Attention Variation and Welfare: Theory and Evidence from a Tax Salience Experiment (REStud 2018)

Dimitry Taubinsky
Alex Rees-Jones

September 9, 2018
Introduction to design

• Online experiment with demographically diverse sample ($N = 2998$) from the 45 states with positive sales taxes
 – Approximates US population on basic demographics
 – Panel provided by ClearVoice Market Research

• Series of real purchase decisions about common household products
 – 20 products selected from a pretest of 80; not tax-exempt
 – Batteries, bath mat, Febreze, bath towels, laundry hamper, etc.

Caveats

1. Representativeness of sample
2. External validity: Not a completely natural shopping environment
3. Short-run or long-run differences in underreaction?

** Contributions: Initial investigation into importance of heterogeneity, proof of concept, some insights into mechanisms
Experimental conditions

Consent; Residence info

0x Condition
- No Tax (20 products)

1x Condition
- Standard Tax (20 products)

3x Condition
- Triple Tax (20 products)

No Tax (same 20 products)

Survey questions

Module 1

Module 2
Decisions

• For each of twenty household products, use slider to select highest “tag price” (before-tax price) at which would buy the product
 – If product sold to person at tag price \(p \), total amount paid is \(p(1 + \tau) \), where \(\tau \) is tax rate

• Incentive compatibility ensured with the Becker-DeGroot-Marschak mechanism (BDM)
 – Product's actual tag price randomly determined
 – Given $20 budget for each decision (only one decision selected at random to count)
 – If respondent was willing to buy product at randomly chosen tag price, price was deducted from budget and product was shipped
 – Unspent portion of $20 budget is kept by the respondent

Subject comprehension tested with quiz questions, and final sample consists only of subjects who pass
BDM slider for tax conditions

Protect your favorite shower curtain with our top-of-the-line Hotel Collection Vinyl Shower Curtain Liner. This standard-sized (72" x 72") liner is made with an extra heavy (9 gauge), water repellent vinyl that easily wipes clean. With metal grommets along top of the liner to prevent tearing. Here in Monaco Blue, this liner is available in a variety of fashionable colors. With its wonderful features and fashionable colors, this liner could also make a great shower curtain.

Please enter the highest tag price at which you would buy this product:
(You can drag the slider, or use left and right arrow keys to adjust it by $0.01 increments)

Tag Price: $10.95

[link to instructions page]
BDM slider for no tax condition

Energizer AA Batteries max Alkaline 20-Pack

Energizer AA max alkaline batteries 20 pack super fresh, Expiration Date: 2024 or better, Packed in original Energizer small box 4 batteries per box x 5 boxes total 20 batteries.

Please enter the highest tag price at which you would buy this product if no sales tax were to be applied at the register:
(You can drag the slider, or use left and right arrow keys to adjust it by $0.01 increments)

Tag Price:

[link to instructions page]
Advantages and disadvantages of elicitation method

Advantage: Yields direct, non-parametric estimates of average m

- They call θ the attention parameter — what we call m
- $E \left[\frac{1}{\text{tax rate}} \cdot \frac{P_{2\text{nd stage}} - P_{1\text{st stage}}}{P_{1\text{st stage}}} \right] = E \left[\frac{1}{\tau} \cdot \frac{P - \frac{P}{1 + m \tau}}{1 + m \tau} \right] = E[m]$
 - In actual empirical implementation, also use the “no tax” arm to control for any other possible systematic differences between 1st stage and 2nd stage

Disadvantage: The bidding-like mechanism is weird

- But Taubinsky (2016) replicates results with “yes/no” buying decisions (multiple price lists) using probit models
Results
Average demand curves as functions of pre-tax price

(a) Stage 1, before-tax price

(b) Stage 2
Demand curves as functions of pre- vs. post-tax price

(a) Stage 1, before-tax price

(b) Stage 1, after-tax price

Sample demographics balance
Average underreaction for standard and triple taxes

Table: Estimates of average θ by condition

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>$p_2 \geq 1$</td>
<td>$p_2 \geq 5$</td>
</tr>
<tr>
<td>Std. tax avg. θ</td>
<td>0.261**</td>
<td>0.250***</td>
<td>0.226**</td>
</tr>
<tr>
<td></td>
<td>(0.111)</td>
<td>(0.095)</td>
<td>(0.094)</td>
</tr>
<tr>
<td>Triple tax avg. θ</td>
<td>0.481***</td>
<td>0.475***</td>
<td>0.535***</td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
<td>(0.039)</td>
<td>(0.041)</td>
</tr>
<tr>
<td>Observations</td>
<td>59960</td>
<td>58478</td>
<td>32810</td>
</tr>
<tr>
<td>Difference p-val</td>
<td>0.03</td>
<td>0.01</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Notes: Cluster-robust (by subject) standard errors in parentheses. Significance * 0.1 ** 0.05 *** 0.01

Formal econometric model for estimation
Table: Estimates of average θ by p_2 bin ($p_2 \leq 5$, $5 < p_2 \leq 10$, $p_2 > 10$)

<table>
<thead>
<tr>
<th></th>
<th>(1) Standard</th>
<th>(2) Triple</th>
<th>(3) Pooled</th>
<th>(4) Standard</th>
<th>(5) Triple</th>
<th>(6) Pooled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle p_2 bin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_2 bin = 1</td>
<td>-0.097</td>
<td>0.117^{**}</td>
<td>0.123^{**}</td>
<td>-0.077</td>
<td>0.097^{**}</td>
<td>0.104^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.147)</td>
<td>(0.054)</td>
<td>(0.054)</td>
<td>(0.101)</td>
<td>(0.038)</td>
<td>(0.038)</td>
</tr>
<tr>
<td>High p_2 bin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_2 bin > 1</td>
<td>0.115</td>
<td>0.147^{**}</td>
<td>0.154^{**}</td>
<td>0.168</td>
<td>0.069</td>
<td>0.072</td>
</tr>
<tr>
<td></td>
<td>(0.185)</td>
<td>(0.074)</td>
<td>(0.074)</td>
<td>(0.152)</td>
<td>(0.053)</td>
<td>(0.053)</td>
</tr>
<tr>
<td>Std. tax cons.</td>
<td>0.266^{*}</td>
<td></td>
<td>0.156</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.140)</td>
<td></td>
<td>(0.098)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triple tax cons.</td>
<td>0.402^{***}</td>
<td></td>
<td>0.395^{***}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.054)</td>
<td></td>
<td>(0.054)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual fixed effects</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>40651</td>
<td>39378</td>
<td>58478</td>
<td>40651</td>
<td>39378</td>
<td>58478</td>
</tr>
</tbody>
</table>

Notes: All specifications condition on $p_2 \geq 1$. All specifications include order-effect dummies. Cluster-robust standard errors (by subject) in parentheses. Two-step GMM estimator in columns (3) and (6). Significance * 0.1 ** 0.05 *** 0.01
Robustness of previous result

Taubinsky (2016) replicates higher underreaction at lower prices for both standard and triple taxes with greater statistical precision

- Based on results from last slide, pre-specified (AEA RCT registry) a cutoff of $p = \$6$ for “low” vs. “high” prices
Incorrect tax beliefs *not* a major source of error

Figure: Perceived vs. actual tax rates

Notes: This figure divides actual tax rates into 25 quantiles, and plots the average belief against the average tax rate for each quantile

- 73% know tax rate within 0.5 percentage points
How big are individual differences?

Quick theory review:

- Efficiency costs at \((p, \tau)\) is \(\propto E[\theta|p, \tau]^2 + Var[\theta|p, \tau]\)

- Question: How important is the variance compared to the mean?

Main quantity of interest: \(E_{p_1, \tau}[Var[\theta|p_1, \tau]]\)

- Some differences between subjects may be due to differences in the tax rates or prices at which they buy

- Question: How big is variation after controlling for tax-rates and prices?
Approach

Problems for direct estimation:

1. Second-moment estimation is potentially biased by people anchoring on round-numbers

2. Taxes are small in magnitude \Rightarrow individual-level estimates are very noisy
 \Rightarrow hard to do variance-decompositions

Instead, combine “self-classifying” survey responses with actual behavior to establish a non-parametric lower bound

- *No* assumptions about truth-telling or metacognition required
Survey instrument: The self-sorting survey question

For standard and triple tax arms: “Think back to part 1 of the study, where there was a tax on any item you might purchase. If there was no tax, would you be willing to buy at higher tag prices in part 1?”

<table>
<thead>
<tr>
<th>Response</th>
<th>Standard</th>
<th>Triple</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Yes” (R=H)</td>
<td>0.06</td>
<td>0.11</td>
</tr>
<tr>
<td>“Maybe a little” (R=M)</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td>“No” (R=L)</td>
<td>0.38</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Ranksum $z = 3.80, p < 0.001$
Self-sorting question highly predictive of behavior

Assumption: Survey responses not correlated with measurement error

⇒ $E[\theta | R]$ can be consistently estimated

<table>
<thead>
<tr>
<th>Table: Estimates of average θ by survey response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Standard</td>
</tr>
<tr>
<td>“Yes” average θ</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>“A little” average θ</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>“No” average θ</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Observations</td>
</tr>
</tbody>
</table>

Notes: All specifications condition on $p_2 \geq 1$. All specifications include order-effect dummies. Cluster-robust standard errors (by subject) in parentheses. Significance * 0.1 ** 0.05 *** 0.01
Intuition for variance lower-bound

Consider distribution in which each person is assigned a value of $\hat{\theta}$ equal to...

- $E[\theta|\text{“Yes”}]$ if responds “Yes”
- $E[\theta|\text{“A little”}]$ if responds “A little”
- $E[\theta|\text{“No”}]$ if responds “No”

Simple statistical fact: $\text{Var}[\theta] \geq \text{Var}[\hat{\theta}]$
- Intuition: $\text{Var}[\theta] = \text{Var}[\hat{\theta}] + \text{variance within bins}$

Extra challenge: Want $E_{p_1,\tau}[\text{Var}[\theta|p_1,\tau]]$, not $\text{Var}[\theta]$
- Similar idea + math trick to take out variation coming from differences in tax rates (and prices)

Formal results on lower-bound estimator
Lower-bound estimates of variance and the implications

Excess burden (EB) estimates as fraction of estimates under “rationality” assumption

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Triple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower bound estimate</td>
<td>0.132</td>
<td>0.094</td>
</tr>
<tr>
<td>Bias (mean)</td>
<td>0.009</td>
<td>0.001</td>
</tr>
<tr>
<td>Standard error</td>
<td>0.051</td>
<td>0.019</td>
</tr>
<tr>
<td>95% conf. int.</td>
<td>(0.054, 0.251)</td>
<td>(0.063, 0.135)</td>
</tr>
<tr>
<td>Bias-corrected conf. int.</td>
<td>(0.049, 0.237)</td>
<td>(0.064, 0.136)</td>
</tr>
</tbody>
</table>
Recap of paper

Theory shows that understanding *variability* of bias is crucial for evaluating the efficiency of policy instruments

1. How does the bias vary across consumers?
 - *Increase efficiency cost estimates by >200% for standard US taxes*
 - *Increase efficiency cost estimates by >40% for large (3x) taxes*

2. How does the bias vary across incentives?
 - *Tripling taxes doubles attentiveness to taxes*
 - *Taxes distort behavior through an additional debiasing channel*
 - *Shown in paper: Inferred cost of tripling taxes would be only 1/4 as high as the actual cost if endogeneity is not taken into account*
 - *Consumers less attentive to taxes on low-priced items*
Recap of paper

Theory shows that understanding variability of bias is crucial for evaluating the efficiency of policy instruments

1. How does the bias vary across consumers?
 - Increase efficiency cost estimates by $>200\%$ for standard US taxes
 - Increase efficiency cost estimates by $>40\%$ for large (3x) taxes

2. How does the bias vary across incentives?
 - Tripling taxes doubles attentiveness to taxes
 - Taxes distort behavior through an additional debiasing channel
 - Shown in paper: Inferred cost of tripling taxes would be only 1/4 as high as the actual cost if endogeneity is not taken into account
 - Consumers less attentive to taxes on low-priced items

Basic lessons about the importance of heterogeneity apply more broadly