Workers**: Fraction $P(1 - \tau)$. Set $g_i = u'(c_1 - \theta_i)$.

- **Deserving poor**: would not work even absent any transfer: $\theta > 1$. Fraction $1 - P(1)$. Set $g_i = u'(c_0)$.

- **Free Loaders**: do not work because of transfer: $1 \geq \theta > (1 - \tau)$. Fraction $P(1) - P(1 - \tau)$. Set $g_i = 0$.

- Cost of work enters weights – fair to compensate for (i.e., not laziness).

- Average weight on non-workers
 \[\bar{g}_0 = u'(c_0) \cdot (1 - P(1)) / (1 - P(1 - \tau)) < u'(c_0) \]
 lower than in utilitarian case.

- Reduces optimal tax rate not just through e but also through \bar{g}_0.
3. Transfers and Free Loaders: Remarks and Applications

- Ex post, possible to find suitable Pareto weights \(\omega(\theta) \) that rationalize same tax.
 - \(\omega(\theta) = 1 \) for \(\theta \leq (1 - \tau^*) \) (workers)
 - \(\omega(\theta) = 1 \) for \(\theta \geq 1 \) (deserving poor)
 - \(\omega(\theta) = 0 \) for \((1 - \tau^*) < \theta < 1 \) (free loaders).

- But: these weights depend on optimum tax rate \(\tau^* \).

- Other applications:
 - **Desirability of in-work benefits** if weight on non-workers becomes low enough relative to workers.
 - **Transfers over the business cycle**: composition of those out of work depends on ease of finding job.
2. Equality of Opportunity: Setting

- Standard utility $u(c - v(z/w_i))$ with w_i ability to earn.
- w_i is result of i) family background $B_i \in \{0, 1\}$ (which individuals not responsible for) and ii) merit (which individuals are responsible for) = rank r_i conditional on background.
- Advantaged background gives earning ability w advantage: $w(r_i|B_i = 1) > w(r_i|B_i = 0)$
- Society is willing to redistribute across backgrounds, but not across incomes conditional on background.
- \Rightarrow Conditional on earnings, those coming from $B_i = 0$ are more meritorious [because they rank higher in merit]
- $\bar{c}(r) \equiv (\int_{i:r_i=r} c_i)/\text{Prob}(i : r_i = r)$: average consumption at rank r.
- $g_i = g(c_i; \bar{c}(r_i)) = 1(c_i \leq \bar{c}(r_i))$
2. Equality of Opportunity: Results

- Suppose government cannot condition taxes on background.

- $\bar{G}(z)$: **Representation index**: % from disadvantaged background earning $\geq z$ relative to % from disadvantaged background in population.

- Implied Social Welfare function as in Roemer et al. (2003).

- $\bar{G}(z)$ decreasing since harder for those from disadvantaged background to reach upper incomes.

- If at top incomes, representation is zero, revenue maximizing top tax rate.

- Justification for social welfare weights decreasing with income not due to decreasing marginal utility (utilitarianism).
2. Equality of Opportunity vs. Utilitarian Tax Rates

<table>
<thead>
<tr>
<th>Income percentile</th>
<th>Equality of Opportunity</th>
<th>Utilitarian (log-utility)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fraction from low background (=parents below median) above each percentile</td>
<td>Implied social welfare weight G(z) above each percentile</td>
</tr>
<tr>
<td>z= 25th percentile</td>
<td>44.3%</td>
<td>0.886</td>
</tr>
<tr>
<td>z= 50th percentile</td>
<td>37.3%</td>
<td>0.746</td>
</tr>
<tr>
<td>z= 75th percentile</td>
<td>30.3%</td>
<td>0.606</td>
</tr>
<tr>
<td>z= 90th percentile</td>
<td>23.6%</td>
<td>0.472</td>
</tr>
<tr>
<td>z= 99th percentile</td>
<td>17.0%</td>
<td>0.340</td>
</tr>
<tr>
<td>z= 99.9th percentile</td>
<td>16.5%</td>
<td>0.330</td>
</tr>
</tbody>
</table>

3. Poverty Alleviation: Setting

- Poverty gets substantial attention in public debate.
- Poverty alleviation objectives can lead to Pareto dominated outcomes:
 - Intuition: disregard people’s disutility from work.
- Generalized welfare weights can avoid pitfall of Pareto inefficiency.
- \(\bar{c} \): poverty threshold. "Poor": \(c < \bar{c} \).
- \(u_i = u(c_i - v(z_i/w_i)) \).
- \(\bar{z} \): (endogenous) pre-tax poverty threshold: \(\bar{c} = \bar{z} - T(\bar{z}) \).
- Poverty gap alleviation: care about shortfall in consumption.
- \(g_i = g(c_i, z_i; \bar{c}) = 1 > 0 \) if \(c_i < \bar{c} \) and \(g_i = g(c_i, z_i; \bar{c}) = 0 \) if \(c_i \geq \bar{c} \).
- \(\Rightarrow \bar{g}(z) = 0 \) for \(z \geq \bar{z} \) and \(\bar{g}(z) = 1/H(\bar{z}) \) for \(z < \bar{z} \).
- \(\Rightarrow \bar{G}(z) = 0 \) for \(z \geq \bar{z} \) and \(1 - \bar{G}(z) = \frac{1/H(\bar{z})-1}{1/H(z)-1} \) for \(z < \bar{z} \).
3. Optimal Tax Schedule that Minimizes Poverty Gap

Proposition

\[T'(z) = \frac{1}{1 + \alpha(z) \cdot e(z)} \quad \text{if} \quad z > \bar{z} \]

\[T'(z) = \frac{1}{1 + \alpha(z) \cdot e(z) \cdot \frac{1/H(z) - 1}{1/H(\bar{z}) - 1}} \quad \text{if} \quad z \leq \bar{z} \]

(a) Direct poverty gap minimization

(b) Generalized weights approach
Evidence against utilitarianism

- Respondents asked to compare families w/ different combinations of z, $z - T(z)$, $T(z)$.
- Who is most deserving of a $1000 tax break?
- **Both disposable income and taxes paid matter** for deservedness
 - Family earning $40K, paying $10K in taxes judged more deserving than family earning $50K, paying $10K in taxes
 - Family earning $50K, paying $15K in taxes judged more deserving than family earning $40K, paying $5K in taxes
- **Frugal vs. Consumption-loving** person with same net income

<table>
<thead>
<tr>
<th>Consumption-lover more deserving</th>
<th>Frugal more deserving</th>
<th>Taste for consumption irrelevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>4%</td>
<td>22%</td>
<td>74%</td>
</tr>
</tbody>
</table>
Which of the following two individuals do you think is most deserving of a $1,000 tax break?

Individual A earns $50,000 per year, pays $10,000 in taxes and hence nets out $40,000. She greatly enjoys spending money, going out to expensive restaurants, or traveling to fancy destinations. She always feels that she has too little money to spend.

Individual B earns the same amount, $50,000 per year, also pays $10,000 in taxes and hence also nets out $40,000. However, she is a very frugal person who feels that her current income is sufficient to satisfy her needs.

- Individual A is most deserving of the $1,000 tax break
- Individual B is most deserving of the $1,000 tax break
- Both individuals are exactly equally deserving of the tax $1,000 break

Source: survey in Saez and Stantcheva (2013)
Does society care about effort to earn income?

- **Hard-working vs. Easy-going person with same net income**

 “A earns $30,000 per year, by working in two different jobs, 60 hours per week at $10/hour. She pays $6,000 in taxes and nets out $24,000. She is very hard-working but she does not have high-paying jobs so that her wage is low.”

 “B also earns the same amount, $30,000 per year, by working part-time for 20 hours per week at $30/hour. She also pays $6,000 in taxes and hence nets out $24,000. She has a good wage rate per hour, but she prefers working less and earning less to enjoy other, non-work activities.”

<table>
<thead>
<tr>
<th>Hardworking</th>
<th>Easy-going</th>
<th>Hours of work irrelevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>more deserving</td>
<td>more deserving</td>
<td>conditional on total earnings</td>
</tr>
<tr>
<td>43%</td>
<td>3%</td>
<td>54%</td>
</tr>
</tbody>
</table>
Do people care about “Free Loaders” and Behavioral Responses to Taxation?

Starting from same benefit level, which person most deserving of more benefits?

<table>
<thead>
<tr>
<th></th>
<th>Disabled unable to work</th>
<th>Unemployed looking for work</th>
<th>Unemployed not looking for work</th>
<th>On welfare not looking for work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average rank (1-4)</td>
<td>1.4</td>
<td>1.6</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>% assigned 1st rank</td>
<td>57.5%</td>
<td>37.3%</td>
<td>2.7%</td>
<td>2.5%</td>
</tr>
<tr>
<td>% assigned last rank</td>
<td>2.3%</td>
<td>2.9%</td>
<td>25%</td>
<td>70.8%</td>
</tr>
</tbody>
</table>
Calibrating Social Welfare Weights

- Calibrate $\tilde{g} (c, T) = \tilde{g} (c - \alpha T)$
- 35 fictitious families, with different net incomes and taxes
- Respondents rank them pair-wise (5 random pairs each)

Which of these two families is most deserving of the $1,000 tax break?

- Family earns $100,000 per year, pays $50,000 in taxes, and hence nets out $50,000
- Family earns $25,000 per year, pays $1,250 in taxes, and hence nets out $23,750

Which of these two families is most deserving of the $1,000 tax break?

- Family earns $50,000 per year, pays $2,500 in taxes, and hence nets out $47,500
- Family earns $500,000 per year, pays $170,000 in taxes, and hence nets out $330,000
Eliciting Social Preferences

Is A or B more deserving of a $1,000 tax break?
Eliciting Social Preferences

Is A or B more deserving of a $1,000 tax break?

c_1

c_2

c_3

T_1 T_2 T_3 T
Eliciting Social Preferences

\(S_{ijt} = 1 \) if \(i \) ranked 1st in display \(t \) for respondent \(j \), \(\delta T_{ijt} \) is difference in taxes, \(\delta c_{ijt} \) difference in net income for families in pair shown.

\[
S_{ijt} = \beta_0 + \beta_T \delta T_{ijt} + \beta_c \delta c_{ijt} \\
\alpha = \frac{\delta c}{\delta T} | S = -\frac{\beta_T}{\beta_c} = -\text{slope}
\]

\[
g(c,T) = g(c - \alpha T)
\]

indifference curves
Eliciting Social Preferences

Table 5: Calibrating Social Welfare Weights

<table>
<thead>
<tr>
<th>Sample</th>
<th>Probability of being deemed more deserving in pairwise comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>d(Tax)</td>
<td>0.0017***</td>
</tr>
<tr>
<td></td>
<td>(0.0003)</td>
</tr>
<tr>
<td>d(Net Income)</td>
<td>-0.0046***</td>
</tr>
<tr>
<td></td>
<td>(0.00012)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>11,450</td>
</tr>
<tr>
<td>Implied α</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
</tr>
<tr>
<td>Implied marginal tax rate</td>
<td>73%</td>
</tr>
</tbody>
</table>