Multiple Regression
(SW Chapter 5)

OLS estimate of the Test Score/STR relation:

[image: image150.png]FIGURE 5.2 Scatterplots of Test Scores vs. Three Student Characteristics
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The scatterplots show a negative relationship between test scores and (a) the percentage of English
learners (correlation = ~0.64), (b) the percentage of students qualifying for a subsidized lunch (correla
tion = ~0.87); and (c) the percentage qualifying for income assistance (correlation = ~0.63).




 = 698.9 – 2.28(STR, 
R2 = .05, 
SER = 18.6

   (10.4) (0.52)
Is this a credible estimate of the causal effect on test scores of a change in the student-teacher ratio?
No: there are omitted confounding factors (family income; whether the students are native English speakers) that bias the OLS estimator: STR could be “picking up” the effect of these confounding factors.
Omitted Variable Bias 

(SW Section 5.1)

The bias in the OLS estimator that occurs as a result of an omitted factor is called omitted variable bias. For omitted variable bias to occur, the omitted factor “Z” must be:

1. a determinant of Y; and
2. correlated with the regressor X.

Both conditions must hold for the omission of Z to result in omitted variable bias.

In the test score example:

1. English language ability (whether the student has English as a second language) plausibly affects standardized test scores:  Z is a determinant of Y.

2. Immigrant communities tend to be less affluent and thus have smaller school budgets – and higher STR:  Z is correlated with X.

· Accordingly, [image: image2.wmf]1
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 is biased

· What is the direction of this bias?
· What does common sense suggest?
· If common sense fails you, there is a formula…
A formula for omitted variable bias:  recall the equation,
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where vi = (Xi – 
[image: image6.wmf]X

)ui ( (Xi – (X)ui.  Under Least Squares Assumption #1, 

E[(Xi – (X)ui] = cov(Xi,ui) = 0.

But what if E[(Xi – (X)ui] = cov(Xi,ui) =  (Xu ( 0?

Then
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where ( holds with equality when n is large; specifically,
[image: image14.wmf]1

ˆ

b

 
[image: image15.wmf]p

®

 (1 + 
[image: image16.wmf]u

Xu

X

s

r

s

æö

ç÷

èø

, where (Xu = corr(X,u)
Omitted variable bias formula:
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If an omitted factor Z is both:
    (1) a determinant of Y (that is, it is contained in u); and
    (2) correlated with X,

then (Xu ( 0 and the OLS estimator [image: image20.wmf]1
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 is biased.

The math makes precise the idea that districts with few ESL students (1) do better on standardized tests and (2) have smaller classes (bigger budgets), so ignoring the ESL factor results in overstating the class size effect.
Is this is actually going on in the CA data? 


[image: image21]
· Districts with fewer English Learners have higher test scores
· Districts with lower percent EL (PctEL) have smaller classes

· Among districts with comparable PctEL, the effect of class size is small (recall overall “test score gap” = 7.4)

Three ways to overcome omitted variable bias

1. Run a randomized controlled experiment in which treatment (STR) is randomly assigned:  then PctEL is still a determinant of TestScore, but PctEL is uncorrelated with STR.  (But this is unrealistic in practice.)

2. Adopt the “cross tabulation” approach, with finer gradations of STR and PctEL (But soon we will run out of data, and what about other determinants like family income and parental education?)

3. Use a method in which the omitted variable (PctEL) is no longer omitted: include PctEL as an additional regressor in a multiple regression.
The Population Multiple Regression Model
(SW Section 5.2)

Consider the case of two regressors:
Yi = (0 + (1X1i + (2X2i + ui,  i = 1,…,n
· X1, X2 are the two independent variables (regressors)

· (Yi, X1i, X2i) denote the ith observation on Y, X1, and X2.

· (0 = unknown population intercept

· (1 = effect on Y of a change in X1, holding X2 constant

· (2 = effect on Y of a change in X2, holding X1 constant

· ui = “error term” (omitted factors)

Interpretation of multiple regression coefficients
Yi = (0 + (1X1i + (2X2i + ui,  i = 1,…,n
Consider changing X1 by (X1 while holding X2 constant:

Population regression line before the change:

Y = (0 + (1X1 + (2X2
Population regression line, after the change:

Y + (Y = (0 + (1(X1 + (X1) + (2X2 
Before:



    Y = (0 + (1(X1 + (X1) + (2X2 

After:



Y + (Y = (0 + (1(X1 + (X1) + (2X2
Difference:


(Y = (1(X1
That is,




(1 = 
[image: image22.wmf]1

Y

X

D

D

, holding X2 constant
also,





(2 = 
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and

  (0 = predicted value of Y when X1 = X2 = 0.

The OLS Estimator in Multiple Regression
(SW Section 5.3)

With two regressors, the OLS estimator solves:
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· The OLS estimator minimizes the average squared difference between the actual values of Yi and the prediction (predicted value) based on the estimated line.
· This minimization problem is solved using calculus
The result is the OLS estimators of (0 and (1.

· Example:  the California test score data
Regression of TestScore against STR:
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TestScore

 = 698.9 – 2.28(STR
Now include percent English Learners in the district (PctEL):
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TestScore

 = 696.0 – 1.10(STR – 0.65PctEL

· What happens to the coefficient on STR?
· Why? (Note: corr(STR, PctEL) = 0.19)

Multiple regression in STATA

reg testscr str pctel, robust;

Regression with robust standard errors                 Number of obs =     420

                                                       F(  2,   417) =  223.82

                                                       Prob > F      =  0.0000

                                                       R-squared     =  0.4264

                                                       Root MSE      =  14.464

------------------------------------------------------------------------------

             |               Robust

     testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

         str |  -1.101296   .4328472    -2.54   0.011     -1.95213   -.2504616

       pctel |  -.6497768   .0310318   -20.94   0.000     -.710775   -.5887786

       _cons |   686.0322   8.728224    78.60   0.000     668.8754     703.189

------------------------------------------------------------------------------

[image: image27.wmf]·

TestScore

 = 696.0 – 1.10(STR – 0.65PctEL

What are the sampling distribution of [image: image28.wmf]1
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The Least Squares Assumptions for Multiple Regression (SW Section 5.4)

Yi = (0 + (1X1i + (2X2i + … + (kXki + ui,  i = 1,…,n
1. The conditional distribution of u given the X’s has mean zero, that is, E(u|X1 = x1,…, Xk = xk) = 0.

2. (X1i,…,Xki,Yi), i =1,…,n, are i.i.d.

3. X1,…, Xk, and u have four moments: E(
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4. There is no perfect multicollinearity.

Assumption #1: the conditional mean of u given the included X’s is zero.

· This has the same interpretation as in regression with a single regressor.

· If an omitted variable (1) belongs in the equation (so is in u) and (2) is correlated with an included X, then this condition fails

· Failure of this condition leads to omitted variable bias

· The solution – if possible – is to include the omitted variable in the regression.

Assumption #2:  (X1i,…,Xki,Yi), i =1,…,n, are i.i.d.

This is satisfied automatically if the data are collected by simple random sampling.

Assumption #3:  finite fourth moments

This is technical assumption is satisfied automatically by variables with a bounded domain (test scores, PctEL, etc.)
Assumption #4:  There is no perfect multicollinearity

Perfect multicollinearity is when one of the regressors is an exact linear function of the other regressors.

Example: Suppose you accidentally include STR twice:
regress testscr str str, robust
Regression with robust standard errors            Number of obs =     420

                                                  F(  1,   418) =   19.26

                                                  Prob > F      =  0.0000

                                                  R-squared     =  0.0512

                                                  Root MSE      =  18.581

-------------------------------------------------------------------------

        |               Robust

testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

--------+----------------------------------------------------------------

    str |  -2.279808   .5194892    -4.39   0.000    -3.300945   -1.258671

    str |  (dropped)

  _cons |    698.933   10.36436    67.44   0.000     678.5602    719.3057

-------------------------------------------------------------------------

Perfect multicollinearity is when one of the regressors is an exact linear function of the other regressors.

· In the previous regression, (1 is the effect on TestScore of a unit change in STR, holding STR constant (???)

· Second example:  regress TestScore on a constant, D, and B, where: Di = 1 if STR ≤ 20, = 0 otherwise; Bi = 1 if STR >20, = 0 otherwise, so Bi = 1 – Di and there is perfect multicollinearity

· Would there be perfect multicollinearity if the intercept (constant) were somehow dropped (that is, omitted or suppressed) in the regression?

· Perfect multicollinearity usually reflects a mistake in the definitions of the regressors, or an oddity in the data

The Sampling Distribution of the OLS Estimator

 (SW Section 5.5)

Under the four Least Squares Assumptions,

· The exact (finite sample) distribution of [image: image33.wmf]1

ˆ

b

 has mean (1, var([image: image34.wmf]1

ˆ

b

) is inversely proportional to n; so too for [image: image35.wmf]2

ˆ

b

.
· Other than its mean and variance, the exact distribution of 
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Hypothesis Tests and Confidence Intervals for a Single Coefficient in Multiple Regression

(SW Section 5.6)

· 
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 is approximately distributed N(0,1) (CLT).
· Thus hypotheses on (1 can be tested using the usual t-statistic, and confidence intervals are constructed as {[image: image44.wmf]1
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)}.
· So too for (2,…, (k.

· [image: image46.wmf]1
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 are generally not independently distributed – so neither are their t-statistics (more on this later).
Example:  The California class size data

(1)

  
[image: image48.wmf]·

TestScore

 = 698.9 – 2.28(STR
(10.4)  (0.52)
(2)


[image: image49.wmf]·

TestScore

 = 696.0 – 1.10(STR – 0.650PctEL






 
(8.7)  (0.43)

  (0.031)
· The coefficient on STR in (2) is the effect on TestScores of a unit change in STR, holding constant the percentage of English Learners in the district

· Coefficient on STR falls by one-half

· 95% confidence interval for coefficient on STR in (2) is {–1.10 ( 1.96(0.43} = (–1.95, –0.26)

Tests of Joint Hypotheses

(SW Section 5.7)

Let Expn = expenditures per pupil and consider the population regression model:

TestScorei = (0 + (1STRi + (2Expni + (3PctELi + ui
The null hypothesis that “school resources don’t matter,” and the alternative that they do, corresponds to:

H0: (1 = 0 and (2 = 0 

vs. H1: either (1 ( 0 or (2 ( 0 or both
TestScorei = (0 + (1STRi + (2Expni + (3PctELi + ui
H0: (1 = 0 and (2 = 0 

vs. H1: either (1 ( 0 or (2 ( 0 or both
A joint hypothesis specifies a value for two or more coefficients, that is, it imposes a restriction on two or more coefficients.
· A “common sense” test is to reject if either of the individual t-statistics exceeds 1.96 in absolute value.
· But this “common sense” approach doesn’t work!  The resulting test doesn’t have the right significance level!

Here’s why: Calculation of the probability of incorrectly rejecting the null using the “common sense” test based on the two individual t-statistics.  To simplify the calculation, suppose that [image: image50.wmf]1
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 are independently distributed.  Let t1 and t2 be the t-statistics:
t1 = 
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The “common sense” test is:


reject H0: (1 = (2 = 0 if |t1| > 1.96 and/or |t2| > 1.96
What is the probability that this “common sense” test  rejects H0, when H0 is actually true? (It should be 5%.)
Probability of incorrectly rejecting the null

= 
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(t1, t2 are independent by assumption)

= .05(.05 + .05(.95 + .95(.05


= .0975 = 9.75% – which is not the desired 5%!!

The size of a test is the actual rejection rate under the null hypothesis.

· The size of the “common sense” test isn’t 5%!

· Its size actually depends on the correlation between t1 and t2 (and thus on the correlation between [image: image64.wmf]1
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Two Solutions:

· Use a different critical value in this procedure – not 1.96 (this is the “Bonferroni method – see App. 5.3)

· Use a different test statistic that test both (1 and (2 at once: the F-statistic.
The F-statistic

The F-statistic tests all parts of a joint hypothesis at once.

Unpleasant formula for the special case of the joint hypothesis (1 = (1,0 and (2 = (2,0 in a regression with two regressors:

F = 
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where 
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 estimates the correlation between t1 and t2.

Reject when F is “large”
The F-statistic testing (1 and (2 (special case):

F = 
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· The F-statistic is large when t1 and/or t2 is large

· The F-statistic corrects (in just the right way) for the correlation between t1 and t2.

· The formula for more than two (’s is really nasty unless you use matrix algebra. 
· This gives the F-statistic a nice large-sample approximate distribution, which is…

Large-sample distribution of the F-statistic

Consider special case that t1 and t2 are independent, so 
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 0; in large samples the formula becomes
F = 
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· Under the null, t1 and t2 have standard normal distributions that, in this special case, are independent

· The large-sample distribution of the F-statistic is the distribution of the average of two independently distributed squared standard normal random variables.

The chi-squared distribution with q degrees of freedom (
[image: image73.wmf]2
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) is defined to be the distribution of the sum of q independent squared standard normal random variables.
In large samples, F is distributed as 
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p-value using the F-statistic:

p-value = tail probability of the 
[image: image76.wmf]2
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/q distribution beyond the F-statistic actually computed.
Implementation in STATA
Use the “test” command after the regression

Example:  Test the joint hypothesis that the population coefficients on STR and expenditures per pupil (expn_stu) are both zero, against the alternative that at least one of the population coefficients is nonzero.

F-test example, California class size data:
reg testscr str expn_stu pctel, r;

Regression with robust standard errors                 Number of obs =     420

                                                       F(  3,   416) =  147.20

                                                       Prob > F      =  0.0000

                                                       R-squared     =  0.4366

                                                       Root MSE      =  14.353

------------------------------------------------------------------------------

             |               Robust

     testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

         str |  -.2863992   .4820728    -0.59   0.553    -1.234001     .661203

    expn_stu |   .0038679   .0015807     2.45   0.015     .0007607    .0069751

       pctel |  -.6560227   .0317844   -20.64   0.000    -.7185008   -.5935446

       _cons |   649.5779   15.45834    42.02   0.000     619.1917    679.9641

------------------------------------------------------------------------------









NOTE

test str expn_stu;



The test command follows the regression
 ( 1)  str = 0.0




There are q=2 restrictions being tested
 ( 2)  expn_stu = 0.0

       F(  2,   416) =    5.43
 The 5% critical value for q=2 is 3.00
            Prob > F =    0.0047  Stata computes the p-value for you
Two (related) loose ends:

1. Homoskedasticity-only versions of the F-statistic
2. The “F” distribution

The homoskedasticity-only (“rule-of-thumb”) F-statistic
To compute the homoskedasticity-only F-statistic:
· Use the previous formulas, but using homoskedasticity-only standard errors; or

· Run two regressions, one under the null hypothesis (the “restricted” regression) and one under the alternative hypothesis (the “unrestricted” regression).

· The second method gives a simple formula

The “restricted” and “unrestricted” regressions
Example: are the coefficients on STR and Expn zero?

Restricted population regression (that is, under H0):

TestScorei = (0 + (3PctELi + ui   (why?)

Unrestricted population regression (under H1):

TestScorei = (0 + (1STRi + (2Expni + (3PctELi + ui
· The number of restrictions under H0 = q = 2.

· The fit will be better (R2 will be higher) in the unrestricted regression (why?)

By how much must the R2 increase for the coefficients on Expn and PctEL to be judged statistically significant?
Simple formula for the homoskedasticity-only F-statistic:

F = 
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 = the R2 for the unrestricted regression
q = the number of restrictions under the null

kunrestricted = the number of regressors in the

   unrestricted regression.

Example:
Restricted regression:
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Unrestricted regression:
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The homoskedasticity-only F-statistic
F = 
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· The homoskedasticity-only F-statistic rejects when adding the two variables increased the R2 by “enough” – that is, when adding the two variables improves the fit of the regression by “enough”

· If the errors are homoskedastic, then the homoskedasticity-only F-statistic has a large-sample distribution that is 
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· But if the errors are heteroskedastic, the large-sample distribution is a mess and is not 
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The F distribution

If:
1. u1,…,un are normally distributed; and

2. Xi is distributed independently of ui (so in particular ui is homoskedastic)
then the homoskedasticity-only F-statistic has the 

“Fq,n-k–1” distribution, where q = the number of restrictions and k = the number of regressors under the alternative (the unrestricted model).

The Fq,n–k–1 distribution:
· The F distribution is tabulated many places

· When n gets large the Fq,n-k–1 distribution asymptotes to the 
[image: image89.wmf]2
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Fq,( is another name for 
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· For q not too big and n≥100, the Fq,n–k–1 distribution and the 
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· Many regression packages compute p-values of F-statistics using the F distribution (which is OK if the sample size is (100

· You will encounter the “F-distribution” in published empirical work.
Digression:  A little history of statistics…

· The theory of the homoskedasticity-only F-statistic and the Fq,n–k–1 distributions rests on implausibly strong assumptions (are earnings normally distributed?)

· These statistics dates to the early 20th century, when “computer” was a job description and observations numbered in the dozens.

· The F-statistic and Fq,n–k–1 distribution were major breakthroughs: an easily computed formula; a single set of tables that could be published once, then applied in many settings; and a precise, mathematically elegant justification.

A little history of statistics, ctd…
· The strong assumptions seemed a minor price for this breakthrough.
· But with modern computers and large samples we can use the heteroskedasticity-robust F-statistic and the Fq,( distribution, which only require the four least squares assumptions.
· This historical legacy persists in modern software, in which homoskedasticity-only standard errors (and F-statistics) are the default, and in which p-values are computed using the Fq,n–k–1 distribution.
Summary: the homoskedasticity-only (“rule of thumb”) F-statistic and the F distribution

· These are justified only under very strong conditions – stronger than are realistic in practice.

· Yet, they are widely used.

· You should use the heteroskedasticity-robust F-statistic, with 
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· For n ≥ 100, the F-distribution essentially is the 
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· For small n, the F distribution isn’t necessarily a “better” approximation to the sampling distribution of the F-statistic – only if the strong conditions are true.
Summary:  testing joint hypotheses

· The “common-sense” approach of rejecting if either of the t-statistics exceeds 1.96 rejects more than 5% of the time under the null (the size exceeds the desired significance level)
· The heteroskedasticity-robust F-statistic is built in to STATA (“test” command); this tests all q restrictions at once.

· For n large, F is distributed as 
[image: image94.wmf]2
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· The homoskedasticity-only F-statistic is important historically (and thus in practice), and is intuitively appealing, but invalid when there is heteroskedasticity
Testing Single Restrictions on Multiple Coefficients
(SW Section 5.8)

Yi = (0 + (1X1i + (2X2i + ui,  i = 1,…,n
Consider the null and alternative hypothesis,



H0: (1 = (2    vs.  H1: (1 ( (2
This null imposes a single restriction (q = 1) on multiple coefficients – it is not a joint hypothesis with multiple restrictions (compare with (1 = 0 and (2 = 0).
Two methods for testing single restrictions on multiple coefficients:

1. Rearrange (“transform”) the regression

Rearrange the regressors so that the restriction becomes a restriction on a single coefficient in an equivalent regression

2. Perform the test directly

Some software, including STATA, lets you test restrictions using multiple coefficients directly 
Method 1:  Rearrange (“transform”) the regression
Yi = (0 + (1X1i + (2X2i + ui 

H0: (1 = (2    vs.  H1: (1 ( (2
Add and subtract (2X1i:
Yi = (0 + ((1 – (2) X1i + (2(X1i + X2i) + ui
or

Yi = (0 + (1 X1i + (2Wi + ui
where




(1 = (1 – (2



Wi = X1i + X2i
(a) Original system:

Yi = (0 + (1X1i + (2X2i + ui 

H0: (1 = (2   vs.  H1: (1 ( (2
(b) Rearranged (“transformed”) system:
Yi = (0 + (1 X1i + (2Wi + ui
where (1 = (1 – (2 and Wi = X1i + X2i
so



H0: (1 = 0  vs.  H1: (1 ( 0
The testing problem is now a simple one: 

test whether (1 = 0 in specification (b).

Method 2: Perform the test directly
Yi = (0 + (1X1i + (2X2i + ui 

H0: (1 = (2     vs.  H1: (1 ( (2
Example: 

TestScorei = (0 + (1STRi + (2Expni + (3PctELi + ui
To test, using STATA, whether (1 = (2:

regress testscore str expn pctel, r

test str=expn
Confidence Sets for Multiple Coefficients 

(SW Section 5.9)

Yi = (0 + (1X1i + (2X2i + … + (kXki + ui,  i = 1,…,n
What is a joint confidence set for (1 and (2?

A 95% confidence set is:

· A set-valued function of the data that contains the true parameter(s) in 95% of hypothetical repeated samples.

· The set of parameter values that cannot be rejected at the 5% significance level when taken as the null hypothesis.
The coverage rate of a confidence set is the probability that the confidence set contains the true parameter values

A “common sense” confidence set is the union of the 95% confidence intervals for (1 and (2, that is, the rectangle:
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· What is the coverage rate of this confidence set?

· Des its coverage rate equal the desired confidence level of 95%?
Coverage rate of “common sense” confidence set:
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= 1 –  Pr[|t1| > 1.96 and/or |t2| > 1.96] ( 95% !

Why?

This confidence set “inverts” a test for which the size doesn’t equal the significance level!

Recall: the probability of incorrectly rejecting the null

= 
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(if t1, t2 are independent)

= .05(.05 + .05(.95 + .95(.05


= .0975 = 9.75% – which is not the desired 5%!!

Instead, use the acceptance region of a test that has size equal to its significance level (“invert” a valid test):

Let F((1,0,(2,0) be the (heteroskedasticity-robust) F-statistic testing the hypothesis that (1 = (1,0 and (2 = (2,0:

95% confidence set = {(1,0, (2,0:  F((1,0, (2,0) < 3.00}
· 3.00 is the 5% critical value of the F2,( distribution
· This set has coverage rate 95% because the test on which it is based (the test it “inverts”) has size of 5%.  

The confidence set based on the F-statistic is an ellipse
{(1, (2:  F = 
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Now

 F = 
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This is a quadratic form in (1,0 and (2,0 – thus the boundary of the set F = 3.00 is an ellipse.

Confidence set based on inverting the F-statistic
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The R2, SER, and 
[image: image127.wmf]2

R

 for Multiple Regression

(SW Section 5.10)

Actual = predicted + residual:   Yi = 
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As in regression with a single regressor, the SER (and the RMSE) is a measure of the spread of the Y’s around the regression line:

SER = 
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The R2 is the fraction of the variance explained:

R2 = 
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 – just as for regression with one regressor.
· The R2 always increases when you add another regressor – a bit of a problem for a measure of “fit”

· The 
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 corrects this problem by “penalizing” you for including another regressor:


[image: image137.wmf]2

R

 = 
[image: image138.wmf]1

1

1

nSSR

nkTSS

-

æö

-

ç÷

--

èø

   so 
[image: image139.wmf]2

R

 < R2
How to interpret the R2 and 
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?
· A high R2 (or 
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R

) means that the regressors explain the variation in Y.

· A high R2 (or 
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) does not mean that you have eliminated omitted variable bias.
· A high R2 (or 
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) does not mean that you have an unbiased estimator of a causal effect ((1).

· A high R2 (or 
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) does not mean that the included variables are statistically significant – this must be determined using hypotheses tests.

 Example:  A Closer Look at the Test Score Data

(SW Section 5.11, 5.12)

A general approach to variable selection and model specification:
· Specify a “base” or “benchmark” model.

· Specify a range of plausible alternative models, which include additional candidate variables.

· Does a candidate variable change the coefficient of interest ((1)?

· Is a candidate variable statistically significant?

· Use judgment, not a mechanical recipe…

Variables we would like to see in the California data set:

School characteristics:

· student-teacher ratio

· teacher quality

· computers (non-teaching resources) per student

· measures of curriculum design…

Student characteristics:

· English proficiency 

· availability of extracurricular enrichment 

· home learning environment

· parent’s education level…

Variables actually in the California class size data set:

· student-teacher ratio (STR)
· percent English learners in the district (PctEL)

· percent eligible for subsidized/free lunch

· percent on public income assistance
average district income

· A look at more of the California data

[image: image145]
Digression: presentation of regression results in a table
· Listing regressions in “equation” form can be cumbersome with many regressors and many regressions

· Tables of regression results can present the key information compactly

· Information to include:

· variables in the regression (dependent and independent)

· estimated coefficients

· standard errors

· results of F-tests of pertinent joint hypotheses
· some measure of fit

· number of observations 


[image: image146]
Summary:  Multiple Regression

· Multiple regression allows you to estimate the effect on Y of a change in X1, holding X2 constant.

· If you can measure a variable, you can avoid omitted variable bias from that variable by including it.

· There is no simple recipe for deciding which variables belong in a regression – you must exercise judgment.

· One approach is to specify a base model – relying on a-priori reasoning – then explore the sensitivity of the key estimate(s) in alternative specifications.
5-2
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[image: image148.png]TABLE 5.1 Differences in Test Scores for California School Districts with Low and High
Student Teacher Ratios, by the Percentage of English Learners in the District

Student-Teacher Student-Teacher Difference in Test Scores,
Ratio < 20 Ratio > 20 Low vs. High STR

Average Average

Test Score n Test Score n Difference #-statistic
All Districts 657.4 238 650.0 182 7.4 4.04
Percent of English Learners
<22% 664.1 78 665.4 27 -1.3 —0.44
2.2-8.8% 666.1 61 661.8 44 4.3 1.44
8.8-23.0% 654.6 55 649.7 50 49 1.04

>23.0% 636.7 44 634.8 61 19 0.68




[image: image149.png]TABLE 5.2 Results of Regressions of Test Scores on the Student-Teacher Ratio and Student
Characteristic Control Variables Using California Elementary School Districts

Dependent variable: Average test score in the district.

Regressor m 2 (3) (a) (5)
Student-teacher ratio (X;) —2.08%* ~1.10% ~1.00%% —1.31%% —1.01%*
(0.52) (0.43) (0.27) (0.34) (0.27)
Percent English learners (X,) —0.650%F  —0.122FF  —0.488%F  —0.130%*
(0.031) (0.033) (0.030) (0.036)
Percent eligible for subsidized lunch (X;) —0.547%% ~0.529%*
(0.024) (0.038)
Percent on public income assistance (X,) ~0.790%* 0.048
(0.068) (0.059)
Intercept 698.9%% 686.0%% 700.2%% 698.0%% 700.4%%
(10.4) (8.7) (5.6) (6.9) (5.5)

Summary Statistics

SER 18.58 14.46 9.08 11.65 9.08
Rr? 0.049 0.424 0.773 0.626 0.773
n 420.0 420.0 420.0 420.0 420.0

These regressions were estimated using the data on K-8 school districts in California, described in Appendix 4.1. Standard errors
are given in parentheses under coefficients. The individual coeficient is statistically significant at the *5% level or **1% significance
level using a ewo-sided test.
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